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Partial differential equations. — Approximating the inverse matrix of the G-limit through
changes of variables in the plankey GIoCONDA MOSCARIELLO, CARLO SBORDONE
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ABSTRACT. — LetA; be a sequence of coercive symmetric matricesT(R?)2*2 with detA; = 1 whichG-
converges tol. We prove that there exists a sequenc& efuasiconformal mappingg; which converge locally

uniformly to a K -quasiconformal mapping’ such thatAl._1 o Fj_1 G-converges td~1 o F~1. The result is
specific to the two-dimensional case but a similar result holds in dimension 1.
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1. INTRODUCTION

Let K be a fixed real number such th&t > 1. We denote byM(K) the set of 2x 2
symmetric matrices
A=A®x), xeR?

with L>°(R?) coefficients which satisfy the ellipticity bounds

(1.1) €17/K < (A(0E, &) < KIE aex eR? V& e R

We denote byM1(K) the subset o\ (K) whose elements satisfy the condition
1.2) detA(x) =1 a.ex e R?

It is well known that M (K) is compact with respect tG-convergence [([M],[IS1],T])
and rather surprising that11(K) enjoys the same property ([FM]).

Our aim is to prove that 1 (K) enjoys another interesting propertyAf is a sequence
in M1(K) and if we consider the inverse matricejél, for a subsequence we may assume
that

4% A and A7t 4 Bt

and in generaB is different fromA. Indeed, it is well known that the inverse of tlie
limit does not coincide with th&-limit of the inverses. However, the situation is different
if we allow suitable changes of variables: we prove in the present paper that for every ball
B there exists a sequendg of K-quasiconformal mappings in the plane which locally
uniformly converges to & -quasiconformal mapping, such that definingi(, andA as
Aj andA in the ball B and as the identity outsid®, one has

A 1 G ~_ _
Ajlonl—>A 1o F 1,
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Let us emphasize that our result is restricted to the two-dimensional case; a similar result
holds in one dimension, but the result dramatically fail$ i 3.

2. DEFINITIONS AND PRELIMINARY RESULTS

Let us first recall the definition of th&-convergence (see [S1]./[T]) of a sequence &f2
symmetric matricest; = A;(x) with L>®(R?) coefficients which belong ta1(K), i.e.
satisfy [1.1) uniformly inj.

We say that a sequeneg € M(K) G-convergeso A, and write

A‘/' d A,

whereA also belongs toVI(K), if for every bounded open subsetof R? and for every
f € L%(£2) one has
uj = u  weakly inWy2(2),

whereu; andu are defined by

—diV(A; (x)Vuj) = f inD'(R),
{uj e Wyl(9),

—diV(A(X)Vu) = f inD'(£2),
{u e Wri(Q).

One of the main properties of th&-convergence inM(K) is its sequential
compactness: from every sequence of matricedfik’) one can extract a subsequence
G-converging to a matrix which also belongstad(K) (seel[SL],[[T]).

Despite the fact that the condition

detAj(x) =1 a.ex e R?

is not necessarily preserved under any familiar weak convergence of the segyence
it is preserved undeG-convergence (see e.qg. [FM]). So the suh&¢i(K) of M(K)
consisting of matrices with determinant equal to on€islosed. This result is specific to
the two-dimensional case.

Let us now recall the definition ok -quasiconformal mappings (still in the two-
dimensional setting; see [AIM]).

We say thatF is a K -quasiconformal mappini F : R> — R? is a homeomorphism
with F andF~1in W,52(R? R?) such that

(2.1) IDF(x)|? < (K + %)J(x, F) aexeR?

where|D F (x)| stands for the Hilbert—Schmidt norm of the differential matbi¥ (x) €
R2%2 andJ (x, F) for the Jacobian determinant &f i.e.

J(x, F) = detDF(x).
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3. MAIN RESULT

Let A; be a sequence of matrices such that

(3.1) Aj e Mu(K), A2 a;

t[\en, as mentioned in Section2,e M1(K). Fix a ball B in R? and define the matrices
Aj andA by

. A .
A;(x)={,j(x)’ eh Aw=

Our main result is as follows.

THEOREM3.1. Under assumptio(B.1), there exists a sequenég of K -quasiconformal
mappings which satisfies

3.2) F; — F locally uniformly,

with F a K-quasiconformal mapping, such that

(3.3) AtoF 18 Ao F L,

PROOF SinceAj € Mi(K), by the so-called measurable Riemann Mapping Theorem
([IM]) there exists a uniquek -quasiconformal mapping’; : R2 — IRR? such that
Fj(0,0) = (0,0), Fj(1,0) = (1, 0), F;(00) = oo and

(3.9 Aj(x) = J(x, F}) (DF) 1) (DF)~1(x),

where’D and D~ denote the transpose and the inverse of the makriXote that a matrix
A of the form

Ax)=J(x, F)(DF) Y (DF)™'(x) aexeR?

(whose determinant is always equal to 1) belong8t@(K) if and only if condition (2.1)
holds true: indeed, since the Hilbert—Schmidt norm of the md¥riz given by

|IDI?=1trD'D,
the distortion inequality
2 1
IDI? < [ K + < detD

tr D'D <K+1'
detD ) — K’

if A and YA are the eigenvalues db'D/detD (this matrix is always symmetric, non-
negative and with determinant 1), then the last inequality is equivalent to

is equivalent to

)L+1<K+:L
AT K’

andto YK <A <K.
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Since the mapping?; is K-quasiconformal for every, there exists (see [GIKMS,
Lemma 5.2]) a subsequenég, and akK -quasiconformal mapping such thatF (0, 0) =
(0,0, F(1,0) = (1,0), F(00) = o0 and

(3.5 F;, — F locally uniformly.

By a result of S. Spagnold ([S2, Theorem 2], see also [F]) one has
(36)  J(. F) (DF,) ') (DF) ) S . F) (DF) ) (DF) ().
SinceAj G-converges tol by the local character af-convergence, we have
(3.7) Ax)=J(x, F) (DF) ) (DF Y (x) aexeR?

Let us now show that the whole sequerGdocally uniformly converges té'. Indeed,
let Fj, be any subsequence 6f. By Lemma 5.2 of [GIKMS$] we can extract froifi;, a
further subsequence still denoted By such that

F;, — F locally uniformly,

where F' is a K-quasiconformal mapping which satisfié%0,0) = (0,0), F(1,0) =
(1, 0), F(0c0) = 0o. Again by Spagnolo’s result we deduce that

(3.8) Ax)=Jx, By DB Yx)(DF Y (x) aexeR2

Since the matrices of the right-hand sideq of|(3.7) (3.8) coincide, there exists (see [LV])
a Mobius transformatio/ such that

A

(3.9 F=HoF.
In complex notation, a Kbius transformation can be written as

az+b
cz+d’

for somea, b, c, d in C. In the same notation we have

zeC,

H(z) =

F(0) =0, F(1)=1 F(c0) = o0,

and R R
F0) =0, FQ) =1 F(c0) = o0,

which together with[(3]9) implies that
H(z) =z,

and therefore thaF = F. This implies that the whole sequenég converges toF.
Applying the chain rule in(3]4) allows one to write

(3.10) Ao Ft) = I, FFH(DFTH™H0) (DFTH R
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Since the inverse mapping?‘1 are alsok -quasiconformal and satisfy

Fj_l — F~1 locally uniformly,

applying once more Spagnolo’s result, we infer that the sequence of matrices defined by
the right-hand side of (3:1@y-converges to

J(y, FFY(DFHT oy DFH (),

which coincides with the matrid— o F~1. This proves the desired result. O

4. THE ONE-DIMENSIONAL CASE

In this section we consider the one-dimensional case for which we prove a result similar
to Theorem 3.1. Let;; € L*°(R) be a sequence of measurable functions R — R
satisfying the uniform bounds

4.1) K <aj(x) <K aexeR,

whereK > 1is a given constant. Up to a subsequence we may assume that
(4.2) aj —a ino(L>® LY,

(4.3) % - % in o(L*®, LY,

for some functiong, b € L*°(R) with
1/K <b(x) <a(x) <K aexceR.

Actually b(x) may be strictly less tham(x).
Nevertheless, the composition with suitable changes of varigbleR — R allows
the inverses of; to weakly converge to the inverse of

THEOREM4.1. Leta; € L*°(R) be a sequence satisfyir{g.1) and (4.2). Then there
exists a sequence of increasing homeomorphisms R — R which are uniformly
Lipschitz continuous together with their inverses and which converge locally uniformly
onR to a homeomorphisr : R — R such that

1 1

4.4 — in o(L>®, LY).
( ) aj(hj_l) a(h_l)
ProoFr Define
(4.5) hi(s) = ¢; / aj(ydt Vs € R,
0

wherec; > 0 is a sequence of constants which converges to gomé. Then
N
hj(s) — h(s) = c/ a(t)dt Vs eR,
0

and also locally uniformly, becauge is bounded irWlé'C<>O (R).
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By the chain rule, the inverdpj‘1 of h; is given by

o 1
4.6 ht =/ — = dt VYoeR.
(4.6) ;) A Cjaj(l’l;l('[)) T Voe

Since the sequenttgfl is bounded irWlé'C<>Q (R) and since the sequenggconverges td,
one has
hito) > hYo) VYo eR

wheresr 1 is given by

o1
-1 _
@4.7) h (0)—/0 iy 4T

Sincehj_1 is bounded irWIé’coo(R), hj_1 also weak star converges/io® in Wlé’co"(]R). The
weak star convergence of the derivatives, namely

(7 = (0™Yin oL, LY,
implies [4.4) in view of[(4.6) and (4.7), sineg converges ta. O

REMARK 4.1. One could think that the definition (4.5) lof is the only possible choice
in order to have (4.4) when (4.1) and (4.2) hold true, or in other wordgithiatuniquely
determined up to the multiplicative constaptWe will prove in this remark that in general
this is not the case, and that there are many other choices of fungfiarsch satisfy (4.4)
and the assumption of Theorem 4.1.

Observe indeed that (4.4) is equivalent to

/J%dr%/(j;ldr Vo € R.
0 aj(h; (1) o a(h-1(v)

By the changes of variabvej‘l(r) = t, this can be rewritten as

hNo) W (t h=lo) g
4.8) / f()dz—>/ O 4
0 a;j(t) 0 a(t)

Sincehj‘1 tends tor ! locally uniformly, (4.8), and thereforg (4.4), is equivalent to
s hi (1) St
/ dt — / dt Vs eR,
o aj(t) o a(t)

[/ A
(4.9) <L <2 ino(L® LY.
aj a

that is, to
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To prove that (4.5) is not the only possible choice/Agrlet us now consider the following
example. Let; andh} be given by

aj(x) = ¢(jx), h;(x)=vy(jx), h;©0) =0,
wherep andy are the periodic functions of period 1 defined@nl) by
o(y) = Ax0,1/3(y) + Bxass,.2/3(y) + Cxe/3,1(),
Y () = Xx0,1/3) + Y xas3.2/3(0) + Zx@/3,100),

where x5 denotes the characteristic function of the interval b)) and where
A, B,C, X, Y, Z are strictly positive constants. Thep satisfies (4.1) and (4.2) for some
K > 1 and fora given by

a(x) = %(A + B+ O).

The functions:; : R — R are increasing homeomorphisms which are uniformly Lipschitz
continuous together with their inverses, and which converge locally uniformB tarthe
homeomorphisni : R — R defined by

h'(x) = %(X +Y+2), h(©)=0.

In this example, convergence (4.9), which is equivalerft id (4.4), amounts to

(4.10) =3

1
A B C)

1
é(A+B+C)

since the right-hand side of (4.10) is th&L>°, L) limit of h;./aj. Formula (4.10) is
equivalent to

3CA+B+C)[1/X Y X+Y
(4.11) Zzw_ 24 _;_
2C—(A+B) |[3\A B A+B+C

For everyA, B, X, Y > 0, if we chooseC > O sufficiently large, then the number
defined by (4.11) satisfies > 0, and all the assumptions of Theorem 4.1 are satisfied. But
in general we do not have (4.5), since this would imply

h}(s) =cjaj(s) VseR,

that is, v (y) = ce(y), an assertion which is false when we chodsed # Y /B, a choice
which is always possible.
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