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1. INTRODUCTION

In this paper we deal with the problem, originally studied by Guido Zapph in [23, 24],
concerning the embedded degenerations of two-dimensional scrolls to unions of planes
with the simplest possible singularities.

In [2] and [3], we have studied the properties of the so-callagpatic surfaces.e.
reduced, connected, projective surfaces which are unions of smooth surfaces with global
normal crossings except at singular points, which are locally analytically isomorphic to the
vertex of a cone over a union of lines whose dual graph is either a chain of length
a fork withn — 1 teeth, or a cycle of order, and with maximal embedding dimension.
These singular points are respectively callgdod) Zappatic singularitiesf type R,, S,
andE, (cf. Definition[2.] below). A Zappatic surface is said tofdenar if it is embedded
in a projective space and all its irreducible components are planes.

An interesting problem is to find degenerations of surfaces to Zappatic surfaces with
Zappatic singularities as simple as possible. This problem has been partly considered in
[3]; e.g. in Corollary 8.10, it has been shown thatXifs a planar Zappatic surface which
is the flat limit of a smooth scroll of sectional genys- 2, then the Zappatic singularities
of X cannot be too simple, in particulaf has to have some point of tyg® or S; with
i > 4, or of typeE; with j > 6.

The main results i [23] can be stated in the following way:

The first three authors are members of G.N.S.A.G.A. at I.N.d.A.M. “Francesco Severi".
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THEOREM 1.1 (cf. 812 in[[28]).Let F be a scroll of sectional genug and degreel >
3g + 2 whose general hyperplane section is a general curve of ggnuhen F is
birationally equivalent to a scroll ifP", for somer > 3, which degenerates to a planar
Zappatic surface with only points of ty@ and S, as Zappatic singularities.

Zappa’s arguments rely on a rather intricate analysis concerning degenerations of
hyperplane sections of the scroll and, accordingly, of the branch curve of a general
projection of the scroll to a plane.

We have not been able to check all the details of this very clever argument. However,
we have been able to prove a slightly more general result using some basic smoothing
technique (cf.[1B]).

Our main result is the following (cf. Propositipn B.8, Construction$[4.1, 4.2, Remarks
[4:20[5.6 and Theorers #[6, 5.4 later on):

THEOREM1.2. Letg > O and eitherd > 2,if g = 0,ord > 5,if g = 1, 0ord >
2g + 4, if g > 2. Then there exists a unique irreducible compoript, of the Hilbert
scheme of scrolls of degre2and sectional genug in P?—2¢+1 such that the general
point of 4 , represents a smooth scrafl which is linearly normal and moreover has
HY(S, 05(1)) = 0.

Furthermore,

(i) Ha,g is generically reduced andim(Hy, ) = (d — 2g + 224+ 7(g—1),
(i) Ha,, contains the Hilbert point of a planar Zappatic surface having only either2
R3-points, ifg = 0, or d — 2g + 2 points of typeRz and2g — 2 points of typeSa, if
g > 1, as Zappatic singularities,
(i) Hq4 , dominates the moduli spacdef, of smooth curves of gengs

We also construct examples of scrddisvith same numerical invariants, which are not
linearly normal inP¢—2¢+1, as well as examples of components of the Hilbert scheme of
scrolls with same invariants, different frofd, , and with general moduli (cf. Examples
511 and 5.12).

We briefly describe the contents of the paper.[Th §2 we recall standard definitions and
properties of Zappatic surfaces. If] 83 we focus on some degenerations of products of
curves to planar Zappatic surfaces and we prove some results which go back to [24]. In
particular, we consider Zappatic degenerations of rational and elliptic normal scrolls and
of abelian surfaces.

In §4 we prove the greatest part of Theoifenj 1.2. First, we construct, with an inductive
argument, planar Zappatic surfaces which have the same numerical invariants of scrolls of
degreed and genug in P4~25*+1 and have only/ — 2g + 2 points of typeRs and & — 2
points of typeS, as Zappatic singularities. Then we prove that these Zappatic surfaces
can be smoothed to smooth scrolls which fill up the compof&nt and we compute the
cohomology of the hyperplane bundle and of the normal bundle. These computations imply
thatH, ¢ is generically smooth, of the right dimension and its general point represents a
linearly normal scroll.

Section[} is devoted to the study of some properties of components of the Hilbert
scheme of scrolls. In particular, we show that the compohgnt is the unique component
of the Hilbert scheme of scrolls of degréeand sectional genuswhose general points]
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is linearly normal inP4—2¢+1 and moreover hat/1(S, Os(1)) = 0. Furthermore, we give
the examples mentioned above (cf. Examples|5.1T andl 5.12).

In the last section[§6, we briefly explain Zappa’s original approadh in [23]. Moreover,
we make some comments and give some improvements on some interesting results from
[23] concerning extendability of plane curves to scrolls which are not cones.

2. NOTATION AND PRELIMINARIES

In this paper we deal with projective varieties defined over the complex@ield

Let us recall the notions of Zappatic singularities, Zappatic surfaces and their dual
graphs. We refer the reader for more details to our previous papers [2]land [3]. One word
of warning: what we calfjood Zappatic singularitiethere, here we simply callappatic
singularities because no other type of Zappatic singularity will be considered in this paper.

DEFINITION 2.1. Let us denote by, [resp. S, E,] a graph which is a chain [resp.
a fork, a cycle] withn vertices,n > 3 (cf. Figure[l). Let Cg, [resp. Cs,, Cg,] be a
connected, projectively normal curve of degrem P” [resp. inP”, in P"~1] which is a
stick curve i.e. a reduced union of lines with only double points, whose dual gragh is
[resp. S,, E.].

e A O

FiG. 1. Achaingr,, afork S, with n — 1 teeth, a cycl&),.

We say that a point of a projective surfac& is a point of typeR,, [resp. S,,, E,] if
(X, x) is locally analytically isomorphic to a paifY, y) whereY is the cone over a curve
Cr, [resp.Cs,, Cg,], n > 3, andy is the vertex of the cone (cf. Figyré 2). We say that
Ry-, Sy-, En-points areZappatic singularities

Vi V3
¢ V2 o

FIG. 2. Examples: aiR3-point, anS4-point and ank3-point.

In this paper we will deal mainly with points of typR3; and Ss. We will use the
following:

NOTATION 2.2. Ifx is a point of typeRs [of type S4, resp.] of a projective surface, we
say that the componeft of X as in the left part [in the middle, resp.] of Figure 2 is the
centralcomponent ofX passing through.
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DEFINITION 2.3. A projective surface&X = | J;_; V; is called aZappatic surfacé X is
connected, reduced, all its irreducible componeé¥its. . ., V, are smooth and:

e the singularities in codimension one Xfare at most double curves which are smooth
and irreducible and along which two surfaces meet transversally;
o the other singularities oK are Zappatic singularities.

We setC;; = V; N V; if V; and V; meet along a curve, and;; = ¢ otherwise. We set
Ci=VinX-V, = U;:l Cij. We denote by’ = Sing(X) the singular locus o¥, i.e.
the curveC = ;. _;, Cij-

We denote by, [resp.r,, s,] the number of points of typE, [resp. R,, S,] of X.

REMARK 2.4. A Zappatic surfac& is Cohen—Macaulay. Moreover it has global normal
crossings except at the,- and S, -points, forn > 3, and at thet,,,-points, form > 4.

We associate to a Zappatic surface dual graphGx as follows.

DEFINITION 2.5. LetX = |J!_; Vi be a Zappatic surface. Thdual graphGx of X is
given by:

e avertexy; for each irreducible componenf of X;

¢ an edgéd;;, joining the vertices; andv;, for each irreducible component of the curve
Cij=VinyVv,

e ann-faceF, for each pointp of X of typeE, for somen > 3: then edges bounding the
faceF, are then irreducible components of the double cu@ef X concurring atp;

e an openn-facefor each pointp of X of type R, for somen > 3; it is bounded by
n — 1 edges, corresponding to tlwe— 1 irreducible components of the double curve of
X concurring atp, and by adasheddge, which we add in order to join the two extremal
vertices;

e ann-anglefor each pointp of X of typesS,,, spanned by the — 1 edges that are the
n — lirreducible components of the double curveXafoncurring atp.

By abusing notation, we will denote layy also the CW-complex associated to the dual
graph Gy of X, formed by the vertices, edges anflaces.

REMARK 2.6 (cf. [2]). When we deal with the dual graph oplanar Zappatic surface
X = U/_1 Vi, we will not indicate open 3-faces with a dashed edge. Indeed, the graph
itself shows where open 3-faces are located.

Some invariants of a Zappatic surfakehave been computed inl[2] and id [4], namely
the Euler—Poincér characteristig (Ox), thew-genusp,, (X) = h%(X, wy), Wherewy is
the dualizing sheaf ok, and, whenX is embedded in a projective spdee thesectional
genusg(X), i.e. the arithmetic genus of a general hyperplane section. dh particular,
for a planar Zappatic surface (for the general case, séé [2, 4]) one has:

PROPOSITION2.7. LetX = J;_,; V; be a planar Zappatic surface of degreén P" and
denote by the degree o€ = Sing(X), i.e. the number of double lines &f Then:

(2.8) gX)=e—v+1,
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(2.9) Po(X) = h°(X, wx) = h2(Gx, C),
(2.10) x(Ox)=x(Gx)=v—e+Y_ fi.
i>3

In this paper, a Zappatic surface will always be considered as the central fibre of an
embedded degeneration, in the following sense.

DEFINITION 2.11. Let A be the spectrum of a DVR (or equivalently the complex unit
disk). Adegeneratiorof surfaces parametrized by is a proper and flat morphism :

X — A such that each fibret, = 7=1(¢), r # 0 (whereO is the closed point ofA),

is a smooth, irreducible, projective surface. A degeneration X — A is said to be
embeddedn P" if ¥ € A x P" and the following diagram commutes:

X S AxP

%A

The invariants of the Zappatic surfacé = Ap, which is the central fibre of an
embedded degeneratidh — A, determine the invariants of the general fibig ¢+ # 0,

as we proved in [2,13,14]. Again, we recall these results only for planar Zappatic surfaces
and we refer to our previous papers for the general case.

THEOREM2.12. LetX — A be an embedded degenerationfihsuch that the central
fibre X = Ap is a planar Zappatic surface. Then, for afy ¢ € A,

(2.13) g(Xy) = g(X), (A1) = pu(X), x(Ox,) = x(Ox).
Moreover the self-intersectioﬁffl of a canonical divisor ofY; is
(2.14) K%, =% —10c+ Y 2nfy +r3+k,

n>3

wherek depends on the presence of points of tRpeand S,,,, m > 4:

Z(m —2)(rm +sm) <k < Z((Zm —9)rm + (m2_1>sm>

m=>4 m>4

Finally, let us recall the construction of rational normal scrolls.

DEFINITION 2.15. Fix two positive integers, b and setr = a +b + 1. InIP" choose two
disjoint linear space®¢ andP’. Let C, [resp. C}] be a smooth, rational normal curve
of degreea in P* [resp. of degreeb in P?] and fix an isomorphisng : C, — Cj,. Then
the union inP” of all the linesp, ¢ (p), p € C,, is a smooth, rational, projectively normal
surface which is called acroll of type(a, b) and it is denoted by, ,. A scroll is said to
bebalancedf eitherb =aorb=a+ 1

Another way to define a scroll is as the embedding of a Hirzebruch suffgee> 0,
which is the minimal ruled surface ovBt with a section of self-intersectioan. Letting
F be the ruling off,, andC a section such that? = n, the linear systernC +a F| embeds
F, in P*t22+1 a5 a scroll of typda, a + n) (cf. e.g. [14]). In particular a balanced scroll
inP", r > 3, is the embedding either & = P! x P! or of F; depending on whetheris
odd or even.
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In the next section we will see, in particular, degenerations of rational scrolls to a planar
Zappatic surface. In the subsequent section we will deal with scrolls of higher genus.

3. DEGENERATIONS OF PRODUCTS OF CURVES AND OF RATIONAL SCROLLS

Zappa suggested in [24] an interesting method for degenerating products of curves, which
also gives a degeneration of rational and elliptic scrolls to planar Zappatic surfaces with
only R3-points.

EXAMPLE 3.1 (Zappa). LeC c P*1andC’ c P! be smooth curves. I€ andC’
may degenerate to stick curves, then the smooth surface

S=0C x C/ c ]P;nfl % ]mel c anfl,

embedded via the Segre map, degenerates to a Zappatic stirfacé”””~1 whose
irreducible components are quadrics and whose double curves are lines.

If it is possible to further, independently, degenerate each quadiidethe union of
two planes, then one gets a degeneratiofi ef C x C’ to a planar Zappatic surface. This
certainly happens if each quadric Bfmeets the other quadrics #falong a union of at
most four lines, at most two from each ruling (see Figure 3).

I I
[ L —

FIG. 3. A quadric degenerating to the union of two planes.

ThereforeS = C x C’ can degenerate to a planar Zappatic surface #ndC’ are
either rational or elliptic normal curves, since they degenerate to stick catyesind
Cg,, respectively. We will now describe these degenerations.

ExampLE 3.2 (Rational scrolls). Le€ be a smooth, rational normal curve of degree
in P". SinceC degenerates to a union eflines whose dual graph is a chain, the smooth
rational normal scrolb = C x P! ¢ P2+ degenerates to a Zappatic surface- UL Y
such that eacly; is a quadric,Y has no Zappatic singularity and its dual gra@h is a
chain of lengthn (see FigurgJ4).

FIG. 4. Chain ofz quadrics as in ExampJe 3.2.
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Each quadrid; meetsY \ Y; either along a line or along two distinct lines of the same
ruling. Thus, as we noted before, the quadficegenerates, in tHe® spanned by;, to
the union of two planes meeting along a lipgleaving the other line(s) fixed. Therefore,
in P2+1 the scrollS also degenerates to a planar Zappatic surfac# degree 2. The
line /; can be chosen generally enough so tdtas 2: — 2 points of typeR3 as Zappatic
singularities, for each, i.e. its dual graplG x is a chain of length 2 (see Figur¢]5; cf.

RemarK2.5).

FIG. 5. Planar Zappatic surface of degreeviith a chain as dual graph.

ExampLE 3.3 (Elliptic scrolls). LetC be a smooth, elliptic normal curve of degreén
P*~1, SinceC degenerates to a union oflines whose dual graph is a cycle, the smooth
elliptic normal scroll§ = C x P! ¢ P2~ degenerates to a Zappatic surface: | J_, ¥;
such that eacly; is quadric,Y has no Zappatic singularity and its dual graph is a cycle

of lengthr; see the picture on the left in Figyre 6.

5 & O

FIG. 6. Cycle ofr quadrics and of 2 planes as in ExampJe 3.3.

Each quadrid’; meetsY \ Y; along two distinct lines;, r/ of the same ruling. Hence,
in the P spanned byy;, the quadricY; degenerates to the union of two planes meeting
along a lind;, leavingr;, r/ fixed. Choosing again a genefafor eachi, it follows that in
P?—1 the scrollS degenerates to a planar Zappatic surf&icef degree 2 with 2» points
of type R3 as Zappatic singularities and its dual gra@l is a cycle of length 2 (see

Figure[6).

EXAMPLE 3.4 (Abelian surfaces). Lef c P*~1 andC’ c P"~1 be smooth, elliptic
normal curves of degree respectivelgndm. ThenC andC’ degenerate to the stick curves

Cg, andCg,, respectively, hence the abelian surféce- C x C’ C P"m—1 degenerates

to a Zappatic surface which is a unionmf quadrics with onlyE4-points as Zappatic
singularities; cf. e.g. the picture on the left in Figlife 7, where the top edges have to be
identified with the bottom ones, similarly the left edges have to be identified with the right
ones. Thus the top quadrics meet the bottom quadrics and the quadrics on the left meet the
quadrics on the right.

Again each quadric degenerates to the union of two planes. By doing this as depicted
in Figure[7, one gets a degeneration of a general abelian surface with a polarization of
type (n, m) to a planar Zappatic surface of degres2with only Eg-points as Zappatic
singularities.
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FIG. 7. nm quadrics withE4-points and 2m planes withEg-points.

Other examples of degenerations, similar to the one considered abo%e3 furrfaces
(the so callegillow degenerationsare considered in e.d.|[8].

RemMARK 3.5. Going back to the general case, if eitieor C’ has genus greater than 1
and if they degenerate to stick curves, then the surfageC x C’ degenerates to a union

of quadrics, as we said. Unfortunately it is not clear if it is possible to further independently
degenerate each quadric to two planes.

From now on, until the end of this section, we deal with degenerations of rational
normal scrolls only. Namely we will show that a general rational normal scroll degenerates
to a planar Zappatic surface with Zappatic singularities of tigpenly and we will see
how “general” the scroll has to be in order to admit such degenerations (e.g., in Example
[3.2, the scrolls are actually forced to have even degree).

There are several ways to construct these degenerations. We will start from the trivial
family and then we will perform two basic operations: (1) blowing-ups and blowing-downs
in the central fibre, (2) twisting the hyperplane bundle by a component of the central fibre.

CONSTRUCTION3.6. LetS = S, be a smooth, rational, normal scroll of tyge, b) in
P", wherer = a + b + 1 > 3 and we assume that> a. ThenS degenerates to the union
of a plane and a smooth, rational normal scr8}] ,_1 meeting the plane along a ruling.

Indeed,S is the embedding of the Hirzebruch surfdég n = b — a > 0, via the linear
system|C + a F|, whereF is the ruling andC is a section of self-intersection(clearly, if

n = 0, we may choosé to be either of the two rulings and to be the other ruling). Set
H = C +aF. Consider the trivial familys = F,, x A 5 A. OnS we have the hyperplane
bundle’H which coincides withH on each fibre of .

Now blow up S at a general point of the central fib&&. Let V be the exceptional
divisor andS’ be the proper transform &. ThenH ® O(—V) embedsV as a plane and
mapsS’ to a scroll of typga, b—1), which meet each other along a ruling®f We explain
these operations in Figufé¢ 8, where the dotted lines represent the hyperplane bundle. The
last arrow is the so-callegipe | transformatioron the vertical—1)-curve (cf. [11]), which
consists in blowing up thé—1)-curve and then blowing down the exceptional divisor,
which is alFg, along the other ruling. The total effect ¢y is to perform an elementary
transformation.

Whenr = 3 this process gives the degeneration of a smooth quadric to two planes
meeting along a line.
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—n
-
o —n [
S blow up p
Flo o — 0 7/
... ip—1
c »p
) —n+1 -1
twist by O(—V)
> 0 0|0 0
don=1. ... 1.

Fic. 8. Degeneration of a scral}, ;, to the union of a plane and a scré}| ;1.

CONSTRUCTION3.7. LetS = S, be a smooth, rational, normal scroll of tyge, ») in
P", wherer = a + b + 1 and assume that > a > 1. ThenS degenerates to the union
of a quadric and a smooth, rational normal scrélj_1 ,—1 meeting the quadric along a
ruling.

Indeed, consider the Hirzebruch surfdte n = b — a > 0, and the trivial family
S=TF, x A > A, with the hyperplane bundl¥, as in ConstructioG.

Now blow up a rulingFp in the central fibreSp. Let W be the exceptional divisor and
S’ be the proper transform d@. ThenH ® O(—W) embedsW as a quadric and’ as a
scroll of type(a — 1, b — 1), which meet along a ruling of’ (cf. Figureg9).

Bo—n
< blow up Fo
>

S twist by O(-W)
F |0 ol Fo 7

FiG. 9. Degeneration of a scral}, ;, to the union of a quadric and a scré}|_1 ;1.

By induction on the degree of the scroll and by using Construcfions 36 gnd 3.7 for the
inductive steps, we now show the following:

PROPOSITION3.8. Letd > 2andset =d+1 > 3. LetX := X4 0 be a planar Zappatic
surface of degreé in P", whose dual graph is a chain, i.&. hasd — 2 points of typeR3 as
Zappatic singularities. Then the Hilbert point &f belongs to the irreducible component
Ha .0 of the Hilbert scheme parametrizing rational normal scrolls of degtee

REMARK 3.9. Itis well known (cf. e.g. Lemma 3 ifl[6]) thét, o is generically reduced
and of dimension/? + 4d — 3.

PrROOF OF PROPOSITION[3.§. We will directly show that a smooth, balanced scll
degenerates t&.

Suppose first thatis even. LetS = S, ,+1 be a balanced scroll of degrgen P’ i.e.
a=(d—-1)/2=r/2—1. Consider the trivial familyf1 x A, wherelF; is embedded in
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Fic. 10. Degeneration of, ,.1 to a planar Zappatic surface with onig-points.

IP" by the linear systentC + a F| such as in Constructiofis 3.6 gnd|3.7 (cf. the left part of
Figure[10).

Now blow up a ruling in the central fibre, call the exceptional diviBbE Fo and twist
the hyperplane bundle B9 (—aW). In this way, one gets a degenerationsab the union
of a scroll of type(a, a) in P"~1 and a plane, meeting along a ruling (cf. Constru 3.7
and the middle of Figure 10).

Then blow up a general point (the bottom left corner in Figuiie 10) of the scroll, twist
again by the opposite of the new surface and perform a type | transformation, as we did
in Constructior] 3J6. By twisting again by the opposite of the new surface, counted with
multiplicity « — 1, one gets the configuration depicted on the right in Figufe 10, namely
the first two components are two planes, whereas the new component is a scroll of type
(a—1,a).

Going on by induction om, by following the same process, one gets a chain of planes
which is a planar Zappatic surface with orRg-points, as wanted.

If r is odd, one starts from By as in the middle of Figure 10 and one may perform
exactly the same operations in order to get a similar degeneration.

REMARK 3.10. In practice, Propositign 3.8 follows by Constructipns 3.6[and 3.7 with a
suitable induction. The explicit argument we made in the proof shows that there exists a
flat degeneration of smooth, rational scrollsavhose total space is singular only at the
R3-points of X. For another approach, the reader is also referréd to [18].

REMARK 3.11. Suppose we have a smooth sctbMhich is the general fibre of an
embedded degenerationlii to a planar Zappatic surfacé. The ruling ofS, considered

as a curvel” in the Grasmanniafi(1, r), accordingly degenerates to a stick-cuig

This means that the ruling degenerates to a union of pencils of lines, one in each plane of
X. Sincely is connected, each double line ¥fbelongs to the pencil in either of the two
planes containing it. Hence, the centres of the pencils also belong to the double lkes of
Therefore, on each plane which contains more than one double like alf the double

lines pass through the same Zappatic singularity which is the centre of the pencil. However,
the location of the centres of the pencils on the planes containing only one double line of
X is not predictable.

We conclude this section by proving the following:

PROPOSITION3.12. LetS = S, be a smooth, rational normal scroll iBatb+1 with
b —a > 4. Assume thaf is the general fibre of a degeneration whose central fibre is a
planar Zappatic surfac&. ThenX has singularities worse thaRs-points.

PROOF. By construction of the scrol§' (cf. Definition[2.15), the minimum degree of a
section ofS is a, and letC, be the section of degree Suppose by contradiction théitis
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the general fibre of an embedded degeneration of surfaces whose central fibre is a planar
Zappatic surfac& = U?;“f V; in P+b+1 with only Rs-points as Zappatic singularities.
Then the dual graptF x is a chain and we may and will assume that two plaiesndV;
meet along alineifand only if =i £+ 1.
While S degenerates t&, the ruling ofS degenerates to a pencil of lingls on each

planeV;,i = 1,...,a + b (cf. RemarK 3.1]1) and the secti@h, degenerates to a chain
of linesly, ..., I, withl; C V;,i = 1,...,a, and we may and will assume that <
- < Ja-

The pencilA; has to meet J_, /;, henceV; has to have non-empty intersection with
Vj,, therefore the assumption théithas at mosR3-points implies thati; < 3. For each
k = 2,...,a, the linesl; andl;_1 meet at a point, so the same argument implies that
Jk < jk—1+ 2 (cf. Figurd I1). It follows thaj, < j1 + 2(a — 1) < 2a + 1. On the other
hand, the pencit,, has to meet J!_; /;, hencej, > a + b — 2. In conclusion, one has

a+b—2<j,<2a+1,

which contradicts the assumption tibat a + 4.

I1 I I3 o ly
Fic. 11. Degeneration of, j,, b = a + 3, to X with only R3-points.

For another approach to degenerations of rational scrolls to unions of planes, the reader
is referred to[[18].

REMARK 3.13. By following the lines of the proof of Propositipn [3.8 it is possible to
prove that, given positive integessb such that O< b — a < 3, there exist degenerations
whose general fibre is a scroll of tygg , and whose central fibre is a planar Zappatic
surface with onlyR3-points as Zappatic singularities (cf. Figlirg 11). We will not dwell on
this here.

4. DEGENERATIONS OF SCROLLSINDUCTIVE CONSTRUCTIONS

In this section we produce families of smooth scrolls of any gena<0 which degenerate
to planar Zappatic surfaces with Zappatic singularities of typeand S, only.

We start by describing the planar Zappatic surfaces which will be the limits of our
scrolls. We will construct these Zappatic surfaces by inductiop.dfrom now on in this
section, we will denote b, , a planar Zappatic surface consistingigflanes and whose
sectional genus ig.

We start with the casg = 1.

CONSTRUCTION4.1. For anyd > 5, there exists a planar Zappatic surfacg; 1 =
UL, Vi inP", withr = d — 1, whose dual graph is a cycle.



106 A. CALABRI ET AL.

Indeed, ifps, ..., pqs are the coordinate points Bf, we may letV;,i = 2,...,d — 1,
be the plane spanned by_1, p;, pi+1 and letVy = (pa, p1, p2), Va = (pa-1. pa, p1)-
ThenX,1 = Ule V; is a planar Zappatic surface with dual graph a cycle and whose
Zappatic singularities are points of tygs at p1, ..., pg; cf. Figure[12, where one
identifies the ling p,, p1) on the left with the same line on the right.

p1 p3 ps Pd—4 Pa-2 pd

pd p2 pa P6 Pd-3 pd-1 Pl

FiG. 12. Planar Zappatic surfacg; 1 with dual graph a cycle.

We will show in TheorerE]G thaX, 1 is the flat limit of a smooth scroll of genus 1
in P". In order to do that, now we describe another way to consfyat, which will also
help to understand the next inductive steps.

LetX 20 = Uf’:‘f Vi be a planar Zappatic surface of degeee 2 in P", whose dual
graph is a chain. We may and will assume that the plafiemnd V; meet along a line if
andonlyifj =i £ 1.

Now choose a general liigin V; and a general ling in V;_», thusiy [resp.l2] does
not pass through th&s-point V1 N Vo N V3 [resp.V;_4 N Vy_3 N V;_2]. Clearly the lines
I1 andl, are skew and spanl?, call it /7. By a computation in coordinates one proves
that, ifd > 6, thenIT N Xg = I1 U I». Therefore there exists a smooth quadwicin I7
such thatl1, I are lines of the same ruling off’, and Q' meetsXg transversally along
Q' N X4-20=11Ulp. Onthe other hand, # = 5, thenlT N X4_20 =11 Ul Ul, where
lis aline in the central plane. Nonetheless it is still true that there exists a smooth quadric
Q’ which containgd; andl; and meets(g transversally.

Finally, in I, the quadricQ’ degenerates to two plan&s_; and V,; such that; C
Va—i+1,1 = 1, 2. By construction, the planar Zappatic surfaggs = Xg—20U Vg1 U
Vi = Ule V: has dual graph which is a cycle, hence it has aRdypoints as Zappatic
singularities (cf. Example 3.3 and Figure| 13). Note thad] i¥ 6, then there are pairs of
disjoint planes in the cycle.

FiG. 13. Construction ok, 1 from X;_» o.

Next, we complete the construction proceeding inductively.
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CONSTRUCTION4.2. Fixintegersg, d suchthafg > 2andd > 2¢g+4. Setc = d—2g—4
> 0andr =5+ ¢ =d — 2g + 1. There is a planar Zappatic surfacg; ; = Uf-lzl Vi in
P" such that:

X4.¢ has3g + 6+ ¢ double lines, i.e. its dual grap& x,,, has3g + 6 + ¢ edges;
X4,¢ hasr + 1 points of typeR3z and2(g — 1) points of typeSs,

for eachi, V; is the central plane through a poipt of type eitherR3 or Sy, i.e.V; is the
central component ot; , passing througlp as defined in Notatio@

there exist twaRz-points ofX 4 , whose central planes do not meet;

XxOx,,) =1-8 pu(Xag) =09Xag) =8Xag) =g

Taking into account Constructign 4.1, which covers: 1 andd > 5, we can proceed
by induction and assume that we have the surféige, ,_1. Let V; and V, be disjoint
planes inX,_» .1 such that each of them is the central plane foRarpoint, sayp; and
p2 respectively.

Now choose a linéy in V1 [resp.l2 in Vo] which is general among those passing
through p1 [resp. throughp,]. Then!l; andl, are skew and spanlg?, sayI7, therefore
there exists a smooth quadi in IT containingly and/; as lines of the same ruling (cf.

Figure[14).

Vi

FiG. 14. Construction oK , from Xy 5 ,_1.

Now we prove the following:

CLAIM 4.3. For general choicesQ’ andX,_» ,—1 meet transversally along;_» .1 N
Q' =1L Ul.

PROOFE In order to prove the claim, it suffices to show tliatloes not meet the remaining
components of;_» .1 along a curve, i.elT does not meeV;, i # 1,2, along a line.
Before proving the claim, we make a remark. Suppose that there are two further planes,
sayVz and Vg, in X;_5 .1 contained in(Vy, Vo) = ¥ = PS. Suppose also that the dual
graph of the planar Zappatic surfabe U V3 U V4 U V> is a chain of length 4. Then the
pointsVy N V3N V4 and V3 N V4 N Vo are of typeRs. Note that this certainly happens if
¢ = 0 andg = 2 because in that case the dual grapXgf, ,_1 is a cycle of length six.

In this situation, a computation in coordinatesdinshows that for a general choice of
[1 andly, IT = (I3, I2) intersects neithe¥s nor V4 along a line.
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Now we prove the claim arguing by contradiction. Fix the linén V> and consider
(Io, V1) = £2 = P*. By moving!1 in the pencil of lines o1 throughp1, one gets a pencil
@ of P¥s inside 2 and each of thesB®’s meets a plane, says, along a line. There are
two possibilities: eithe#/s C 2, or V3 € £2.

In the former caseys intersectd/; at a pointg. Letl> move in the pencil of lines o>
throughpy: one gets a pencil d#*s in X = (V1, V»), whose base locus ip1, Vo) = P3
in which V3 is contained. This implies that = p;, moreoverVs intersectsV, along a
line which necessarily contains. In conclusion Vs contains the line passing through
and p». This yields the existence of a plaig which forms, together withvy, V> and V3,

a configuration inX' of four planes as the one discussed above. This is a contradiction.

Suppose now thatz ¢ §2. ThenVz meets along a line the base locus of the pedgil
which is the planép1, I2). By movingl,, we see thaVz has to contain the line through
and p» and we get a contradiction as before.

In I, the smooth quadri@Q’ degenerates to the union of two planes, $ay1 U V4,
wherel; C Vy_i11,i = 1, 2. Consider the planar Zappatic surfag, = Xy 2, 1 U
Vi—1 U V; of degreed in P". Thus, we added t&;_» .1 two planes and three double
linesViNVy, VyN V1 andV,;_1 N Vo. Moreover, the pointg; and p, become points
of type S4 for X, , and we added two further points of ty@s at Vi, N V; N V1 and
Va N Vg—1 N Vo (cf. Figure[14). Finally, one checks that each one of the plahes and
V4 is disjoint from some other plane in the configuration. This ends the construction.

Next, we will prove that the Zappatic surfackg , we constructed are limits of smooth
scrolls of genug. First we make a remark.

REMARK 4.4. If X, , is the flat limit of a family of smooth surfaces, then Theorem
[2.12 implies that

(45) g¥)=g, p¥)=0, x(Oy)=1-g, 81l-g) <Kki<61-yg).

THEOREM4.6. Letg > O andd > 2g + 4 be integers. Let = d — 2g + 1. The
Hilbert point corresponding to the planar Zappatic surfaXg , belongs to an irreducible
componenti, , of the Hilbert scheme of scrolls of degréeand genug in P" such that:

(i) the general point ot , represents a smooth, linearly normal scrilic P’
(i) Ha,, is generically reducedim(Hy ) = no(y, ./\/y/[p:r) =r+1%2+7(g—-1),and
moreoverh (Y, Ny pr) = h?(Y, Ny pr) = 0.

PROOF OFTHEOREM[4.G: BEGINNING. We argue by induction og. The casg = 0 has
been treated in Propositipn B.8. By induction, we may assumethat, 1 is the flat limit
of a smooth scrolb of degreel —2 and genug — 1 in P", which is represented by a smooth
point of a componerit{;_5 .1 of the Hilbert scheme of dimensidan + 124 7(g — 2).

We can now choosk and!; as in Constructionjs 4.1 ahd #.2 so that they are limits of
rulings F1 and F», respectively, or§ (cf. Remarlf 3.1]1).

Let O be a smooth quadric containirg and F», whose limit isQ’. By the properties
of X421 and of Q' (see CIai), it follows thaf and O meet transversally along
SNQ=FLUF>.

The inductive step is a consequence of the following lemma.
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LEMMA 4.7. Inthe above setting, consider the union
R:=SUQ.
Let Az and 7 be the normal and the tangent sheaffoin P, respectively. Then

(4.8) HY(Ng) = H*(NR) =0,
(4.9) OWNR) = +124+7(g—1) =d? —4dg +4d + 4g°> — g — 3.

Furthermore the natural magl®(\Vz) — HO(T1), induced by the exact sequence
(4.10) 0— T — Tprlr LN Ng — Tt := cokerr) — 0,
is surjective.

PrRoOFR We will compute the cohomology d¥’z, by using a similar technique to the one
in Section 2.2 of{[6] (see Lemma 3 therein).

LetI" ;== SN Q = F1 U F, be the double curve aR. SinceR has global normal
crossings, the sheaf! in (#.10) is locally free, of rank 1 on the singular locisf R and,
by [10],

T = Nr;s @ Nryo.

Sincer is the union of two lines of the same ruling on ba@ands, it follows that
(4.11) Tt=0Or.

Let us consider the inclusions : Ny — Ng|s andig : Nop — Nglp. Lemma 2 in[[6]
shows thatr't = coker(ts) and7! = cokel(tp). For the reader’s convenience, we recall
the proof. By a local computation, one sees that the cokeknef (g is locally free of
rank 1 onI". In the diagram

(4.12) Tpr|r Nz T 0
\
l/S'NR|S
Tprls —— N \0

the horizontal and diagonal rows are exact, hence the commutativity of the pentagon shows
that 71 surjects ontak . Since both are locally free sheaves of rank 1, one concludes that
7!~ K. The same argument works for.

Hence the following sequences are exact:

(4.13) 0— Ng — Ngls = Tt — 0,
(4.14) 0— No(=I') = Nrlo(~TI") = TX(~TI') - 0.

Moreover, one has the exact sequence

(4.15) 0— Nrlg ® Or(—=T") = Ng — Ngl|s — 0,
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so that, in order to prové (4.8), it suffices to show that

(4.16) H! (Ngls) =0 forl<i<2,
(4.17) H (Nglog ® Or(=TI") =0 forl<i <2

By induction ong, one knows thaH’(Ns) = 0,i = 1, 2. By (4.11), one ha#l’(T') =
H(Or) =0,i = 1,2, becausd” is the union of two distinct lines. Hence the sequence
@-13) implies[2-16).

Note thatH (TY(—I")) = H/(Or(—TI")) = 0,i = 1, 2. Taking into account the exact
sequence (4.14), the proof f (4]17) is concluded if one shows that

(4.18) H No(-I) =0 forl<i<2
SinceQ lies in alP3, one has
No = 00(2) ® 0p(1)® 3.

Recall thatF, andF> are lines of the same ruling, $a ~ F> andOg(—1I") = Og(—2F).
Let G be the other ruling ofQ and H be the general hyperplane section @f Then
H~ G+ Fand

(4.19) No®Op(—T') = 0p(2G) ® Op(G — F)®" =3,

and one sees that (0 (2G)) = h' (0o (G — F)) = 0 fori = 1, 2, which proves[(4.18).
The proof of [4.8) is thus concluded.
We now prove formula[(4]9). By (4.8), one finds t&(Nz) = x (Nr), which one

computes by using (4.1.3], (4]14) apd (4.15):
XNR) = x(NRls) + x(Nrlg ® Og(=TI"))
= XN5) + x (TH) + xNo (=) + x(TH(=I)).

By @11),x(T1) = x(T1(~I")) = 2. By (&19),x (No(—I")) = 3. Finally, by induction
XWNs) = (r + D+ 7(g - 2),

which concludes the proof df (4.9).

It remains to show that the map®(Nz) — HO(T1) is surjective. Sincéf1(\Ns) = 0,
the mapH®(Nz|s) — HO(TY) is surjective by[(4.13). Finally, (4.17) implies thaf (Nz)
surjects onta?°(Nz|s), which concludes the proof of the lemma.

We are finally ready for the

PROOF OFTHEOREM[4.6: CONCLUSION. By Lemmd 4.f, one ha# 1(Vk) = 0, which
means thak corresponds to a smooth poirt] of the Hilbert scheme of surfaces with
degreed and sectional genug in P?~2¢+1, Therefore, R] belongs to a single reduced
componentt, , of the Hilbert scheme of dimensidi?(Nz). The last assertion of Lemma
implies that a general tangent vectorHp , at the point R] represents a first-order
embedded deformation @t which smooths the double curvé. Therefore, the general
point in H, , represents a smooth, irreducible surfateThusY degenerates t&® and
also to the planar Zappatic surfakg . (cf. Propositiorj 38 and Constructiqns|4.1]4.2).
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Classical adjunction theory (cf. e.d. [15] and 87 [in [9]) implies thais a scroll:
otherwise, if H is the hyperplane section df, one hasKy + H nef and therefore
0 <d < 4(g— 1) + K2, contradictingk 2 < 6(1 — g) in @35).

Finally, the assertion about linear normality is trivial foe= 0 and is clear by induction
and construction, fog > 0.

REMARK 4.20. By using the same first part of the proof of Thedrerm 4.6, one can observe
that Constructiop 4]2 can be carried out also wiiea 2g + 3.

Indeed, in this caseX, , is a union of planes lying if?* which is not a Zappatic
surface ifg > 2, since there are singular points where only two planes of the configuration
meet, which are not Zappatic singularities. The only difference in the construction is that,
since there are no pairs of disjoint planes, we have to chiomed/; on two planes/y
and V> which meet at a point but not along a line. Moreover the proof of the existence of
the quadric meeting transversally the union of planes alpiy, is a bit more involved.

Nonetheless, as in the proof of Theoriem 4.6, one can showxthais a flat limit of a
family of linearly normal scrolls ifP* for any genug > 0 and degred = 2g + 3. These
scrolls are smooth only f = 0, 1, whereas they have isolated double poings i 2.

We finish this section by mentioning two more examples of configurations of planes
forming a planar Zappatic surface, with only points of tyRe and S4, which are
degenerations of smooth scrolls. The advantage of these constructions is that they are
slightly simpler than Constructign 4.2. The disadvantage is that they work only for larger
values of the degree.

ExXAMPLE 4.21. Fix arbitrary integerg, d such thatg > 2 andd > 4g. Setr = d —
2¢+ 1. LetXy 200 = Uj.:lzg V; be a planar Zappatic surfaceli whose dual graph is a
chain. One can attactglanes toX,_», o in order to get a planar Zappatic surfag,
of degreed and sectional genus in P" with d — 2¢g + 2 points of typeRz and & — 2
points of types,.

Indeed, we may assume thHigtmeetsV; along a line if and only ifi =i & 1. Denote
by p2, ..., pa—2¢—1 the points of typeRz of Xy_p, 0, Wherep, = V;_1 N V; N Viyq,
i=2,...,d —2g—1.

Choose a general ling 1 in V1 [resp.l1 2 in Vz_2.], i.e. aline not passing throughp
[resp.pi—2¢—1]. Fori = 2, ..., g, choose aling; 1 in V; [resp. a lind; 2 in Vy_2,4+1-i],
which is general among those lines passing thropgihesp. throughpy—2¢+1-].

The generality assumption implies that all the liieg /; 2, 1 < i < g, are pairwise
skew. For every = 1,..., g, there is a smooth quadric surfan,‘ which containg; 1
andl; 2, in theP® spanned by them. In thig® the quadricQ’ degenerates to two distinct
planes, say; 1 andV; 2, leavingl; 1 andl; » fixed: the planéV; 1 containgd; 1 whereasV; »
containg; ». ThenY =Yy ¢ = Xgq_250U Ule(v,-,l U V; 2) is a planar Zappatic surface
in P". Note that we added to the points, ..., ps—2,—1 New Zappatic singularities at the
points:

(i) gijwithl<i<g,1<j<2whereg;1=V,NV;1NVi2andg; 2=V, 1NV;2N
- Va-2¢41-0,
(i) pp=VanVanVysandpg_2, = Va—24 N Va_24-1N V1 2.
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ThenY is a planar Zappatic surface with the following properties:

e the dual graplGy hasd vertices and! + ¢ — 1 edges;

e Y has 2 — 2 points of typeSs, namelypo, ..., py, Pa—3g+1, - - - » Pd—2¢—1;
e Y hasd — 2g + 2 points of typeRs, namelyg; ;, 1 <i < g,1< j <2, p1, pa—2; and

pg+l, DR pd73g;
e x(Ox)=1-g,ps(X)=0,g(X)=g(X) =g
(cf. Figure 15).

Vo Va Ve
I I
I\ 127 I\ 1727 ~

I13,1 |13,2

| ‘ AN

i i

[t | | |'+2 NN
Vs Ve

P\l
V1 V3 Vs V7 41 V2 V3 Va 144

FiG. 15. Construction ofy , from X;_5, o for g = 3 andd = 4g + 1= 13.

Recall thatX,_o, o is the flat limit of a smooth, rational normal scrdllof degree
d—2ginP=2+1 if F; ;,,1<i < g, 1< j < 2,is the ruling ofS whose limit is/; ;,
andQ; is a smooth quadric containing 1, F; > whose limit isQ’, then one can show, by
using similar techniques to the proof of Theorlenj 4.6, that the union of the rational normal
scroll S and theg quadricsQ; is a flat limit of a family of smooth, linearly normal scrolls
of degreed and genug in P4=2¢+1 which is contained in the same compone@fy , of

Theoreni 4.6 (cf. Theorem 5.4 and Renfark 5.5 below).

With a slight modification of the previous construction, one can also cover the case
d = 4g. We do not dwell on this here.

ExXAMPLE 4.22. Fix integerg, d such thatg > 1 andd > 3g + 2. By induction ong,
we will construct a planar Zappatic surfagg , = (7, V; in P4=2¢+1 sych that:

Z4.4 hasd — 2g + 1 double lines, i.eGz, , hasd — 2g + 1 edges;

Z4., hasd — 2g + 2 points of typeR3 and % — 2 points of typeSs,

for eachi, V; is the central plane through a poipbof type eitherR3 or Su;

there exist twoRz-points of Z; , whose central planes do not meet, unlgss 1 and
d =5;

xOz,)=1-8 pu(Zag) =0,9(Zag) = g(Zag) = g.

The base of the induction is the cage= 1. In this caseZ, 1 is the surfaceX, 1
considered in Constructign 4.1. Now we assyme 1 and we describe the inductive step.

Consider the surfacg,_3 ,—1, which sits inP4—2¢ which we suppose to be embedded
as a hyperplane iB¢—2s+1,

If ¢ =2 andd = 8, choose two distinct planég and V> of Zs 1 = X5 1 which do not
meet along a line. Otherwise, choose two distinct planeandV, of Z,_3 .1 which are
central for twoR3z-points, sayp1 and p», and which span &°.

Choose a lind1 in Vi [resp.l> in Vo] which is general among those lines passing
throughp1 [resp. throughp,]. Consider a gener@* in P?—2¢+1 containingl; and/,.
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One can show that, in thi8*, there is a smooth, rational normal cubic sc®liwhich
containgy andl> and such thaR’ meetsZ,_3 ,_1 transversally alon®’ N Z;_3 ,-1 =
11 Ul>.

In this P4, the cubic scrollR” degenerates to a planar Zappatic surfsig, consisting
of three planes, say;_», V,—1 andV,, such thal; C V; andlp C V;_o.

We defineZ, , = Z4_3,-1 U X3 0. We added three planes and four double lines; the
points p; and p> become of typeSs for Z; , and we added three points of ty at
VinVy,_1NVy,atVoNVy_oNVy_1and atVy_o N Vy_1 N Vy. Itis clear that there exist
two R3-points whose central planes do not meet.

Arguing by induction, one may assume thaj_ 3,1 is the flat limit of a smooth,
linearly normal scrollS of degreed — 3 and genug — 1in P28 If F;,i = 1,2, is the
ruling of S whose limit isl; andR is a smooth, cubic scroll containirfg, F» as ruling and
whose limit isR’, one can show, by using the same proof of Thedrerh 4.6, that the union
SUR is the flat limit of a family of smooth, linearly normal scrolls of degreand genug
in PY~2¢+1, which is contained in the same compongft, of Theoren] 4. (cf. Theorem

[5.4 and Remark 5] 5).

5. HILBERT SCHEMES OF SCROLLS

In this section we prove thét, ,, as determined in Theorgm 4.6, is the unique irreducible
component of the Hilbert scheme of scrolls of degdeand genus; in P4~2+1 whose
general point parametrizes a smooth, linearly normal scroll (cf. Theprem 5.4). This
component{, , dominates\, (cf. Remark5.p).

This, together with Constructign 4.2 and Theorem 4.6, proves Theprgm 1.2 in the
introduction.

On the other hand, we will also construct families of scrilisf degreed and genug
in P" with r > d — 2¢ 4+ 1 andh(Y, Oy (1)) # 0 (cf. Exampll). We will also show
that projections of such scrolls may fill up components of the Hilbert scheme, different
from Hy ¢, which may even dominat#1, (cf. Examplg 5.1p).

Let C be a smooth curve of gengsand letF 2 Cbe ageometrically ruled surface
onC,i.e. F = IP(F) for some rank-two vector bundl& on C. Furthermore, we assume
that F is very ample, i.eF is embedded if®" for somer > 3 via theOg (1) bundle as a
scroll of degreel = degF). From now on,H will denote the hyperplane section 6f
A general hyperplane sectiai is isomorphic toC, so that we will letLr be the line
bundle onC = H which is the restriction of the hyperplane bundle. We will denoterby
a general ruling of’, and more precisely bR, the ruling mapping to the pointin C.

LetY := C x PL If L is aline bundle orC, we will set

(5.1) L:=n}(L) ® 73(Opr(1)),
wherer; denotes the projection on th# factor, 1< i < 2.

PROPOSITION5.2. Let C be a smooth curve of gengs> 0 and letF := P(F) be a
geometrically ruled surface o'. Assume thatleg ) = d. Then there is a birational
map

oY -—F
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which is the composition of elementary transformations at distinct points of a Fet=
{y1,...,ya} C Y lying ond distinct rulings ofY. Moreover,

(i) ¢*(OF(H)) = Lp;
(i) ¢*(10Or(H)|) = |LF ® Iryy].

PROOFE The argument is similar to the one [n[12, Prop. 6.2] and in [16]. Indeed] let
be a general linear subspace of codimension tw® iwhich is the base locus of a pencil
P = P! of hyperplanes. By abusing notation, we will denoteythe corresponding
pencil of hyperplane sections #f. More specifically, we will denote b, the hyperplane
section corresponding to the pont PL. Then we se¥ := {z1, ..., z4} = F N P; note
thatZ is formed by distinct points on distinct rulings.

The mapy : Y --» F is defined by sending the general point r) € Y to the point
R, N H, € F. One verifies thap is birational and that the indeterminacy locus®is Z.
In order to describe the mapon Y, note that each point maps to a poink; € C and
determines a unique valug e P! such thatH;, contains the ruling?,,, 1 <i < d. The
indeterminacy locusap onY isI" := {y1, ..., ya}, Wherey; = (x;, 1), 1 <i <d.

As shown in[[12] ¢ is the composition of the elementary transformations based at the
points of I". The rest of the assertion immediately follows.

LetI" = {y1,...,yq} C Y be a subset formed hy distinct points. We consider the
line bundle onC,

(5.3) Lr:=0cx1+- - +xq),
wherem1(y;)) = x;, 1 <i <d.

THEOREM5.4. Letg > 0O andd > 2g + 3 be integers. Then there exists a unique
irreducible componerit{, , of the Hilbert scheme, parametrizing scrolls of degiesnd
genusg in P4—28+1 whose general point represents a smooth safott P¢—2¢+1 which

is linearly normal and hag'(F, O (1)) = 0.

PROOF. Let U c Hilb4(Y) be the open subset formed by @ll = {y1,...,yq} C Y
containingd points lying ond distinct fibres and imposing independent conditions on
|L |, which means ) i

dim(|Lr ® Zryy|) =dim(|Lr|) —d.

Note that, by the Kinneth formulah®(L;) = 2h%(L) = 2(d — g + 1). Thus, we have
dim(Lr ® Zr/yl) = d — 2g + 1. The linear systeni r-| determines a rational map
oY --» pd—2s+1,

By Propositio, every smooth scréllof degreef and genug in P?—2¢*1 s the image
of such a map. Therefore, for generalin U, the mapy is birational onto its imagé-,
which is a smooth scroll of degrekand genug whose Hilbert point ] belongs to a
unique well-defined componefi, , of the Hilbert scheme.

Note that by (ii) of Propositiop 5| (OF (1)) = h*(Lr ® Zr/y) = O; therefore, by
the Riemann-Roch theorew (O (1)) = d — 2g + 2.
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REMARK 5.5. Observe that the irreducible compongfjt, determined in Theore@.G
coincides with the one determined in Theofenj 5.4. The ¢as€g¢+3 can also be covered
by similar arguments. In that case, we have surfac®8 imhich are no longer smooth, but
they have 2(g — 1) double points as dictated by tldeuble point formulaNonetheless,
the statement of Theorgm b.4 still holds upon repladingith its normalization.

REMARK 5.6. The dimension count fd, , which has been done in Theorém|4.6 also
stems from the proof of Theorgm .4, which provides a parametric representation, of
Indeed, the number of parameters on which the general poif;gfdepends is given by
the following count:

e 3g — 3 parameters for the class of the cutvén Mg, plus

e 2d parameters for the general pointlh plus

e (r + 1)2 — 1 parameters for projective transformationdPin wherer = d — 2g + 1,
minus

e 2(r — 1) = 2d — 4g parameters for the choice of a codimension-two subspaueP”,
minus

o three parameters for projective isomorphisms of the pencil of hyperplanes thfbugh
with 1.

This computation shows that, , hasgeneral moduliin the sense that the base of the

general scroll F] € Hy, ¢ is a general point af,.

Observe that this can also be viewed as a consequence of Thgofem 4.6 and more
specifically of the fact that(Or(1)) = 0 for [F] a general point of the generically
smooth componerity .

Indeed, ifF C P",r = d — 2g + 1, is a smooth scroll, then from the Euler sequence
restricted toF,

0— Op — H%Or(1)" ® Op(1) — Tprip — 0,
we see thahl(T]pr|F) = 0. Therefore, from the normal sequencefoin P,
0— TF — Q—HD’\F _)NF/P’ —> 0,

we get the surjection
HONE pr) —> HY(TF).

SinceF is aP!-bundle ovelC, from the differential of the map £ c,we get a surjection
HYTr) > HY(Tc),

hence
HOWNgpr) = HYT0).

which shows that{; , dominatesM\,.

Next, we consider the problem of the existence of components of the Hilbert schemes
of scrolls of degred and genug in P" with » > d — 2g + 1. First, it is easy to determine
an upper bound far. This subject has been deeply studied by C. Segre (df. [20] and [12]).
For the following lemma, compare [20, §14].
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LEMMA 5.7. Letg > 1be an integer. Le€ be a smooth curve of gengsand letF =
P(F) be a ruled surface o andd = degF) > 2¢ + 1. Assume that there exists a
smooth curve inOr(1)|. Then

hOFD) <d —g+2.

Equality holds if and only ifF = O¢ @ L, in which case) g (1) mapsF to a cone over a
projectively normal curve of degrekand genug in P?—$.

PrROOF The bound oni®(Or(1)) follows by the Riemann—Roch theorem @h If
equality holds, therC is linearly normally embedded as a curve of degieand genus
g in P44 _ It is well known that this curve is projectively normal (df! [S], [17] and][19]).
Therefore F is mapped to a surfac& which is projectively normal, since its general
hyperplane section is (cf. [13, Theorem 4.27]).

On the other hand¥ is a scroll of positive genus. Therefokecannot be smooth, and
it has some isolated singularities. This foréeso be a cone (cf. Claim 4.4 in[[7]). Hence,
the assertion follows.

REMARK 5.8. LetC be a smooth curve of gengsand letF = P(F) be a ruled surface
onC andd = degF) > 2g + 1. Then

(5.9) d—2¢+2<h%0OrQ) <d-g+2

where the lower bound is immediately implied by the Riemann—Roch theorem whereas the
upper bound is given by the previous lemma. Equivalently,

(5.10) 0< ' (Or(D) < g,

where the upper bound is realized by the cones and the lower bound by the general scrolls
in the componeritt, , considered above.

Any intermediate value of 11(Or(1)), 1 < i < g, can actually be realized. An easy
construction is via decomposable bundles as the following example shows.

ExXAMPLE 5.11. Letg > 3 and letd > 4g — 1 be integers. Leat be any integer between
1 andg. Let C be a smooth, projective curve of gengwiith a line bundleL such thatL|
is base-point-free anl (L) = i. Let D be a general divisor of degrée— deg ). Notice
that, since de@.) < 2¢g — 2 andd > 4g — 1, one has dad@) > 2¢ + 1 and the linear
series D] is very ample.

ConsiderF = L @ O¢(D). If F = P(F) then Op(1) is base-point-free and
h(OF Q) =i.

For large values of, O (1) is never very ample. For instance, fo= g — 1, C is
forced to be hyperelliptic antl = g%. Thus, the image of via |OF(1)| has a double line.

Similarly, if i = g — 2, then eithelC is hyperelliptic and. = Zg%, or C is trigonal and
L= g%, org = 3andL = wc. In the first case, the image &f has a double conic; in the
second case, the image$has a triple line. Only in the third case, the imageofia | L|
is smooth.

The analysis is subtle and we do not dwell on this here.
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Now we consider the question of whether there are other components, different from
Ha, g, Of the Hilbert scheme of surfaces R{—2s+1 whose general point corresponds to
a smooth scroll of degre# and genug. The answer to this question is affirmative; in
fact one can construct such components even with general moduli. In the next example,
we show one possible construction of a component with general moduli. The reader may
easily generate other similar constructions.

EXAMPLE 5.12. LetC be a curve with general moduli of genygs= 4/ + ¢, where
0 < € < 3. LetL be a very ample, special line bundle of degree= 3 + g — [ with
hO(L) = 4. Note that such ah varies in a family of dimensiop := p(g, 3, m) = €.

Letd be an integer with eithef > 2¢ + 10, ife = 0,1, ord > 2g + 11, ife = 2, 3.
Setr =d — 2g + 1.

Let N be a general line bundle af of degreed — m. Note thatd —m > g + 7 + L.
HenceN is very ample (cf. e.g[[1]) anl®(N) =d —m — g + 1.

SetF = L@N andX = P(F). ThenR+1 = h°(Ox (1)) = h%(L)+hO%(N) = r+1+1.

SinceOx (1) is very ample X is linearly normal embedded P? as a smooth scroll of
degreed and genug, which can be generically projected®6 to a smooth scrolk’ with
the same degree and genus, which belongs a certain compggradrthe Hilbert scheme.
As in the proof of Theorerp 4.6, the general membetois a scroll of the same degree
and genus.

The dimension of{ can be easily bounded from below by the sum of the following
quantities:

3¢ — 3, which are the parameters on whi€hdepends,

g, which are the parameters on whishdepends,

€, which are the parameters on whithdepends,

(r + I = dim(G(r, R)), which are the parameters for the projections,
(r +1)? — 1 =dim(PGL(r + 1,C)).

The hypothesis ol implies that dinf/) > dim(*s,), which shows that is
different fromH, .

REMARK 5.13. The question of understanding how many components of the Hilbert
scheme of scrolls there are, and finding the corresponding image in the moduli space of
curves of genug, is an intriguing one. The previous example suggests that a complete
answer could be rather complicated. It also leaves open the question whgthes the

only component with general moduli fog2- 4 < d < 2g + 10.

6. COMMENTS ONZAPPA' S ORIGINAL APPROACH

In [23], Zappa stated a result about embedded degenerations of scrolls of sectional genus
g > 2 to unions of planes. His result, in our terminology, reads as Theprgm 1.1 in the
introduction.

Zappa’'s arguments rely on a rather intricate analysis of algebro-geometric and
topological types of degenerations of hyperplane sections of the scroll and, accordingly,
of the branch curve of a general projection of the scroll to a plane.
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We have not been able to check all the details of this very clever argument. This is one
of the reasons why we preferred to solve the problem in a different way, which is the one
we presented in the previous sections. Our approach has the advantage of proving a result
in the style of Zappa, but with better hypotheses about the degree of the scrolls.

However, the idea which Zappa exploits, of degenerating the branch curve of a general
projection to a plane, is a classical one which goes back to Enriques, Chisini, etc., and
certainly deserves attention. We hope to come back to these ideas in the future.

In reading Zappa’'s papel_[23], our attention has been attracted also by another
ingredient he uses which looks interesting on its own. Zappa gives extendability conditions
for a curve on a scroll which is not a cone. We finish this paper by briefly reporting on this.
At the end of the section we briefly summarize Zappa’s argument for the degenerations of
the scroll.

Let F c P2 be a scroll which is not a cone over a plane curve. We do not assume
to be smooth. Equivalently, we can look/atas a curve in the Grassmannia@ (1, 3) of
lines inP3, which is isomorphic to the Klein hyperquadriclif via the Plicker embedding.

Let IT be a general plane and I€t := F N I1. Consider the normalization map:

C — I'. Then there is a commutative diagram

C—>CCG(1 3) cP°

N A

rciIi

where® maps a general point € C to the unique line of’ passing through(x), andx
maps each poirite C, corresponding to a ruling of F, to the pointL N I".
Zappa proves the following nice lemma:

LEMMA 6.1 (cf. 81in[[23]). In the above setting,
v*(Or(1) = &*(0¢(2)).

More specificallyyr is the projection of” from the planelT* ¢ G(1, 3), filled up by all
lines of 7.

ProOOF The assertion follows from the fact that,sfis a line in 11, thenz*(r) is the
section of the tangent hyperplane@@l, 3) at the point off7T* corresponding te. Such a
hyperplane containE *, and conversely any hyperplane containiég is of this type.

Zappa notes that an interesting converse of the previous lemma holds.

PROPOSITIONG.2 (cf. 82 in [23]). An irreducible plane curve™ is a section of a scroll
F c P2 of degreed if and only if I' is the projection of a curvé of degreed, lying on a
smooth quadri@® ¢ P®°, and the centre of the projection is a plane containedin

PrROOF One implication is Lemmia 6.1. Let us prove the other implication.

Suppose thaf" is the projection o ¢ Q c P° from a planelT ¢ Q. Since all
smooth quadrics ifP® are projectively equivalent, we may assume tfais the Klein
hyperquadric. The assertion follows by reversing the argument of the proof of Lemima 6.1.
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Proposition 6.p can be extended in the following way. Ldie a plane curve of degree
d and geometric genygsuch thatl > g + 6. Seti = h1(C, v*(I"(1))). Then one has the
birational morphism

(6.3) c MOrOL & - pr,

wherer =d — g +i > 5, and the following linear projection:
¢Erce

PROPOSITIONG.4 (cf. 83 in [23]). In the above setting]" is a plane section of a scrolf
in P which is not a cone if and only i lies on a quadric of rani6 in P” which contains
the centre of the projectiofa.

PrROOF This is an immediate consequence of Proposjtioh 6.2 and can be left to the reader.

Zappa uses Propositipn 6.4 to prove that any plane curve of dégseg is the plane
section of a scrolF which is not a cone. The next lemma is essentially Zappa’s result in
87 of [23], with an improvement on the bound @nZappa'’s bound ig > 3g + 2.

LEMMA 6.5. Letg > Oand letd > 2¢g + 2 be integers. Lef be an irreducible, smooth
curve of degred and genug in P, r = d — g. Then there exists a quadric Bf, of rank
at most6, which containg and a generalP” —3.

ProOF Note that a quadri@ of P" contains &2 if and only if Q has rank at most 6.
Consider the short exact sequence

0— Z(,_’/IP" (2) — Opr(2) - Op(2) — 0.

Sinced > 2g + 2, one ha%°(0(2)) = 2d — g + 1 andC is projectively normal (cf.[[5],
[17], [19]). Thus

r+2

(6.6) hO(IC—/P, 2) = ( ) ) —(2d—-g+1.

Let X be a generdP"—3in P". Then, from[(6.5), one has

WTa 5 () = <“2LZ) — (r;l) —@2d—g+1)=d—2g—1>0.

We need the following lemma:

LEMMA 6.7. LetC C P’ be as in Lemmig.5and assume that § = Othend > 3. Let
X be aP"~3. The general quadric in the linear Systeiy 5 pr (2)| has rankk > 3.

PROOF Suppose by contradiction that all quadrics contairfirand X have rank 3. Let
us define

R3(C) = {Q € P(H(Z¢ () | rank Q) < 3.
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By an easy count of parameters our assumption implies that
dimR3(C) > 3d —4g — 7.

Next, we will show that this inequality is not possible.

In order to do that, we apply results from [22]. Zamora provesin [22, Lemma 1.2], that
there is a one-to-one correspondence between quadriesR3(C) and pairs(g?, gl}) of
linear series ok, with @ < b, such that:

() a+b=degC =d,
(i) |8z + 851 = 106D,
(i) g+ B, = gi+ B., whereB, (B,, resp.) is the base locus of thg (g1, respectively).

Let O be the general member of an irreducible compori&mf maximal dimension
of R3(C) and Iet(g{}, g,}) be the corresponding pair of linear serieson
Zamora’s result implies that there is a base-point-free linear sg,}iesc_ such that

1 1 1 1
8, =28, +Ba, g, =g+ By,

so that
|0s(D)| = |2g} + B, + Byl.

Note that once the divisaB, + B, has been fixed, the line bundlecorresponding t(g,}

belongs to a zero-dimensional set in’Ri). Sets = deq B, + By), S0 thatd = 2h + 6.
Suppose now that is non-special. Then

3d—4g—-7<dmW)<é+2h—g—1) =d—2¢g—2,

which gives a contradiction.
Now assume that is special, so thatl.| = g, with 2r < h. In this case

3d—4g —7<dmW) <é§+20r—1) <8§+h—2,
which leads to a contradiction.
As a consequence of the previous lemma, we have:

THEOREM®6.8. Let I" be an irreducible, plane curve of degrdeand geometric genus
g > 0.1fd > max{g + 5, 2¢g + 2}, thenI" is a plane section of a scroll ii® which is not
a cone.

PROOF LetC c PP’ be the curve corresponding foin P2. ThenTI” is the projection of
from ¥ = P’ 3 disjoint fromC. By Lemmd 6.5, there is a quadriz containingC U X. If
rank(Q) =: k is 6, we finish by Propositiq@A. By Lemrpa.7, we know that 4.

If k =5, then the verteY of Q is alP"~°. By projecting fromV, Q maps to a smooth
quadricQ’ in P* containingC’, the projection of?, and X', the projection of2; the line
X is skew with respect t6’. Of courserl” is the projection of”’ from X’. Let us embed
P* in P° as a hyperplane. We can certainly find a smooth qua@ria P> containingQ’
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and containing a plang intersecting thé* in X’. The curvel” is now the projection of
C’ from I1. The assertion follows from Propositipn 5.2.

If k = 4, then the vertew of Q is alP" . Suppose first thaE' containsV; then by
projecting fromV to P3, the quadricQ maps to a smooth quadri@’ containingC’, the
image ofC, and the poinfp € Q’, the image ofZ, which does not sit og’. The curve
I is the projection of”” from p. At this point, we can finish as in the previous case, by
embedding th&2 in P° and finding a smooth quadri@ in P° containingQ’ and the plane
11 intersecting thé3 in p.

If ¥ does not contailv, it intersectsV in W = P>, By projecting fromW to P* we
get a situation similar to the case= 5. The only difference is tha®’ is now singular at a
point p, but X, the projection ofZ, does not contaip. So we can conclude exactly as in
the casé = 5.

REMARK 6.9. We add a little remark to Theor¢m6.8. LIébe a plane curve which is a
plane section of a scrof c P2 which is not a cone. So if one applies Theo@ 6.8, the
scroll which extendg” is certainly not developable.

As Zappa does i [23], one can get an interesting consequence of Thgolem 6.8 by
applying duality. Recall that thelassof an irreducible plane curve is the degree of the
dual curve.

COROLLARY 6.10. An irreducible, plane curve of clagsand geometric genug such
thatd > max{g +5, 2¢g + 2} is the branch curve of a projection of a scroll}¥ of degree
d and genug which is not a cone.

PROOF Let D c P2 be an irreducible plane curve of clagsLet I' ¢ (P%)* be the
dual curve. By Theorein §.8] is the plane section of a scral which is not a cone. By
standard properties of dualitp is the branch curve of the projection Bf= @* from the
point corresponding to the plane in whi¢hsits.

The argument of Zappa to prove the degeneration of a scroll to a union of planes runs
as follows. Zappa considers the scrBlwhose hyperplane sectidnis a general member
of the Severi varietyy; , of plane curves of degre# and geometric genug. Then he
lets I" degenerate to a general uniondoines. From a complicated analysis involving the
degeneration of" and the degeneration of its dual curve, which is the branch curve of the
projection of the dual of the surface on the plane (see Cordllary 6.10), Zappa deduces that
in this degeneration of”, F degenerates to a union of planes. Moreover, he controls the
degeneration of the linearly normal modelotieducing that it also degenerates to a union
of planes with only points of typ&3 and S,.
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