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ABSTRACT. — We study degenerations of scrolls to union of planes, a problem already considered by G. Zappa
in [23] and [24]. We prove, using techniques different from those of Zappa, a result on degeneration to a union
of planes with the mildest possible singularities, for linearly normal scrolls of genusg and of degreed ≥ 2g + 4
in Pd−2g+1. We also study properties of components of the Hilbert scheme parametrizing scrolls. Finally, we
review Zappa’s original approach.
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1. INTRODUCTION

In this paper we deal with the problem, originally studied by Guido Zappa in [23, 24],
concerning the embedded degenerations of two-dimensional scrolls to unions of planes
with the simplest possible singularities.

In [2] and [3], we have studied the properties of the so-calledZappatic surfaces, i.e.
reduced, connected, projective surfaces which are unions of smooth surfaces with global
normal crossings except at singular points, which are locally analytically isomorphic to the
vertex of a cone over a union of lines whose dual graph is either a chain of lengthn, or
a fork with n − 1 teeth, or a cycle of ordern, and with maximal embedding dimension.
These singular points are respectively called(good) Zappatic singularitiesof typeRn, Sn

andEn (cf. Definition 2.1 below). A Zappatic surface is said to beplanar if it is embedded
in a projective space and all its irreducible components are planes.

An interesting problem is to find degenerations of surfaces to Zappatic surfaces with
Zappatic singularities as simple as possible. This problem has been partly considered in
[3]; e.g. in Corollary 8.10, it has been shown that, ifX is a planar Zappatic surface which
is the flat limit of a smooth scroll of sectional genusg ≥ 2, then the Zappatic singularities
of X cannot be too simple, in particularX has to have some point of typeRi or Si with
i ≥ 4, or of typeEj with j ≥ 6.

The main results in [23] can be stated in the following way:

The first three authors are members of G.N.S.A.G.A. at I.N.d.A.M. “Francesco Severi”.
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THEOREM 1.1 (cf. §12 in [23]).Let F be a scroll of sectional genusg and degreed ≥

3g + 2 whose general hyperplane section is a general curve of genusg. ThenF is
birationally equivalent to a scroll inPr , for somer ≥ 3, which degenerates to a planar
Zappatic surface with only points of typeR3 andS4 as Zappatic singularities.

Zappa’s arguments rely on a rather intricate analysis concerning degenerations of
hyperplane sections of the scroll and, accordingly, of the branch curve of a general
projection of the scroll to a plane.

We have not been able to check all the details of this very clever argument. However,
we have been able to prove a slightly more general result using some basic smoothing
technique (cf. [6]).

Our main result is the following (cf. Proposition 3.8, Constructions 4.1, 4.2, Remarks
4.20, 5.6 and Theorems 4.6, 5.4 later on):

THEOREM 1.2. Let g ≥ 0 and eitherd ≥ 2, if g = 0, or d ≥ 5, if g = 1, or d ≥

2g + 4, if g ≥ 2. Then there exists a unique irreducible componentHd,g of the Hilbert
scheme of scrolls of degreed and sectional genusg in Pd−2g+1 such that the general
point ofHd,g represents a smooth scrollS which is linearly normal and moreover has
H 1(S,OS(1)) = 0.

Furthermore,

(i) Hd,g is generically reduced anddim(Hd,g) = (d − 2g + 2)2
+ 7(g − 1),

(ii) Hd,g contains the Hilbert point of a planar Zappatic surface having only eitherd −2
R3-points, ifg = 0, or d − 2g + 2 points of typeR3 and2g − 2 points of typeS4, if
g ≥ 1, as Zappatic singularities,

(iii) Hd,g dominates the moduli spaceMg of smooth curves of genusg.

We also construct examples of scrollsS with same numerical invariants, which are not
linearly normal inPd−2g+1, as well as examples of components of the Hilbert scheme of
scrolls with same invariants, different fromHd,g and with general moduli (cf. Examples
5.11 and 5.12).

We briefly describe the contents of the paper. In §2 we recall standard definitions and
properties of Zappatic surfaces. In §3 we focus on some degenerations of products of
curves to planar Zappatic surfaces and we prove some results which go back to [24]. In
particular, we consider Zappatic degenerations of rational and elliptic normal scrolls and
of abelian surfaces.

In §4 we prove the greatest part of Theorem 1.2. First, we construct, with an inductive
argument, planar Zappatic surfaces which have the same numerical invariants of scrolls of
degreed and genusg in Pd−2g+1 and have onlyd − 2g + 2 points of typeR3 and 2g − 2
points of typeS4 as Zappatic singularities. Then we prove that these Zappatic surfaces
can be smoothed to smooth scrolls which fill up the componentHd,g and we compute the
cohomology of the hyperplane bundle and of the normal bundle. These computations imply
thatHd,g is generically smooth, of the right dimension and its general point represents a
linearly normal scroll.

Section 5 is devoted to the study of some properties of components of the Hilbert
scheme of scrolls. In particular, we show that the componentHd,g is the unique component
of the Hilbert scheme of scrolls of degreed and sectional genusg whose general point [S]
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is linearly normal inPd−2g+1 and moreover hasH 1(S,OS(1)) = 0. Furthermore, we give
the examples mentioned above (cf. Examples 5.11 and 5.12).

In the last section, §6, we briefly explain Zappa’s original approach in [23]. Moreover,
we make some comments and give some improvements on some interesting results from
[23] concerning extendability of plane curves to scrolls which are not cones.

2. NOTATION AND PRELIMINARIES

In this paper we deal with projective varieties defined over the complex fieldC.
Let us recall the notions of Zappatic singularities, Zappatic surfaces and their dual

graphs. We refer the reader for more details to our previous papers [2] and [3]. One word
of warning: what we callgood Zappatic singularitiesthere, here we simply callZappatic
singularities, because no other type of Zappatic singularity will be considered in this paper.

DEFINITION 2.1. Let us denote byRn [resp. Sn, En] a graph which is a chain [resp.
a fork, a cycle] withn vertices,n ≥ 3 (cf. Figure 1). Let CRn [resp. CSn , CEn ] be a
connected, projectively normal curve of degreen in Pn [resp. in Pn, in Pn−1] which is a
stick curve, i.e. a reduced union of lines with only double points, whose dual graph isRn

[resp.Sn, En].

• • • • • • •

•

•

rrrrrrrrrrrr •

��������� •

������� •

LLLLLLLLLLLL
•

?????????
•

*******

•

•PPPPP
•nnnnn

•�
��
��

•
99

99
9

•

•�����

&&&&&

FIG. 1. A chainRn, a forkSn with n − 1 teeth, a cycleEn.

We say that a pointx of a projective surfaceX is a point of typeRn [resp.Sn, En] if
(X, x) is locally analytically isomorphic to a pair(Y, y) whereY is the cone over a curve
CRn [resp. CSn , CEn ], n ≥ 3, andy is the vertex of the cone (cf. Figure 2). We say that
Rn-, Sn-, En-points areZappatic singularities.
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FIG. 2. Examples: anR3-point, anS4-point and anE3-point.

In this paper we will deal mainly with points of typeR3 and S4. We will use the
following:

NOTATION 2.2. If x is a point of typeR3 [of typeS4, resp.] of a projective surfaceX, we
say that the componentV2 of X as in the left part [in the middle, resp.] of Figure 2 is the
centralcomponent ofX passing throughx.
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DEFINITION 2.3. A projective surfaceX =
⋃v

i=1 Vi is called aZappatic surfaceif X is
connected, reduced, all its irreducible componentsV1, . . . , Vv are smooth and:

• the singularities in codimension one ofX are at most double curves which are smooth
and irreducible and along which two surfaces meet transversally;

• the other singularities ofX are Zappatic singularities.

We setCij = Vi ∩ Vj if Vi and Vj meet along a curve, andCij = ∅ otherwise. We set
Ci = Vi ∩ X − Vi =

⋃v
j=1 Cij . We denote byC = Sing(X) the singular locus ofX, i.e.

the curveC =
⋃

1≤i<j≤v Cij .
We denote byfn [resp.rn, sn] the number of points of typeEn [resp.Rn, Sn] of X.

REMARK 2.4. A Zappatic surfaceX is Cohen–Macaulay. Moreover it has global normal
crossings except at theRn- andSn-points, forn ≥ 3, and at theEm-points, form ≥ 4.

We associate to a Zappatic surfaceX adual graphGX as follows.

DEFINITION 2.5. Let X =
⋃v

i=1 Vi be a Zappatic surface. Thedual graphGX of X is
given by:

• a vertexvi for each irreducible componentVi of X;
• an edgelij , joining the verticesvi andvj , for each irreducible component of the curve

Cij = Vi ∩ Vj ;
• ann-faceFp for each pointp of X of typeEn for somen ≥ 3: then edges bounding the

faceFp are then irreducible components of the double curveC of X concurring atp;
• an openn-face for each pointp of X of typeRn for somen ≥ 3; it is bounded by

n − 1 edges, corresponding to then − 1 irreducible components of the double curve of
X concurring atp, and by adashededge, which we add in order to join the two extremal
vertices;

• an n-anglefor each pointp of X of typeSn, spanned by then − 1 edges that are the
n − 1 irreducible components of the double curves ofX concurring atp.

By abusing notation, we will denote byGX also the CW-complex associated to the dual
graphGX of X, formed by the vertices, edges andn-faces.

REMARK 2.6 (cf. [2]). When we deal with the dual graph of aplanar Zappatic surface
X =

⋃v
i=1 Vi , we will not indicate open 3-faces with a dashed edge. Indeed, the graph

itself shows where open 3-faces are located.

Some invariants of a Zappatic surfaceX have been computed in [2] and in [4], namely
the Euler–Poincaré characteristicχ(OX), theω-genuspω(X) = h0(X, ωX), whereωX is
the dualizing sheaf ofX, and, whenX is embedded in a projective spacePr , thesectional
genusg(X), i.e. the arithmetic genus of a general hyperplane section ofX. In particular,
for a planar Zappatic surface (for the general case, see [2, 4]) one has:

PROPOSITION2.7. LetX =
⋃v

i=1 Vi be a planar Zappatic surface of degreev in Pr and
denote bye the degree ofC = Sing(X), i.e. the number of double lines ofX. Then:

g(X) = e − v + 1,(2.8)
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pω(X) = h0(X, ωX) = h2(GX, C),(2.9)

χ(OX) = χ(GX) = v − e +

∑
i≥3

fi .(2.10)

In this paper, a Zappatic surface will always be considered as the central fibre of an
embedded degeneration, in the following sense.

DEFINITION 2.11. Let ∆ be the spectrum of a DVR (or equivalently the complex unit
disk). Adegenerationof surfaces parametrized by∆ is a proper and flat morphismπ :
X → ∆ such that each fibreXt = π−1(t), t 6= 0 (where0 is the closed point of∆),
is a smooth, irreducible, projective surface. A degenerationπ : X → ∆ is said to be
embeddedin Pr if X ⊆ ∆ × Pr and the following diagram commutes:

X
π

��

⊆ ∆ × Pr

pr1zzuuu
uuu

∆

The invariants of the Zappatic surfaceX = X0, which is the central fibre of an
embedded degenerationX → ∆, determine the invariants of the general fibreXt , t 6= 0,
as we proved in [2, 3, 4]. Again, we recall these results only for planar Zappatic surfaces
and we refer to our previous papers for the general case.

THEOREM 2.12. LetX → ∆ be an embedded degeneration inPr such that the central
fibreX = X0 is a planar Zappatic surface. Then, for any0 6= t ∈ ∆,

(2.13) g(Xt ) = g(X), pg(Xt ) = pω(X), χ(OXt
) = χ(OX).

Moreover the self-intersectionK2
Xt

of a canonical divisor ofXt is

(2.14) K2
Xt

= 9v − 10e +

∑
n≥3

2nfn + r3 + k,

wherek depends on the presence of points of typeRm andSm, m ≥ 4:∑
m≥4

(m − 2)(rm + sm) ≤ k ≤

∑
m≥4

(
(2m − 5)rm +

(
m − 1

2

)
sm

)
.

Finally, let us recall the construction of rational normal scrolls.

DEFINITION 2.15. Fix two positive integersa, b and setr = a +b +1. In Pr choose two
disjoint linear spacesPa and Pb. Let Ca [resp. Cb] be a smooth, rational normal curve
of degreea in Pa [resp. of degreeb in Pb] and fix an isomorphismφ : Ca → Cb. Then
the union inPr of all the linesp, φ(p), p ∈ Ca , is a smooth, rational, projectively normal
surface which is called ascroll of type(a, b) and it is denoted bySa,b. A scroll is said to
bebalancedif eitherb = a or b = a + 1.

Another way to define a scroll is as the embedding of a Hirzebruch surfaceFn, n ≥ 0,
which is the minimal ruled surface overP1 with a section of self-intersection−n. Letting
F be the ruling ofFn andC a section such thatC2

= n, the linear system|C+aF | embeds
Fn in Pn+2a+1 as a scroll of type(a, a + n) (cf. e.g. [14]). In particular a balanced scroll
in Pr , r ≥ 3, is the embedding either ofF0 = P1

× P1 or of F1 depending on whetherr is
odd or even.
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In the next section we will see, in particular, degenerations of rational scrolls to a planar
Zappatic surface. In the subsequent section we will deal with scrolls of higher genus.

3. DEGENERATIONS OF PRODUCTS OF CURVES AND OF RATIONAL SCROLLS

Zappa suggested in [24] an interesting method for degenerating products of curves, which
also gives a degeneration of rational and elliptic scrolls to planar Zappatic surfaces with
only R3-points.

EXAMPLE 3.1 (Zappa). LetC ⊂ Pn−1 andC′
⊂ Pm−1 be smooth curves. IfC andC′

may degenerate to stick curves, then the smooth surface

S = C × C′
⊂ Pn−1

× Pm−1
⊂ Pnm−1,

embedded via the Segre map, degenerates to a Zappatic surfaceY in Pnm−1 whose
irreducible components are quadrics and whose double curves are lines.

If it is possible to further, independently, degenerate each quadric ofY to the union of
two planes, then one gets a degeneration ofS = C × C′ to a planar Zappatic surface. This
certainly happens if each quadric ofY meets the other quadrics ofY along a union of at
most four lines, at most two from each ruling (see Figure 3).
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FIG. 3. A quadric degenerating to the union of two planes.

ThereforeS = C × C′ can degenerate to a planar Zappatic surface ifC andC′ are
either rational or elliptic normal curves, since they degenerate to stick curvesCRn and
CEn , respectively. We will now describe these degenerations.

EXAMPLE 3.2 (Rational scrolls). LetC be a smooth, rational normal curve of degreen

in Pn. SinceC degenerates to a union ofn lines whose dual graph is a chain, the smooth
rational normal scrollS = C×P1

⊂ P2n+1 degenerates to a Zappatic surfaceY =
⋃n

i=1 Yi

such that eachYi is a quadric,Y has no Zappatic singularity and its dual graphGY is a
chain of lengthn (see Figure 4).

FIG. 4. Chain ofn quadrics as in Example 3.2.
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Each quadricYi meetsY \ Yi either along a line or along two distinct lines of the same
ruling. Thus, as we noted before, the quadricYi degenerates, in theP3 spanned byYi , to
the union of two planes meeting along a lineli , leaving the other line(s) fixed. Therefore,
in P2n+1, the scrollS also degenerates to a planar Zappatic surfaceX of degree 2n. The
line li can be chosen generally enough so thatX has 2n − 2 points of typeR3 as Zappatic
singularities, for eachi, i.e. its dual graphGX is a chain of length 2n (see Figure 5; cf.
Remark 2.6).
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FIG. 5. Planar Zappatic surface of degree 2n with a chain as dual graph.

EXAMPLE 3.3 (Elliptic scrolls). LetC be a smooth, elliptic normal curve of degreen in
Pn−1. SinceC degenerates to a union ofn lines whose dual graph is a cycle, the smooth
elliptic normal scrollS = C ×P1

⊂ P2n−1 degenerates to a Zappatic surfaceY =
⋃n

i=1 Yi

such that eachYi is quadric,Y has no Zappatic singularity and its dual graphGY is a cycle
of lengthn; see the picture on the left in Figure 6.
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FIG. 6. Cycle ofn quadrics and of 2n planes as in Example 3.3.

Each quadricYi meetsY \ Yi along two distinct linesri, r ′

i of the same ruling. Hence,
in the P3 spanned byYi , the quadricYi degenerates to the union of two planes meeting
along a lineli , leavingri, r

′

i fixed. Choosing again a generalli for eachi, it follows that in
P2n−1 the scrollS degenerates to a planar Zappatic surfaceX of degree 2n with 2n points
of type R3 as Zappatic singularities and its dual graphGX is a cycle of length 2n (see
Figure 6).

EXAMPLE 3.4 (Abelian surfaces). LetC ⊂ Pn−1 and C′
⊂ Pm−1 be smooth, elliptic

normal curves of degree respectivelyn andm. ThenC andC′ degenerate to the stick curves
CEn andCEm respectively, hence the abelian surfaceS = C × C′

⊂ Pnm−1 degenerates
to a Zappatic surface which is a union ofmn quadrics with onlyE4-points as Zappatic
singularities; cf. e.g. the picture on the left in Figure 7, where the top edges have to be
identified with the bottom ones, similarly the left edges have to be identified with the right
ones. Thus the top quadrics meet the bottom quadrics and the quadrics on the left meet the
quadrics on the right.

Again each quadric degenerates to the union of two planes. By doing this as depicted
in Figure 7, one gets a degeneration of a general abelian surface with a polarization of
type (n, m) to a planar Zappatic surface of degree 2nm with only E6-points as Zappatic
singularities.
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FIG. 7. nm quadrics withE4-points and 2nm planes withE6-points.

Other examples of degenerations, similar to the one considered above, forK3 surfaces
(the so calledpillow degenerations) are considered in e.g. [8].

REMARK 3.5. Going back to the general case, if eitherC or C′ has genus greater than 1
and if they degenerate to stick curves, then the surfaceS = C × C′ degenerates to a union
of quadrics, as we said. Unfortunately it is not clear if it is possible to further independently
degenerate each quadric to two planes.

From now on, until the end of this section, we deal with degenerations of rational
normal scrolls only. Namely we will show that a general rational normal scroll degenerates
to a planar Zappatic surface with Zappatic singularities of typeR3 only and we will see
how “general” the scroll has to be in order to admit such degenerations (e.g., in Example
3.2, the scrolls are actually forced to have even degree).

There are several ways to construct these degenerations. We will start from the trivial
family and then we will perform two basic operations: (1) blowing-ups and blowing-downs
in the central fibre, (2) twisting the hyperplane bundle by a component of the central fibre.

CONSTRUCTION3.6. LetS = Sa,b be a smooth, rational, normal scroll of type(a, b) in
Pr , wherer = a + b + 1 ≥ 3 and we assume thatb ≥ a. ThenS degenerates to the union
of a plane and a smooth, rational normal scrollSa,b−1 meeting the plane along a ruling.

Indeed,S is the embedding of the Hirzebruch surfaceFn, n = b − a ≥ 0, via the linear
system|C + aF |, whereF is the ruling andC is a section of self-intersectionn (clearly, if
n = 0, we may chooseF to be either of the two rulings andC to be the other ruling). Set
H = C +aF . Consider the trivial familyS = Fn ×∆

σ
−→ ∆. OnS we have the hyperplane

bundleH which coincides withH on each fibre ofσ .
Now blow upS at a general point of the central fibreS0. Let V be the exceptional

divisor andS′ be the proper transform ofS0. ThenH⊗O(−V ) embedsV as a plane and
mapsS′ to a scroll of type(a, b−1), which meet each other along a ruling ofS′. We explain
these operations in Figure 8, where the dotted lines represent the hyperplane bundle. The
last arrow is the so-calledtype I transformationon the vertical(−1)-curve (cf. [11]), which
consists in blowing up the(−1)-curve and then blowing down the exceptional divisor,
which is aF0, along the other ruling. The total effect onS0 is to perform an elementary
transformation.

When r = 3 this process gives the degeneration of a smooth quadric to two planes
meeting along a line.
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FIG. 8. Degeneration of a scrollSa,b to the union of a plane and a scrollSa,b−1.

CONSTRUCTION3.7. LetS = Sa,b be a smooth, rational, normal scroll of type(a, b) in
Pr , wherer = a + b + 1 and assume thatb ≥ a > 1. ThenS degenerates to the union
of a quadric and a smooth, rational normal scrollSa−1,b−1 meeting the quadric along a
ruling.

Indeed, consider the Hirzebruch surfaceFn, n = b − a ≥ 0, and the trivial family
S = Fn × ∆

σ
−→ ∆, with the hyperplane bundleH, as in Construction 3.6.

Now blow up a rulingF0 in the central fibreS0. Let W be the exceptional divisor and
S′ be the proper transform ofS0. ThenH ⊗ O(−W) embedsW as a quadric andS′ as a
scroll of type(a − 1, b − 1), which meet along a ruling ofS′ (cf. Figure 9).
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FIG. 9. Degeneration of a scrollSa,b to the union of a quadric and a scrollSa−1,b−1.

By induction on the degree of the scroll and by using Constructions 3.6 and 3.7 for the
inductive steps, we now show the following:

PROPOSITION3.8. Letd ≥ 2 and setr = d+1 ≥ 3. LetX := Xd,0 be a planar Zappatic
surface of degreed in Pr , whose dual graph is a chain, i.e.X hasd −2 points of typeR3 as
Zappatic singularities. Then the Hilbert point ofX belongs to the irreducible component
Hd,0 of the Hilbert scheme parametrizing rational normal scrolls of degreed.

REMARK 3.9. It is well known (cf. e.g. Lemma 3 in [6]) thatHd,0 is generically reduced
and of dimensiond2

+ 4d − 3.

PROOF OF PROPOSITION 3.8. We will directly show that a smooth, balanced scrollS

degenerates toX.
Suppose first thatr is even. LetS = Sa,a+1 be a balanced scroll of degreed in Pr , i.e.

a = (d − 1)/2 = r/2 − 1. Consider the trivial familyF1 × ∆, whereF1 is embedded in
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FIG. 10. Degeneration ofSa,a+1 to a planar Zappatic surface with onlyR3-points.

Pr by the linear system|C + aF | such as in Constructions 3.6 and 3.7 (cf. the left part of
Figure 10).

Now blow up a ruling in the central fibre, call the exceptional divisorW ∼= F0 and twist
the hyperplane bundle byO(−aW). In this way, one gets a degeneration ofS to the union
of a scroll of type(a, a) in Pr−1 and a plane, meeting along a ruling (cf. Construction 3.7
and the middle of Figure 10).

Then blow up a general point (the bottom left corner in Figure 10) of the scroll, twist
again by the opposite of the new surface and perform a type I transformation, as we did
in Construction 3.6. By twisting again by the opposite of the new surface, counted with
multiplicity a − 1, one gets the configuration depicted on the right in Figure 10, namely
the first two components are two planes, whereas the new component is a scroll of type
(a − 1, a).

Going on by induction ona, by following the same process, one gets a chain of planes
which is a planar Zappatic surface with onlyR3-points, as wanted.

If r is odd, one starts from aF0 as in the middle of Figure 10 and one may perform
exactly the same operations in order to get a similar degeneration.

REMARK 3.10. In practice, Proposition 3.8 follows by Constructions 3.6 and 3.7 with a
suitable induction. The explicit argument we made in the proof shows that there exists a
flat degeneration of smooth, rational scrolls toX whose total space is singular only at the
R3-points ofX. For another approach, the reader is also referred to [18].

REMARK 3.11. Suppose we have a smooth scrollS which is the general fibre of an
embedded degeneration inPr to a planar Zappatic surfaceX. The ruling ofS, considered
as a curveΓ in the GrasmannianG(1, r), accordingly degenerates to a stick-curveΓ0.
This means that the ruling degenerates to a union of pencils of lines, one in each plane of
X. SinceΓ0 is connected, each double line ofX belongs to the pencil in either of the two
planes containing it. Hence, the centres of the pencils also belong to the double lines ofX.
Therefore, on each plane which contains more than one double line ofX, all the double
lines pass through the same Zappatic singularity which is the centre of the pencil. However,
the location of the centres of the pencils on the planes containing only one double line of
X is not predictable.

We conclude this section by proving the following:

PROPOSITION3.12. Let S = Sa,b be a smooth, rational normal scroll inPa+b+1 with
b − a ≥ 4. Assume thatS is the general fibre of a degeneration whose central fibre is a
planar Zappatic surfaceX. ThenX has singularities worse thanR3-points.

PROOF. By construction of the scrollS (cf. Definition 2.15), the minimum degree of a
section ofS is a, and letCa be the section of degreea. Suppose by contradiction thatS is
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the general fibre of an embedded degeneration of surfaces whose central fibre is a planar
Zappatic surfaceX =

⋃a+b
i=1 Vi in Pa+b+1, with only R3-points as Zappatic singularities.

Then the dual graphGX is a chain and we may and will assume that two planesVi andVj

meet along a line if and only ifj = i ± 1.
While S degenerates toX, the ruling ofS degenerates to a pencil of linesΛi on each

planeVi , i = 1, . . . , a + b (cf. Remark 3.11) and the sectionCa degenerates to a chain
of lines l1, . . . , la , with li ⊂ Vji

, i = 1, . . . , a, and we may and will assume thatj1 <

· · · < ja .
The pencilΛ1 has to meet

⋃a
i=1 li , henceV1 has to have non-empty intersection with

Vj1, therefore the assumption thatX has at mostR3-points implies thatj1 ≤ 3. For each
k = 2, . . . , a, the lineslk and lk−1 meet at a point, so the same argument implies that
jk ≤ jk−1 + 2 (cf. Figure 11). It follows thatja ≤ j1 + 2(a − 1) ≤ 2a + 1. On the other
hand, the pencilΛa+b has to meet

⋃a
i=1 li , henceja ≥ a + b − 2. In conclusion, one has

a + b − 2 ≤ ja ≤ 2a + 1,

which contradicts the assumption thatb ≥ a + 4.
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FIG. 11. Degeneration ofSa,b, b = a + 3, toX with only R3-points.

For another approach to degenerations of rational scrolls to unions of planes, the reader
is referred to [18].

REMARK 3.13. By following the lines of the proof of Proposition 3.8 it is possible to
prove that, given positive integersa, b such that 0≤ b − a ≤ 3, there exist degenerations
whose general fibre is a scroll of typeSa,b and whose central fibre is a planar Zappatic
surface with onlyR3-points as Zappatic singularities (cf. Figure 11). We will not dwell on
this here.

4. DEGENERATIONS OF SCROLLS: INDUCTIVE CONSTRUCTIONS

In this section we produce families of smooth scrolls of any genusg ≥ 0 which degenerate
to planar Zappatic surfaces with Zappatic singularities of typesR3 andS4 only.

We start by describing the planar Zappatic surfaces which will be the limits of our
scrolls. We will construct these Zappatic surfaces by induction ong. From now on in this
section, we will denote byXd,g a planar Zappatic surface consisting ofd planes and whose
sectional genus isg.

We start with the caseg = 1.

CONSTRUCTION4.1. For any d ≥ 5, there exists a planar Zappatic surfaceXd,1 =⋃d
i=1 Vi in Pr , with r = d − 1, whose dual graph is a cycle.
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Indeed, ifp1, . . . , pd are the coordinate points ofPr , we may letVi , i = 2, . . . , d − 1,
be the plane spanned bypi−1, pi, pi+1 and letV1 = 〈pd , p1, p2〉, Vd = 〈pd−1, pd , p1〉.
ThenXd,1 =

⋃d
i=1 Vi is a planar Zappatic surface with dual graph a cycle and whose

Zappatic singularities are points of typeR3 at p1, . . . , pd ; cf. Figure 12, where one
identifies the line〈pd , p1〉 on the left with the same line on the right.
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FIG. 12. Planar Zappatic surfaceXd,1 with dual graph a cycle.

We will show in Theorem 4.6 thatXd,1 is the flat limit of a smooth scroll of genus 1
in Pr . In order to do that, now we describe another way to constructXd,1, which will also
help to understand the next inductive steps.

Let Xd−2,0 =
⋃d−2

i=1 Vi be a planar Zappatic surface of degreed − 2 in Pr , whose dual
graph is a chain. We may and will assume that the planesVi andVj meet along a line if
and only ifj = i ± 1.

Now choose a general linel1 in V1 and a general linel2 in Vd−2, thusl1 [resp.l2] does
not pass through theR3-pointV1 ∩ V2 ∩ V3 [resp.Vd−4 ∩ Vd−3 ∩ Vd−2]. Clearly the lines
l1 and l2 are skew and span aP3, call it Π . By a computation in coordinates one proves
that, if d ≥ 6, thenΠ ∩ X0 = l1 ∪ l2. Therefore there exists a smooth quadricQ′ in Π

such thatl1, l2 are lines of the same ruling onQ′, andQ′ meetsX0 transversally along
Q′

∩ Xd−2,0 = l1 ∪ l2. On the other hand, ifd = 5, thenΠ ∩ Xd−2,0 = l1 ∪ l2 ∪ l, where
l is a line in the central plane. Nonetheless it is still true that there exists a smooth quadric
Q′ which containsl1 andl2 and meetsX0 transversally.

Finally, in Π , the quadricQ′ degenerates to two planesVd−1 andVd such thatli ⊂

Vd−i+1, i = 1, 2. By construction, the planar Zappatic surfaceXd,1 = Xd−2,0 ∪ Vd−1 ∪

Vd =
⋃d

i=1 Vi has dual graph which is a cycle, hence it has onlyR3-points as Zappatic
singularities (cf. Example 3.3 and Figure 13). Note that, ifd ≥ 6, then there are pairs of
disjoint planes in the cycle.
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FIG. 13. Construction ofXd,1 from Xd−2,0.

Next, we complete the construction proceeding inductively.
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CONSTRUCTION4.2. Fix integersg, d such thatg ≥ 2andd ≥ 2g+4. Setc = d−2g−4
≥ 0 andr = 5 + c = d − 2g + 1. There is a planar Zappatic surfaceXd,g =

⋃d
i=1 Vi in

Pr such that:

• Xd,g has3g + 6 + c double lines, i.e. its dual graphGXd,g
has3g + 6 + c edges;

• Xd,g hasr + 1 points of typeR3 and2(g − 1) points of typeS4;
• for eachi, Vi is the central plane through a pointp of type eitherR3 or S4, i.e.Vi is the

central component ofXd,g passing throughp as defined in Notation2.2;
• there exist twoR3-points ofXd,g whose central planes do not meet;
• χ(OXd,g

) = 1 − g, pω(Xd,g) = 0, q(Xd,g) = g(Xd,g) = g.

Taking into account Construction 4.1, which coversg = 1 andd ≥ 5, we can proceed
by induction and assume that we have the surfaceXd−2,g−1. Let V1 andV2 be disjoint
planes inXd−2,g−1 such that each of them is the central plane for anR3-point, sayp1 and
p2 respectively.

Now choose a linel1 in V1 [resp. l2 in V2] which is general among those passing
throughp1 [resp. throughp2]. Then l1 and l2 are skew and span aP3, sayΠ , therefore
there exists a smooth quadricQ′ in Π containingl1 andl2 as lines of the same ruling (cf.
Figure 14).
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FIG. 14. Construction ofXd,g from Xd−2,g−1.

Now we prove the following:

CLAIM 4.3. For general choices,Q′ andXd−2,g−1 meet transversally alongXd−2,g−1 ∩

Q′
= l1 ∪ l2.

PROOF. In order to prove the claim, it suffices to show thatΠ does not meet the remaining
components ofXd−2,g−1 along a curve, i.e.Π does not meetVi , i 6= 1, 2, along a line.
Before proving the claim, we make a remark. Suppose that there are two further planes,
sayV3 andV4, in Xd−2,g−1 contained in〈V1, V2〉 = Σ ∼= P5. Suppose also that the dual
graph of the planar Zappatic surfaceV1 ∪ V3 ∪ V4 ∪ V2 is a chain of length 4. Then the
pointsV1 ∩ V3 ∩ V4 andV3 ∩ V4 ∩ V2 are of typeR3. Note that this certainly happens if
c = 0 andg = 2 because in that case the dual graph ofXd−2,g−1 is a cycle of length six.

In this situation, a computation in coordinates inΣ shows that for a general choice of
l1 andl2, Π = 〈l1, l2〉 intersects neitherV3 norV4 along a line.
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Now we prove the claim arguing by contradiction. Fix the linel2 in V2 and consider
〈l2, V1〉 = Ω ∼= P4. By movingl1 in the pencil of lines ofV1 throughp1, one gets a pencil
Φ of P3’s insideΩ and each of theseP3’s meets a plane, sayV3, along a line. There are
two possibilities: eitherV3 ⊂ Ω, or V3 * Ω.

In the former case,V3 intersectsV1 at a pointq. Let l2 move in the pencil of lines ofV2
throughp2: one gets a pencil ofP4’s in Σ = 〈V1, V2〉, whose base locus is〈p1, V2〉 ∼= P3

in which V3 is contained. This implies thatq = p1, moreoverV3 intersectsV2 along a
line which necessarily containsp2. In conclusion,V3 contains the line passing throughp1
andp2. This yields the existence of a planeV4 which forms, together withV1, V2 andV3,
a configuration inΣ of four planes as the one discussed above. This is a contradiction.

Suppose now thatV3 * Ω. ThenV3 meets along a line the base locus of the pencilΦ,
which is the plane〈p1, l2〉. By movingl2, we see thatV3 has to contain the line throughp1
andp2 and we get a contradiction as before.

In Π , the smooth quadricQ′ degenerates to the union of two planes, sayVd−1 ∪ Vd ,
whereli ⊂ Vd−i+1, i = 1, 2. Consider the planar Zappatic surfaceXd,g = Xd−2,g−1 ∪

Vd−1 ∪ Vd of degreed in Pr . Thus, we added toXd−2,g−1 two planes and three double
linesV1 ∩ Vd , Vd ∩ Vd−1 andVd−1 ∩ V2. Moreover, the pointsp1 andp2 become points
of type S4 for Xd,g and we added two further points of typeR3 at V1 ∩ Vd ∩ Vd−1 and
Vd ∩ Vd−1 ∩ V2 (cf. Figure 14). Finally, one checks that each one of the planesVd−1 and
Vd is disjoint from some other plane in the configuration. This ends the construction.

Next, we will prove that the Zappatic surfacesXd,g we constructed are limits of smooth
scrolls of genusg. First we make a remark.

REMARK 4.4. If Xd,g is the flat limit of a family of smooth surfacesY , then Theorem
2.12 implies that

(4.5) g(Y ) = g, pg(Y ) = 0, χ(OY ) = 1 − g, 8(1 − g) ≤ K2
Y ≤ 6(1 − g).

THEOREM 4.6. Let g ≥ 0 and d ≥ 2g + 4 be integers. Letr = d − 2g + 1. The
Hilbert point corresponding to the planar Zappatic surfaceXd,g belongs to an irreducible
componentHd,g of the Hilbert scheme of scrolls of degreed and genusg in Pr such that:

(i) the general point ofHd,g represents a smooth, linearly normal scrollY ⊂ Pr ;
(ii) Hd,g is generically reduced,dim(Hd,g) = h0(Y,NY/Pr ) = (r + 1)2

+ 7(g − 1), and
moreoverh1(Y,NY/Pr ) = h2(Y,NY/Pr ) = 0.

PROOF OFTHEOREM 4.6: BEGINNING. We argue by induction ong. The caseg = 0 has
been treated in Proposition 3.8. By induction, we may assume thatXd−2,g−1 is the flat limit
of a smooth scrollS of degreed−2 and genusg−1 in Pr , which is represented by a smooth
point of a componentHd−2,g−1 of the Hilbert scheme of dimension(r + 1)2

+ 7(g − 2).
We can now choosel1 andl2 as in Constructions 4.1 and 4.2 so that they are limits of

rulingsF1 andF2, respectively, onS (cf. Remark 3.11).
Let Q be a smooth quadric containingF1 andF2, whose limit isQ′. By the properties

of Xd−2,g−1 and ofQ′ (see Claim 4.3), it follows thatS andQ meet transversally along
S ∩ Q = F1 ∪ F2.

The inductive step is a consequence of the following lemma.
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LEMMA 4.7. In the above setting, consider the union

R := S ∪ Q.

LetNR andTR be the normal and the tangent sheaf ofR in Pr , respectively. Then

H 1(NR) = H 2(NR) = 0,(4.8)

h0(NR) = (r + 1)2
+ 7(g − 1) = d2

− 4dg + 4d + 4g2
− g − 3.(4.9)

Furthermore the natural mapH 0(NR) → H 0(T 1), induced by the exact sequence

(4.10) 0→ TR → TPr |R
τ

−→ NR → T 1 := coker(τ ) → 0,

is surjective.

PROOF. We will compute the cohomology ofNR, by using a similar technique to the one
in Section 2.2 of [6] (see Lemma 3 therein).

Let Γ := S ∩ Q = F1 ∪ F2 be the double curve ofR. SinceR has global normal
crossings, the sheafT 1 in (4.10) is locally free, of rank 1 on the singular locusΓ of R and,
by [10],

T 1 ∼= NΓ/S ⊗NΓ/Q.

SinceΓ is the union of two lines of the same ruling on bothQ andS, it follows that

(4.11) T 1 ∼= OΓ .

Let us consider the inclusionsιS : NS → NR|S andιQ : NQ → NR|Q. Lemma 2 in [6]
shows thatT 1 ∼= coker(ιS) andT 1 ∼= coker(ιQ). For the reader’s convenience, we recall
the proof. By a local computation, one sees that the cokernelK of ιS is locally free of
rank 1 onΓ . In the diagram

(4.12) TPr |R
//

��

NR
//

((QQQQQQ T 1 // 0

NR|S

''PPPPPP

TPr |S
// NS

ιS 66mmmmmm
0

the horizontal and diagonal rows are exact, hence the commutativity of the pentagon shows
thatT 1 surjects ontoK. Since both are locally free sheaves of rank 1, one concludes that
T 1 ∼= K. The same argument works forQ.

Hence the following sequences are exact:

0 → NS → NR|S → T 1
→ 0,(4.13)

0 → NQ(−Γ ) → NR|Q(−Γ ) → T 1(−Γ ) → 0.(4.14)

Moreover, one has the exact sequence

(4.15) 0→ NR|Q ⊗OR(−Γ ) → NR → NR|S → 0,
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so that, in order to prove (4.8), it suffices to show that

H i(NR|S) = 0 for 1 ≤ i ≤ 2,(4.16)

H i(NR|Q ⊗OR(−Γ )) = 0 for 1 ≤ i ≤ 2.(4.17)

By induction ong, one knows thatH i(NS) = 0, i = 1, 2. By (4.11), one hasH i(T 1) =

H i(OΓ ) = 0, i = 1, 2, becauseΓ is the union of two distinct lines. Hence the sequence
(4.13) implies (4.16).

Note thatH i(T 1(−Γ )) = H i(OΓ (−Γ )) = 0, i = 1, 2. Taking into account the exact
sequence (4.14), the proof of (4.17) is concluded if one shows that

(4.18) H i(NQ(−Γ )) = 0 for 1 ≤ i ≤ 2.

SinceQ lies in aP3, one has

NQ
∼= OQ(2) ⊕OQ(1)⊕(r−3).

Recall thatF1 andF2 are lines of the same ruling, soF1 ∼ F2 andOQ(−Γ ) ∼= OQ(−2F1).
Let G be the other ruling ofQ and H be the general hyperplane section ofQ. Then
H ∼ G + F1 and

(4.19) NQ ⊗OQ(−Γ ) ∼= OQ(2G) ⊕OQ(G − F1)
⊕(r−3),

and one sees thathi(OQ(2G)) = hi(OQ(G − F)) = 0 for i = 1, 2, which proves (4.18).
The proof of (4.8) is thus concluded.

We now prove formula (4.9). By (4.8), one finds thath0(NR) = χ(NR), which one
computes by using (4.13), (4.14) and (4.15):

χ(NR) = χ(NR|S) + χ(NR|Q ⊗OQ(−Γ ))

= χ(NS) + χ(T 1) + χ(NQ(−Γ )) + χ(T 1(−Γ )).

By (4.11),χ(T 1) = χ(T 1(−Γ )) = 2. By (4.19),χ(NQ(−Γ )) = 3. Finally, by induction

χ(NS) = (r + 1)2
+ 7(g − 2),

which concludes the proof of (4.9).
It remains to show that the mapH 0(NR) → H 0(T 1) is surjective. SinceH 1(NS) = 0,

the mapH 0(NR|S) → H 0(T 1) is surjective by (4.13). Finally, (4.17) implies thatH 0(NR)

surjects ontoH 0(NR|S), which concludes the proof of the lemma.

We are finally ready for the

PROOF OFTHEOREM 4.6: CONCLUSION. By Lemma 4.7, one hasH 1(NR) = 0, which
means thatR corresponds to a smooth point [R] of the Hilbert scheme of surfaces with
degreed and sectional genusg in Pd−2g+1. Therefore, [R] belongs to a single reduced
componentHd,g of the Hilbert scheme of dimensionh0(NR). The last assertion of Lemma
4.7 implies that a general tangent vector toHd,g at the point [R] represents a first-order
embedded deformation ofR which smooths the double curveΓ . Therefore, the general
point inHd,g represents a smooth, irreducible surfaceY . ThusY degenerates toR and
also to the planar Zappatic surfaceXd,g (cf. Proposition 3.8 and Constructions 4.1, 4.2).
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Classical adjunction theory (cf. e.g. [15] and §7 in [9]) implies thatY is a scroll:
otherwise, ifH is the hyperplane section ofY , one hasKY + H nef and therefore
0 < d ≤ 4(g − 1) + K2

Y , contradictingK2
Y ≤ 6(1 − g) in (4.5).

Finally, the assertion about linear normality is trivial forg = 0 and is clear by induction
and construction, forg > 0.

REMARK 4.20. By using the same first part of the proof of Theorem 4.6, one can observe
that Construction 4.2 can be carried out also whend = 2g + 3.

Indeed, in this case,Xd,g is a union of planes lying inP4 which is not a Zappatic
surface ifg ≥ 2, since there are singular points where only two planes of the configuration
meet, which are not Zappatic singularities. The only difference in the construction is that,
since there are no pairs of disjoint planes, we have to choosel1 and l2 on two planesV1
andV2 which meet at a point but not along a line. Moreover the proof of the existence of
the quadric meeting transversally the union of planes alongl1 ∪ l2 is a bit more involved.

Nonetheless, as in the proof of Theorem 4.6, one can show thatXd,g is a flat limit of a
family of linearly normal scrolls inP4 for any genusg ≥ 0 and degreed = 2g + 3. These
scrolls are smooth only ifg = 0, 1, whereas they have isolated double points ifg ≥ 2.

We finish this section by mentioning two more examples of configurations of planes
forming a planar Zappatic surface, with only points of typeR3 and S4, which are
degenerations of smooth scrolls. The advantage of these constructions is that they are
slightly simpler than Construction 4.2. The disadvantage is that they work only for larger
values of the degree.

EXAMPLE 4.21. Fix arbitrary integersg, d such thatg ≥ 2 andd > 4g. Setr = d −

2g + 1. LetXd−2g,0 =
⋃d−2g

i=1 Vi be a planar Zappatic surface inPr whose dual graph is a
chain. One can attach 2g planes toXd−2g,0 in order to get a planar Zappatic surfaceYd,g

of degreed and sectional genusg in Pr with d − 2g + 2 points of typeR3 and 2g − 2
points of typeS4.

Indeed, we may assume thatVi meetsVj along a line if and only ifj = i ± 1. Denote
by p2, . . . , pd−2g−1 the points of typeR3 of Xd−2g,0, wherepi = Vi−1 ∩ Vi ∩ Vi+1,
i = 2, . . . , d − 2g − 1.

Choose a general linel1,1 in V1 [resp.l1,2 in Vd−2g], i.e. a line not passing throughp2
[resp.pd−2g−1]. For i = 2, . . . , g, choose a lineli,1 in Vi [resp. a lineli,2 in Vd−2g+1−i ],
which is general among those lines passing throughpi [resp. throughpd−2g+1−i ].

The generality assumption implies that all the linesli,1, li,2, 1 ≤ i ≤ g, are pairwise
skew. For everyi = 1, . . . , g, there is a smooth quadric surfaceQ′

i which containsli,1
andli,2, in theP3 spanned by them. In thisP3 the quadricQ′

i degenerates to two distinct
planes, sayVi,1 andVi,2, leavingli,1 andli,2 fixed: the planeVi,1 containsli,1 whereasVi,2
containsli,2. ThenY = Yd,g := Xd−2g,0 ∪

⋃g

i=1(Vi,1 ∪ Vi,2) is a planar Zappatic surface
in Pr . Note that we added to the pointsp2, . . . , pd−2g−1 new Zappatic singularities at the
points:

(i) qi,j with 1 ≤ i ≤ g, 1 ≤ j ≤ 2, whereqi,1 = Vi ∩ Vi,1 ∩ Vi,2 andqi,2 = Vi,1 ∩ Vi,2 ∩

Vd−2g+1−i ,
(ii) p1 = V1 ∩ V2 ∩ V1,1 andpd−2g = Vd−2g ∩ Vd−2g−1 ∩ V1,2.
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ThenY is a planar Zappatic surface with the following properties:

• the dual graphGY hasd vertices andd + g − 1 edges;
• Y has 2g − 2 points of typeS4, namelyp2, . . . , pg, pd−3g+1, . . . , pd−2g−1;
• Y hasd − 2g + 2 points of typeR3, namelyqi,j , 1 ≤ i ≤ g, 1 ≤ j ≤ 2, p1, pd−2g and

pg+1, . . . , pd−3g;
• χ(OX) = 1 − g, pω(X) = 0, q(X) = g(X) = g

(cf. Figure 15).
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FIG. 15. Construction ofYd,g from Xd−2g,0 for g = 3 andd = 4g + 1 = 13.

Recall thatXd−2g,0 is the flat limit of a smooth, rational normal scrollS of degree
d − 2g in Pd−2g+1. If Fi,j , 1 ≤ i ≤ g, 1 ≤ j ≤ 2, is the ruling ofS whose limit isli,j ,
andQi is a smooth quadric containingFi,1, Fi,2 whose limit isQ′

i , then one can show, by
using similar techniques to the proof of Theorem 4.6, that the union of the rational normal
scrollS and theg quadricsQi is a flat limit of a family of smooth, linearly normal scrolls
of degreed and genusg in Pd−2g+1 which is contained in the same componentHd,g of
Theorem 4.6 (cf. Theorem 5.4 and Remark 5.5 below).

With a slight modification of the previous construction, one can also cover the case
d = 4g. We do not dwell on this here.

EXAMPLE 4.22. Fix integersg, d such thatg ≥ 1 andd ≥ 3g + 2. By induction ong,
we will construct a planar Zappatic surfaceZd,g =

⋃d
i=1 Vi in Pd−2g+1 such that:

• Zd,g hasd − 2g + 1 double lines, i.e.GZd,g
hasd − 2g + 1 edges;

• Zd,g hasd − 2g + 2 points of typeR3 and 2g − 2 points of typeS4;
• for eachi, Vi is the central plane through a pointp of type eitherR3 or S4;
• there exist twoR3-points ofZd,g whose central planes do not meet, unlessg = 1 and

d = 5;
• χ(OZd,g

) = 1 − g, pω(Zd,g) = 0, q(Zd,g) = g(Zd,g) = g.

The base of the induction is the caseg = 1. In this case,Zd,1 is the surfaceXd,1
considered in Construction 4.1. Now we assumeg > 1 and we describe the inductive step.

Consider the surfaceZd−3,g−1, which sits inPd−2g, which we suppose to be embedded
as a hyperplane inPd−2g+1.

If g = 2 andd = 8, choose two distinct planesV1 andV2 of Z5,1 = X5,1 which do not
meet along a line. Otherwise, choose two distinct planesV1 andV2 of Zd−3,g−1 which are
central for twoR3-points, sayp1 andp2, and which span aP5.

Choose a linel1 in V1 [resp. l2 in V2] which is general among those lines passing
throughp1 [resp. throughp2]. Consider a generalP4 in Pd−2g+1 containingl1 andl2.
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One can show that, in thisP4, there is a smooth, rational normal cubic scrollR′ which
containsl1 andl2 and such thatR′ meetsZd−3,g−1 transversally alongR′

∩ Zd−3,g−1 =

l1 ∪ l2.
In thisP4, the cubic scrollR′ degenerates to a planar Zappatic surfaceX3,0, consisting

of three planes, sayVd−2, Vd−1 andVd , such thatl1 ⊂ Vd andl2 ⊂ Vd−2.
We defineZd,g = Zd−3,g−1 ∪ X3,0. We added three planes and four double lines; the

pointsp1 andp2 become of typeS4 for Zd,g and we added three points of typeR3 at
V1 ∩ Vd−1 ∩ Vd , atV2 ∩ Vd−2 ∩ Vd−1 and atVd−2 ∩ Vd−1 ∩ Vd . It is clear that there exist
two R3-points whose central planes do not meet.

Arguing by induction, one may assume thatZd−3,g−1 is the flat limit of a smooth,
linearly normal scrollS of degreed − 3 and genusg − 1 in Pd−2g. If Fi , i = 1, 2, is the
ruling of S whose limit isli andR is a smooth, cubic scroll containingF1, F2 as ruling and
whose limit isR′, one can show, by using the same proof of Theorem 4.6, that the union
S∪R is the flat limit of a family of smooth, linearly normal scrolls of degreed and genusg
in Pd−2g+1, which is contained in the same componentHd,g of Theorem 4.6 (cf. Theorem
5.4 and Remark 5.5).

5. HILBERT SCHEMES OF SCROLLS

In this section we prove thatHd,g, as determined in Theorem 4.6, is the unique irreducible
component of the Hilbert scheme of scrolls of degreed and genusg in Pd−2g+1 whose
general point parametrizes a smooth, linearly normal scroll (cf. Theorem 5.4). This
componentHd,g dominatesMg (cf. Remark 5.6).

This, together with Construction 4.2 and Theorem 4.6, proves Theorem 1.2 in the
introduction.

On the other hand, we will also construct families of scrollsY of degreed and genusg
in Pr with r > d − 2g + 1 andh1(Y,OY (1)) 6= 0 (cf. Example 5.11). We will also show
that projections of such scrolls may fill up components of the Hilbert scheme, different
fromHd,g, which may even dominateMg (cf. Example 5.12).

Let C be a smooth curve of genusg and letF
ρ
→ C be ageometrically ruled surface

on C, i.e.F = P(F) for some rank-two vector bundleF on C. Furthermore, we assume
thatF is very ample, i.e.F is embedded inPr for somer ≥ 3 via theOF (1) bundle as a
scroll of degreed = deg(F). From now on,H will denote the hyperplane section ofF .
A general hyperplane sectionH is isomorphic toC, so that we will letLF be the line
bundle onC ∼= H which is the restriction of the hyperplane bundle. We will denote byR

a general ruling ofF , and more precisely byRx the ruling mapping to the pointx in C.
Let Y := C × P1. If L is a line bundle onC, we will set

(5.1) L̃ := π∗

1 (L) ⊗ π∗

2 (OP1(1)),

whereπi denotes the projection on theith factor, 1≤ i ≤ 2.

PROPOSITION5.2. Let C be a smooth curve of genusg ≥ 0 and letF := P(F) be a
geometrically ruled surface onC. Assume thatdeg(F) = d. Then there is a birational
map

ϕ : Y 99K F
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which is the composition ofd elementary transformations at distinct points of a setΓ :=
{y1, . . . , yd} ⊂ Y lying ond distinct rulings ofY . Moreover,

(i) ϕ∗(OF (H)) = L̃F ;
(ii) ϕ∗(|OF (H)|) = |L̃F ⊗ IΓ/Y |.

PROOF. The argument is similar to the one in [12, Prop. 6.2] and in [16]. Indeed, letΠ

be a general linear subspace of codimension two inPr which is the base locus of a pencil
P ∼= P1 of hyperplanes. By abusing notation, we will denote byP the corresponding
pencil of hyperplane sections ofF . More specifically, we will denote byHt the hyperplane
section corresponding to the pointt ∈ P1. Then we setZ := {z1, . . . , zd} = F ∩ P; note
thatZ is formed by distinct points on distinct rulings.

The mapϕ : Y 99K F is defined by sending the general point(x, t) ∈ Y to the point
Rx ∩ Ht ∈ F . One verifies thatϕ is birational and that the indeterminacy locus onF is Z.
In order to describe the mapϕ on Y , note that each pointzi maps to a pointxi ∈ C and
determines a unique valueti ∈ P1 such thatHti contains the rulingRxi

, 1 ≤ i ≤ d. The
indeterminacy locus ofϕ onY is Γ := {y1, . . . , yd}, whereyi = (xi, ti), 1 ≤ i ≤ d.

As shown in [12],ϕ is the composition of the elementary transformations based at the
points ofΓ . The rest of the assertion immediately follows.

Let Γ = {y1, . . . , yd} ⊂ Y be a subset formed byd distinct points. We consider the
line bundle onC,

(5.3) LΓ := OC(x1 + · · · + xd),

whereπ1(yi) = xi , 1 ≤ i ≤ d.

THEOREM 5.4. Let g ≥ 0 and d > 2g + 3 be integers. Then there exists a unique
irreducible componentHd,g of the Hilbert scheme, parametrizing scrolls of degreed and
genusg in Pd−2g+1, whose general point represents a smooth scrollF ⊂ Pd−2g+1 which
is linearly normal and hash1(F,OF (1)) = 0.

PROOF. Let U ⊂ Hilbd(Y ) be the open subset formed by allΓ = {y1, . . . , yd} ⊂ Y

containingd points lying ond distinct fibres and imposingd independent conditions on
|L̃Γ |, which means

dim(|L̃Γ ⊗ IΓ/Y |) = dim(|L̃Γ |) − d.

Note that, by the K̈unneth formula,h0(L̃Γ ) = 2h0(LΓ ) = 2(d − g + 1). Thus, we have
dim(|L̃Γ ⊗ IΓ/Y |) = d − 2g + 1. The linear system|L̃Γ | determines a rational map

ϕ : Y 99K Pd−2g+1.

By Proposition 5.2, every smooth scrollF of degreed and genusg in Pd−2g+1 is the image
of such a map. Therefore, for generalΓ in U , the mapϕ is birational onto its imageF ,
which is a smooth scroll of degreed and genusg whose Hilbert point [F ] belongs to a
unique well-defined componentHd,g of the Hilbert scheme.

Note that by (ii) of Proposition 5.2,h1(OF (1)) = h1(L̃Γ ⊗ IΓ/Y ) = 0; therefore, by
the Riemann–Roch theorem,h0(OF (1)) = d − 2g + 2.
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REMARK 5.5. Observe that the irreducible componentHd,g determined in Theorem 4.6
coincides with the one determined in Theorem 5.4. The cased = 2g+3 can also be covered
by similar arguments. In that case, we have surfaces inP4 which are no longer smooth, but
they have 2g(g − 1) double points as dictated by thedouble point formula. Nonetheless,
the statement of Theorem 5.4 still holds upon replacingF with its normalization.

REMARK 5.6. The dimension count forHd,g which has been done in Theorem 4.6 also
stems from the proof of Theorem 5.4, which provides a parametric representation ofHd,g.
Indeed, the number of parameters on which the general point ofHd,g depends is given by
the following count:

• 3g − 3 parameters for the class of the curveC inMg, plus
• 2d parameters for the general point inU , plus
• (r + 1)2

− 1 parameters for projective transformations inPr , wherer = d − 2g + 1,
minus

• 2(r − 1) = 2d − 4g parameters for the choice of a codimension-two subspaceΠ in Pr ,
minus

• three parameters for projective isomorphisms of the pencil of hyperplanes throughΠ

with P1.

This computation shows thatHd,g hasgeneral moduli, in the sense that the base of the
general scroll [F ] ∈ Hd,g is a general point ofMg.

Observe that this can also be viewed as a consequence of Theorem 4.6 and more
specifically of the fact thath1(OF (1)) = 0 for [F ] a general point of the generically
smooth componentHd,g.

Indeed, ifF ⊂ Pr , r = d − 2g + 1, is a smooth scroll, then from the Euler sequence
restricted toF ,

0 → OF → H 0(OF (1))∨ ⊗OF (1) → TPr |F → 0,

we see thath1(TPr |F ) = 0. Therefore, from the normal sequence ofF in Pr ,

0 → TF → TPr |F → NF/Pr → 0,

we get the surjection
H 0(NF/Pr ) →→ H 1(TF ).

SinceF is aP1-bundle overC, from the differential of the mapF
ρ
→ C, we get a surjection

H 1(TF ) →→ H 1(TC),

hence
H 0(NF/Pr ) →→ H 1(TC).

which shows thatHd,g dominatesMg.

Next, we consider the problem of the existence of components of the Hilbert schemes
of scrolls of degreed and genusg in Pr with r > d − 2g + 1. First, it is easy to determine
an upper bound forr. This subject has been deeply studied by C. Segre (cf. [20] and [12]).
For the following lemma, compare [20, §14].
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LEMMA 5.7. Let g ≥ 1 be an integer. LetC be a smooth curve of genusg and letF =

P(F) be a ruled surface onC and d = deg(F) ≥ 2g + 1. Assume that there exists a
smooth curve in|OF (1)|. Then

h0(OF (1)) ≤ d − g + 2.

Equality holds if and only ifF = OC ⊕ L, in which caseOF (1) mapsF to a cone over a
projectively normal curve of degreed and genusg in Pd−g.

PROOF. The bound onh0(OF (1)) follows by the Riemann–Roch theorem onC. If
equality holds, thenC is linearly normally embedded as a curve of degreed and genus
g in Pd−g. It is well known that this curve is projectively normal (cf. [5], [17] and [19]).
ThereforeF is mapped to a surfaceX which is projectively normal, since its general
hyperplane section is (cf. [13, Theorem 4.27]).

On the other hand,X is a scroll of positive genus. ThereforeX cannot be smooth, and
it has some isolated singularities. This forcesX to be a cone (cf. Claim 4.4 in [7]). Hence,
the assertion follows.

REMARK 5.8. LetC be a smooth curve of genusg and letF = P(F) be a ruled surface
onC andd = deg(F) ≥ 2g + 1. Then

(5.9) d − 2g + 2 ≤ h0(OF (1)) ≤ d − g + 2,

where the lower bound is immediately implied by the Riemann–Roch theorem whereas the
upper bound is given by the previous lemma. Equivalently,

(5.10) 0≤ h1(OF (1)) ≤ g,

where the upper bound is realized by the cones and the lower bound by the general scrolls
in the componentHd,g considered above.

Any intermediate valuei of h1(OF (1)), 1 ≤ i ≤ g, can actually be realized. An easy
construction is via decomposable bundles as the following example shows.

EXAMPLE 5.11. Letg ≥ 3 and letd ≥ 4g − 1 be integers. Leti be any integer between
1 andg. Let C be a smooth, projective curve of genusg with a line bundleL such that|L|

is base-point-free andh1(L) = i. Let D be a general divisor of degreed − deg(L). Notice
that, since deg(L) ≤ 2g − 2 andd ≥ 4g − 1, one has deg(D) ≥ 2g + 1 and the linear
series|D| is very ample.

ConsiderF = L ⊕ OC(D). If F = P(F) then OF (1) is base-point-free and
h1(OF (1)) = i.

For large values ofi, OF (1) is never very ample. For instance, fori = g − 1, C is
forced to be hyperelliptic andL = g1

2. Thus, the image ofF via |OF (1)| has a double line.
Similarly, if i = g − 2, then eitherC is hyperelliptic andL = 2g1

2, orC is trigonal and
L = g1

3, or g = 3 andL = ωC . In the first case, the image ofF has a double conic; in the
second case, the image ofS has a triple line. Only in the third case, the image ofC via |L|

is smooth.
The analysis is subtle and we do not dwell on this here.
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Now we consider the question of whether there are other components, different from
Hd,g, of the Hilbert scheme of surfaces inPd−2g+1 whose general point corresponds to
a smooth scroll of degreed and genusg. The answer to this question is affirmative; in
fact one can construct such components even with general moduli. In the next example,
we show one possible construction of a component with general moduli. The reader may
easily generate other similar constructions.

EXAMPLE 5.12. LetC be a curve with general moduli of genusg = 4l + ε, where
0 ≤ ε ≤ 3. Let L be a very ample, special line bundle of degreem := 3 + g − l with
h0(L) = 4. Note that such anL varies in a family of dimensionρ := ρ(g, 3, m) = ε.

Let d be an integer with eitherd ≥ 2g + 10, if ε = 0, 1, ord ≥ 2g + 11, if ε = 2, 3.
Setr = d − 2g + 1.

Let N be a general line bundle onC of degreed − m. Note thatd − m > g + 7 + l.
HenceN is very ample (cf. e.g. [1]) andh0(N) = d − m − g + 1.

SetF = L⊕N andX = P(F). ThenR+1 := h0(OX(1)) = h0(L)+h0(N) = r+1+l.
SinceOX(1) is very ample,X is linearly normal embedded inPR as a smooth scroll of

degreed and genusg, which can be generically projected toPr to a smooth scrollX′ with
the same degree and genus, which belongs a certain componentH of the Hilbert scheme.
As in the proof of Theorem 4.6, the general member ofH is a scroll of the same degree
and genus.

The dimension ofH can be easily bounded from below by the sum of the following
quantities:

• 3g − 3, which are the parameters on whichC depends,
• g, which are the parameters on whichN depends,
• ε, which are the parameters on whichL depends,
• (r + 1)l = dim(G(r, R)), which are the parameters for the projections,
• (r + 1)2

− 1 = dim(PGL(r + 1, C)).

The hypothesis ond implies that dim(H) ≥ dim(Hd,g), which shows thatH is
different fromHd,g.

REMARK 5.13. The question of understanding how many components of the Hilbert
scheme of scrolls there are, and finding the corresponding image in the moduli space of
curves of genusg, is an intriguing one. The previous example suggests that a complete
answer could be rather complicated. It also leaves open the question whetherHd,g is the
only component with general moduli for 2g + 4 ≤ d ≤ 2g + 10.

6. COMMENTS ON ZAPPA’ S ORIGINAL APPROACH

In [23], Zappa stated a result about embedded degenerations of scrolls of sectional genus
g ≥ 2 to unions of planes. His result, in our terminology, reads as Theorem 1.1 in the
introduction.

Zappa’s arguments rely on a rather intricate analysis of algebro-geometric and
topological types of degenerations of hyperplane sections of the scroll and, accordingly,
of the branch curve of a general projection of the scroll to a plane.
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We have not been able to check all the details of this very clever argument. This is one
of the reasons why we preferred to solve the problem in a different way, which is the one
we presented in the previous sections. Our approach has the advantage of proving a result
in the style of Zappa, but with better hypotheses about the degree of the scrolls.

However, the idea which Zappa exploits, of degenerating the branch curve of a general
projection to a plane, is a classical one which goes back to Enriques, Chisini, etc., and
certainly deserves attention. We hope to come back to these ideas in the future.

In reading Zappa’s paper [23], our attention has been attracted also by another
ingredient he uses which looks interesting on its own. Zappa gives extendability conditions
for a curve on a scroll which is not a cone. We finish this paper by briefly reporting on this.
At the end of the section we briefly summarize Zappa’s argument for the degenerations of
the scroll.

Let F ⊂ P3 be a scroll which is not a cone over a plane curve. We do not assumeF

to be smooth. Equivalently, we can look atF as a curveC in the GrassmannianG(1, 3) of
lines inP3, which is isomorphic to the Klein hyperquadric inP5 via the Pl̈ucker embedding.

Let Π be a general plane and letΓ := F ∩ Π . Consider the normalization mapν :
C → Γ . Then there is a commutative diagram

C
Φ //

ν
��

44
44

44
4 C ⊂ G(1, 3) ⊂ P5

π
yyssssssssss

Γ ⊂ Π

whereΦ maps a general pointx ∈ C to the unique line ofF passing throughν(x), andπ

maps each pointl ∈ C, corresponding to a rulingL of F , to the pointL ∩ Γ .
Zappa proves the following nice lemma:

LEMMA 6.1 (cf. §1 in [23]). In the above setting,

ν∗(OΓ (1)) ∼= Φ∗(OC(1)).

More specifically,π is the projection ofC from the planeΠ∗
⊂ G(1, 3), filled up by all

lines ofΠ .

PROOF. The assertion follows from the fact that, ifr is a line inΠ , thenπ∗(r) is the
section of the tangent hyperplane toG(1, 3) at the point ofΠ∗ corresponding tor. Such a
hyperplane containsΠ∗, and conversely any hyperplane containingΠ∗ is of this type.

Zappa notes that an interesting converse of the previous lemma holds.

PROPOSITION6.2 (cf. §2 in [23]). An irreducible plane curveΓ is a section of a scroll
F ⊂ P3 of degreed if and only ifΓ is the projection of a curveC of degreed, lying on a
smooth quadricQ ⊂ P5, and the centre of the projection is a plane contained inQ.

PROOF. One implication is Lemma 6.1. Let us prove the other implication.
Suppose thatΓ is the projection ofC ⊂ Q ⊂ P5 from a planeΠ̄ ⊂ Q. Since all

smooth quadrics inP5 are projectively equivalent, we may assume thatQ is the Klein
hyperquadric. The assertion follows by reversing the argument of the proof of Lemma 6.1.
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Proposition 6.2 can be extended in the following way. LetΓ be a plane curve of degree
d and geometric genusg such thatd ≥ g + 6. Seti = h1(C, ν∗(Γ (1))). Then one has the
birational morphism

(6.3) C
|ν∗(OΓ (1))|

−−−−−−−→ C̄ ⊂ Pr ,

wherer = d − g + i > 5, and the following linear projection:

C̄ π̄
→ Γ ⊂ P2.

PROPOSITION6.4 (cf. §3 in [23]). In the above setting,Γ is a plane section of a scrollF
in P3 which is not a cone if and only if̄C lies on a quadric of rank6 in Pr which contains
the centre of the projection̄π .

PROOF. This is an immediate consequence of Proposition 6.2 and can be left to the reader.

Zappa uses Proposition 6.4 to prove that any plane curve of degreed � g is the plane
section of a scrollF which is not a cone. The next lemma is essentially Zappa’s result in
§7 of [23], with an improvement on the bound ond: Zappa’s bound isd ≥ 3g + 2.

LEMMA 6.5. Let g ≥ 0 and letd ≥ 2g + 2 be integers. Let̄C be an irreducible, smooth
curve of degreed and genusg in Pr , r = d − g. Then there exists a quadric ofPr , of rank
at most6, which containsC̄ and a generalPr−3.

PROOF. Note that a quadricQ of Pr contains aPr−3 if and only if Q has rank at most 6.
Consider the short exact sequence

0 → IC̄/Pr (2) → OPr (2) → OC̄(2) → 0.

Sinced ≥ 2g + 2, one hash0(OC̄(2)) = 2d − g + 1 andC̄ is projectively normal (cf. [5],
[17], [19]). Thus

(6.6) h0(IC̄/Pr (2)) =

(
r + 2

2

)
− (2d − g + 1).

Let Σ be a generalPr−3 in Pr . Then, from (6.6), one has

h0(IC̄∪Σ/Pr (2)) ≥

(
r + 2

2

)
−

(
r − 1

2

)
− (2d − g + 1) = d − 2g − 1 > 0.

We need the following lemma:

LEMMA 6.7. Let C̄ ⊂ Pr be as in Lemma6.5 and assume that ifg = 0 thend ≥ 3. Let
Σ be aPr−3. The general quadric in the linear system|IC̄∪Σ/Pr (2)| has rankk > 3.

PROOF. Suppose by contradiction that all quadrics containingC̄ andΣ have rank 3. Let
us define

R3(C̄) := {Q ∈ P(H 0(IC̄/Pr (2))) | rank(Q) ≤ 3}.



120 A . CALABRI ET AL .

By an easy count of parameters our assumption implies that

dimR3(C̄) ≥ 3d − 4g − 7.

Next, we will show that this inequality is not possible.
In order to do that, we apply results from [22]. Zamora proves in [22, Lemma 1.2], that

there is a one-to-one correspondence between quadricsQ ∈ R3(C̄) and pairs(g1
a, g

1
b) of

linear series on̄C, with a ≤ b, such that:

(i) a + b = degC̄ = d,
(ii) |g1

a + g1
b | = |OC̄(1)|,

(iii) g1
a +Bb = g1

b +Ba , whereBa (Bb, resp.) is the base locus of theg1
a (g1

b , respectively).

Let Q be the general member of an irreducible componentW of maximal dimension
of R3(C̄) and let(g1

a, g
1
b) be the corresponding pair of linear series onC̄.

Zamora’s result implies that there is a base-point-free linear seriesg1
h on C̄ such that

g1
a = g1

h + Ba, g1
b = g1

h + Bb,

so that
|OC̄(1)| = |2g1

h + Ba + Bb|.

Note that once the divisorBa + Bb has been fixed, the line bundleL corresponding tog1
h

belongs to a zero-dimensional set in Pich(C̄). Setδ = deg(Ba + Bb), so thatd = 2h + δ.
Suppose now thatL is non-special. Then

3d − 4g − 7 ≤ dim(W) ≤ δ + 2(h − g − 1) = d − 2g − 2,

which gives a contradiction.
Now assume thatL is special, so that|L| = gr

h with 2r ≤ h. In this case

3d − 4g − 7 ≤ dim(W) ≤ δ + 2(r − 1) ≤ δ + h − 2,

which leads to a contradiction.

As a consequence of the previous lemma, we have:

THEOREM 6.8. Let Γ be an irreducible, plane curve of degreed and geometric genus
g ≥ 0. If d ≥ max{g + 5, 2g + 2}, thenΓ is a plane section of a scroll inP3 which is not
a cone.

PROOF. Let C̄ ⊂ Pr be the curve corresponding toΓ in P2. ThenΓ is the projection ofC̄
from Σ = Pr−3 disjoint fromC̄. By Lemma 6.5, there is a quadricQ containingC̄ ∪ Σ . If
rank(Q) =: k is 6, we finish by Proposition 6.4. By Lemma 6.7, we know thatk ≥ 4.

If k = 5, then the vertexV of Q is aPr−5. By projecting fromV , Q maps to a smooth
quadricQ′ in P4 containingC′, the projection ofC̄, andΣ ′, the projection ofΣ ; the line
Σ ′ is skew with respect toC′. Of courseΓ is the projection ofC′ from Σ ′. Let us embed
P4 in P5 as a hyperplane. We can certainly find a smooth quadricQ̄ in P5 containingQ′
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and containing a planeΠ intersecting theP4 in Σ ′. The curveΓ is now the projection of
C′ from Π . The assertion follows from Proposition 6.2.

If k = 4, then the vertexV of Q is aPr−4. Suppose first thatΣ containsV ; then by
projecting fromV to P3, the quadricQ maps to a smooth quadricQ′ containingC′, the
image ofC̄, and the pointp ∈ Q′, the image ofΣ , which does not sit onC′. The curve
Γ is the projection ofC′ from p. At this point, we can finish as in the previous case, by
embedding theP3 in P5 and finding a smooth quadric̄Q in P5 containingQ′ and the plane
Π intersecting theP3 in p.

If Σ does not containV , it intersectsV in W ∼= Pr−5. By projecting fromW to P4 we
get a situation similar to the casek = 5. The only difference is thatQ′ is now singular at a
pointp, butΣ ′, the projection ofΣ , does not containp. So we can conclude exactly as in
the casek = 5.

REMARK 6.9. We add a little remark to Theorem 6.8. LetΓ be a plane curve which is a
plane section of a scrollF ⊂ P3 which is not a cone. So if one applies Theorem 6.8, the
scroll which extendsΓ is certainly not developable.

As Zappa does in [23], one can get an interesting consequence of Theorem 6.8 by
applying duality. Recall that theclassof an irreducible plane curve is the degree of the
dual curve.

COROLLARY 6.10. An irreducible, plane curve of classd and geometric genusg such
thatd ≥ max{g + 5, 2g + 2} is the branch curve of a projection of a scroll inP3 of degree
d and genusg which is not a cone.

PROOF. Let D ⊂ P2 be an irreducible plane curve of classd. Let Γ ⊂ (P2)∗ be the
dual curve. By Theorem 6.8,Γ is the plane section of a scrollΦ which is not a cone. By
standard properties of duality,D is the branch curve of the projection ofF = Φ∗ from the
point corresponding to the plane in whichΓ sits.

The argument of Zappa to prove the degeneration of a scroll to a union of planes runs
as follows. Zappa considers the scrollF whose hyperplane sectionΓ is a general member
of the Severi varietyVd,g of plane curves of degreed and geometric genusg. Then he
letsΓ degenerate to a general union ofd lines. From a complicated analysis involving the
degeneration ofΓ and the degeneration of its dual curve, which is the branch curve of the
projection of the dual of the surface on the plane (see Corollary 6.10), Zappa deduces that
in this degeneration ofΓ , F degenerates to a union of planes. Moreover, he controls the
degeneration of the linearly normal model ofF deducing that it also degenerates to a union
of planes with only points of typeR3 andS4.
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(1981), 77–95.

[13] S. GRECO, Normal Varieties. Notes written with the collaboration of A. Di Sante. Inst. Math.
4, Academic Press, London, 1978.

[14] P. GRIFFITHS - J. HARRIS, Principles of Algebraic Geometry. Wiley Classics Library, New
York, 1978.

[15] P. IONESCU, Generalized adjunction and applications. Math. Proc. Cambridge Philos. Soc. 99
(1986), 467–472.

[16] A. M ARUYAMA - M. NAGATA , Note on the structure of a ruled surface. J. Reine Angew. Math.
239 (1969), 68–73.

[17] A. M ATTUCK, Symmetric products and Jacobians. Amer. J. Math. 83 (1961), 189–206.
[18] R. MIRANDA , Anacapri lectures on degenerations of surfaces. Submitted.
[19] D. MUMFORD, Varieties defined by quadratic equations. In: Questions on Algebraic Varieties

– Corso CIME 1969, Rome, 1970, 30–100.
[20] C. SEGRE, Recherches ǵeńerales sur les courbes et les surfaces régĺees alǵebriques, II. Math.

Ann. 34 (1889), 1–25.
[21] F. SEVERI, Vorlesungen̈uber algebraische Geometrie, Teubner, Leipzig, 1921.
[22] A. G. ZAMORA, On the variety of quadrics of rank four containing a projective curve. Boll.

Un. Mat. Ital. Sez. B Artic. Ric. Mat. 8 (1999), 453–462.
[23] G. ZAPPA, Caratterizzazione delle curve di diramazione delle rigate e spezzamento di queste

in sistemi di piani. Rend. Sem. Mat. Univ. Padova 13 (1942), 41–56.
[24] G. ZAPPA, Sulla degenerazione delle superficie algebriche in sistemi di piani distinti, con

applicazioni allo studio delle rigate. Atti R. Accad. d’Italia Mem. Cl. Sci. Fis. Mat. Naturali
13 (1943), 989–1021.

Received 22 December 2005,
and in revised form 8 March 2006.



DEGENERATIONS OF SCROLLS TO UNIONS OF PLANES 123

A. Calabri
Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate

Universit̀a degli Studi di Padova
Via Belzoni 7

35131 PADOVA , Italy
calabri@dmsa.unipd.it

C. Ciliberto, F. Flamini
Dipartimento di Matematica

Universit̀a degli Studi di Roma Tor Vergata
Via della Ricerca Scientifica

00133 ROMA, Italy
cilibert@mat.uniroma2.it
flamini@mat.uniroma2.it

R. Miranda
Department of Mathematics

Colorado State University
101 Weber Building

FORT COLLINS, CO 80523-1874, USA
miranda@math.colostate.edu


	Introduction
	Notation and preliminaries
	Degenerations of products of curves and of rational scrolls
	Degenerations of scrolls: inductive constructions
	Hilbert schemes of scrolls
	Comments on Zappa's original approach

