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ABSTRACT. — Let ϕ be a holomorphic self-map of the open unit ballBn of Cn such thatϕ(0) = 0 and the
differentialdϕ0 of ϕ at 0 is non-singular. The study of the Schröder equation in several complex variables

σ ◦ ϕ = dϕ0 ◦ σ

is naturally related to the theory of composition operators on Hardy spaces of holomorphic maps onBn and to
the theory of discrete, complex dynamical systems. An extensive use of the infinite matrix which represents the
composition operator associated to the mapϕ leads to a simpler approach, and provides new proofs, to results on
existence of solutions for the Schröder equation.
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1. INTRODUCTION

Let ϕ be a holomorphic self-map of the open unit ballBn of Cn such thatϕ(0) = 0 and
the differentialdϕ0 of ϕ at 0 is non-singular. ACn-valued holomorphic mapσ defined on
Bn is a solution of the Schröder equation associated toϕ in several variables (and will be
called aSchr̈oder mapfor ϕ, [5]) if

(1.1) σ ◦ ϕ = dϕ0 ◦ σ.

We will call the intersection ofBn with any one-dimensional complex subspace ofCn a
sliceof Bn. The mapϕ is often assumed to benon-unitary on any slice, i.e. such that there
are noζ andη in ∂Bn with ϕ(λζ ) = λη for all λ in the unit disk∆. Sinceϕ mapsBn

into itself andϕ(0) = 0, the Schwarz Lemma implies‖dϕ0‖ ≤ 1, and strict inequality
occurs precisely whenϕ is non-unitary on any slice (see, e.g., [1], [8]. In this case the
differential dϕ0 has no eigenvalue of modulus 1. Since we are interested only in locally
univalent solutions of the Schröder equation (1.1), we assume thatdϕ0 is diagonalizable to
guarantee that the Schröder mapσ of ϕ is invertible at 0 (see, e.g., [3]).

Let Cϕ denote the composition operatorCϕ(f ) = f ◦ ϕ on the Hardy spaceH 2(Bn)

(see, e.g., [4]). Cowen and MacCluer [3] give necessary and sufficient conditions onϕ to
guarantee the existence of solutions of the Schröder equation associated toϕ. Namely, they
prove the following:

THEOREM 1.1. Supposeϕ is a holomorphic map ofBn into Bn with ϕ(0) = 0 and
suppose thatdϕ0 is upper triangular in the standard basis and diagonalizable, with
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diagonal entriesλ1, . . . , λn such that0 < |λj | < 1 for j = 1, . . . , n. Let X be any
size, square upper left corner of the matrixAϕ representingCϕ with respect to the standard
(non-normalized) basis of the Hardy spaceH 2(Bn). If the Schr̈oder equation has a solution
σ onBn, i.e.σ ◦ ϕ = dϕ0 ◦ σ anddσ0 = I, thenX is diagonalizable.

THEOREM 1.2. Supposeϕ is a holomorphic map ofBn into Bn with ϕ(0) = 0 and
suppose thatdϕ0 is upper triangular in the standard basis and diagonalizable, with
diagonal entriesλ1, . . . , λn such that0 < |λj | < 1 for j = 1, . . . , n. Letλj = λ

k1
1 · · · λ

kn
n

be the longest expression (with maximal
∑

ki) for an eigenvalue ofdϕ0 as a product of any
number of powers of eigenvalues ofdϕ0. Setm = k1 + · · · + kn and letM be the number
of multi-indicesα = (α1, . . . , αn) ∈ Nn of total order|α| = α1 + · · · + αn less than or
equal tom; equivalentlyM is the dimension of the vector spaceHm spanned by the set
{z

α1
1 z

α2
2 · · · z

αn
n : |α| ≤ m}. LetM be the upper leftM ×M corner of the infinite matrixAϕ

associated toCϕ with respect to the standard (non-normalized) basis of the Hardy space
H 2(Bn). If M is diagonalizable, then the Schröder equation has a solutionσ with dσ0
invertible.

For what concerns the study of the classical Schröder equation we refer the reader to
[5] and [6].

In Sections 3 and 4 of this paper we present new and simpler proofs of the above
results. The new proofs are based on techniques borrowed from the theory of complex,
discrete dynamical systems and on classical results due to Sternberg [10], and rely upon
the fact that the study of composition operators on spaces of holomorphic maps on the
open unit ball ofCn plays a fundamental role in determining the solutions of the complex
Schr̈oder equation (see, e.g., [4]) .

We proceed as follows. We choose the standard orthogonal (non-normalized)
basis{1, z1, . . . , zn, z

2
1, z1z2, . . . } for the Hardy spaceH 2(Bn), ordered by degree and

lexicographically for any degree. We associate to the composition operatorCϕ acting
on H 2(Bn) an infinite matrixAϕ which “represents” the action ofCϕ on H 2(Bn) with
respect to the above basis. Ifϕ = (ϕ1, . . . , ϕn) and if zα1

1 z
α2
2 · · · z

αn
n is thej -th monomial

of the basis, then the entries of thej -th column of the matrixAϕ are the coefficients of
ϕ

α1
1 ϕ

α2
2 · · · ϕ

αn
n with respect to the basis. Notice that, forj = 2, . . . , n + 1, the entries of

thej -th column ofAϕ are the coefficients of the series expansion ofϕj−1 at 0. An extensive
use of this infinite matrix representation, together with techniques of discrete dynamical
systems, leads to a different, simpler approach to some instrumental results of Sternberg
(see Section 2) and to Theorems 1.1 and 1.2 by Cowen and MacCluer.

We believe that the direct techniques presented in this paper will be useful in finding
a different approach to the study of the boundary Schröder equation in several complex
variables (see [2]).

2. PRELIMINARY RESULTS

If H 2(Bn) is the Hardy space ofL2 holomorphic maps onBn, we will denote by
B the standard orthogonal (non-normalized) basis{1, z1, . . . , zn, z

2
1, z1z2, . . . }, where

the monomials are ordered by degree and lexicographically for any degree. Letϕ =

(ϕ1, . . . , ϕn) be a holomorphic self-map of the open unit ballBn of Cn, such thatϕ(0) = 0
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and the differentialdϕ0 is non-singular. LetCϕ be the composition operator associated
to ϕ.

DEFINITION 2.1. The infinite matrixAϕ representingCϕ with respect to the basisB =

{1, z1, . . . , zn, z
2
1, z1z2, . . . } of the Hardy spaceH 2(Bn) is the matrix whose coefficients

A
β1...βn
α1...αn are defined by

Cϕ(z
α1
1 z

α2
2 · · · zαn

n ) = ϕ
α1
1 (z1, . . . , zn)ϕ

α2
2 (z1, . . . , zn) · · · ϕαn

n (z1, . . . , zn)(2.1)

=

∑
β1,...,βn∈N

Aβ1...βn
α1...αn

z
β1
1 z

β2
2 · · · zβn

n

where both the row-indices(β1, . . . , βn) ∈ Nn and the column-indices(α1, . . . , αn) ∈ Nn

inherit their well-ordering from the basisB.

REMARK 2.2. For all the (n + 1) row-indices (β1, . . . , βn) with order β1 + · · ·

+ βn ≤ 1, the entryA
β1...βn
α1...αn of the infinite matrixAϕ vanishes if the column-index

(α1, . . . , αn) has orderα1 + · · · + αn ≥ 2. In fact the series expansion of the map
ϕ

α1
1 (z1, . . . , zn)ϕ

α2
2 (z1, . . . , zn) · · · ϕ

αn
n (z1, . . . , zn) has neither linear nor constant terms

if α1 + · · · + αn ≥ 2. This property can be rephrased by saying that all the entries in the
first n + 1 rows of the infinite matrixAϕ vanish if they stay “on the right side” of the
(n + 1)-th column.

LEMMA 2.3. If dϕ0 is non-singular and upper triangular, then the infinite matrixAϕ

associated toCϕ is lower triangular.

PROOF. Sincedϕ0 is non-singular, the monomial with the “smallest” index appearing
in (2.1) is exactlyz

α1
1 z

α2
2 · · · z

αn
n . Therefore,(β1, . . . , βn) < (α1, . . . , αn) implies that

A
β1...βn
α1...αn = 0. 2

Let us recall that, givenj ∈ {1, . . . , n}, a resonancefor the eigenvalueλj of dϕ0 is a
relation of the form

λj = λ
k1
1 λ

k2
2 · · · λkn

n

whereλ1, . . . , λn are the eigenvalues ofdϕ0, ki ≥ 0 for all i = 1, . . . , n and
∑n

i=1 ki ≥ 2.
We set

R(λj ) = {(k1, . . . , kn) ∈ Nn : λj = λ
k1
1 · · · λkn

n is a resonance forλj }.

Let P ∞ denote the set ofn-tuples of formal power series without constant terms, inn

variables, and letF∞ denote the group of those elements ofP ∞ whose matrix of linear
terms is non-singular. The following lemma is due to Sternberg [10].

LEMMA 2.4. Let T be an element ofF∞ whose matrix S of linear terms is
diagonalizable. Assume there are no resonances among the eigenvalues ofS. ThenT is
equivalent toS by an inner automorphism ofF∞.
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PROOF. A proof of Lemma 2.4 can be found in [10]. We present here a different proof,
based on the use of composition operators. As pointed out in the introduction, for the
purposes of this paper we can assume that the matrixS is diagonal. We wish to find an
R = (r1, . . . , rn) ∈ F∞ such thatRT R−1

= S = (λ1z1, . . . , λnzn) . We can assume that
the matrix of linear terms ofR is the identity matrix and rewrite the desired equation as
RT = SR.

In the language of composition operators the equationRT = SR becomes

CT ◦ CR = CR ◦ CS,

and in terms of the associated infinite matricesAT , AR andAS ,



1 0 · 0 0 0 ·

0 λ1 · 0 0 0 ·

· · · · · · ·

0 0 · λn 0 0 ·

0 tn+2
2 · tn+2

n+1 λ2
1 0 ·

0 tn+3
2 · tn+3

n+1 tn+3
n+2 λ1λ2 ·

· · · · · · ·





1 0 · 0 0 0 ·

0 1 · 0 0 0 ·

· · · · · · ·

0 0 · 1 0 0 ·

0 rn+2
2 · rn+2

n+1 1 0 ·

0 rn+3
2 · rn+3

n+1 rn+3
n+2 1 ·

· · · · · · ·



=



1 0 · 0 0 0 ·

0 1 · 0 0 0 ·

· · · · · · ·

0 0 · 1 0 0 ·

0 rn+2
2 · rn+2

n+1 1 0 ·

0 rn+3
2 · rn+3

n+1 rn+3
n+2 1 ·

· · · · · · ·





1 0 · 0 0 0 ·

0 λ1 · 0 0 0 ·

· · · · · · ·

0 0 · λn 0 0 ·

0 0 · 0 λ2
1 0 ·

0 0 · 0 0 λ1λ2 ·

· · · · · · ·


.

Given the above equality among infinite matrices, to determineR it is enough to find, for
all j = 2, . . . , n + 1, thej -th column of the infinite matrixAR. By equating thej -th
column of the matrix on the left hand side with thej -th column of the matrix on the right
hand side (j = 2, . . . , n + 1) we obtain an infinite, linear system of equations

(2.2)


tn+2
j + λ2

1r
n+2
j = λj−1r

n+2
j ,

tn+3
j + tn+3

n+2rn+2
j + λ1λ2r

n+3
j = λj−1r

n+3
j ,

tn+4
j + tn+4

n+2rn+2
j + tn+4

n+3rn+3
j + λ1λ3r

n+4
j = λj−1r

n+4
j ,

· · ·

i.e. an infinite, lower triangular, linear system in the unknown variablesrk
j (2 ≤ j ≤ n+1;

k ≥ n + 2). Since no one of theλ1, . . . , λn vanishes, and since they have no resonance
relations, all the linear systems of type (2.2) can be solved inductively.2

In the presence of resonances for the eigenvalues of the matrixS of linear terms of
T ∈ F∞, the “linearization procedure” does not work any more. Nevertheless Sternberg
[10] proved the following
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LEMMA 2.5. LetT be an element ofF∞ whose matrixS of linear terms is diagonalizable
and has eigenvaluesλ1, . . . , λn. Suppose the setR(λj ) is not empty for somej ∈

{1, . . . , n}. Then there exists a transformationR in F∞ such thatRT R−1 has the form
N = (N1, . . . , Nn) where

(2.3) Nj = λjzj +

∑
(k1,...,kn)∈R(λj )

A
j
k1...kn

z
k1
1 · · · zkn

n

for j = 1, . . . , n.

PROOF. Again, for the original proof we refer the reader to [10]. A different, direct proof
will be presented here. In the language of composition operators, the equationRT = NR

becomes
CT ◦ CR = CR ◦ CN ,

and in terms of the infinite matrices associated to composition operators,



1 0 · 0 0 0 ·

0 λ1 · 0 0 0 ·

· · · · · · ·

0 0 · λn 0 0 ·

0 tn+2
2 · tn+2

n+1 λ2
1 0 ·

0 tn+3
2 · tn+3

n+1 tn+3
n+2 λ1λ2 ·

· · · · · · ·





1 0 · 0 0 0 ·

0 1 · 0 0 0 ·

· · · · · · ·

0 0 · 1 0 0 ·

0 rn+2
2 · rn+2

n+1 1 0 ·

0 rn+3
2 · rn+3

n+1 rn+3
n+2 1 ·

· · · · · · ·



=



1 0 · 0 0 0 ·

0 1 · 0 0 0 ·

· · · · · · ·

0 0 · 1 0 0 ·

0 rn+2
2 · rn+2

n+1 1 0 ·

0 rn+3
2 · rn+3

n+1 rn+3
n+2 1 ·

· · · · · · ·





1 0 · 0 0 0 ·

0 λ1 · 0 0 0 ·

· · · · · · ·

0 0 · λn 0 0 ·

0 A1
20·0 · An

20·0 λ2
1 0 ·

0 A1
11·0 · An

11·0 An+1
11·0 λ1λ2 ·

· · · · · · ·


whereA

j
k1...kn

= 0 if (k1, . . . , kn) /∈ R(λj ), for all j ∈ {1, . . . , n}. As in Lemma 2.4,
the above equality among infinite matrices producesn triangular, infinite, linear systems
of equations that can be solved inductively to constructR. It turns out that the non-
vanishing coefficientsAj

k1...kn
, corresponding to the indices of resonances, are not uniquely

determined. 2

3. SOLVING THE SCHRÖDER EQUATION

Lemmas 2.4 and 2.5 were proved for formal power series. The results that they state
actually hold in the environment of convergent complex power series (see, e.g., [7] and
[9]) and therefore they can be applied to the case of germs of holomorphic maps. In fact
the following local result holds.
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THEOREM 3.1. Let ϕ : U → Cn be a holomorphic map, whereU is a neighborhood
of 0 ∈ Cn and ϕ(0) = 0. Suppose thatdϕ0 is diagonalizable and that its eigenvalues
satisfy0 < |λn| ≤ · · · ≤ |λ1| < 1. Then there exist a germ of biholomorphismσ and a
holomorphic mapg associated toλ1, . . . , λn such that, in a neighborhood of0,

(3.1) σ ◦ ϕ = g ◦ σ

with σ(0) = 0 anddσ0 = I . In particular, if R(λj ) is empty for allj ∈ {1, . . . , n}, then
g = dϕ0, i.e.ϕ can be linearized.

In the absence of resonances, the germ of biholomorphism provided by Theorem 3.1
can be extended to a solution of the Schröder equation on the open unit ball ofCn, to obtain
the following

THEOREM 3.2. Let ϕ : Bn
→ Bn be a holomorphic map such thatϕ(0) = 0, ϕ is

non-unitary on any slice ofBn anddϕ0 is non-singular and diagonalizable. Then, in the
absence of resonances, there exists a holomorphic mapσ̃ defined onBn which solves the
Schr̈oder equation

σ̃ ◦ ϕ = dϕ0 ◦ σ̃

and is such that̃σ(0) = 0 anddσ̃0 = I .

PROOF. As pointed out in the introduction, we assume thatdϕ0 is diagonalizable to
guarantee that the Schröder mapσ̃ is invertible at 0; examples of non-locally invertible
Schr̈oder maps withdϕ0 not diagonalizable are given in [3]. We are then able to use
Theorem 3.1 to find a local solutionσ defined in a neighborhoodU of 0. Since in our
hypotheses the basin of attraction of 0 is equal toBn (see, e.g., [1, Proposition 2.2.33]),
for everyz ∈ Bn there ism(z) ∈ N such that, for allm ∈ N with m ≥ m(z), we have
ϕm(z) ∈ U. We can therefore define

(3.2) σ̃ (z) = dϕ
−m(z)
0 ◦ σ ◦ ϕm(z)(z).

Let us check that̃σ is well defined and holomorphic on the whole ofBn. In fact, ifp, q ∈ N
are such thatp > q ≥ m(z), then

dϕ
−p

0 ◦ σ ◦ ϕp(z) = dϕ
−p

0 ◦ σ ◦ ϕp−q(ϕq(z)) = dϕ
−p

0 ◦ dϕ
p−q

0 ◦ σ(ϕq(z))

= dϕ
−q

0 ◦ σ ◦ ϕq(z).

SinceU is open and sinceϕm(z)(z) ∈ U , the expression (3.2) defines̃σ locally, in a
neighborhood ofz ∈ Bn; henceσ̃ is holomorphic onBn.

We are left to prove that̃σ satisfies the Schröder equation forϕ onBn. We have

σ̃ ◦ ϕ(z) = dϕ
−m(z)
0 ◦ σ ◦ ϕm(z)(ϕ(z)) = dϕ

−m(z)
0 ◦ σ ◦ ϕ(ϕm(z)(z))

= dϕ
−m(z)
0 ◦ dϕ0 ◦ σ(ϕm(z)(z)) = dϕ0 ◦ dϕ

−m(z)
0 ◦ σ ◦ ϕm(z)(z)

= dϕ0 ◦ σ̃ (z). 2
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4. THE SCHRÖDER MAP IN THE PRESENCE OF RESONANCES

We will now consider the case in which there are resonances for the eigenvalues of the
differential dϕ0 of the holomorphic mapϕ and prove Theorem 1.2. We will expand in
details a nice example to explore, with our new approach, the connection between Theorem
1.2 and Lemma 2.5.

EXAMPLE 4.1. Supposen = 2 and let

ϕ(z1, z2) = (c1z1, c
3
1z2 + c2z

2
1)

with c1 6= 0, 1 andc2 6= 0. Hence, ifc1, c2 are sufficiently small thenϕ(B2) ⊆ B2, the
mapϕ is injective onB2 and

dϕ0 =

(
c1 0
0 c3

1

)
.

Thereforedϕ0 is diagonal and its eigenvalues,λ1 = c1 and λ2 = c3
1, have a unique

resonance of order 3. Then, with reference to the notations of Theorem 1.2, we have
dimH3 = 10 = dimM, and henceM is the upper left 10× 10 corner of the matrix
Aϕ representingCϕ with respect to the basisB of the Hardy spaceH 2(B2). A simple
computation shows that

(4.1) M =



1 0 0 0 0 0 0 0 0 0
0 c1 0 0 0 0 0 0 0 0
0 0 c3

1 0 0 0 0 0 0 0
0 0 c2 c2

1 0 0 0 0 0 0
0 0 0 0 c4

1 0 0 0 0 0
0 0 0 0 0 c6

1 0 0 0 0
0 0 0 0 c1c2 0 c3

1 0 0 0
0 0 0 0 0 2c3

1c2 0 c5
1 0 0

0 0 0 0 0 0 0 0 c7
1 0

0 0 0 0 0 0 0 0 0 c9
1


.

The matrixM has distinct eigenvalues (indeed 16= c1 6= cn
1, ∀n ∈ N). ThereforeM is

diagonalizable and, by Theorem 1.2, there exists a solutionσ of the Schr̈oder equation. We
want to directly construct a Schröder map, i.e. a mapσ such that

(4.2) σ ◦ ϕ = dϕ0 ◦ σ.

In terms of the associated composition operators equation (4.2) becomes

(4.3) Cϕ ◦ Cσ = Cσ ◦ Cdϕ0.

The infinite matrixAϕ associated toCϕ with respect to the basisB containsM as upper
left 10 × 10 corner and is such that all its entriesaij with 1 ≤ i ≤ 10 andj > 10, or
1 ≤ j ≤ 10 andi > 10, vanish. A direct computation shows that the infinite matrixAdϕ0
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representingCdϕ0 in H 2(B2) is diagonal (sincedϕ0 is diagonal) and its upper left 10× 10
corner is

Z =



1 0 0 0 0 0 0 0 0 0
0 c1 0 0 0 0 0 0 0 0
0 0 c3

1 0 0 0 0 0 0 0
0 0 0 c2

1 0 0 0 0 0 0
0 0 0 0 c4

1 0 0 0 0 0
0 0 0 0 0 c6

1 0 0 0 0
0 0 0 0 0 0 c3

1 0 0 0
0 0 0 0 0 0 0 c5

1 0 0
0 0 0 0 0 0 0 0 c7

1 0
0 0 0 0 0 0 0 0 0 c9

1


.

In view of the structure of the infinite matricesAϕ andAdϕ0, to find a solution of equation
(4.2) it is enough to determine a 10× 10 block,Y, which will play the role of the upper
left corner of the matrix representingCσ , that is (see (4.3)), such that

(4.4) Y−1MY = Z.

The matrixM decomposes into three blocks along the diagonal:

M1 =


1 0 0 0
0 c1 0 0
0 0 c3

1 0
0 0 c2 c2

1

 , M2 =


c4

1 0 0 0
0 c6

1 0 0
c1c2 0 c3

1 0
0 2c3

1c2 0 c5
1

 , M3 =

(
c7

1 0
0 c9

1

)
.

As a consequence, equation (4.4) decomposes in turn into three simpler matrix equations
of the same type. After assumingdσ0 = I , a direct computation leads to

(4.5) Y =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 c2

c3
1−c2

1
1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 c2

c3
1−c2

1
0 1 0 0 0

0 0 0 0 0 2c2
c3

1−c2
1

0 1 0 0

0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


.

Since, by definition,Cσ (z1) = (σ )1 andCσ (z2) = (σ )2, we obtain

σ(z1, z2) =

(
z1, z2 +

c2

c3
1 − c2

1

z2
1

)
.

Example 4.1 points out clearly the main feature of the resonant Schröder equation:
even in the presence of resonances, precisely when the matrixM associated toϕ is
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diagonalizable, the normal form ofϕ can be linear. This last fact happens when, for all
j = 1, . . . , n, the coefficientsAj

k1...kn
can be chosen to vanish for all(k1, . . . , kn) ∈ R(λj )

(see (2.3), Lemma 2.5).
We are now ready to state and prove the following

LEMMA 4.2. Supposeϕ : Bn
→ Bn andM are as described in Theorem1.2. LetM be

the upper leftM×M corner of the infinite matrixAϕ representing the composition operator
Cϕ with respect to the basisB of the Hardy spaceH 2(Bn). If M is diagonalizable, then

the coefficientsAj
k1...kn

in the normal form(2.3) of the representation ofϕ can be chosen
to be zero, for allj = 1, . . . , n and all (k1, . . . , kn) ∈ Nn. Therefore there exists a germ of
biholomorphismσ such that, in a neighborhood of0,

σ ◦ ϕ = dϕ0 ◦ σ

with σ(0) = 0 anddσ0 = I .

PROOF. If M is diagonalizable then there exists an infinite matrixAσ whose upper left
M × M corner,Y, is such thatY−1MY = Z is diagonal. Now, since∑

ki ≤ m

by Lemma 2.5, all possibly non-zero coefficientsA
j
k1...kn

in the infinite matrixA−1
σ AϕAσ

fall in the upper leftM×M cornerZ. The fact that the eigenvalues ofdϕ0 appear along the
diagonal ofZ forces all the coefficientsAj

k1...kn
to be zero. As a consequence, by means of

the infinite matrixAσ , we can construct the power series of the desired germσ according to
Lemma 2.5 which, as already pointed out, holds in the environment of convergent, complex
power series. 2

The application of the same “globalizing techniques” used in the proof of Theorem 3.2
completes our new approach to the proof of Theorem 1.2.

Note that, with our approach to the problem, the proof of Theorem 1.1 is
straightforward.

We believe that our direct techniques will be useful to find a different approach to the
study of the boundary Schröder equation in several complex variables (see [2]).
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