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Complex variables functions— Schibder equation in several variables and composition
operators by CiNziA Bisi and GRAZIANO GENTILI, communicated on 10 March 2006.

ABSTRACT. — Let ¢ be a holomorphic self-map of the open unit Bl of C" such thatp(0) = 0 and the
differentialdgg of ¢ at 0 is non-singular. The study of the Satler equation in several complex variables

cop=dgpgoo

is naturally related to the theory of composition operators on Hardy spaces of holomorphic nigpsiod to

the theory of discrete, complex dynamical systems. An extensive use of the infinite matrix which represents the
composition operator associated to the mdpads to a simpler approach, and provides new proofs, to results on
existence of solutions for the Sditter equation.
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1. INTRODUCTION

Let ¢ be a holomorphic self-map of the open unit d&f of C" such thatp(0) = 0 and
the differentialdgg of ¢ at 0 is non-singular. A" -valued holomorphic map defined on
B" is a solution of the Sckider equation associated¢an several variables (and will be
called aSchibder mapfor ¢, [9]) if

(1.2) cop=dggoo.

We will call the intersection oB” with any one-dimensional complex subspaceC6fa
sliceof B". The mapyp is often assumed to ben-unitary on any slicd.e. such that there
are no¢ andn in aB" with ¢(AZ) = An for all A in the unit diskA. Sincegp mapsB”

into itself andgp(0) = 0O, the Schwarz Lemma impligfdgg| < 1, and strict inequality
occurs precisely whep is non-unitary on any slice (see, e.@. [1], [8]. In this case the
differential dpo has no eigenvalue of modulus 1. Since we are interested only in locally
univalent solutions of the Sobder equatior] (I]1), we assume thap is diagonalizable to
guarantee that the Séiter mapr of ¢ is invertible at O (see, e.glL.l[3]).

Let C, denote the composition operaify (f) = f o ¢ on the Hardy spacél 2(B")
(see, e.g./[4]). Cowen and MacClugf [3] give necessary and sufficient conditigmsoon
guarantee the existence of solutions of the 8dar equation associatedgoNamely, they
prove the following:

THEOREM1.1. Supposep is a holomorphic map oB”" into B" with ¢(0) = 0 and
suppose thatigg is upper triangular in the standard basis and diagonalizable, with
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diagonal entriesky, ..., A, such that0 < |x;| < 1for j = 1,...,n. Let X be any
size, square upper left corner of the matdiy representing”, with respect to the standard
(non-normalized) basis of the Hardy spadé(B"). If the Schoder equation has a solution
o onB", i.e.o0 op =dgg oo anddog = I, thenX is diagonalizable.

THEOREM1.2. Supposep is a holomorphic map oB” into B" with ¢(0) = 0 and
suppose thatlgg is upper triangular in the standard basis and diagonalizable, with
diagonal entriesiy, ..., A, such thatd < |A;| < 1forj =1,...,n. Leti; = k’{l . )J,‘,
be the longest expression (with maxiak;) for an eigenvalue af¢g as a product of any
number of powers of eigenvaluesdafy. Setm = k1 + - - - + k,, and letM be the number
of multi-indicese = (a1, ..., a,) € N* of total order|o| = a1 + - -+ + «, less than or
equal tom; equivalentlyM is the dimension of the vector spakf, spanned by the set
{01252 -z ¢ || < m}. Let M be the upper lefd x M corner of the infinite matrix,,
associated ta’, with respect to the standard (non-normalized) basis of the Hardy space
H2(B"). If M is diagonalizable, then the Sditer equation has a solution with dog

invertible.

For what concerns the study of the classical 8der equation we refer the reader to
[5] and [€].

In Sectiond B anf]4 of this paper we present new and simpler proofs of the above
results. The new proofs are based on techniques borrowed from the theory of complex,
discrete dynamical systems and on classical results due to Sterhberg [10], and rely upon
the fact that the study of composition operators on spaces of holomorphic maps on the
open unit ball ofC" plays a fundamental role in determining the solutions of the complex
Schibder equation (see, e.d.] [4]) .

We proceed as follows. We choose the standard orthogonal (non-normalized)
basis{1, zl,...,zn,zf, 7122, ...} for the Hardy spacef2(B"), ordered by degree and
lexicographically for any degree. We associate to the composition opefgtarcting
on H2(B") an infinite matrixA, which “represents” the action af, on H?(B") with
respect to the above basisgf= (g1, ..., ¢,) and ifz{*z3% - - z," is the j-th monomial
of the basis, then the entries of thieh column of the matrix4, are the coefficients of
@1 5% -+ - gp" With respect to the basis. Notice that, fore= 2, ..., n + 1, the entries of
the j-th column ofA,, are the coefficients of the series expansiop;of, at 0. An extensive
use of this infinite matrix representation, together with techniques of discrete dynamical
systems, leads to a different, simpler approach to some instrumental results of Sternberg
(see Sectiop]2) and to Theorems|1.1 1.2 by Cowen and MacCluer.

We believe that the direct techniques presented in this paper will be useful in finding
a different approach to the study of the boundary 8dbr equation in several complex
variables (see [2]).

2. PRELIMINARY RESULTS

If H2(B") is the Hardy space of.? holomorphic maps orB”, we will denote by
B the standard orthogonal (non-normalized) ba(sjszl,...,zn,zi, 7122, ...}, Where
the monomials are ordered by degree and lexicographically for any degree. ket
(¢1, ..., pn) be a holomorphic self-map of the open unit @&llof C"*, such thaty(0) = 0
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and the differentiali¢g is non-singular. LeC, be the composition operator associated
to ¢.

DEFINITION 2.1. The infinite matrixd, representingC, with respect to the basi8 =
{1, z1,..., Zn, zf, 7122, ...} of the Hardy spacéZ?(B") is the matrix whose coefficients

Aﬁ} 5;; are defined by

(21) C(P(Z(]]flzgz : Zg”) = ‘Pgl(zl, .. Zn)(pgz(zlv AR ] Zn) tee Sog" (Zlv ey Zn)
S ME
ﬂl vvvvv ,BHEN

where both the row-indice®1, ..., B,) € N” and the column-indice@rs, ..., a,) € N?
inherit their well-ordering from the basis.

REMARK 2.2. For all the(n + 1) row-indices (81, ..., 8,) with order g1 + ---

+ B < 1, the entron(1 ai’, of the infinite matrix A, vanishes if the column-index
(a1, ...,a,) has ordera; + --- + «, > 2. In fact the series expansion of the map
1ML TP (R s Tn) - --go,‘i‘" (z1, ..., z») has neither linear nor constant terms

if @1 +---+ a, > 2. This property can be rephrased by saying that all the entries in the
first n 4+ 1 rows of the infinite matrixd,, vanish if they stay “on the right side” of the

(n + 1)-th column.

LEMMA 2.3. If dgg is non-singular and upper triangular, then the infinite matry
associated ta,, is lower triangular.

PROOF Sincedgg is non-singular, the monomial with the “smallest” index appearing
in (2.1) is exactlyz{'z5% - - z,". Therefore,(B1,...,Bs) < (a1,...,a,) implies that

Agi;;jz =0. O

Let us recall that, giveri € {1, ..., n}, aresonancédor the eigenvalue.; of deg is a
relation of the form

ki k Ky
)‘j = )‘11)‘22 T )‘n

whereiq, ..., A, are the eigenvalues dfpo, k; > Oforalli =1,...,nand)}_; k > 2.
We set

R(\j) ={(ky,....kp) e N" 1 }; = x'{l .- is a resonance for; .

Let P> denote the set of-tuples of formal power series without constant termsg in
variables, and leF*° denote the group of those elementsR$P whose matrix of linear
terms is non-singular. The following lemma is due to Sternkierg [10].

LEMMA 2.4. Let T be an element ofF* whose matrix S of linear terms is
diagonalizable. Assume there are no resonances among the eigenvaltiesh&n7 is
equivalent taS by an inner automorphism @f°.
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PrROOF A proof of Lemmg 2.4 can be found in [10]. We present here a different proof,
based on the use of composition operators. As pointed out in the introduction, for the
purposes of this paper we can assume that the méitisxdiagonal. We wish to find an
R=(r1,...,rm) € FPsuchthaRTR 1 =S = (Az1, ..., \zs) . We can assume that
the matrix of linear terms oR is the identity matrix and rewrite the desired equation as
RT = SR.

In the language of composition operators the equakidn= SR becomes

CroCgr=CgroCys,

and in terms of the associated infinite matrides Ag andAg,

1 0 0 0 0 1 0 0 0 O
0 A 0 0 0 0 1 0 0 O
0 O . 0 0 0 O 1 0 O
2 2 2 2
0 t§+3 z,;’j% AES 0 0 ;+3 ;;j_13 13 0
0 1" t;i_l s Ah2 0 ry* i V:zliz 1
1 0 0 0 O 1 0 0 0 0O
0 1 0 0 O 0O » - 0 0 O
_lo o 1 0 O 0 0 A O 0
0 %2 . 210 0 0 0 22 0
0 gt ,’,’jf mea 00 0 0 Mo

" +2

Given the above equality among infinite matrices, to determRititeis enough to find, for
all j = 2,...,n 4+ 1, the j-th column of the infinite matrixd z. By equating thej-th
column of the matrix on the left hand side with tlt¢h column of the matrix on the right

i =2,...,n w i infinite, li uati

hand side 2 + 1) we obtain an infinite, linear system of equations
n+2+)\2 n+2 i 1rn+2
n+3 n+3 n+2 n+3 n+3

2.2) + 1,051 T+ A j—17;
”+4+t;;j;‘ (R ]"+3+m3r jm 1r"+4

i.e. an infinite, lower triangular, linear system in the unknown varia;tj‘ie(ﬁ <j<n+1,;
k > n + 2). Since no one of th&y, ..., A, vanishes, and since they have no resonance
relations, all the linear systems of type (2.2) can be solved inductively:

In the presence of resonances for the eigenvalues of the ntatfdinear terms of
T € F°°, the “linearization procedure” does not work any more. Nevertheless Sternberg
[10] proved the following
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LEMMA 2.5. LetT be an element af"*® whose matrix§ of linear terms is diagonalizable
and has eigenvaluesy, ..., A,. Suppose the seR(%;) is not empty for somg e
{1,...,n}. Then there exists a transformatighin F°° such thatR7T R~! has the form
N = (N, ..., N,) where
(2.3) Nj=hzi+ Y Al

(k1,....kn)ER(A))

forj=1,...,n.

PrROOF Again, for the original proof we refer the reader(tol[10]. A different, direct proof
will be presented here. In the language of composition operators, the eqRatien N R
becomes

CroCr=CproCly,

and in terms of the infinite matrices associated to composition operators,

1 0 - O 0 0O /1 0 - O 0 O
0 » - O 0 o -|lo 1 - o 0 O
0 0 - A 0 o -||lo o - 1 0 O
0 mt? mtzoa2 0 0 ryt? mizo1 00
SO e Q5 BTV I ORI re Qe S|
1 0 - 0 0 O 1 0 - 0 0 0
O 1 - o0 0 O 0 » - O 0 0
_lo o - 1 0 O 0 0 - 2 0 0
2 2 1 2
0 r;”s . r;;j% 13 o -]]o Aio‘o - Ao xil 0
0 rp" i o1 0 Al1o - A'fl-o Aho A1h2

) Tl Thy2

WhereA,’Clmkn = 0if (ky,....ks) ¢ R(%j), forall j € {1,...,n}. Asin Lemm,

the above equality among infinite matrices producésangular, infinite, linear systems

of equations that can be solved inductively to constrRctlt turns out that the non-
vanishing coefficients; , , corresponding to the indices of resonances, are not uniquely
determined. O

3. SOLVING THE SCHRODER EQUATION

Lemmag 2} anfl 2.5 were proved for formal power series. The results that they state
actually hold in the environment of convergent complex power series (see/ é.g., [7] and
[Q]) and therefore they can be applied to the case of germs of holomorphic maps. In fact
the following local result holds.
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THEOREM3.1. Lety : U — C" be a holomorphic map, whei@ is a neighborhood
of 0 € C" and¢(0) = 0. Suppose thatlgg is diagonalizable and that its eigenvalues
satisfy0 < |A,| < .-+ < |A1] < 1. Then there exist a germ of biholomorphismand a
holomorphic mayg associated taq, ..., A, such that, in a neighborhood @,

(3.2) cop=go0o

with o (0) = 0 anddog = I. In particular, if R(A;) is empty for allj € {1, ..., n}, then
g = dgo, i.e.¢ can be linearized.

In the absence of resonances, the germ of biholomorphism provided by ThHeofem 3.1
can be extended to a solution of the Siter equation on the open unit ball@f, to obtain
the following

THEOREM3.2. Letg : B" — B" be a holomorphic map such that0) = 0, ¢ is
non-unitary on any slice dB” anddgg is non-singular and diagonalizable. Then, in the
absence of resonances, there exists a holomorphicanagfined orB” which solves the
Schibder equation

ocop=dygoo

and is such tha# (0) = 0 anddég = 1.

PROOFE As pointed out in the introduction, we assume that is diagonalizable to
guarantee that the Sdider maps is invertible at 0; examples of non-locally invertible
Schidder maps withdgg not diagonalizable are given inl[3]. We are then able to use
Theoren| 3.1 to find a local solution defined in a neighborhood of 0. Since in our
hypotheses the basin of attraction of 0 is equaBto(see, e.g., [1, Proposition 2.2.33]),
for everyz € B”" there ism(z) € N such that, for allz € N with m > m(z), we have

@™ (z) € U. We can therefore define

3.2) 6(z) = dgoam(z) o0 0" (z).

Let us check that is well defined and holomorphic on the wholeB. In fact, if p, ¢ € N
are such thap > g > m(z), then

dey” 00 0P (z) =dpy" 0o 0P 1(p?(2)) = dey” odpl ! 0o (¢?(2))
:d(paqooo(pq(z).

Since U is open and since” @ (z) e U, the expressior] (3.2) definéslocally, in a
neighborhood of € B"; hences is holomorphic oriB”.
We are left to prove that satisfies the Schder equation fop onB”. We have
G 0p(z) =dpy"? 00 04" (p(2) = dgy™ P 00 0 ("D (2))

( (2)

P 0dgooo(p™? () =dgoodgy"? 00 09" (2)

=dgpooa(z). O
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4. THE SCHRODER MAP IN THE PRESENCE OF RESONANCES

We will now consider the case in which there are resonances for the eigenvalues of the

differential dgg of the holomorphic mag and prove Theorern 1.2. We will expand in
details a nice example to explore, with our new approach, the connection between Theorem

1.2 and Lemm&2]5.

EXAMPLE 4.1. Suppose = 2 and let
©v(z1, 22) = (c1z21, szz + sz%)

with ¢c1 # 0,1 andcy # 0. Hence, ife, ¢ are sufficiently small thep(B2) C B2, the
mapy is injective onB? and
_fcaa O
=5 3)

Thereforedyg is diagonal and its eigenvalues; = c¢1 andipy = ci’, have a unique
resonance of order.3rhen, with reference to the notations of Theoreni 1.2, we have
dimH3z = 10 = dim M, and henceM is the upper left 10« 10 corner of the matrix
A, representingC, with respect to the basi8 of the Hardy space{2(B?). A simple

computation shows that

1.0 0 0 O 0 0 0 0 Qg
0 cc 00 O 0O 0 0 0 O
0 0 0 O O 0 0 0 O
0 0 ¢ ¢2 0 0 0 0 0 O
00 0 0 ¢ O OO OUDO
(4.1) M=100 0 0 0 & 0 0 0 of
0 0 0 0cipc 0 & 0 00
00 00 0 2% 0 ¢ 0 O
00 0 0 O 0 0 0c O
00 0 0 O 0O 0 0 0

The matrix M has distinct eigenvalues (indeed4 c; # ¢, Vn € N). ThereforeM is
diagonalizable and, by Theor¢m[l.2, there exists a solutiofthe Schéder equation. We
want to directly construct a Sabder map, i.e. a map such that

(4.2) cogp=dggoo.

In terms of the associated composition operators equétion (4.2) becomes

(4.3) Cyp 0 Cy = Cy 0 Cuyy.

The infinite matrixA, associated t@, with respect to the basi8 containsM as upper

left 10 x 10 corner and is such that all its entrigg with 1 < i < 10 andj > 10, or
1< j <10andi > 10, vanish. A direct computation shows that the infinite madrjy,
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representingy, in H?(B?) is diagonal (sincégy is diagonal) and its upper left 1010
corner is

100 00 0 0 0 0
0 cg OO O O OO 0 O
0 0c¢ 0 0 0O O0 0 O
00 0c¢c 0 0 0 0 0 O
z_|00 0 0¢ 0 0 0 0 O
~lo o o o o0& o o o of
00 000 0c¢ 0 0O
00 00 00 O0¢ 0 O
00 000 0 0 0¢c¢ O
00 0 00O O O 0 O0¢

In view of the structure of the infinite matricels, and A, to find a solution of equation
(4.2) it is enough to determine a 2010 block, Y, which will play the role of the upper
left corner of the matrix representir@, , that is (se€[(4]3)), such that

(4.4) yimy=z

The matrix M decomposes into three blocks along the diagonal:

10 0 O ¢t 0 0 O
|0 0 O 1o & o o (] O
Mi=1o o0 & ol Me=1| e, 0 G ol Ma={ ¢ A3
0 0 ¢ ¢ 0 23, 0 &

As a consequence, equati¢n {4.4) decomposes in turn into three simpler matrix equations
of the same type. After assumidgo = I, a direct computation leads to

10 0 0 O 0O 00 07§
01 0 0 © 0 00 0 d
00 1 0 O 0 00 0 d
00 52, 1 0 0 0O0O0O
00 0 0 1 0 00 0 d
(4.5) Y=lo00 0 0 O 1 00 0 (-
00 O 052, 0 1000
‘17¢1
00 0 O 0 -2, 0100
=1
00 O 0O O 0 00 1 d
00 O 0 O 0 00 0/}

Since, by definitionC, (z1) = (o)1 andC, (z2) = (0)2, we obtain

c2 2
0(z1,22) = <Z1, 2+ 35— 2z1>.
C C

1 1

Example[4.]l points out clearly the main feature of the resonant8ehrequation:
even in the presence of resonances, precisely when the metrixssociated ta is
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diagonalizable, the normal form @f can be linear. This last fact happens when, for all
j=1...,nthe coefﬁments&l,{ &, can be chosen to vanish for &l ..., k,) € R(%))

(see [(ZB) Lemma2.5).

We are now ready to state and prove the following

LEMMA 4.2. Suppose : B" — B"” and M are as described in TheordinZ Let M be
the upper lef x M corner of the infinite matrix, representing the composition operator
C, with respect to the basi8 of the Hardy spacé??(B"). If M is diagonalizable, then

the coefﬂuentsﬁ,ﬁ o in the normal for) of the representation af can be chosen
to be zero, for aIIJ = 1 ,nandall(ky, ..., k,) € N". Therefore there exists a germ of
biholomorphisns such that, ina neighborhood @

ocop=dggoo
with o (0) = 0 anddog = I.

PrRoOOF If M is diagonalizable then there exists an infinite mattix whose upper left
M x M corner,), is such thay) =1 MY = Z is diagonal. Now, since

Zki <m

by Lemm , all possibly non-zero coeff|C|em,§ &, In the infinite matrixA; 1A, As

fallin the upper leftM x M comerZ. The fact that the elgenvaluesatxﬁo appear along the
diagonal ofZ forces all the coefﬁuentﬂ’l“_k” to be zero. As a consequence, by means of
the infinite matrixA, , we can construct the power series of the desired geaccording to
Lemmd 2.5 which, as already pointed out, holds in the environment of convergent, complex
power series. O

The application of the same “globalizing techniques” used in the proof of Thgorém 3.2
completes our new approach to the proof of Thedrer 1.2.

Note that, with our approach to the problem, the proof of Theofem 1.1 is
straightforward.

We believe that our direct techniques will be useful to find a different approach to the
study of the boundary Scbder equation in several complex variables (5ée [2]).
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