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Algebraic geometry.— Etale and crystalline beta and gamma functions via Fontaine’s
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ABSTRACT. — We compare the lhara—Anderson theory of thadic étale beta function, which describes the
Galois action orp-adic étale homology for the tower of Fermat curves o@pof degree a power op, with

the crystalline theory of Dwork—Coleman, based on the calculation of the Frobenius actioadia de Rham
cohomology of the same curves. The two constructions are easily related via a ramified extension of Fontaine’s
period ringBerys = Berysp contained inBgr = Byr p, namelyB, = Berysp ®@IL’IY @p C Bgr p- We
propose, but do not carry out, a similar comparison for ghadic étale gamma function of Anderson and the
Morita—Dwork—Colemarp-adic crystalline gamma function.

KEY WORDS:  Jacobi sums; Fermat curvgs:adic cohomology; Fontaine’s theory.

MATHEMATICS SUBJECT CLASSIFICATION (2000): Primary 14F30; Secondary 11S40.

INTRODUCTION

The classical beta and gamma functions are meromorphic functions efC defined, in
suitable regions, by convergent integral formulas

1
(0.1) B(s, 1) =/ 711 = x)dx,
0
(0.2) ()= /ooxsefxd—x.
0 X

They are related by

(0.3) B(s,t) = %ﬁ—(:))
Moreover,

(0.4) I'(s+1) =sI(s),
(0.5) res)rad-s) = .
and

(0.6) ’if[lr(s:’): (ﬁr(%))#ﬂr(s).
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A formula easier to handle, equivalent fo (0.1), replaces the simplek [0y the
Pochhammer contouir [21, §12.43] and holds for anye C:

(0.7) —4sin(zs) sin(t)B(s, t) = /xs_l(l— x)'Ldx.
n

The advantage here is thate 71(C \ {0, 1}, 1/2) is the commutatoryf, y1], whereyg
(resp.y1) is the simple circular loop through/2, encircling O (resp. 1) in the positive
direction. As suchy induces an element of the singular homology on any abelian cover
of P%, unramifed but over 0, 1, ansb.

The previous analytic formulas all have their origin in algebraic geometry. Consider
(0.2) first. It shows that""(s) is a period of a rank one algebraic differential module
(&c, Ve) over the complex toru&s,, ¢, an algebraic group defined ov&;, namely the
differential module whose (analytic or formal) solutionfigx) = x*e~*. The parameter
s may be identified here as an exponent of local monodromy at8@fVc) (viewed as
a logarithmic differential module at 0). An even more algebraic way of interpreting the
variables is to say that is the isomorphism class @€¢, V)!

So, we regard as a complex-valued character of the fundamental group of a tannakian
category, namely the category of vector bundlesAgn endowed with an integrable
connection with a logarithmic singularity and rational exponent at 0. Notice that the
singularity atoo is insteadrregular.

We express here, incidentally, our hope that this natural interpretation of the variable
of the gamma function will be useful to relate theadic and complex incarnations of the
L-function associated to a motive ov@r say of the Riemann zeta function.

The case of|(0J1) is easier. Here, the base spaég jsand the tannakian category
consists of vector bundles with integrable connection having a logarithmic singularity
at 0, 1 andoo and rational exponents. Agailg, t) is a complex-valued character of
a pro-algebraic group defined ovér. A further step is needed to interprét (0.5) and
(©.7). The r.h.s. of[(Q]5) is a ratio of two terms. The denominator> sinzs, takes
integral algebraic values when the charagctéras finite period; so, it can be described
purely algebraically. As for Archimedes’ numbey it is algebraically related to a period
of (the constant differential module o}, ¢: for the generatonyg of Hi(G,, c.Z),
we havefyo‘ic—x = 27+/—1, with no sign ambiguity, if we regar® as contained
in C.

Whens andt are rational numbers with common denominaigithe integral formula
(0.7) shows that-4 sin(zrs) sin(z¢) B(s, t) is the complex period of

(0.8) Toy = xs_lyl_ldx, x=X/Z, y=Y/Z,

a differential form of the second kind on the Fermat cuFyewith homogeneous equation
overQ

(0.9) X" 4y" = 27",

along the inverse imagg, in F,,(C) of the Pochhammer path.
Now, for a rational primep which does not dividen, the extension ove®, of the
de Rham cohomologWyr(F,,/Q) of F, may be identified with theigid cohomology
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of the reduction modulg of F;,. This type cohomology was first introduced by Dwork,
Monsky and Washnitzer, and later, in full generality, by Berthelot. These finite-dimensional
Q,-vector spaces carry, by functoriality in characterigtican action of the Frobenius
elementr of Gy, = Gal(F,/F,). One of the main themes of Dwork’s theory is that the
matrix describing the action of on a rational basis of the space of rigid cohomology
classes should be regarded as analog to the classical period matfiy )ef. From this
philosophy, Dwork deduced the majnadic properties of solutions of classical Picard—
Fuchs differential equations, and motivated cohomologically gkadic beta function
naturally constructed from Morita’p-adic gamma function. We refer to this-adic
beta and gamma functions as “crystalline”. Theadic crystalline beta (resp. gamma)
function provides g-adic interpolation of Jacobi (resp. Gaull) sums over finite fields of
characteristigp.

Similarly, the Galois action 06 = Gal(Q/Q) on the firstp-adic étale homology
group of (F,»)c leads to the étale” p-adic analog of beta due to Ihafa [17]. Theadic
étale beta function provides an interpolating series for Jacobi sums over a finite field of
characteristi@ # p.

As they stand, the two theories ¢f-adic beta functions have disjoint ranges of
application, the crystalline one dealing with the tower of Fermat cut¥gs (., p)=1,
in characteristicp, for m prime to p, while the étale one with the tower of Fermat
curves (F,n),, in characteristic 0 (say, ove,). Relating the two theories is not
immediate, sincé,» has bad reduction ové€},. However,F,» has potentially semistable
reduction, and Coleman was able to compute the action of the Weil group on the de
Rham cohomology ofF,,, for any m, in his admirable paper_[9]. We still refer to
this theory as “crystalline” (even if “potentially semistable” would probably be a more
appropriate choice). We recall, however, that the Jacobian vakjetf F,, has potential
good reduction at every. The étale theory of the beta function was greatly improved
by Andersonl([1],[[2], who considered the relative homoldéy U, (C), Y,,(C); Z/nZ),
where U,, is the affine part ofF,, and Y, is its closed subscheme of equation
xy = 0. He then considered the action 6fy on I(ian,,,Hl(Um((C), Y, (C); Z/nZ),
for unrestrictedn, n € N. This has the advantage of carrying a special homology class
km.n corresponding to the real lifting of the path, [d, and permits the discussion of
(©0.2) as well as[(0]1). If one uses formu[a (0.7), however, it is enough to consider
I(im m,n(J(Fm)@[n]), for unrestrictedn, n € N, WhereJ(Fm)@[n] denotes the subgroup
of n-torsion points in the abelian variety(F;,), which permits one to avoid discussing
1-motives.

This being the situation, it was clearly possible to relate the two thegrieslic étale
and p-adic crystalline, of the beta function, suitably extended to treat the full tower of
Fermat curves oveQ),, via Fontaine’s theory op-adic periods.

Fontaine’s theory represents one of the main achievements of mathematics in the
twentieth century, in that it leads to very general comparison theorems bepwadit
étale andp-adic de Rham realizations of motives going under the nameadic Hodge
theory. Granting a good formalism of algebraic homology|[18}adic Hodge theory
should provide a perfect “integration” pairing for motives defined overadic number
field, between de Rham cohomology and a suit&léde p-adichomology This has been
made explicit in the case of abelian varieties by Fontéiné [16], Coleman [7] and, in the
more general form we use, Colméz[12].
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In this article, we deal with smooth projective curv&sdefined overQ, and the
identification of thep-adic étale homology

(0.10)  HielX(C). Zp) :=1im Hysing(X(C), Z/ p"Z) = Z ®7 H1sing(X (C), Z)

with
T,(J(X)(©O) = le Hom(Q,/Z,, J(X)(C)),

whereJ (X) is the Jacobian variety df, is classical[18, Lemma 9.2]. On the other hand,
(0.11) T,(J (X)(©)) = T,(J (X)(@)),

and the identification i€;g-equivariant. In the previous formula, we should reg@rds
contained inC. If we also fix an embedding : Q — C,, the completion of the algebraic
closure ofQ,, we get a canonicalig-equivariant isomorphism

(0.12) Zp ®z H1sing(X (C), Z) = T, (J(X)(Q))).

On the other hand }5(X/Q) = Hiz(J (X)/Q), and if J (X) has potential good reduction
at p, and7 is a proper and smooth model ¢{X) over the ring of integers 0@,,, we
may use Colmez’ explicit computation gf-adic periods([12]. We recall tha@qr , is
a complete discrete valuation field, with residue fi€lg and valuation rinngR,p. For

= (.. up...) € T,(J(X)(Q,) andw € Hix(X/Q), identified with a differential
form of the second kind o (X), Colmez defines

(0.13) [o=im 5" (Futan) = Futan ® ).

In (0.13), ® denotes the addition law of (X), F, is a primitive of w anda,, i, €
j(IB%jR’p) are suitably chosen, with, a lifting of u, € J(X)(C,). The valuefu w, a priori

in Byr p, in this particular case happens to live in the smaller Bpg= Bcrys , ®qur Q,.

We use in this article a variation of Anderson’s construction in that we consider the
Galois action (restricted t6q, = Gal(@p/Q,,)) on the “big” p-adic Tate modulél, :=
I(imm(Tp(J(Fm)@p)), wherem € N is unrestricted, as in Anderson’s theory. Our main

point is thatT, is a free module of rank one on the profinﬁ’@-algebraZp[[2(1)2]],
endowed with the natural cyclotomic action@f, .

It is only natural to forget about the previous two definitiongeddic beta functions,
and to decree that, far t € Q with s, 7, s + ¢ ¢ Z,

(0.14) Byo"(s, 1) = / T €Bp

,7(/7)
is Fontaine’s p-adic beta functionThe integral in[(0.14), for rational andr of common
denominatovn, is Fontaine’s period of the differential form ; against the image,(,{’) €

T,(J (Fy)) of the lifting n,, € Hising(Fn(C), Z) of the Pochhammer path t6,,. Our

choice of a generator of th&,[[Z(1)%]]-module T, is preciselyn® := I(immn,ﬁf),
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canonically corresponding to Pochhammer’s path, via the choice of two simultaneous
embeddings of in C andC,,.

We do not understand at present the function-theoretic propertigs of (0.14). It is clear
that it is not p-adically continuous as a function ? to B, (nor to Bgr ,). It is also
clear that this function has an application to the interpolation of Jacobi sums. Namely,
if we denote byx — J,5.(x) € Q(&,) the continuous character of theeld group
I, corresponding to the Jacobi sumdGsencharakter of [20], fer, b, c € Q/Z and
ma, mb, mc € Z, Fontaine’s beta function providespaadic interpolation of/, , .(x) €
Q(¢m) C Q, C C, as a simultaneous function af b, ¢ € Q/Z andx € J,, Ig(,,)- Even
though this function is nop-adically continuous, our final formulgs (6.4), (6.7) show that
B['fom(s, t) contains both thétale interpolation of Ihara [17],[1], and the crystalline (resp.
potentially semistable) interpolation of Dwork (resp. Coleman) [8].

We only sketch here the main ideas and constructions, deferring to further papers actual
computations and some questions which seem worth studying.

In the first place, we expect geometricunderstanding of the link, via Fontaine’s
periods, between an Anderson-styleadic étale gammaG,-cocycle, and Coleman’'s
extension toQ, of the p-adic Morita gamma function, which forms a cocycle of the
Weil group V\/(@p/(@,,). This seems to require Fontaine’s theory feadic realizations
of 1-motives with potentially semistable reduction (likg (U,,, Y,,)): this is the subject
of present investigations. At our request, Coleman kindly proved, during a week-end in
October 2004, the local analyticity of hig-adic gamma cocycle, in line with Dwork’s
Boyarsky Principle

Furthermore, we have completely left out, much to our regret, the relation of the
étale beta function with class field theory, via CM factors of the Jacobians of Fermat
curves [[2], [12]. In that perspective one should relate Andersersite adelic beta and
gamma functions to crystalline adelic beta and gamma functions, via some Fontaine’s
“hyperadelic” beta and gamma functions taking values in the]F[r;gB%p.

It is also our hope to examine more closely the powerful computations of Coléman [9]
and Coleman—McCalluni_[10], which should lead to a generalization of the notiéi of
isocrystal into that of @-adic differential equation on a-adic algebraic variety, endowed
with the action of a Weil group.

1. IHARA—ANDERSON BETA FUNCTION

1.1. From now on, we fix the prime numbgrand an embedding, : Q — @p (while

Q is viewed as a subfield df), and identifyGq, with the decomposition group @,
for the prime associated t9. For anym € Z..o, let F;, @, denote the Fermat cur .9),
viewed as a variety ove,. Let J,, denote the Jacobian &f,, andJm,@p that ome,@p.
We have natural maps,, , : F,, — F, whenevem | m, and corresponding maps of their
Jacobians. We consider the projective system “Fermat tower”

(1.1.1) e Fpy MR, 5 Y\ {x = 0,1, 00}

In particular, eacl¥,, is, vian,, := m, 1, an abelian covering afy = Pb \{x =0,1, oo}
with groupu,ﬁ’l/A, whereu,, is the group ofn-th roots of unity in@x, A={(,¢,¢) €
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n2}) is the diagonal subgroup, ar@, ¢’,¢”) e wd acts on(x,y,z) € F,(Q) via
(x,y,2) = (x,¢'y, £"z). The projection¢, ¢’, ¢") = (¢, ¢') identifiesu /A andu?,
asGg-modules. Fot € u,,, we denote by{]o (resp. f]1) the automorphism of,, / F1
associated tdz, 1, 1) (resp.(1, ¢, 1)), and . ¢'] := [¢]o[¢']1. S0,Z(1)2 = lim 2,

acts on the tower of Fermat curves in a compatible way, namelpifz1) € Z(l)2 is
represented by the projective systém,, ¢,)m € lem,u,,zn we set f1, z2] = [¢m, ¢,]
on F,.

1.2. We are interested in ti@yp,-module

Ty (Jn(@)))

<

(1.2.1) T, := im T, (J,n.g,) = lim
m m

whereT), (—) denotes the Tate module. It will be viewed at the same timéZq;ﬁ[i(l)z]]-
module, Wher@?(l)2 is also viewed as @Qp—module.

The comparison isomorphisms recalled in the introduction imply that the Pochhammer
pathsn,, € Hysing(Fn(C), Z), which are compatible with the magg, — F, for n|m,

determine an element?) = I(immn,(n”) € T,. Our main point is

THEOREM1.2.2. T, is a freeZ, [[Z(1)?]]-module of rank one, generated b .

This follows from Anderson’s results [[2]/][1, 85]. Anderson considers the affine
part U, of F, and its closed subsel,, of equationxy = 0. His theory is
based on the study of the Galois structure of the relative (classical) homology groups
Hy(Uy(C), Y, (C); Z/nZ). He proves that thig p-module is also %/nZ[Mi]—module
of rank one, freely generated by the imagg , of the path [01]. But he also
shows [[2, (5.4.5)] that the Galois modulg,[n] is a quotient of the submodule of
H1 (U, (C), Y, (C); Z/nZ) generated by the image of the Pochhammer path

Nman = (1 — [Cmloo (1 — [é‘m]l*)’(m,na
wherez,, = ¢#7'/™ . The statement follows directly from this.

REMARK 1.2.3. H1(Up, Yy: Z/nZ) = Tz;,7(H1(Un, Yn)) can be viewed as the-
torsion of the 1-motiveH1(U,,, Y,,) (over Q). It can be explicitly constructed from a
generalized Jacobian df,, [2, (4.2)]. So, it would be possible to pursue Anderson’s
approach throughout this paper. We prefer the more classical use of torsion points
on the classical Jacobian, to have Colmez’ results [11] at our disposal. In fact, to
compare Anderson’s theory of the gamma function with the theory of Dwork—Coleman,
consideration of 1-motives will certainly be necessary.

We recall that Ihare [17] defined thiigy-modules

(1.2.4) Ip = lim T, (Jpm Q)
and
(1.2.5) ZpllZp (W2 1= iM(Z/ p" Z) [ i)

m
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He showed thai), is a freeZp[[Zp(l)z]]—module of rank one, generated by the image of
the Pochhammer path.
So, our definition[(I.2]1) differs slightly from both Anderson’s and Ihara’s.

1.3. We define a continuous cocydlgy, — Z,,[[Z(l)]], o +— B¢, called thebeta
cocycle via

(1.3.1) on = Bﬁtn.

We may regard the elements ﬁl},[[Z(l)’]], for any r, as functions(Q/Z)" — @p
[T, (1.4)]. Namely, givem € (m~7/Z)" and f € Z,[[Z(1)']], one can defing (a) € Q,
by first considering the imag§, of f in Z,[u},], and then using the identificatiqn,, =

Hom(m=1Z/Z, @;), andZ,-linearity in f,,, to obtain an element(a) = fu(a) € Og .
P
The cyclotomic character .
X GQP — 7"

we consider, and an action 6fp, onQ/Z, are defined by the formulas
(1.3.2) floa) = f(x(0)a) = f(a)

for f € um(@Q,), a € m='%/Z, ando € Gq,. According to our previous definition,

formulas ) actually hold fof € Zp[[Z(l)’]], a € (Q/Z)",anyr,ando € Gq,. The
cocycle property oB¢! reads

(1.3.3) B2 (a) = B(a)BE(x (0)a)

fora € (Q/Z)? ando, T € G, .
Foro € Gg, anda, b € (Q/Z)? such thab b = a, we set

(1.3.4) B%a; b) = B(a).

Foro € Gq, let

(1.3.5) Hy = {(a; b) € (Q/Z)* x (Q/Z)? | 6b = a)
and
(1.3.6) H= |J H

O’EGQP

So, BS' may be viewed as a functioBS' : H — Og, such that
P
(1.3.7) B%a; ¢) = BS\(a: b)BS\(b: c)

for anya, b, c € H. The functionB["i‘(a; b) will later be regarded as a function @f; b) =
(a1, az; by, bo) € Q“, constant on classes méd.
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1.4. We now take the attitude outlined in the introduction, that the natural “global”
variable for the beta function should be a line bundle (which will here be taken to be
trivial) on P! = PL, endowed with a connection with logarithmic singularities and
rational exponents along the reduced divisowith support{0, 1, co}. We definel; ; :=

(Op1, V1), where

dx
x =1

We will consider thelogarithmic de Rham cohomology group$ (1.4.1), namely the
hypercohomology groups (as complexes of abelian sheaves fétalestopology)

dx
(1.4.1) Vi Opt — Q]%)l/Q(Iog D), 1> s—+1

. . Vs’.t
(1.4.2) Hio r@®Y/Q, Vs ) = H (PY/Q, Opr — 25 /o109 D).

Let [L—],, € Higy sr(P/Q, V) denote the cohomology class of the differential

x(x—1)
form % The restriction of the mapv,, of ) toPL \ {0, 1, oo} induces a

logarithmic connection on any line bundle of the Totpix™ (1 — x)" for m,n € Z.
Multiplication by x (1 — x)™" identifies this line bundle with logarithmic connection
With (Opt, Vsim.i4n), SO thatHo, 4oqP/Q, Viimi1n) = HipgqrP/Q, Vs,). In this
sense

dx m "d—x
(143) [m]s+nht+n = |:X 1-x) x(x — 1):|s,t

B(s +m,t+n) dx
B(s, 1) x(x—1) sz.

Letm € N be a common denominator oft € Q,s = S/m,t = T/m,with S, T € Z. On
the affine part,, of F,, (see[(0.p)) we consider the functions andy,, induced by the
coordinate projection¥/Z andY/Z. We also set = x1; andy = yj, both functions on
P! and onF,, via the natural projectio,, — F1 = PL. So,x,, (resp.y,) is a branch of
xY/m (resp.(1 — x)¥™), andx,,, y, are linked by the equation

(1.4.4) XMy =1,

In this way we single out a choice of a branch of the algebraic funatioh— x)’ onP1,
namely the rational function y! on F,,. The connectior] (1.4/1), when pulled backfp,
becomes the unique logarithmic connection(®p, , with logarithmic singularities along
the inverse imag®,, of D in F,,, and the rational solution,, 5y, 7 = x~*(1 — x)~'. On
the other handg,,,.OF, = @ Opx;yl, where the direct sum is taken over0S < m,
0 < T < m. Since the mapF,, D), — P D)o, is alogétale Galois covering
with groupu,zﬂ, the direct image of the logarithmic complex

dpy ®Q(1m)
s (OF, ® QUitm) —"——"> Q% (10 D) ® Q1))

decomposes into the direct sum of logarithmic complexes

T[m*(dFm)
(Op1xp Y ——> 41,6109 D)xp y) @ Qptn)
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isomorphic, via multiplication by:S yI , to

Vs.1
(Opr = 251,109 D)) @ Qbtm)-
Since everything descends@ we conclude that

Fm

d
T (OF, —> 27 10109 D))

decomposes into the direct sum of complexes

ﬂrn*(dFm)
Opixp v ———> 251, (l0g D)x; v,

isomorphic, via multiplication by3 yI', to
Vst 1
Opr — Qpl/(@(log D).
In particular,

(1.4.5) Hig ar((Fin. Di)/Q) = @D Higy 4P/ Q. Vs.1)
s,t

where the sum runs ovetr € m~1%Z, 0 < s, < 1. For anys,t € Q of common
denominator € N, we may identify [x(ff—fl)]s,z € ngg_dR(]P’l/Q, V.;) with the cohomo-

logy class g ;] in H,gg_dR((Fm, D,,)/Q), of the Fermat differential
., =x""Ylx, x=Xx/z, y=Y/Z,

on the Fermat curvé,,. Fors, ¢, s + ¢ ¢ Z, [t,,] is a differential form of the second kind
on F,, and in fact these forms generaig(F,,/Q) C Hy 4r((Fiu, Din)/Q). So,

(1.4.6) Hir(Fn/Q) = € Higg ar®/Q. Vs.0)
s,t
where the sum runs overs € m~1Z with0 < s, ¢ < 1 ands + ¢ ¢ 7.

We define

(L4.7) Higg.gr((Fe, D&)/Q) =i Higg.qr((Fi, Din)/Q) = €D Hizg.sr®*/Q. Vs.0),
s,t

where the sum runs overr € Q, 0 < s,7 < 1, and its subspace

(1.4.8) Hir(Fe/Q) = lim Hig(Fn/Q) = QD Higg-ar®*/Q, Vs.0),

where the sum is restricted to0s, r < 1 withs +¢ ¢ Z.
The one-dimensional)-vector subspace oﬂllg_dR((Fm, D,,)/Q) generated by the

[o]

cohomology classt ;] € ngg_dR((Fm, D,,)/Q), for m € N such thatns, mt € Z, is
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determined as th€ g-invariant subspace @5, 4((Fn. Dn)/Q) ® Q on whichu?, acts
via the character

(1.4.9) Koot gy = s (€ ¢ 25T

For any¢, ¢’ € u,, ands, t € Q, of common denominaton, we then have
(1.4.10) £, ST [75] = X5 (8, €]

Our functional interpretation is based on the map

(1.4.11) Q® = Higgar(Fa, DO/Q), (s, 1) = [75.4]-

For any characteg : Z(1) — @X of finite order, we denote byl j((Fs. Da)/Q),
(resp. HdR(F /Q),) theQ-vector subspace cﬁ,og ar((Fe, D4)/Q) (resp.HjR(F./Q)) of
Gg-invariant classes e Hlog_dR((F., D.)/Q) ® Q (resp.Hiz(F./Q) ® Q) such that

(1.4.12) k1, z2]* o = x(z1, z2)a.

Forx = Xs., s, t asin(1.4.1D), we gelg, 4r((Fe, Ds)/Q)y,, = Q[z,,/]. So, the elements
of Z(1)2 = lim m 2, are naturally functions o@? with values in@;, namely we set

(1.4.13) (& e, 1) = xe0 (G, ) = ™5™

for anym € N such thatns, mt € Z and¢, ¢’ € u,. This extends to an interpretation
of the elements ofZ [[Z(l)z]] as functionsQ? — (@p, constant on classes mdf,
compatible with our previous functional interpretation (see Seftign 1.3).

Itis now natural to define, for € Gg,,

(1.4.14) Hy = {(a; b) € Q% x Q? | (a; b) modZ* € H,)}
and
(1.4.15) H= J Ho.

O'EGQP

Then,BIfft may be viewed as a function (constant on classes #tpd
et. _
B, H — OQ,,

such that the relatiofi (1.3.7) holds for anyb, ¢ € H.

2. DWORK—MORITA CRYSTALLINE BETA FUNCTION
2.1. TheBoyarsky Principleof Dwork [6], [13], [15] is the following vaguely stated
conjecture:

If cohomology is parametrized by a character then the Frobenius operation will vary
continuously [locally analytically] with the character
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The first problem in approaching the Boyarsky Principle consists in giving a precise
meaning to the character mentioned in it. Of which group should it be a character?
In this article we take the attitude outlined in the introduction, that the group involved
should be the fundamental group of a suitable tannakian category of differential modules.
We illustrate this by a typical example, in the classical language of overconvefgent
isocrystals([4, (2.3.7)].

Let X be a smooth variety defined oy, xo € X (IF,,), and let

(2.1.1) o Xy = Xy S X

be a projective system of abelid@tale coverings, geometrically irreducible, with group
H, = G(X,,/X), of order prime top. Leto € Go, be a lifting of the Frobenius
automorphismog of GFp and Fy : X — X be the absolute Frobenius &f. We
assume to be given, for some Galois extenstonf Q,,, an overconvergent-isocrystal

L on X/(K,ok). Thenm,,,,; £ will decompose into a direct su@xeﬁm Ly, where

H,, = HOm(H,y,, @;) denotes the group of charactersf. Each factoiZ, is an example
of an F-isocrystal parametrized by the characieof H = le mHy. The groupH is an

abelian quotient oﬂprimem”) (Xg . x0), and itis endowed with a canonical action®f, .
P
We have a horizontal morphism

(2.1.2) By (0) 1 FXLY = Lyoo,

where/:&") is the overconvergent isocrystal &f K, deduced fronc,, by the base change
O|K-

If X = (Fiu \ Dp)r, OVErX = X1 PIle \ {0, 1, 00}, then H = Z(Primetop) (1)2.
and the group of characters#s = (Z(p)/Z)Z, with the cyclotomic action oG, . So, the

Frobenius automorphism @fr, acts by multiplication byp on H. We have a horizontal
morphism

(2.1.3) By (o) FXLY) = Ly

Passing to the rigid cohomology ot} L, Hyg(X,,/K,n, L), we see that it also
decomposes int@xd}m H,, H, = Hyig(X,,/K, 7, L,) interchanged by Frobenius

(2.1.4) Dy () HY — Hy,

wherex’ o 69 = x in H,,. More general examples df-isocrystals parametrized by a
character may be obtained by adding to the previous data a smooth morphi&m- S,
and studying the direct image of the isocrystéjsunder f [14], [15].

2.2. To make sense of the Boyarsky Principle, which vaguely asserts the analyticity of
the map[(2.1}4) as a function gf we need to lift the previous data to characteristic zero,
and to take the logarithmic de Rham viewpoint of the previous section. We illustrate the
statement in the particular case of the tower of Fermat cuFygf degree prime tg,
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overQ,. So,X = ]PIle \ {0, 1, oo} and X,, is the special fiber of;, \ D,, over[F,, for
(m, p) = 1. ThenK = Q, and theF-isocrystal’ on X/Q, is represented by the-adic
rigid analytification of the algebraic connectidﬁ%p\{oyl’oo}, d). We take our logarithmic
viewpoint; then, under the covering, : F,, — F1, m,.7,, L decomposes into a direct
sum of factors represented "} = (O]Ia% , VA, withs,r € m™1Z,0 < 5,1 < 1. Also,
via well-known comparison theorems [311,

(2.2.0) Hie(P\ {0, 1, 00}/Q, Vi) ® Qp = Hiy(X/Qy, L2,

so,if0< s,t < lands + 1t # 1, we also have

(222) Hr::-g(X/va E?,r[]) = m%g_dR(Pl/Q’ ‘Cs,t) ® Qp'

The advantage of this viewpoint is that we have naturally parametrized characters of the

(abelian quotient of the) geometric fundamental graf§™® (Xg, . x0), for somexo €

IF’l(IE‘,,) \ {0, 1, oo}, (corresponding to the Fermat tower of degrees primg)tby pairs
(s, 1) € Z%p), or equivalently by differential classes;[]. We are going to express the
Frobenius matrix in terms of this natural parametrization. To avoid minor complications,
we restrict ourselves to forms,[;] which correspond to differentials of the second kind
on some Fermat covering, i.e.40f, s +t ¢ Z.

Let us consider a subset of the $¢tefined in[(1.4.1]5), namely

(2.2.3) Hwi= |J Ho.
oeW(@Q,/Qp)
We also define
(2.2.4) HIO™9®9— ((a, b) = (a1, az; b1, b2) € Hy | a1, az, b1, bz, a1 + az, by + by ¢ 7.},
-deg. -
(2.2.5) Hy 9= ) Hpemees
UEW(@;;/Q[})

The Dwork—Morita crystalline beta functiois the function

crys . , ,non-deg 4
(2.2.6) B i N2, — Q)
defined by
(2.2.7) By, 5o (O (Fx[te 0] = pBp (s, 18" 1) 1]

for p(s’, 1) — (s, 1) € Z?, and in general (writind3;,” (s, 1; ', ') = By (s, 1); (s, 1')))

by the condition
(2.2.8) BsY%(a; ¢) = B, (a; b)B,"*(b; ¢)

foranya,b,c € H
The action of Frobenius ore,], for s,t € Z, ands,t,s +t ¢ Z, is carefully

computed inl[14, (22.2.4)]. We now pause to discuss in detail Dwork’s theory gf-tuic

crystalline gamma function and its applicationgeadic interpolation of Gaul3 sums.

non-deg
w .
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3. EXAMPLE: p-ADIC INTERPOLATION OF GAUSS SUMS

3.1. We describe Dwork’s approach peadic interpolation of functions arising from
“variation of cohomology”. To make this section completely independent of the previous
ones, we start by detailing notation.

Lety, be a non-trivial additive character of the figlg with p elements; lety = p/,
andF, be the field withg elements. Let Teich be the Teickitter character off;. For

ac q—le, define

(3.1.1) Xa = Teich =9,
a multiplicative character df, (extended byy, (0) = 0 Va). We recall theGaul? sum
(3.1.2) Gy(@) =Y xa()¥p(Trr, F, (x)).

xely,

Let| — | be the (ultrametric) absolute value®©f, normalized by p| = p~ L. Letmpwork €

Cp, né’\;grk = —p, closest toy,(1) — 1. We denote by ord = —log, |x| the p-adic

valuation ofC,,.
Y. Morita defined gp-adic analytic function’, on the union of the disks:

p—1
(3.1.3) D(—p, p7)
n=0

1 1
Witp’1 <p=p » 1 <1suchthat

I,(0) =1,
(3.1.4) I,(1+x) [—x if x| =1,

TT,x) T -1 if|xl <l
In particular,

n—1
(3.1.5) Ip(n) = (=1)" J-
j=0
(,p)=1
3.2. Ifwe put
0 .
O, (x) = eXprpwork(x — xP) = chxj’
j=0
then 1
ordcjsz_2 Vi=0,1,...,
p
and foru € [0, p — 1] we have
o
_ c i+u(y)i
Fy(—pu+ py) =g *y L2270
P Py ; (—=7Dwork)’

1 This estimate is due to Dwork.
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where, as usual,

I'(y+1i) .

Mi=—F——=y0+D---(+i-1

y () Yy y
fori =1,2,.... Dwork introduced the more flexible functign (x, y) meromorphic in

) 2 1-5—54
(3.2.1) DV (pp) ={(x,y) €Cy | py—x =1, |yl <pp=p 7 r1}
for any fixedr € Z, defined by
I'(y +1i) i
3.2.2) Yo(x,y) = Cpisi—f [ ().
P20 6D

The modular property of, is then

I'x+m) I'(y)
I'x)y TI'(y+n)

(3.2.3) Yp(x +m,y+n)=y,(x,y) (—m)""

for any (m, n) in Z2. The meromorphic functiom, (x, y) has inD® only a finite number
of poles, namely the solutior{s, y) of py —x = with y € Z-p andx € Z<o.

3.3. TheGross—Koblitz formuldor interpolation of the Gaul® sui, (a), a € q—}lz, is

f
(3.3.1) —Gy(a) =[] rp@P.a),

i=1
wherea = a©@,a® ... a) =a @V € Z,) are defined by
(3.3.2) pa¥ —aV ez fori=1,..., -1,

which is possible since € 7.

We now explain the relation to the integral formila{0.2). The modular propenty of
holds since it is the matrix of Frobenius on the cohomolog&gfr, with coefficients in
the (overconvergent) differential module @y, ¢,

(3.33) V,: (Cp[x,x_l] — (C,,[x,x_l] dx, [ df+ f(rx +a)d—x
d dx
= (x— +a+ nx)(f)—.
dx X
One canp-adically complete:

d d d
(3.3.4) VR S R'E fe (x—+a+nx>(f)—x,
X dx X

whereR' denotes the ring of functions analytic forle < x < 1+ e with unspecified
€ > 0. The rigid cohomology space, fare Z, N Q,

tdx

T T T 1
Hr}g(Gm)Fq/Cl” (OG?anth’ Va)) = Hl(va) =R 7/VaR
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is one-dimensional; if: ¢ 7Z, it is spanned by the claséxi[]a of ”i—)‘. Form € Z we have
the “reduction formulas”

(3.3.5) [xmd_x] _ [d_x} _ra+meo™ [d_"} ,
X da X la+m I'(a) X 14

The Frobenius magF (a, b) is defined as the horizontal morphism, ta € Z, N Qand
pb—a=pnez,

(3.3.6) Fla,b): (R, V) = (R V), fx)r> fxP)x/Ox).
To understand this definition, keep in mind that, formally

(3.3.7) V,(x b exp(—mx)) =0 and V. (x " exp(—rx)) =0
while

x PP exp(—mxP)x* /O (x) = x PP exp(—m xP)xPP exp(—rx + mxP)
=x ‘exp(—mx).
Computations are formal, but the functiaris and® (x) are inR".

It is convenient to use simultaneously a left inverse of Frobenius, name@wioek
map

(3.3.8) D(b,a): (R, V) — (R, V),  f(x) > ¥(f)x OX),
where
1
(3.3.9) viR >R e = - 3 &)
xP=t

The Frobenius and Dwork maps induce inverse isomorphisms
Frobt(a, b) : HX(V,) — HX(V)), DwW (b, a): HX(V)) - HY(V}).

A simple computation using the reduction formulas gives

(3.3.10) DwH(b, a)([d—x] ) = p_ly,,(a,b)[d_x} ’
X 14 X Jp

or

(3.3.11) Froﬁ(a,b)([d—x} ) = pyp(a,b)_l[d—x} :
X 1p x 1,

Then the modular property gf, comes from the horizontal morphisms

R VISRV, feamy,
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and the commutative diagrams

Frobt(a,b)

HY(V}) HY(V))

ol £

+ Frobt(a+m,b+n) t
HYV,.) HY V)

coming from

X () — D e f (PP 6 (x)

ol To

fx) w) f(xp)xp(b+n)—a—m/@(x)

for f(x) € Rr' andpb—a, m, n € Z, together with the base-change formulas given before.

3.4. The Gross—Koblitz formula is then a special case of the trace formula in rigid
cohomology. Namely, fou € q—ilz as before, we set

Gy(r,a)= Y Xa(Nr, 5, )¥p (Tt /F, (X))

xeF,r
and define the correspondidgfunction as
00 T
L(a,q,T) = exp(rZ:; G, (r, a)7>.

We consider iterates of the previous operators:
(3.4.1) Fy(a) = F(a,a®) o F(a®,a®) 0. 0 F(@a/ ™Y, a),

Fy@): (R . V)= R, V),
and their left inverses
(3.4.2) Dy(@) = D(a,a’" D)o D@V, a2y o...0 D@, a).

They induce inverse isomorphisms

(3.4.3) Frof(a) : HY(V,) - H(V,)
and
(3.4.4) Dw(a) : HY(V,) - H(V,).

The trace formula in this situation says that
L(a,q.T) = det(1 — gTDW, (a)).

from which the Gross—Koblitz formula follows.
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3.5.  We can be more explicit. Assume<Oa < 1, where

L Botmp - ppapT

71 . O0<wi=<p-1

Then

R S b i i L) A R

pf _ 1 El — = p )
sincepa® — a = uo. Then
(3.5.1) yp@' ™, aV) = wpio Dy (—pio1 + pa?)
and
f

(35.2) — Gy(a) = g0ttt TTE (i + pa®)

i=1

f-1
_ _Motp1te o1 1
= Tpwork | | 1

i=o Mi*

modulo 1+ () in Q, (¢, ¢g—1), a multiplicative congruence due to Stickelberger.

3.6. Dwork’s computation of Chapter 22 df |14] shows that, t6r, 1), (s',t)) €
Hy 9Nzt andp(s’, 1) — (s.1) € 72,
_ Y5, sDyp @, 1)

3.6.1 BSYS(s, ;5,1 )
( ) )4 (S S ) )/p(S+l,S/+t/)

It follows that B, (s, £; s’, ') may be extended as a meromorphic function on each of the

domains

(3.6.2) DD (pp) x DY) (pp)

for fixedi, j € Z. We warn the reader tha, (s, 1; s, ') is not meromorphic on the

unionJ; ;.7 P (pp) x DY) (pp) of the previous 2-dimensional analytic domains. We
point out that at an irrational poirts, £; s, '), By (s, #; s', 1) loses its cohomological
meaning as matrix of the Dwork operator in rigid cohomology (rigid cohomology may be
infinite-dimensional at such a point!). Similarly, the functiBf**(a, b) of (2.2.§) can be
extended to a meromorphic functionfgffor (a, b) in a countable union of 2-dimensional
p-adic analytic domains containirig, N Z?p), for anyo € W,(Q,/Q,) and anyfixed

pair of integers

(3.6.3) Py —ai=pieZ, i=12

This is then the statement (and essentially, the proof) of the Boyarsky Principle in this
simple unramified case.
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4. FROBENIUS MATRICES OFFERMAT CURVES (AFTER COLEMAN)

4.1. Thep-adic crystalline computations of the previous two sections apply to Fermat
curvesF,,, when they have good reduction gt i.e. to the prime-tgy part of the tower
(I.1.3). So, whetin, p) = 1, one obtains a naturatadic definition of the beta function of

(s, 1), for s andr in m—1Z, in terms of the action of Frobenius on the rigid differential class

[z5.,]in Hr}g((Fm)]Fp/Qp) = H1(F,/Q) ® Q,. The situation is much more complicated
when p | m. The complete analysis of this situation is due to Colernan [9]. We just sketch
the principles of Coleman’s computations.

4.2. LetQ,' be the maximal unramified subextension@t/(@p, and recall thewell
group W(Q,/Q,) c GalQ,/Qp), which consists of ther € GallQ,/Q,) whose
restriction to(@;‘,r is an integral power=£: dego, the degreeof o) of the absolute
Frobeniusp of @g’ (we identify Ga[Qg'/Q,,) with GaI(F,,/IF,,), for F,, the prime field
of characteristicp, ande its algebraic closure). Notice that the subgro(@,}/Qp) of
elements of degree 0 of (@,,/Qp) coincides with the inertia subgroup of (E@I,,/Q,,).
Then kQ,/Q) carries the (profinite) topology of a subgroup of Ggl/Q,), while
W(@Q,/Qp) will be equipped with the group topology for whickQ,/Q,) is an open
subgroup. We also define

W4 (@,/Q,) = {o € W(Q,/Qp) | degs > 0}.

We will identify Q/Z with the group of roots of unity il@p, via

(4.2.1) g ModZ > 1, (2™~ 14),

The point of the next subsection is to construct local liftings of the actidivofidentified
via local class field theory to ‘(@p/(@p)ab, onQ/Z, to an action of). The reason for that
need is that we regard,[,] for (s, t) € Q? as our variable, while \(‘@p/Qp)ab (as was
the case folGg,) only acts on the charactegs,,, which depend upots, 1) mod Z2. The
action is simplyx;, = o o x,.,. We can make this more explicit via local class field theory,
but the problem of lifting this action to an action @n ¢) itself remains.

We recall that the Jacobiay), has potential good reduction ove,. By [5] there
is a natural semi-linear actiogtrys of W(Q,/Q,)2 on Hl5(F./Q) ® Q,. On the other
hand, in this particular casgl[9], the action descends to a linear actior(@,)c@p)ab
on Hle(F./Q) ® Q,. This action respects the isotypical decompositiorH@&(F./Q)
via the characters di(l)z. So, if x, x’ are characters of finite order @f(l)z, related by
oox = yx,then

(4.2.2) Perys(0) (Hir(Fo/Q) ) C Hin(Fo/Q)y ® Q.

Now, in order to make sense of our contention, generalizing the classical Boyarsky
Principle, that the action of the Weil group should pp&dically locally analytic, we need
some way to relate the choice of basis elements in the previous eigenspaces, as was done
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in the previous section in the unramified case. In the next subsection, we will indicate a
uniform way to choose, fo, x as in [4.2.2)Gs, ;5" 1) in Q* so thaty = x,, and

/
X = Xs',t'-

4.3. The action ofGg, on Q/Z factors through the maximal abelian quoti%bp =

G(Q}°/Qp), whereQ}is the maximal cyclotomic extension@f, andQ\' is its maximal
unramified subextension. We have a diagram

mc
Q

N\

(4-3-1) Qp(l"«pm) Q;r

/

DN
Qp/

whereQ), (up~) is the field generated ové, by all roots of unity of order a power gf.
S0, G(Q°/Qy) is a direct product o6 (Q,(uyx)/Qp) —> ZX andG(QY/Q,) —>
Gr, =5 7.The reciprocity map of local class field theory

Q, — G(@?C/Qp)
identifiesQ,; with the Weil group W@Q‘C/Qp) = W(@p/(@,,)ab, and mapsy = p"u,
whereu € Z; andn € Z,t0 04 € G(Q[TC/Q,,) described as follows:

(i) onQY", o, induces the:-th power of the Frobenius automorphism,
(i) on Qp(up=), oy acts as

(ot 211y “Ne -1
B n=1 n .

Foranya € Q, let(a), € Z[1/p], 0 < (a), < 1, be suchthatd], := a—(a), € Z),
and let—r := min(v,(a),0) < 0. Fora = p"u € Q,f ando = oy, as above, let, € N,
0 <u, < p",besuchthat,u =1 modp"Z. Thenany € Qsuchthat (b+7Z) =a+7Z
satisfies miw, (), 0) = —r and

(4.3.2) up(b), —(a), € Z
and
(4.3.3) p"[bl, —[alp = Ny(a,b) € Z.

We define an extension of the Dwork—Morita crystalline beta funcfion (2.2.6) (originally
only defined or5°"%*%n z ) to the entireH5""* for anyo € W(Q,/Q,); namely,

for (a1, az; b1, bp) € HP" e set

(4.3.4) Perys(0) ([Thy,5,]) = P9 By (a1, az; b1, b2) " tay 4]
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The function B”*(a1, az; b1, b2), defined for(ay, ag; b1, b2) € Ha™* extends to a
locally meromorphic function ofas, az; b1, b2), for any fixed pair of integera; =

Ny (a1, b1) andny = N, (az, bp). So, B,”* extends (with easily described poles) to a
countable union of 2-dimensional analytic domains contaiftipg This is the generalized
Boyarsky Principle in this case. Coleman shows in fact [9] Bﬁt‘fs can be written in terms

of an extension of the Morita gamma function@®y. He proved recently, at the author’s
request, the local analyticity of his extended gamma function. We plan to give full details
on this point elsewhere.

5. FONTAINE’'S PERIODS

5.1. Fontaine introduced certain topologig)-algebradBerys , C Bar , endowed with
a continuous action of G@p/(@p)

(5.1.1) pcal: GakQ,/Q,) x Bar ) = Bdrp, (0, 1) > pcal(, n) = pcal(@) (),

satisfyingpcai(o)(an) = o (a)pcai(e) () fora € Q, andn € Bar -
The embeddin®cys , C Byr, , is equivariant and continuous, but the natural topology
of Berys p is not that of a subspace Bir ,. Now, Berys » is aQ),-algebra and there is a

natural continuous embedding Bf, := Bcrys ®Q]L;r @p into Bygr. The topologica@p-
algebraB,, carries a further natural continuous operation

(5.1.2) Pcrys - W(@p/@p) x By — B, (0, 1) = perys(a, M) = perys(a) (),

satisfyingpcrys(o)(an) = o (@) perys(o) (n) for a € Q,, andn € B, whichis not induced
by the action of GalQ,/Q,), and whichdoes not extentb Bqyr ,. We call this operation
crystallineto distinguish it from thé&aloisoperation of Ga(@p/Qp). We recall thaiBgr ,
is a complete discretely valued field, with valuation rﬁ@’p and residue field thg-adic
completionC,, of @p. In particular, for any choice of a uniformizer Byr , carries a
natural filtration Fil (Bgr ») = BJR,pti’ ieZ.

We briefly describe Fontaine’s theory in the case of a smooth and proper variety
defined ovefQ,, having potentially good reduction at

Under the previous assumptions, the finite-dimensiori@),-vector space
HéR(X@p/@p) = Q, ®q, Hir(X/Q)) carries the Hodge filtration, an obvious Galois
action pga| of Gal(@p/@p), and a natural actiopcrys of W(@p/(@p) [5]. On the other
hand, the finite-dimension&p,-vector space’-lét(X@p, Qp) carries a non-trivial action
of pgal of Gal(@p/Qp). Then Fontaine’s theory says thiy, ®Q, HéR(X/Qp) can be
identified withB), ®q, Hét(X@p, Qp), when equipped with (the tensor product of) all the
previous structures. In particular

(5.1.3) Fil/ Hig(X/Qp) = (FilVB, ®q, Hi(Xg,. Q)& @,

(5.1.4) Hi(Xg, Qp) = (FI’B, 8g, Hig(X OV @/ W),
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Equivalently, we may regard Fontaine’s theory for a vari€tgs before, as a pairing,
Q,-linear (respQ,-linear) in the first (resp. second) variable and non-degenerate,

(515)  Hia(Xg. Q) x Hg(Xg /T) = By, (6,0) > (6,0) = /5 o,

satisfying

(5.1.6) / o= ,OGaI(U)( / w)
pGal(o)(8) )

foro € Gal(@,/Q,), and

(5.1.7) /;pcrys(a)(w) = Pcrys(o')</6w>

foro € W(Q,/Q,), and such that, for any e Hi e X, » Qp),

(5.1.8) /FiIfHéR(X@ /Q,) C Fil'B,.
5 P

The pairing [(5.15) satisfies a natural functoriality with respect to morphfgm& — Y
of proper and smootf),-varieties, namely

(5.1.9) /f*(é)w [ ro.

5.2. The simple case of = G,, g is not covered by the above scheme, still the results
hold true, due to the existence of the nice compactificd&i@mf G-

The first p-adic étale homology group coincides with the Tate modulg:
H1e(Gy.c. Zp) = Tp(Gp(C)) = T,,(Gm(@)) =7Z,(), viaQ c C, with the cyclotomic
Galois action of GalQ/Q). By restricting the cyclotomic action to G(@,,/Q,,), this in
turn may be identified, via,, with 7,,(G,,(C))) = Hlyét(Gm,@p, Zp).

The choice of a system of primitive"-th roots of unity inCp, € = (¢™),cy, with
€@ = 1,¢™ £ 1,6 = ("tD)r in our casee™ = 1,(e2"Y~1/"), determines
a canonical uniformizer, = log([¢]) (in a suitable sense) diqr ,, Which actually
belongs toBcrys ,. ThenZ,t, C Byr , is isomorphic toZ,(1) as a Galois module over
Gal(@p/Q,,) and is a Dieudonmmmodule via the crystalline action of@p/QI,):

(5.2.1) pGal@)ty = xp(@)ty and peys(o)t, = p*¥1,,

where x,, : Gal(@p/(@p) — Z[f is the cyclotomic character. Finally, fon as in the
introduction,Hy sing(G,,, ¢, Z) = Zyp is canonically embedded i, (1), by identifyingy
with the vectore = (¢™),, defined before.

Fontaine’s ringBerys , and its element,, of (5.2.1) play for thep-adic cohomology
theories of the algebraic grou@,, o the role played by the complex fiel@ and
Archimedes’z in the archimedean theories. In fact,

dx

e X

tp.
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5.3. The integration pairing (5.1.5) acquires a more concrete description Mlean
abelian variety (or a formal group) ovél, via Colmez integratiofL1], which we briefly
recalled in the introduction (sef (0]13)). We do not give any details here, because our
understanding of the analytic properties of the Colmez period mappings is very primitive.
We expect that any further investigation of the Frobenius action on classical differential
equations arising from variation of cohomology should be confronted with the Fontaine—
Colmez construction. We hope to come back to this question very soon.

6. BETA COCYCLES

We now take (0.34) as our definition Bbntaine’s p-adic beta functiorBI'fom(s, t) € B,
foranys,r € Qwith s, 7, s +t ¢ Z. We clearly have, fom, n € Z,

B(s+m,t+n)

6.1 Bront Jt =
(6.1) b (s +m, T+ n) BG.1)

By°"(s, 1).

We point out a consequence of formuja (5/1.9). We considef € u,, and the
automorphism{, ¢'] of J,(Q,). Lets,t € m™"Z with s,¢,s +1t ¢ Z, and lets e
T,(J, o) ). We have

p

(6.2) / . / 6 ¢ 0s = 250 (6, ) / -
[£,27]4(8) 8 8

More generally, Ietn,(,{’))m be the compatible system off) eT,(, o ), which defines
2 Np
0P, and letf = (fu)m € Zp[[Z(1)?]] = I(immZp[ui]. Then, fors, ¢ as before,

(63) / TS,Z Z/ fm(sv t)ts,t - f(S, [) f .L'.S‘,t-
fn® ) )

Notice that, forf € Zp[[Z(l)Z]], o € Gq, and(s, ¢, s’,t’) € H,, we have

[ 1) = fs,0).

Formula ), together with the previous remarks, shows that, fos anyig, and
s,t € Qwiths, 7, s +1 ¢ Z,

PGaI(U)(Bgom(Ss 1)) = ,OGaI(U)(/ Ts,t) = / Ts,t = / Ts,t
(P pGal(e)(nP) B (P

= BJ'(s, 1) / To = BS(s. ) BJ°"(s, 1).
n(P)

Therefore, fOI’(a; b) = (a1, az: b1, by) € H(r;on—deg,

(6.4) pGal(@) (By°"(b1, b2)) = Bj(a1, az; b1, by) By°™(ax, az).
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If now o € W(@p/Qp), we also have the crystalline action @n. For (a; b) =
(a1, az; b1, by) € HY" 9 we have

pcrys(a)(B[',:ont(bla by)) = ,Ocrys(U)(/( ) Tbl,hz) = /( ) Perys(0) (Thy,by)
n P D

n

crys .
= / B[? (als a29 blv bZ)Tal,az
n(P)

crys .
= B, " "(a1, az; b1, b2) ) Tava
n P

crys Font,
= By (a1, az; b, b2) B} *"(a1, az).

Summarizing, we have defined, farr € Q with s, ¢, s + ¢ ¢ Z, a function

(6.5) Byo™(s, 1) = f Ty

()
such that, for any € Gal(Q,/Q) and(a; b) € H{hon-deg
(6.6) pGal(0) (BF°™(b)) = BE(a: b)BF*™(a),
and, ifo € W(Q,/Q),
(6.7) perys(@) (By°"(b)) = B, *(a; b) B}°"(a).

The ft.mctionsB,"it and Bf,rys enjoy strong continuity and analyticity properties and
naturally interpolate Jacobi sums.
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