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Group theory. — A curious identity and the volume of the root spherical simplex
by CorRrRADO DE CoONCINI and Q.AuDIO PROCESI with an appendix by dHN R.
STEMBRIDGE, communicated on 10 March 2006.

Dedicated to Guido Zappa in honor of his 90th birthday

ABSTRACT. — We show a curious identity on root systems which gives the evaluation of the volume of the
spherical simplices cut by the cone generated by simple roots. In the appendix John Stembridge gives a conceptual
proof of our identity.
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1. INTRODUCTION

In this note we shall consider a finite root systétrspanning a Euclidean spadée of
dimension¢ (for all the facts about root systems which we are going to use in this note
we refer to[[1]).¢ is called therank of R. We choose once and for all a s&t of positive

roots and inR™ the setA = {ay, ..., o} of simple roots. We also denote bl the Weyl

group ofR, i.e. the finite group generated by the reflections with respect to the hyperplanes
orthogonal to the roots iR. Given such aroat € R, we denote by, € W the reflection

with respect to the hyperplane orthogonaktcSets; = s,, foreachi =1, ..., ¢ and call

S = {51, ..., s¢} the set ofsimple reflectionslt is known thatS generate$¥ and that the

pair (W, S) is a Coxeter group.

We know that the ring of regular functions @ invariant under the action o7, is a
polynomial ring generated by homogeneous elements of dedyees - - < d;. Thed;’s
are called the degrees. We shall also consider the sequence of expaarebts. ., dp — 1.
Recall thaf [, d; = |W]|.

In E we have theffine arrangementf the hyperplanes orthogonal to the roots and
their translates under the weight lattide a locally finite configuration invariant under the
affine Weyl groupW. The latter group is the semidirect productigfand of the latticeQ
spanned by the roots, thought of as translation operators.

W is itself a Coxeter group. IE is irreducible, its Coxeter generators are given by the
reflections{so, s1, ..., s¢}, where fori > 1 thes;’s are the simple generators Bf and

so(v) = s9(v) + 6,

6 being the highest root. It is known that, for each<0i < ¢, the subgroup¥; of W
generated by the reflectior(s, ..., s;, ..., s¢) is finite, and it is the Weyl group of a
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root systemR(f) which will be discussed presently. Hence we can consider the degrees
d{P < ... <d®. Our main result is the identity (Theor.2)

S - - D

2

. : =1
R L

The proofis a case by case computation using the classification of irreducible root systems.
It is quite desirable to give a more conceptual deduction of our identity.

In the last section we show, following a suggestion of Vinberg, that our identity implies
the following geometric identity. Take the unit sphéi) in E and consider the spherical
simplexS(E) = C(A)NS(E), C(A) being the cone of positive linear combinations of the
simple roots. Then

Vol S(A) d-1---(de—1)
Vol S(E) dy---dg ’

We have discovered this identity while trying to understand the following fact.
Consider the complex spate= E ®g C, and take the algebraic tor@s= V/Q. For any
roota € R the linear formy” defined by

(o, v)
(o, )

a(v)=2

takes integer values oft, hence we get the charact&f V=1 of T,

Denote its kernel byD,. In our work on toric arrangements (séé [2], and also [4]-
[7]) we have shown that the Euler characteristic of the opendset T — J,cp+ Do
equals(—1)¢|W|. The only proof we know of this fact is via a combinatorial topological
construction of Salvetti [8]/]3]. The above identity has been the result of an attempt to
compute this Euler characteristic directly.

1.1. The main identity

We are interested in the numbers

4
di—1
v(R) :HIT.
i=1 t

The following list givesv(R) in the case of irreducible root systems:

va, = n>1

1 /2n
an:an:E n ) n>2,

—-1/2n—-1
VDn=n <(n )>, n >4,

-1\ n—-1

5 385
VG, = —, VF, = ——,
G2 =71 TRT115p

77 2431 30808063

YEe = 3040 VBT T 9216 "F8 T 99532800
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Notice that ifR is reducible, i.eR = Ry U Ry with R1 L R», then clearly
V(R) = v(R1)V(R2).

We normalize the scalar product so that the short roots have lef@jind we denote by
D the Dynkin diagram oR.

From now on we assume th&tis irreducible and we denote hy the extended Dynkin
diagram. Setyo = —6, with 6 the highest root. We have a bijection between the/set
{ao, . .., o} and the nodes ab. For everyi = 0, ..., ¢ the diagramD; obtained fromD
by removing the node corresponding to the r@ofand all the edges having that node as a
vertex) is of finite type. So we can consider the corresponding root syRtemonsisting
of all roots inR which are integral linear combinations of the roets. .., «;, ..., ag and
the corresponding numberR®).

In the proof of our result we shall need the following well known

LEmMMA 1.1. The following identities hold:
" (2h\ (2(n — h)
1 4" =
@ 2 (C)
Furthermore, whem > 2 we have

w1 L(2n\ | h=102(h—1)\ (20— h)
@ =30 R G0

\Y
©

h=2
n—2
3) 2 _ n— 1(2(n - 1)) n Z th=-LDn—-h-1) <2(h — 1)) (Z(n —-1- h)).
4n n—1 = h(n —h) h—1 n—1—h

PrRoOOFE The first identity follows immediately from the power series expansion

(4) 1l_4t =Z(2nn>t”

n>0

To see this notice that setting

1) =
f@® T
we have 4r
t
=273
7 f@)
from which we deduce that
df ()

Writing f(t) = ) _,-0axt" We deduce that

Znant"*l — 4Znant" = ZZant”.

n>0 n>0 n>0
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Equating coefficients, we get = 1 and forh > 0,

2(2h + 1)

A
On the other hand, if we sé}, := (Zhh) we gethg = 1 and

2h+D! 20+ D@h+D, _ 22h+1),
WD+ h+nZ  "T a1

bpt1 =

So0a, = b, and everything follows.
To see the second identity, notice that us[rjg (4) and integrating, we get

2 hzlh h—-1 2

(5) ! E(Z(h B D)zh = }\/1— 4.

Again using [(4#) we deduce

1 h=1(20-1 , ~(20-D\, 1 1/20-D\,
© 2+}; h (h—l)t _};<h—1>t t3 Zh(h—1>t
1-2¢

2J1— 4t

This together with[(4) implies that
1/2n " h—1(2(h—1)\[{2(n—h
1 " Z ( ) (n—h)
2\ n = h h—1 n—nh
is the coefficient of” in the power series expansion of

1-2 1 _1Jr t
2J1— 4t J1—4 2 1—4

Sincen > 2 the claim follows. To see the last identity, let us remark that its left hand side
is the coefficient of” in the power series expansion of the function

< 1-2 )2_1+4z2—4r
2J1-4/) ~ 4-16

From this everything follows. O
THEOREM1.2. Y ¢_ v(RD) = 1.

PrROOF The proof is by a case by case computation.
Let us deal first with the exceptional cases. In order to make the computation
transparent it is more convenient to multiply our sum %y, the order of the Weyl group.
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CaseG». Inthis casgW| = 12. By looking at the extended Dynkin diagram

o 0
0 1 2

we get

2
W1 D v(RY) = 120(G2) + v(A2) + V(A1 x A1) =5+3+4=12
i=0

Case F4. The order of the Weyl group is 1152. By looking at the extended Dynkin
diagram

we get

4
WY v(RY) = [W|(v(Fa) + v(A1 x C3) + v(A2 x A2) + v(A3 X A1) + 1(Ba))
i=0
= 385+ 180+ 128+ 1444 315= 1152

CaseEg. Inthis casgW| = 51840. By looking at the extended Dynkin diagram

0
o

we get

6
(W1 v(RD) = [W|(3v(Ee) + v(Az x Az x Az) + 3u(A1 X As))
i=0
= 36960+ 1920+ 12960= 51840

CaseE7. Inthis casgW| = 2903040. By looking at the extended Dynkin diagram
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we get

7
|W| ZU(R(”) = |W|(2v(E7) 4+ 2v(A1 x Dg) + 2v(A2 x As)
i=0
’ + V(A3 x Az X AD) + (A7)
= 1531530+ 595350+ 322560+ 90720+ 362880= 2903040

CaseFEg. Inthis casgW| = 696729600. By looking at the extended Dynkin diagram
8

o o} o) C o)
0 1 2 3 4 5 6 7

we get

8
(W1 D v(RY) = [W|(v(Es) + v(A1 x E7) + v(A2 x Ee) + v(A3 x Ds) + v(A4 x As)
i=0
+ v(As x A2 x A1) + v(A1 X A7) +v(Dg) + v(Ag))
= 2156564414 91891800+ 55193600+ 38102400+ 27869184
+ 19353600+ 43545600+ 127702575+ 77414400= 696729600

Cased,. Inthis case eacR() is of typeA,. It follows that

D> vRD) =+ g, = (n + D=1

" 1
i=0 n

CaseC,. The extended Dynkin diagram is

o o} o Ovvverennn —=—o
0 1 2 3 n

Denoting byCy the trivial root system and settingg = A, we get
- , ! 4 1 2n\ (2(n — h)
av(Rm) =]Zov(ch X Cnn) =;J4h+—_h<h)( n—h ) =1
1= = =

by Lemmg T.]1(1).

CaseB,. The extended Dynkin diagram is
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Denoting byBy the trivial root system, and settingy = A1, Do = A1 x Ay andD3 = Ag,
we get

n

> T v(RD) = 20(By) + Y v(Dy x Buyp)

i=0 h=2
2 (2 & h—1(2(h— 1)\ (20n—h)
_47<n>+,; h (h—1><n—h>
L 120\ | & h—1(2(h— D)\ (20— W)\ _
a0 D))

by Lemmg 1.1.(2).
CaseD,,. The extended Dynkin diagram is
3 5
o O ...... O O
1 2 n—2 n—1

SettingD, = A1 x A; andD3 = A3, we get

n

n—2

> v(RY) = 4v(Dy) + Y " v(Dy x Dy_p)
i=0 h=2

1 (n=1/2n—-1)

_P< 4n ( n—1 )

n—2
h—Dm—h—-2)(2(h—D\[(2(n—1—h)

+h; h(n — h) (h—1><n—1—h >>

which equals 1 by Lemnja1.1(3). O

1.2. The volume of(A)

Recall that we have introduced the spherical simplex as the intersection of the unit sphere
S(E) in E with the coneC(A) of nonnegative linear combinations of the simple roots
{a1, ..., ap} for the root systenk. Our purpose is to show

THEOREM1.3.
Vol S(A) d—1---(de—1)
———— =v(R) = .
Vol S(E) di---dyp

PrROOF For simplicity we normalize in such a way that \®{lE) = 1. We then set
Vol S(A) = V(R). If Risreducible, i.eR = Ry U Ry with R1 L. R», we have

V(R) = V(R1)V(R2).
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Since we also have
V(R) = v(R1)V(R2),

an easy induction implies that we are reduced to showing our claim under the assumption
thatR is irreducible.

So assumer is irreducible and setg = —6, with 6 the highest root. Writerg =
Zle njo; With n; a negative integer forafi =1, ..., £.

As in the previous section, for every= 0, . . ., ¢ let R® be the root system consisting
of all roots in R which are integral linear combinations of the roats ..., q;, ..., oy
so that in particularlRY”)| < |R|. Recall that the Dynkin diagram oR® is the
subdiagram ofd obtained by removing the node correspondingoThe rootsA®) =
{ag, ..., &, ..., ap) are simple roots foR®.

We claim thatE is the union of the coneS(A“)) whose interiors are disjoint. To see
this takeu € E and writeu = Zﬁ:l bpay,. If all by, are nonnegative themn € C(A) =
C(AO), otherwiseb, < O for at least one index ¥ h < ¢. Take an index for which
b; /n; is maximum. Notice that necessarlly/n; > 0. We can clearly write

and all coefficients are nonnegative.

Now observe that if, for any = 0,...,¢, we write ; as a linear combination
of ag, ..., a;,...,ap then all coefficients are negative. We leave to the reader the easy
verification that this implies that the interiors of the cod&si)) are mutually disjoint.

We deduce that

4
(7) > VRW) =1
h=0

Now setl” = {i | R”) = R}. Then[I" is not empty since @ I". We can rewrite[(7) as

IV + > vR®) =1.
hel

Similarly by Theoreni 1]2 we get

IT(R) + ) v(R®) =1.
her

Since, by the definition of ", for 1 ¢ I we have|R™| < |R|, by induction (the case of
A1 in which we have two roots is trivial) we can assumer™) = v(R™). We get

_ Yy~ L (1 My _
V(R)_|F|(1 ];V(R )) |F|(1 ];v(R )) V(R),

proving our claim. O
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APPENDIX
by John R. Stembridge

In this appendix, we provide an explanation for the “curious identity” (Theorem 1.2)
without any case-by-case considerations. The proof is based on two elegant formulas, one
due to L. Solomon, the other due to R. Steinberg. Both of these results deserve to be better
known.

If W is afinite group generated by reflections in a real Euclidean sBacensider the
class function oW defined by

5 ~ det1—-gqw)
w(g, H)(w) = dell— rw) (we W),
where the determinants are evaluated as endomorphismsamidg, ¢ are indeterminates.
This may be viewed as a bi-graded characterSfigf) ® A(E), the tensor product of the
symmetric and exterior algebras Bf
In his 1963 paper on invariants of finite reflection groups [9], Solomon explicitly

determined the structure of th&-invariants ofS(E) ® A(E). At the level of characters,
his structure theorem implies

¢ 1—qtd"_l
1 1w, 8 ! = —_—
() (Lw. Sw (g, D)w ]1 -
whereds, ..., d; are the degree€ (= dim E), 1y denotes the trivial character &f, and

(f.e)w = |w| 1t Y wew f(w)g(w) is the usual pairing of real-valued class functighs
andg.

Henceforth, assume théit is a Weyl group with an irreducible root systeRnc E
of rank ¢ and simple reflection§ = {s1, ..., s¢}. Note that by setting = 1 and letting
t — 1in (1), we obtain the quantity(R).

We letsp € W denote the reflection corresponding to the highest root anfpset
S U {so}. One may interpresy as theW-image of the simple reflections of the associated
affine Weyl groupW'.

Following Steinberg (see Section 3 6f [10]), the actioriiofon E descends to & -
action on thet-torus E/Q (where O denotes the root lattice), and the decomposition
of E into simplicial alcoves by the arrangement of affine hyperplanes associatRd to
induces a simplicial decomposition &f/ Q with a compatibleW-action. Moreover, the
W-stabilizers of the faces df /Q are (up to conjugacy) generated by the various proper
subsets ofj.

Givenw € W, Steinberg computes the Euler characteristic ofithixed subcomplex
of E/Q in two different ways (see Theorem 3.12 [0f][10]), thereby obtaining the identity

@) detl —w) = Y (=YL ),

JCSo

where W, denotes the reflection subgroup generated Jyyand ]‘% denotes the
permutation character of the actionwfon W/ W;. It is important to note thaf ranges
overpropersubsets ofp.
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Steinberg actually proves a more general identity that involves twisting by an
involution; the above instance corresponds to the trivial involution. One may also
recognize (2) as a companion to the more familiar identity

detw) = Z(—1)”'1%j (w).

JCS

Now consider the evaluation of

|im1 (dw(1,0), 8w, t))w
11—

First, notice thady (1, ) — 1w ast — 1, so we obtain
3 J@l (dw(1,0), 6w, )w = Ow(L,0), ly)w =1

by setting(q, t) = (1, 0) in (1).
Second, notice thaty (1, 0)(w) = det(1 — w), so (2) implies

) (Bw(L,0), 8w (L D)w = Y (~HISILE sw (@ 0w
JCSo

= Y =Dy, 8w, (L O)w,
JCSo

by Frobenius reciprocity. We can evaluate each of these terms by applying Solomon’s
formula to the reflection group,;. But we need to be careful, because the actiowpon
E will have linear invariants if the rank d¥; is less thart = |S]. In such cases, this means
that some of the degrees 8f; will equal 1, which introduces factors ¢ — ¢)/(1 — 1)
in (1). Since we have sgt= 1, these factors vanish.

Thus (4) should be restricted tesubsets oy, and we obtain

d(/) 1

4 4
(8w (L, 0), 8w (L, 1)w Z H —

wheredij), ...,dl(j) are the degrees ¥, for J = Sp — {s;}. Comparing this with (3) in
the limitz — 1, we obtain the “curious identity”

14 d(/) 1 B
Z d(]) B

j=0 i=1
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