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Group theory. — A curious identity and the volume of the root spherical simplex,
by CORRADO DE CONCINI and CLAUDIO PROCESI with an appendix by JOHN R.
STEMBRIDGE, communicated on 10 March 2006.

Dedicated to Guido Zappa in honor of his 90th birthday

ABSTRACT. — We show a curious identity on root systems which gives the evaluation of the volume of the
spherical simplices cut by the cone generated by simple roots. In the appendix John Stembridge gives a conceptual
proof of our identity.
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1. INTRODUCTION

In this note we shall consider a finite root systemR spanning a Euclidean spaceE of
dimension` (for all the facts about root systems which we are going to use in this note
we refer to [1]).̀ is called therank of R. We choose once and for all a setR+ of positive
roots and inR+ the set∆ = {α1, . . . , α`} of simple roots. We also denote byW the Weyl
group ofR, i.e. the finite group generated by the reflections with respect to the hyperplanes
orthogonal to the roots inR. Given such a rootα ∈ R, we denote bysα ∈ W the reflection
with respect to the hyperplane orthogonal toα. Setsi = sαi

for eachi = 1, . . . , ` and call
S = {s1, . . . , s`} the set ofsimple reflections. It is known thatS generatesW and that the
pair (W, S) is a Coxeter group.

We know that the ring of regular functions onE, invariant under the action ofW , is a
polynomial ring generated by homogeneous elements of degreesd1 ≤ · · · ≤ d`. Thedi ’s
are called the degrees. We shall also consider the sequence of exponentsd1−1, . . . , d`−1.
Recall that

∏
i di = |W |.

In E we have theaffine arrangementof the hyperplanes orthogonal to the roots and
their translates under the weight latticeΛ, a locally finite configuration invariant under the
affine Weyl groupŴ . The latter group is the semidirect product ofW and of the latticeQ
spanned by the roots, thought of as translation operators.

Ŵ is itself a Coxeter group. IfE is irreducible, its Coxeter generators are given by the
reflections{s0, s1, . . . , s`}, where fori ≥ 1 thesi ’s are the simple generators ofW and

s0(v) = sθ (v) + θ,

θ being the highest root. It is known that, for each 0≤ i ≤ `, the subgroupWi of Ŵ

generated by the reflections(s0, . . . , ši, . . . , s`) is finite, and it is the Weyl group of a
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root systemR(i) which will be discussed presently. Hence we can consider the degrees
d

(i)
1 ≤ · · · ≤ d

(i)
` . Our main result is the identity (Theorem 1.2)

∑̀
i=0

(d
(i)
1 − 1) · · · (d

(i)
` − 1)

d
(i)
1 · · · d

(i)
`

= 1.

The proof is a case by case computation using the classification of irreducible root systems.
It is quite desirable to give a more conceptual deduction of our identity.

In the last section we show, following a suggestion of Vinberg, that our identity implies
the following geometric identity. Take the unit sphereS(E) in E and consider the spherical
simplexS(E) = C(∆)∩S(E), C(∆) being the cone of positive linear combinations of the
simple roots. Then

Vol S(∆)

Vol S(E)
=

(d1 − 1) · · · (d` − 1)

d1 · · · d`

.

We have discovered this identity while trying to understand the following fact.
Consider the complex spaceV = E ⊗R C, and take the algebraic torusT = V/Q. For any
rootα ∈ R the linear formα̌ defined by

α̌ (v) = 2
(α, v)

(α, α)

takes integer values onQ, hence we get the charactere2π
√

−1α̌ of T .
Denote its kernel byDα. In our work on toric arrangements (see [2], and also [4]–

[7]) we have shown that the Euler characteristic of the open setA := T −
⋃

α∈R+ Dα

equals(−1)`|W |. The only proof we know of this fact is via a combinatorial topological
construction of Salvetti [8], [3]. The above identity has been the result of an attempt to
compute this Euler characteristic directly.

1.1. The main identity

We are interested in the numbers

ν(R) =

∏̀
i=1

di − 1

di

.

The following list givesν(R) in the case of irreducible root systems:

νAn =
1

n + 1
, n ≥ 1,

νBn = νCn =
1

4n

(
2n

n

)
, n ≥ 2,

νDn =
n − 1

4n−1n

(
2(n − 1)

n − 1

)
, n ≥ 4,

νG2 =
5

12
, νF4 =

385

1152
,

νE6 =
77

324
, νE7 =

2431

9216
, νE8 =

30808063

99532800
.
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Notice that ifR is reducible, i.e.R = R1 ∪ R2 with R1 ⊥ R2, then clearly

ν(R) = ν(R1)ν(R2).

We normalize the scalar product so that the short roots have length
√

2 and we denote by
D the Dynkin diagram ofR.

From now on we assume thatR is irreducible and we denote bŷD the extended Dynkin
diagram. Setα0 = −θ , with θ the highest root. We have a bijection between the set∆̂ =

{α0, . . . , α`} and the nodes of̂D. For everyi = 0, . . . , ` the diagramDi obtained fromD̂

by removing the node corresponding to the rootαi (and all the edges having that node as a
vertex) is of finite type. So we can consider the corresponding root systemR(i) consisting
of all roots inR which are integral linear combinations of the rootsα0, . . . , α̌i, . . . , α` and
the corresponding numberν(R(i)).

In the proof of our result we shall need the following well known

LEMMA 1.1. The following identities hold:

(1) 4n
=

n∑
h=0

(
2h

h

)(
2(n − h)

n − h

)
, n ≥ 0.

Furthermore, whenn ≥ 2 we have

4n−1
=

1

2

(
2n

n

)
+

n∑
h=2

h − 1

h

(
2(h − 1)

h − 1

)(
2(n − h)

n − h

)
,(2)

4n−2
=

n − 1

4n

(
2(n − 1)

n − 1

)
+

n−2∑
h=2

(h − 1)(n − h − 1)

h(n − h)

(
2(h − 1)

h − 1

)(
2(n − 1 − h)

n − 1 − h

)
.(3)

PROOF. The first identity follows immediately from the power series expansion

(4)
1

√
1 − 4t

=

∑
n≥0

(
2n

n

)
tn.

To see this notice that setting

f (t) =
1

√
1 − 4t

we have
df (t)

dt
= 2f (t)3

from which we deduce that

(1 − 4t)
df (t)

dt
= 2f (t).

Writing f (t) =
∑

n≥0 ant
n we deduce that∑

n≥0

nant
n−1

− 4
∑
n≥0

nant
n

= 2
∑
n≥0

ant
n.
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Equating coefficients, we geta0 = 1 and forh ≥ 0,

ah+1 =
2(2h + 1)

h + 1
ah.

On the other hand, if we setbh :=
(2h

h

)
, we getb0 = 1 and

bh+1 =
2(h + 1)!

(h + 1)!(h + 1)!
=

2(h + 1)(2h + 1)

(h + 1)2
bh =

2(2h + 1)

h + 1
bh

soan = bn and everything follows.
To see the second identity, notice that using (4) and integrating, we get

(5)
1

2
−

∑
h≥1

1

h

(
2(h − 1)

h − 1

)
th =

1

2

√
1 − 4t .

Again using (4) we deduce

1

2
+

∑
h≥2

h − 1

h

(
2(h − 1)

h − 1

)
th =

∑
h≥1

(
2(h − 1)

h − 1

)
th +

1

2
−

∑ 1

h

(
2(h − 1)

h − 1

)
th(6)

=
1 − 2t

2
√

1 − 4t
.

This together with (4) implies that

1

2

(
2n

n

)
+

n∑
h=2

h − 1

h

(
2(h − 1)

h − 1

)(
2(n − h)

n − h

)
is the coefficient oftn in the power series expansion of

1 − 2t

2
√

1 − 4t

1
√

1 − 4t
=

1

2
+

t

1 − 4t
.

Sincen ≥ 2 the claim follows. To see the last identity, let us remark that its left hand side
is the coefficient oftn in the power series expansion of the function(

1 − 2t

2
√

1 − 4t

)2

=
1 + 4t2

− 4t

4 − 16t
.

From this everything follows. 2

THEOREM 1.2.
∑`

i=0 ν(R(i)) = 1.

PROOF. The proof is by a case by case computation.
Let us deal first with the exceptional cases. In order to make the computation

transparent it is more convenient to multiply our sum by|W |, the order of the Weyl group.
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CaseG2. In this case|W | = 12. By looking at the extended Dynkin diagram

◦
0

◦
1

> ◦
2

we get

|W |

2∑
i=0

ν(R(i)) = 12(ν(G2) + ν(A2) + ν(A1 × A1)) = 5 + 3 + 4 = 12.

CaseF4. The order of the Weyl group is 1152. By looking at the extended Dynkin
diagram

◦
0

◦
1

◦
2

> ◦
3

◦
4

we get

|W |

4∑
i=0

ν(R(i)) = |W |(ν(F4) + ν(A1 × C3) + ν(A2 × A2) + ν(A3 × A1) + ν(B4))

= 385+ 180+ 128+ 144+ 315= 1152.

CaseE6. In this case|W | = 51840. By looking at the extended Dynkin diagram

◦
1

◦
2

◦
3

◦
4

◦
5

◦
6

0
◦

we get

|W |

6∑
i=0

ν(R(i)) = |W |(3ν(E6) + ν(A2 × A2 × A2) + 3ν(A1 × A5))

= 36960+ 1920+ 12960= 51840.

CaseE7. In this case|W | = 2903040. By looking at the extended Dynkin diagram

◦
0

◦
1

◦
2

◦
3

◦
4

◦
5

◦
6

7
◦
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we get

|W |

7∑
i=0

ν(R(i)) = |W |(2ν(E7) + 2ν(A1 × D6) + 2ν(A2 × A5)

+ ν(A3 × A3 × A1) + ν(A7))

= 1531530+ 595350+ 322560+ 90720+ 362880= 2903040.

CaseE8. In this case|W | = 696729600. By looking at the extended Dynkin diagram

◦
0

◦
1

◦
2

◦
3

◦
4

◦
5

◦
6

◦
7

8
◦

we get

|W |

8∑
i=0

ν(R(i)) = |W |(ν(E8) + ν(A1 × E7) + ν(A2 × E6) + ν(A3 × D5) + ν(A4 × A4)

+ ν(A5 × A2 × A1) + ν(A1 × A7) + ν(D8) + ν(A8))

= 215656441+ 91891800+ 55193600+ 38102400+ 27869184

+ 19353600+ 43545600+ 127702575+ 77414400= 696729600.

CaseAn. In this case eachR(i) is of typeAn. It follows that

n∑
i=0

ν(R(i)) = (n + 1)νAn = (n + 1)
1

n + 1
= 1.

CaseCn. The extended Dynkin diagram is

◦
0

> ◦
1

◦
2

◦
3
· · · · · · · · · < ◦

n

Denoting byC0 the trivial root system and settingC1 = A1, we get

n∑
i=0

ν(R(i)) =

n∑
h=0

ν(Ch × Cn−h) =

n∑
h=0

1

4h+n−h

(
2h

h

)(
2(n − h)

n − h

)
= 1

by Lemma 1.1(1).

CaseBn. The extended Dynkin diagram is

◦
1

◦
2

◦
3
· · · · · · · · · > ◦

n

0
◦
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Denoting byB0 the trivial root system, and settingC1 = A1, D2 = A1×A1 andD3 = A3,
we get

n∑
i=0

ν(R(i)) = 2ν(Bn) +

n∑
h=2

ν(Dh × Bn−h)

=
2

4n

(
2n

n

)
+

n∑
h=2

h − 1

h

(
2(h − 1)

h − 1

)(
2(n − h)

n − h

)

=
1

4n−1

(
1

2

(
2n

n

)
+

n∑
h=2

h − 1

h

(
2(h − 1)

h − 1

)(
2(n − h)

n − h

))
= 1

by Lemma 1.1(2).

CaseDn. The extended Dynkin diagram is

◦
1

◦
2
· · · · · · ◦

n−2
◦

n−1

n
◦

0
◦

SettingD2 = A1 × A1 andD3 = A3, we get

n∑
i=0

ν(R(i)) = 4ν(Dn) +

n−2∑
h=2

ν(Dh × Dn−h)

=
1

4n−2

(
n − 1

4n

(
2(n − 1)

n − 1

)
+

n−2∑
h=2

(h − 1)(n − h − 1)

h(n − h)

(
2(h − 1)

h − 1

)(
2(n − 1 − h)

n − 1 − h

))
,

which equals 1 by Lemma 1.1(3). 2

1.2. The volume ofS(∆)

Recall that we have introduced the spherical simplex as the intersection of the unit sphere
S(E) in E with the coneC(∆) of nonnegative linear combinations of the simple roots
{α1, . . . , α`} for the root systemR. Our purpose is to show

THEOREM 1.3.
Vol S(∆)

Vol S(E)
= ν(R) =

(d1 − 1) · · · (d` − 1)

d1 · · · d`

.

PROOF. For simplicity we normalize in such a way that VolS(E) = 1. We then set
Vol S(∆) = V (R). If R is reducible, i.e.R = R1 ∪ R2 with R1 ⊥ R2, we have

V (R) = V (R1)V (R2).
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Since we also have
ν(R) = ν(R1)ν(R2),

an easy induction implies that we are reduced to showing our claim under the assumption
thatR is irreducible.

So assumeR is irreducible and setα0 = −θ , with θ the highest root. Writeα0 =∑`
j=1 njαj with nj a negative integer for allj = 1, . . . , `.

As in the previous section, for everyi = 0, . . . , ` let R(i) be the root system consisting
of all roots inR which are integral linear combinations of the rootsα0, . . . , α̌i, . . . , α`

so that in particular|R(i)
| ≤ |R|. Recall that the Dynkin diagram ofR(i) is the

subdiagram ofD̂ obtained by removing the node corresponding toαi . The roots∆(i)
=

{α0, . . . , α̌i, . . . , α`} are simple roots forR(i).
We claim thatE is the union of the conesC(∆(i)) whose interiors are disjoint. To see

this takeu ∈ E and writeu =
∑`

h=1 bhαh. If all bh are nonnegative thenu ∈ C(∆) =

C(∆(0)), otherwisebh < 0 for at least one index 1≤ h ≤ `. Take an indexi for which
bi/ni is maximum. Notice that necessarilybi/ni > 0. We can clearly write

u =
bi

ni

α0 +

∑̀
h=1, h6=i

(
bh −

nhbi

ni

)
αh

and all coefficients are nonnegative.
Now observe that if, for anyi = 0, . . . , `, we write αi as a linear combination

of α0, . . . , α̌i, . . . , α` then all coefficients are negative. We leave to the reader the easy
verification that this implies that the interiors of the conesC(∆(i)) are mutually disjoint.

We deduce that

(7)
∑̀
h=0

V (R(h)) = 1.

Now setΓ = {i | R(i)
= R}. ThenΓ is not empty since 0∈ Γ . We can rewrite (7) as

|Γ |V (R) +

∑
h/∈Γ

V (R(h)) = 1.

Similarly by Theorem 1.2 we get

|Γ |ν(R) +

∑
h/∈Γ

ν(R(h)) = 1.

Since, by the definition ofΓ , for h /∈ Γ we have|R(h)
| < |R|, by induction (the case of

A1 in which we have two roots is trivial) we can assumeV (R(h)) = ν(R(h)). We get

V (R) =
1

|Γ |

(
1 −

∑
h/∈Γ

V (R(h))
)

=
1

|Γ |

(
1 −

∑
h/∈Γ

ν(R(h))
)

= ν(R),

proving our claim. 2
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APPENDIX

by John R. Stembridge

In this appendix, we provide an explanation for the “curious identity” (Theorem 1.2)
without any case-by-case considerations. The proof is based on two elegant formulas, one
due to L. Solomon, the other due to R. Steinberg. Both of these results deserve to be better
known.

If W is a finite group generated by reflections in a real Euclidean spaceE, consider the
class function onW defined by

δW (q, t)(w) :=
det(1 − qw)

det(1 − tw)
(w ∈ W),

where the determinants are evaluated as endomorphisms ofE, andq, t are indeterminates.
This may be viewed as a bi-graded character forS(E) ⊗ Λ(E), the tensor product of the
symmetric and exterior algebras ofE.

In his 1963 paper on invariants of finite reflection groups [9], Solomon explicitly
determined the structure of theW -invariants ofS(E) ⊗ Λ(E). At the level of characters,
his structure theorem implies

(1) 〈1W , δW (q, t)〉W =

∏̀
i=1

1 − qtdi−1

1 − tdi
,

whered1, . . . , d` are the degrees (` = dimE), 1W denotes the trivial character ofW , and
〈f, g〉W := |W |

−1 ∑
w∈W f (w)g(w) is the usual pairing of real-valued class functionsf

andg.
Henceforth, assume thatW is a Weyl group with an irreducible root systemR ⊂ E

of rank` and simple reflectionsS = {s1, . . . , s`}. Note that by settingq = 1 and letting
t → 1 in (1), we obtain the quantityν(R).

We let s0 ∈ W denote the reflection corresponding to the highest root and setS0 =

S ∪ {s0}. One may interpretS0 as theW -image of the simple reflections of the associated
affine Weyl groupŴ .

Following Steinberg (see Section 3 of [10]), the action ofŴ on E descends to aW -
action on thè -torus E/Q (whereQ denotes the root lattice), and the decomposition
of E into simplicial alcoves by the arrangement of affine hyperplanes associated toR

induces a simplicial decomposition ofE/Q with a compatibleW -action. Moreover, the
W -stabilizers of the faces ofE/Q are (up to conjugacy) generated by the various proper
subsets ofS0.

Givenw ∈ W , Steinberg computes the Euler characteristic of thew-fixed subcomplex
of E/Q in two different ways (see Theorem 3.12 of [10]), thereby obtaining the identity

(2) det(1 − w) =

∑
J⊂S0

(−1)|S|−|J |1W
WJ

(w),

where WJ denotes the reflection subgroup generated byJ , and 1WWJ
denotes the

permutation character of the action ofW on W/WJ . It is important to note thatJ ranges
overpropersubsets ofS0.
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Steinberg actually proves a more general identity that involves twisting by an
involution; the above instance corresponds to the trivial involution. One may also
recognize (2) as a companion to the more familiar identity

det(w) =

∑
J⊆S

(−1)|J |1W
WJ

(w).

Now consider the evaluation of

lim
t→1

〈δW (1, 0), δW (1, t)〉W .

First, notice thatδW (1, t) → 1W ast → 1, so we obtain

(3) lim
t→1

〈δW (1, 0), δW (1, t)〉W = 〈δW (1, 0), 1W 〉W = 1

by setting(q, t) = (1, 0) in (1).
Second, notice thatδW (1, 0)(w) = det(1 − w), so (2) implies

〈δW (1, 0), δW (1, t)〉W =

∑
J⊂S0

(−1)|S|−|J |
〈1W

WJ
, δW (1, t)〉W(4)

=

∑
J⊂S0

(−1)|S|−|J |
〈1WJ

, δWJ
(1, t)〉WJ

,

by Frobenius reciprocity. We can evaluate each of these terms by applying Solomon’s
formula to the reflection groupWJ . But we need to be careful, because the action ofWJ on
E will have linear invariants if the rank ofWJ is less thaǹ = |S|. In such cases, this means
that some of the degrees ofWJ will equal 1, which introduces factors of(1 − q)/(1 − t)

in (1). Since we have setq = 1, these factors vanish.
Thus (4) should be restricted tò-subsets ofS0, and we obtain

〈δW (1, 0), δW (1, t)〉W =

∑̀
j=0

∏̀
i=1

1 − td
(j)
i −1

1 − td
(j)
i

,

whered
(j)

1 , . . . , d
(j)
l are the degrees ofWJ for J = S0 − {sj }. Comparing this with (3) in

the limit t → 1, we obtain the “curious identity”

∑̀
j=0

∏̀
i=1

d
(j)
i − 1

d
(j)
i

= 1.
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