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Algebraic geometry.— Étale and crystalline beta and gamma functions via Fontaine’s
periods, by FRANCESCOBALDASSARRI, communicated on 10 March 2006.

ABSTRACT. — We compare the Ihara–Anderson theory of thep-adic étale beta function, which describes the
Galois action onp-adic étale homology for the tower of Fermat curves overQ of degree a power ofp, with
the crystalline theory of Dwork–Coleman, based on the calculation of the Frobenius action onp-adic de Rham
cohomology of the same curves. The two constructions are easily related via a ramified extension of Fontaine’s
period ringBcrys = Bcrys,p contained inBdR = BdR,p , namelyBp := Bcrys,p ⊗Qur

p
Qp ⊂ BdR,p . We

propose, but do not carry out, a similar comparison for thep-adic étale gamma function of Anderson and the
Morita–Dwork–Colemanp-adic crystalline gamma function.
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INTRODUCTION

The classical beta and gamma functions are meromorphic functions ofs, t ∈ C defined, in
suitable regions, by convergent integral formulas

B(s, t) =

∫ 1

0
xs−1(1− x)t−1dx,(0.1)

Γ (s) =

∫
∞

0
xse−x

dx

x
.(0.2)

They are related by

(0.3) B(s, t) =
Γ (s)Γ (t)

Γ (s + t)
.

Moreover,

Γ (s + 1) = sΓ (s),(0.4)

Γ (s)Γ (1− s) =
π

sinπs
,(0.5)

and

(0.6)
n−1∏
i=1

Γ

(
s + i

n

)
=

(n−1∏
i=0

Γ

(
i

n

))
n1−sΓ (s).
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A formula easier to handle, equivalent to (0.1), replaces the simplex [0,1] by the
Pochhammer contour [21, §12.43] and holds for anys, t ∈ C:

(0.7) −4 sin(πs) sin(πt)B(s, t) =
∫
η

xs−1(1− x)t−1 dx.

The advantage here is thatη ∈ π1(C \ {0,1},1/2) is the commutator [γ0, γ1], whereγ0
(resp.γ1) is the simple circular loop through 1/2, encircling 0 (resp. 1) in the positive
direction. As such,η induces an element of the singular homology on any abelian cover
of P1

C, unramifed but over 0, 1, and∞.
The previous analytic formulas all have their origin in algebraic geometry. Consider

(0.2) first. It shows thatΓ (s) is a period of a rank one algebraic differential module
(EC,∇C) over the complex torusGm,C, an algebraic group defined overQ, namely the
differential module whose (analytic or formal) solution isfs(x) = xse−x . The parameter
s may be identified here as an exponent of local monodromy at 0 of(EC,∇C) (viewed as
a logarithmic differential module at 0). An even more algebraic way of interpreting the
variables is to say thats is the isomorphism class of(EC,∇C)!

So, we regards as a complex-valued character of the fundamental group of a tannakian
category, namely the category of vector bundles onA1

Q, endowed with an integrable
connection with a logarithmic singularity and rational exponent at 0. Notice that the
singularity at∞ is insteadirregular.

We express here, incidentally, our hope that this natural interpretation of the variable
of the gamma function will be useful to relate thep-adic and complex incarnations of the
L-function associated to a motive overQ, say of the Riemann zeta function.

The case of (0.1) is easier. Here, the base space isP1
Q, and the tannakian category

consists of vector bundles with integrable connection having a logarithmic singularity
at 0, 1 and∞ and rational exponents. Again,(s, t) is a complex-valued character of
a pro-algebraic group defined overQ. A further step is needed to interpret (0.5) and
(0.7). The r.h.s. of (0.5) is a ratio of two terms. The denominator,s 7→ sinπs, takes
integral algebraic values when the characters has finite period; so, it can be described
purely algebraically. As for Archimedes’ numberπ , it is algebraically related to a period
of (the constant differential module on)Gm,C: for the generatorγ0 of H1(Gm,C,Z),
we have

∫
γ0

dx
x
= 2π

√
−1, with no sign ambiguity, if we regardQ as contained

in C.
Whens andt are rational numbers with common denominatorm, the integral formula

(0.7) shows that−4 sin(πs) sin(πt)B(s, t) is the complex period of

(0.8) τs,t = x
s−1yt−1dx, x = X/Z, y = Y/Z,

a differential form of the second kind on the Fermat curveFm with homogeneous equation
overQ

(0.9) Xm + Ym = Zm,

along the inverse imageηm in Fm(C) of the Pochhammer path.
Now, for a rational primep which does not dividem, the extension overQp of the

de Rham cohomologyHdR(Fm/Q) of Fm may be identified with therigid cohomology
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of the reduction modulop of Fm. This type cohomology was first introduced by Dwork,
Monsky and Washnitzer, and later, in full generality, by Berthelot. These finite-dimensional
Qp-vector spaces carry, by functoriality in characteristicp, an action of the Frobenius
elementF of GFp = Gal(Fp/Fp). One of the main themes of Dwork’s theory is that the
matrix describing the action ofF on a rational basis of the space of rigid cohomology
classes should be regarded as analog to the classical period matrix of(Fm)C. From this
philosophy, Dwork deduced the mainp-adic properties of solutions of classical Picard–
Fuchs differential equations, and motivated cohomologically thep-adic beta function
naturally constructed from Morita’sp-adic gamma function. We refer to thisp-adic
beta and gamma functions as “crystalline”. Thep-adic crystalline beta (resp. gamma)
function provides ap-adic interpolation of Jacobi (resp. Gauß) sums over finite fields of
characteristicp.

Similarly, the Galois action ofGQ = Gal(Q/Q) on the firstp-adic étale homology
group of(Fpm)C leads to the “́etale”p-adic analog of beta due to Ihara [17]. Thep-adic
étale beta function provides an interpolating series for Jacobi sums over a finite field of
characteristic̀ 6= p.

As they stand, the two theories ofp-adic beta functions have disjoint ranges of
application, the crystalline one dealing with the tower of Fermat curves(Fm)(m,p)=1,
in characteristicp, for m prime to p, while the étale one with the tower of Fermat
curves (Fpm)m, in characteristic 0 (say, overQp). Relating the two theories is not
immediate, sinceFpm has bad reduction overQp. However,Fpm has potentially semistable
reduction, and Coleman was able to compute the action of the Weil group on the de
Rham cohomology ofFm, for any m, in his admirable paper [9]. We still refer to
this theory as “crystalline” (even if “potentially semistable” would probably be a more
appropriate choice). We recall, however, that the Jacobian varietyJm of Fm has potential
good reduction at everyp. The étale theory of the beta function was greatly improved
by Anderson [1], [2], who considered the relative homologyH1(Um(C), Ym(C);Z/nZ),
where Um is the affine part ofFm and Ym is its closed subscheme of equation
xy = 0. He then considered the action ofGQ on lim

←−
m,nH1(Um(C), Ym(C);Z/nZ),

for unrestrictedm, n ∈ N. This has the advantage of carrying a special homology class
κm,n corresponding to the real lifting of the path [0,1], and permits the discussion of
(0.2) as well as (0.1). If one uses formula (0.7), however, it is enough to consider
lim
←−

m,n(J (Fm)Q[n]), for unrestrictedm, n ∈ N, whereJ (Fm)Q[n] denotes the subgroup
of n-torsion points in the abelian varietyJ (Fm), which permits one to avoid discussing
1-motives.

This being the situation, it was clearly possible to relate the two theories,p-adicétale
andp-adic crystalline, of the beta function, suitably extended to treat the full tower of
Fermat curves overQp, via Fontaine’s theory ofp-adic periods.

Fontaine’s theory represents one of the main achievements of mathematics in the
twentieth century, in that it leads to very general comparison theorems betweenp-adic
étale andp-adic de Rham realizations of motives going under the name ofp-adic Hodge
theory. Granting a good formalism of algebraic homology [19],p-adic Hodge theory
should provide a perfect “integration” pairing for motives defined over ap-adic number
field, between de Rham cohomology and a suitableétalep-adichomology. This has been
made explicit in the case of abelian varieties by Fontaine [16], Coleman [7] and, in the
more general form we use, Colmez [12].
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In this article, we deal with smooth projective curvesX defined overQ, and the
identification of thep-adicétale homology

(0.10) H1,ét(X(C),Zp) := lim
←−
n

H1,sing(X(C),Z/pnZ) = Zp ⊗Z H1,sing(X(C),Z)

with
Tp(J (X)(C)) = lim

←−
n

Hom(Qp/Zp, J (X)(C)),

whereJ (X) is the Jacobian variety ofX, is classical [18, Lemma 9.2]. On the other hand,

(0.11) Tp(J (X)(C)) = Tp(J (X)(Q)),

and the identification isGQ-equivariant. In the previous formula, we should regardQ as
contained inC. If we also fix an embeddingιp : Q ↪→ Cp, the completion of the algebraic
closure ofQp, we get a canonicalGQ-equivariant isomorphism

(0.12) Zp ⊗Z H1,sing(X(C),Z) ∼= Tp(J (X)(Qp)).

On the other hand,H 1
dR(X/Q) = H

1
dR(J (X)/Q), and ifJ (X) has potential good reduction

at p, andJ is a proper and smooth model ofJ (X) over the ring of integers ofQp, we
may use Colmez’ explicit computation ofp-adic periods [12]. We recall thatBdR,p is
a complete discrete valuation field, with residue fieldCp and valuation ringB+dR,p. For

u = (. . . , un, . . . ) ∈ Tp(J (X)(Qp)) andω ∈ H 1
dR(X/Q), identified with a differential

form of the second kind onJ (X), Colmez defines

(0.13)
∫
u

ω = lim
n→∞

pn(Fω(an)− Fω(an ⊕ ûn)).

In (0.13),⊕ denotes the addition law ofJ (X), Fω is a primitive of ω and an, ûn ∈
J (B+dR,p) are suitably chosen, witĥun a lifting of un ∈ J (X)(Cp). The value

∫
u
ω, a priori

in BdR,p, in this particular case happens to live in the smaller ringBp := Bcrys,p ⊗Qur
p

Qp.
We use in this article a variation of Anderson’s construction in that we consider the

Galois action (restricted toGQp
= Gal(Qp/Qp)) on the “big”p-adic Tate moduleTp :=

lim
←−

m(Tp(J (Fm)Qp
)), wherem ∈ N is unrestricted, as in Anderson’s theory. Our main

point is thatTp is a free module of rank one on the profiniteZp-algebraZp[[ Ẑ(1)2]],
endowed with the natural cyclotomic action ofGQp

.
It is only natural to forget about the previous two definitions ofp-adic beta functions,

and to decree that, fors, t ∈ Q with s, t, s + t /∈ Z,

(0.14) BFont
p (s, t) :=

∫
η(p)

τs,t ∈ Bp

is Fontaine’sp-adic beta function. The integral in (0.14), for rationals andt of common
denominatorm, is Fontaine’s period of the differential formτs,t against the imageη(p)m ∈
Tp(J (Fm)) of the lifting ηm ∈ H1,sing(Fm(C),Z) of the Pochhammer path toFm. Our

choice of a generator of theZp[[ Ẑ(1)2]]-module Tp is preciselyη(p) := lim
←−

mη
(p)
m ,
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canonically corresponding to Pochhammer’s path, via the choice of two simultaneous
embeddings ofQ in C andCp.

We do not understand at present the function-theoretic properties of (0.14). It is clear
that it is notp-adically continuous as a function ofQ2 to Bp (nor to BdR,p). It is also
clear that this function has an application to the interpolation of Jacobi sums. Namely,
if we denote byx 7→ Ja,b,c(x) ∈ Q(ζm) the continuous character of the idèle group
IQ(ζm), corresponding to the Jacobi sum Grössencharakter of [20], fora, b, c ∈ Q/Z and
ma,mb,mc ∈ Z, Fontaine’s beta function provides ap-adic interpolation ofJa,b,c(x) ∈
Q(ζm) ⊂ Qp ⊂ Cp as a simultaneous function ofa, b, c ∈ Q/Z andx ∈

⋃
m IQ(ζm). Even

though this function is notp-adically continuous, our final formulas (6.6), (6.7) show that
BFont
p (s, t) contains both théetale interpolation of Ihara [17], [1], and the crystalline (resp.

potentially semistable) interpolation of Dwork (resp. Coleman) [8].
We only sketch here the main ideas and constructions, deferring to further papers actual

computations and some questions which seem worth studying.
In the first place, we expect ageometricunderstanding of the link, via Fontaine’s

periods, between an Anderson-stylep-adic étale gammaGQp
-cocycle, and Coleman’s

extension toQp of the p-adic Morita gamma function, which forms a cocycle of the
Weil group W(Qp/Qp). This seems to require Fontaine’s theory forp-adic realizations
of 1-motives with potentially semistable reduction (likeH1(Um, Ym)): this is the subject
of present investigations. At our request, Coleman kindly proved, during a week-end in
October 2004, the local analyticity of hisp-adic gamma cocycle, in line with Dwork’s
Boyarsky Principle.

Furthermore, we have completely left out, much to our regret, the relation of the
étale beta function with class field theory, via CM factors of the Jacobians of Fermat
curves [2], [12]. In that perspective one should relate Anderson’sétale adelic beta and
gamma functions to crystalline adelic beta and gamma functions, via some Fontaine’s
“hyperadelic” beta and gamma functions taking values in the ring

∏
p Bp.

It is also our hope to examine more closely the powerful computations of Coleman [9]
and Coleman–McCallum [10], which should lead to a generalization of the notion ofF -
isocrystal into that of ap-adic differential equation on ap-adic algebraic variety, endowed
with the action of a Weil group.

1. IHARA–ANDERSON BETA FUNCTION

1.1. From now on, we fix the prime numberp and an embeddingιp : Q ↪→ Qp (while
Q is viewed as a subfield ofC), and identifyGQp

with the decomposition group ofGQ,
for the prime associated toιp. For anym ∈ Z>0, letFm,Qp

denote the Fermat curve (0.9),
viewed as a variety overQp. Let Jm denote the Jacobian ofFm, andJm,Qp

that ofFm,Qp
.

We have natural mapsπm,n : Fm → Fn whenevern |m, and corresponding maps of their
Jacobians. We consider the projective system “Fermat tower”

(1.1.1) · · · → Fm
πm,n
−−→ Fn

πn
−→ P1

Q \ {x = 0,1,∞}.

In particular, eachFm is, viaπm := πm,1, an abelian covering ofF1 = P1
Q \ {x = 0,1,∞}

with groupµ3
m/∆, whereµm is the group ofm-th roots of unity inQ×, ∆ = {(ζ, ζ, ζ ) ∈
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µ3
m} is the diagonal subgroup, and(ζ, ζ ′, ζ ′′) ∈ µ3

m acts on(x, y, z) ∈ Fm(Q) via
(x, y, z) 7→ (ζx, ζ ′y, ζ ′′z). The projection(ζ, ζ ′, ζ ′′) 7→ (ζ, ζ ′) identifiesµ3

m/∆ andµ2
m

asGQ-modules. Forζ ∈ µm, we denote by [ζ ]0 (resp. [ζ ]1) the automorphism ofFm/F1

associated to(ζ,1,1) (resp.(1, ζ,1)), and [ζ, ζ ′] := [ζ ]0[ζ ′]1. So, Ẑ(1)2 = lim
←−

mµ
2
m

acts on the tower of Fermat curves in a compatible way, namely if(z0, z1) ∈ Ẑ(1)2 is
represented by the projective system(ζm, ζ ′m)m ∈ lim

←−
mµ

2
m, we set [z1, z2] = [ζm, ζ ′m]

onFm.

1.2. We are interested in theGQp
-module

(1.2.1) Tp := lim
←−
m

Tp(Jm,Qp
) = lim
←−
m

Tp(Jm(Qp))

whereTp(−) denotes the Tate module. It will be viewed at the same time as aZp[[ Ẑ(1)2]]-
module, wherêZ(1)2 is also viewed as aGQp

-module.
The comparison isomorphisms recalled in the introduction imply that the Pochhammer

pathsηm ∈ H1,sing(Fm(C),Z), which are compatible with the mapsFm → Fn for n|m,

determine an elementη(p) = lim
←−

mη
(p)
m ∈ Tp. Our main point is

THEOREM 1.2.2. Tp is a freeZp[[ Ẑ(1)2]] -module of rank one, generated byη(p).

This follows from Anderson’s results [2], [1, §5]. Anderson considers the affine
part Um of Fm and its closed subsetYm of equation xy = 0. His theory is
based on the study of the Galois structure of the relative (classical) homology groups
H1(Um(C), Ym(C);Z/nZ). He proves that thisGQ-module is also aZ/nZ[µ2

m]-module
of rank one, freely generated by the imageκm,n of the path [0,1]. But he also
shows [2, (5.4.5)] that the Galois moduleJm[n] is a quotient of the submodule of
H1(Um(C), Ym(C);Z/nZ) generated by the image of the Pochhammer path

ηm,n = (1− [ζm]0∗)(1− [ζm]1∗)κm,n,

whereζm = e2πi/m. The statement follows directly from this.

REMARK 1.2.3. H1(Um, Ym;Z/nZ) = TZ/nZ(H1(Um, Ym)) can be viewed as then-
torsion of the 1-motiveH1(Um, Ym) (over Q). It can be explicitly constructed from a
generalized Jacobian ofFm [2, (4.2)]. So, it would be possible to pursue Anderson’s
approach throughout this paper. We prefer the more classical use of torsion points
on the classical Jacobian, to have Colmez’ results [11] at our disposal. In fact, to
compare Anderson’s theory of the gamma function with the theory of Dwork–Coleman,
consideration of 1-motives will certainly be necessary.

We recall that Ihara [17] defined theGQ-modules

(1.2.4) Ip := lim
←−
m

Tp(Jpm(Q))

and

(1.2.5) Zp[[Zp(1)2]] := lim
←−
m

(Z/pmZ)[µ2
pm ].



ÉTALE AND CRYSTALLINE BETA AND GAMMA FUNCTIONS 181

He showed thatIp is a freeZp[[Zp(1)2]]-module of rank one, generated by the image of
the Pochhammer path.

So, our definition (1.2.1) differs slightly from both Anderson’s and Ihara’s.

1.3. We define a continuous cocycleGQp
→ Zp[[ Ẑ(1)]], σ 7→ B ét

σ , called thebeta
cocycle, via

(1.3.1) ση = B ét
σ η.

We may regard the elements ofZp[[ Ẑ(1)r ]], for any r, as functions(Q/Z)r → Qp
[1, (1.4)]. Namely, givena ∈ (m−1Z/Z)r andf ∈ Zp[[ Ẑ(1)r ]], one can definef (a) ∈ Qp
by first considering the imagefm of f in Zp[µrm], and then using the identificationµm =

Hom(m−1Z/Z,Q×p ), andZp-linearity infm, to obtain an elementf (a) = fm(a) ∈ OQp
.

The cyclotomic character
χ : GQp

→ Ẑ×

we consider, and an action ofGQp
onQ/Z, are defined by the formulas

(1.3.2) f (σa) = f (χ(σ )a) = f (a)σ

for f ∈ µm(Qp), a ∈ m−1Z/Z, andσ ∈ GQp
. According to our previous definition,

formulas (1.3.2) actually hold forf ∈ Zp[[ Ẑ(1)r ]], a ∈ (Q/Z)r , anyr, andσ ∈ GQp
. The

cocycle property ofB ét
σ reads

(1.3.3) B ét
στ (a) = B

ét
σ (a)B

ét
τ (χ(σ )a)

for a ∈ (Q/Z)2 andσ, τ ∈ GQp
.

Forσ ∈ GQp
anda, b ∈ (Q/Z)2 such thatσb = a, we set

(1.3.4) B ét
p (a; b) = B

ét
σ (a).

Forσ ∈ GQp
, let

(1.3.5) Hσ := {(a; b) ∈ (Q/Z)2× (Q/Z)2 | σb = a}

and

(1.3.6) H :=
⋃

σ∈GQp

Hσ

So,B ét
p may be viewed as a functionB ét

p : H→ OQp
such that

(1.3.7) B ét
p (a; c) = B

ét
p (a; b)B

ét
p (b; c)

for anya, b, c ∈ H. The functionB ét
p (a; b) will later be regarded as a function of(a; b) =

(a1, a2; b1, b2) ∈ Q4, constant on classes modZ4.
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1.4. We now take the attitude outlined in the introduction, that the natural “global”
variable for the beta function should be a line bundle (which will here be taken to be
trivial) on P1

= P1
Q, endowed with a connection with logarithmic singularities and

rational exponents along the reduced divisorD with support{0,1,∞}. We defineLs,t :=
(OP1,∇s,t ), where

(1.4.1) ∇s,t : OP1 → Ω1
P1/Q(logD), 1 7→ s

dx

x
+ t

dx

x − 1
.

We will consider thelogarithmic de Rham cohomology groupsof (1.4.1), namely the
hypercohomology groups (as complexes of abelian sheaves for theétale topology)

(1.4.2) H i
log-dR(P

1/Q,∇s,t ) := Hi(P1/Q,OP1
∇s,t
−−−→ Ω1

P1/Q(logD)).

Let [ dx
x(x−1) ]s,t ∈ H

1
log-dR(P1/Q,∇s,t ) denote the cohomology class of the differential

form dx
x(x−1) . The restriction of the map∇s,t of (1.4.1) to P1

\ {0,1,∞} induces a
logarithmic connection on any line bundle of the formOP1xm(1 − x)n for m, n ∈ Z.
Multiplication by x−m(1 − x)−n identifies this line bundle with logarithmic connection
with (OP1,∇s+m,t+n), so thatH 1

log-dR(P1/Q,∇s+m,t+n) = H 1
log-dR(P1/Q,∇s,t ). In this

sense [
dx

x(x − 1)

]
s+m,t+n

=

[
xm(1− x)n

dx

x(x − 1)

]
s,t

(1.4.3)

=
B(s +m, t + n)

B(s, t)

[
dx

x(x − 1)

]
s,t

.

Letm ∈ N be a common denominator ofs, t ∈ Q, s = S/m, t = T/m, with S, T ∈ Z. On
the affine partUm of Fm (see (0.9)) we consider the functionsxm andym induced by the
coordinate projectionsX/Z andY/Z. We also setx = x1 andy = y1, both functions on
P1 and onFm via the natural projectionFm → F1 = P1. So,xm (resp.ym) is a branch of
x1/m (resp.(1− x)1/m), andxm, ym are linked by the equation

(1.4.4) xmm + y
m
m = 1.

In this way we single out a choice of a branch of the algebraic functionxs(1− x)t on P1,
namely the rational functionxSmy

T
m onFm. The connection (1.4.1), when pulled back toFm,

becomes the unique logarithmic connection onOFm , with logarithmic singularities along
the inverse imageDm of D in Fm, and the rational solutionx−Sm y−Tm = x−s(1− x)−t . On
the other hand,πm∗OFm =

⊕
OP1xSmy

T
m, where the direct sum is taken over 0≤ S < m,

0≤ T < m. Since the map(Fm,Dm)Q(µm)→ (P1,D)Q(µm) is a log-́etale Galois covering
with groupµ2

m, the direct image of the logarithmic complex

πm∗(OFm ⊗Q(µm)
dFm⊗Q(µm)
−−−−−−−→ Ω1

Fm/Q(logDm)⊗Q(µm))

decomposes into the direct sum of logarithmic complexes

(OP1x
S
my

T
m

πm∗(dFm )
−−−−−→ Ω1

P1/Q(logD)xSmy
T
m)⊗Q(µm)
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isomorphic, via multiplication byxSmy
T
m, to

(OP1
∇s,t
−−→ Ω1

P1/Q(logD))⊗Q(µm).

Since everything descends toQ, we conclude that

πm∗(OFm
dFm
−−→ Ω1

Fm/Q(logDm))

decomposes into the direct sum of complexes

OP1x
S
my

T
m

πm∗(dFm )
−−−−−→ Ω1

P1/Q(logD)xSmy
T
m

isomorphic, via multiplication byxSmy
T
m, to

OP1
∇s,t
−−→ Ω1

P1/Q(logD).

In particular,

(1.4.5) H 1
log-dR((Fm,Dm)/Q) =

⊕
s,t

H 1
log-dR(P

1/Q,∇s,t )

where the sum runs overs, t ∈ m−1Z, 0 ≤ s, t < 1. For anys, t ∈ Q of common
denominatorm ∈ N, we may identify [ dx

x(x−1) ]s,t ∈ H
1
log-dR(P1/Q,∇s,t ) with the cohomo-

logy class [τs,t ] in H 1
log-dR((Fm,Dm)/Q), of the Fermat differential

τs,t = x
s−1yt−1dx, x = X/Z, y = Y/Z,

on the Fermat curveFm. Fors, t, s + t /∈ Z, [τs,t ] is a differential form of the second kind
onFm, and in fact these forms generateH 1

dR(Fm/Q) ⊂ H
1
log-dR((Fm,Dm)/Q). So,

(1.4.6) H 1
dR(Fm/Q) =

⊕
s,t

H 1
log-dR(P

1/Q,∇s,t )

where the sum runs overs, t ∈ m−1Z with 0< s, t < 1 ands + t /∈ Z.
We define

(1.4.7) H 1
log-dR((F•,D•)/Q) := lim

−→
H 1

log-dR((Fm,Dm)/Q) =
⊕
s,t

H 1
log-dR(P

1/Q,∇s,t ),

where the sum runs overs, t ∈ Q, 0≤ s, t < 1, and its subspace

(1.4.8) H 1
dR(F•/Q) := lim

−→
H 1

dR(Fm/Q) =
⊕
s,t

H 1
log-dR(P

1/Q,∇s,t ),

where the sum is restricted to 0< s, t < 1 with s + t /∈ Z.
The one-dimensionalQ-vector subspace ofH 1

log-dR((Fm,Dm)/Q) generated by the

cohomology class [τs,t ] ∈ H 1
log-dR((Fm,Dm)/Q), for m ∈ N such thatms,mt ∈ Z, is
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determined as theGQ-invariant subspace ofH 1
log-dR((Fm,Dm)/Q)⊗Q on whichµ2

m acts
via the character

(1.4.9) χs,t : µ2
m→ µm, (ζ, ζ ′) 7→ ζ Sζ ′T .

For anyζ, ζ ′ ∈ µm, ands, t ∈ Q, of common denominatorm, we then have

(1.4.10) [ζ, ζ ′]∗[τs,t ] = χs,t (ζ, ζ
′)[τs,t ].

Our functional interpretation is based on the map

(1.4.11) Q2
→ H 1

log-dR((F•,D•)/Q), (s, t) 7→ [τs,t ].

For any characterχ : Ẑ(1) → Q×p of finite order, we denote byH 1
log-dR((F•,D•)/Q)χ

(resp.H 1
dR(F•/Q)χ ) theQ-vector subspace ofH 1

log-dR((F•,D•)/Q) (resp.H 1
dR(F•/Q)) of

GQ-invariant classesα ∈ H 1
log-dR((F•,D•)/Q)⊗Q (resp.H 1

dR(F•/Q)⊗Q) such that

(1.4.12) [z1, z2]∗α = χ(z1, z2)α.

Forχ = χs,t , s, t as in (1.4.10), we getH 1
log-dR((F•,D•)/Q)χs,t = Q[τs,t ]. So, the elements

of Ẑ(1)2 = lim
←−

mµ
2
m are naturally functions onQ2 with values inQ×p , namely we set

(1.4.13) (ζ, ζ ′)(s, t) = χs,t (ζ, ζ
′) = ζmsζ ′mt

for anym ∈ N such thatms,mt ∈ Z andζ, ζ ′ ∈ µm. This extends to an interpretation
of the elements ofZp[[ Ẑ(1)2]] as functionsQ2

→ Qp, constant on classes modZ2,
compatible with our previous functional interpretation (see Section 1.3).

It is now natural to define, forσ ∈ GQp
,

(1.4.14) Hσ := {(a; b) ∈ Q2
×Q2

| (a; b) modZ4
∈ Hσ }

and

(1.4.15) H :=
⋃

σ∈GQp

Hσ .

Then,B ét
p may be viewed as a function (constant on classes modZ4)

B ét
p : H→ OQp

such that the relation (1.3.7) holds for anya, b, c ∈ H.

2. DWORK–MORITA CRYSTALLINE BETA FUNCTION

2.1. TheBoyarsky Principleof Dwork [6], [13], [15] is the following vaguely stated
conjecture:

If cohomology is parametrized by a character then the Frobenius operation will vary
continuously [locally analytically] with the character.
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The first problem in approaching the Boyarsky Principle consists in giving a precise
meaning to the character mentioned in it. Of which group should it be a character?
In this article we take the attitude outlined in the introduction, that the group involved
should be the fundamental group of a suitable tannakian category of differential modules.
We illustrate this by a typical example, in the classical language of overconvergentF -
isocrystals [4, (2.3.7)].

LetX be a smooth variety defined overFp, x0 ∈ X(Fp), and let

(2.1.1) · · · −→ Xn −→ Xm
πm
−→ X

be a projective system of abelianétale coverings, geometrically irreducible, with group
Hm = G(Xm/X), of order prime top. Let σ ∈ GQp

be a lifting of the Frobenius
automorphismσ0 of GFp and FX : X → X be the absolute Frobenius ofX. We
assume to be given, for some Galois extensionK of Qp, an overconvergentF -isocrystal
L on X/(K, σ|K). Thenπm∗π∗mL will decompose into a direct sum

⊕
χ∈Ĥm

Lχ , where

Ĥm = Hom(Hm,Q
×

p ) denotes the group of characters ofHm. Each factorLχ is an example
of anF -isocrystal parametrized by the characterχ of H = lim

←−
mHm. The groupH is an

abelian quotient ofπ (prime top)
1 (XFp , x0), and it is endowed with a canonical action ofGFp .

We have a horizontal morphism

(2.1.2) Φχ (σ ) : F ∗XL
(σ )
χ

∼
−→ Lχ◦σ0,

whereL(σ )χ is the overconvergent isocrystal onX/K, deduced fromLχ by the base change
σ|K .

If Xm = (Fm \ Dm)Fp overX = X1 ' P1
Fp \ {0,1,∞}, thenH ∼= Ẑ(prime top)(1)2,

and the group of characters iŝH ∼= (Z(p)/Z)2, with the cyclotomic action ofGFp . So, the

Frobenius automorphism ofGFp acts by multiplication byp on Ĥ . We have a horizontal
morphism

(2.1.3) Φχ (σ ) : F ∗XL
(σ )
χ

∼
−→ Lpχ .

Passing to the rigid cohomology ofπ∗mL, Hrig(Xm/K, π
∗
mL), we see that it also

decomposes into
⊕

χ∈Ĥm
Hχ ,Hχ = Hrig(Xm/K, π

∗
mLχ ) interchanged by Frobenius

(2.1.4) Φχ,χ ′(σ ) : H (σ )

χ ′
→ Hχ ,

whereχ ′ ◦ σ0 = χ in Ĥm. More general examples ofF -isocrystals parametrized by a
character may be obtained by adding to the previous data a smooth morphismf : X→ S,
and studying the direct image of the isocrystalsLχ underf [14], [15].

2.2. To make sense of the Boyarsky Principle, which vaguely asserts the analyticity of
the map (2.1.4) as a function ofχ , we need to lift the previous data to characteristic zero,
and to take the logarithmic de Rham viewpoint of the previous section. We illustrate the
statement in the particular case of the tower of Fermat curvesFm, of degree prime top,
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over Qp. So,X = P1
Fp \ {0,1,∞} andXm is the special fiber ofFm \ Dm over Fp, for

(m, p) = 1. ThenK = Qp and theF -isocrystalL onX/Qp is represented by thep-adic
rigid analytification of the algebraic connection(OP1

Qp \{0,1,∞}
, d). We take our logarithmic

viewpoint; then, under the coveringπm : Fm → F1, πm∗π∗mL decomposes into a direct
sum of factors represented byLan

s,t = (Oan
P1

Qp
,∇an

s,t ), with s, t ∈ m−1Z, 0≤ s, t < 1. Also,

via well-known comparison theorems [3],

(2.2.1) H 1
dR(P

1
\ {0,1,∞}/Q,∇s,t )⊗Qp ∼= H 1

rig(X/Qp,L
an
s,t ),

so, if 0< s, t < 1 ands + t 6= 1, we also have

(2.2.2) H 1
rig(X/Qp,L

an
s,t )
∼= H

1
log-dR(P

1/Q,Ls,t )⊗Qp.

The advantage of this viewpoint is that we have naturally parametrized characters of the
(abelian quotient of the) geometric fundamental groupπ

(prime top)
1 (XFp , x0), for somex0 ∈

P1(Fp) \ {0,1,∞}, (corresponding to the Fermat tower of degrees prime top) by pairs
(s, t) ∈ Z2

(p), or equivalently by differential classes [τs,t ]. We are going to express the
Frobenius matrix in terms of this natural parametrization. To avoid minor complications,
we restrict ourselves to forms [τs,t ] which correspond to differentials of the second kind
on some Fermat covering, i.e. tos, t, s + t /∈ Z.

Let us consider a subset of the setH defined in (1.4.15), namely

(2.2.3) HW :=
⋃

σ∈W(Qp/Qp)

Hσ .

We also define

Hnon-deg
σ = {(a, b) = (a1, a2; b1, b2) ∈ Hσ | a1, a2, b1, b2, a1+ a2, b1+ b2 /∈ Z},(2.2.4)

Hnon-deg
W :=

⋃
σ∈W(Qp/Qp)

Hnon-deg
σ .(2.2.5)

TheDwork–Morita crystalline beta functionis the function

(2.2.6) B
crys
p : Hnon-deg

W ∩ Z4
(p)→ Q×p

defined by

(2.2.7) Φχs,t ,χs′,t ′ (σ )(F
∗

X[τs′,t ′ ]) = pB
crys
p (s, t; s′, t ′)−1[τs,t ]

for p(s′, t ′)− (s, t) ∈ Z2, and in general (writingBcrys
p (s, t; s′, t ′) = B

crys
p ((s, t); (s′, t ′)))

by the condition

(2.2.8) B
crys
p (a; c) = B

crys
p (a; b)B

crys
p (b; c)

for anya, b, c ∈ Hnon-deg
W .

The action of Frobenius on [τs,t ], for s, t ∈ Z(p) and s, t, s + t /∈ Z, is carefully
computed in [14, (22.2.4)]. We now pause to discuss in detail Dwork’s theory of thep-adic
crystalline gamma function and its application top-adic interpolation of Gauß sums.
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3. EXAMPLE : p-ADIC INTERPOLATION OF GAUSS SUMS

3.1. We describe Dwork’s approach top-adic interpolation of functions arising from
“variation of cohomology”. To make this section completely independent of the previous
ones, we start by detailing notation.

Letψp be a non-trivial additive character of the fieldFp with p elements; letq = pf ,
andFq be the field withq elements. Let Teich be the Teichmüller character ofF×q . For

a ∈ 1
q−1Z, define

(3.1.1) χa = Teicha(1−q),

a multiplicative character ofFq (extended byχa(0) = 0 ∀a). We recall theGauß sum

(3.1.2) Gq(a) =
∑
x∈Fq

χa(x)ψp(TrFq/Fp (x)).

Let |− | be the (ultrametric) absolute value ofCp, normalized by|p| = p−1. LetπDwork ∈

Cp, πp−1
Dwork = −p, closest toψp(1) − 1. We denote by ordx = − logp |x| the p-adic

valuation ofCp.
Y. Morita defined ap-adic analytic functionΓp on the union of thep disks:

(3.1.3)
p−1⋃
µ=0

D(−µ, ρ−)

with1 p−1 < ρ = p
−

1
p
−

1
p−1 < 1 such that

(3.1.4)

Γp(0) = 1,

Γp(1+ x)
Γp(x)

=

{
−x if |x| = 1,
−1 if |x| < 1.

In particular,

(3.1.5) Γp(n) = (−1)n
n−1∏
j=0

(j,p)=1

j.

3.2. If we put

Θp(x) = expπDwork(x − x
p) =

∞∑
j=0

cjx
j ,

then

ordcj ≥ j
p − 1

p2
∀j = 0,1, . . . ,

and forµ ∈ [0, p − 1] we have

Γp(−µ+ py) = π
−µ
∞∑
i=0

cpi+µ(y)i

(−πDwork)i

1 This estimate is due to Dwork.
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where, as usual,

(y)i =
Γ (y + i)

Γ (y)
= y(y + 1) · · · (y + i − 1)

for i = 1,2, . . . . Dwork introduced the more flexible functionγp(x, y) meromorphic in

(3.2.1) D(t)(pρ) = {(x, y) ∈ C2
p | py − x = t, |y| < pρ = p

1− 1
p
−

1
p−1 }

for any fixedt ∈ Z, defined by

(3.2.2) γp(x, y) =
∑

pi+t≥0

cpi+t
Γ (y + i)

Γ (y)

/
(−π)i .

The modular property ofγp is then

(3.2.3) γp(x +m, y + n) = γp(x, y) (−π)
n−mΓ (x +m)

Γ (x)

Γ (y)

Γ (y + n)

for any(m, n) in Z2. The meromorphic functionγp(x, y) has inD(t) only a finite number
of poles, namely the solutions(x, y) of py − x = t with y ∈ Z>0 andx ∈ Z≤0.

3.3. TheGross–Koblitz formulafor interpolation of the Gauß sumGq(a), a ∈ 1
q−1Z, is

(3.3.1) −Gq(a) =

f∏
i=1

γp(a
(i−1), a(i)),

wherea = a(0), a(1), . . . , a(f ) = a (a(i) ∈ Zp) are defined by

(3.3.2) pa(i) − a(i−1)
∈ Z for i = 1, . . . , f − 1,

which is possible sincea ∈ 1
pf−1

Z.
We now explain the relation to the integral formula (0.2). The modular property ofγp

holds since it is the matrix of Frobenius on the cohomology ofGm,Fq with coefficients in
the (overconvergent) differential module onGm,Cp :

(3.3.3) ∇a : Cp[x, x−1] → Cp[x, x−1] dx, f 7→ df + f (πx + a)
dx

x

=

(
x
d

dx
+ a + πx

)
(f )

dx

x
.

One canp-adically complete:

(3.3.4) ∇
†

a : R
†
→ R

† dx

x
, f 7→

(
x
d

dx
+ a + πx

)
(f )

dx

x
,

whereR†
denotes the ring of functions analytic for 1− ε < x < 1+ ε with unspecified

ε > 0. The rigid cohomology space, fora ∈ Zp ∩Q,

H 1
rig(Gm,Fq /Cp, (OGan

m,Cq
,∇

†

a)) := H 1(∇
†

a) = R
† dx

x

/
∇

†

aR
†
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is one-dimensional; ifa /∈ Z, it is spanned by the class [dx
x

]a of dx
x

. Form ∈ Z we have
the “reduction formulas”

(3.3.5)

[
xm
dx

x

]
a

=

[
dx

x

]
a+m

=
Γ (a +m)(−π)−m

Γ (a)

[
dx

x

]
a

.

TheFrobenius mapF(a, b) is defined as the horizontal morphism, fora, b ∈ Zp ∩Q and
pb − a = µ ∈ Z,

(3.3.6) F(a, b) : (R
†
,∇

†

b)→ (R
†
,∇

†

a), f (x) 7→ f (xp)xµ/Θ(x).

To understand this definition, keep in mind that, formally

(3.3.7) ∇
†

b(x
−b exp(−πx)) = 0 and ∇

†

a(x
−a exp(−πx)) = 0

while

x−pb exp(−πxp)xµ/Θ(x) = x−pb exp(−πxp)xpb−a exp(−πx + πxp)

= x−a exp(−πx).

Computations are formal, but the functionsxµ andΘ(x) are inR†
.

It is convenient to use simultaneously a left inverse of Frobenius, namely theDwork
map

(3.3.8) D(b, a) : (R
†
,∇

†

a)→ (R
†
,∇

†

b), f (x) 7→ ψ(f (x)x−µΘ(x)),

where

(3.3.9) ψ : R
†
→ R

†
, (ψξ)(t) =

1

p

∑
xp=t

ξ(x).

The Frobenius and Dwork maps induce inverse isomorphisms

Frob1(a, b) : H 1(∇
†

b)→ H 1(∇
†

a), Dw1(b, a) : H 1(∇
†

a)→ H 1(∇
†

b).

A simple computation using the reduction formulas gives

(3.3.10) Dw1(b, a)

([
dx

x

]
a

)
= p−1γp(a, b)

[
dx

x

]
b

,

or

(3.3.11) Frob1(a, b)

([
dx

x

]
b

)
= pγp(a, b)

−1
[
dx

x

]
a

.

Then the modular property ofγp comes from the horizontal morphisms

(R
†
,∇

†

a+m)
xm

→(R
†
,∇

†

a), f 7→ xmf,
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and the commutative diagrams

H 1(∇
†

b)
Frob1(a,b)

−−−−−−−−−−−−−→ H 1(∇
†

a)

xn
x xxm

H 1(∇
†

b+n)
Frob1(a+m,b+n)

−−−−−−−−−−−−−→ H 1(∇
†

a+m)

coming from

xnf (x)
F(a,b)

−−−−−−−→ xpnf (xp)xpb−a/Θ(x)

xn
x xxm

f (x)
F(a+m,b+n)
−−−−−−−→ f (xp)xp(b+n)−a−m/Θ(x)

for f (x) ∈ R†
andpb−a,m, n ∈ Z, together with the base-change formulas given before.

3.4. The Gross–Koblitz formula is then a special case of the trace formula in rigid
cohomology. Namely, fora ∈ 1

q−1Z as before, we set

Gq(r, a) =
∑
x∈Fqr

χa(NFqr /Fqx)ψp(TrFqr /Fp (x))

and define the correspondingL-function as

L(a, q, T ) = exp

( ∞∑
r=1

Gq(r, a)
T r

r

)
.

We consider iterates of the previous operators:

(3.4.1) Fq(a) = F(a, a
(1)) ◦ F(a(1), a(2)) ◦ · · · ◦ F(a(f−1), a),

Fq(a) : (R
†
,∇

†

a)→ (R
†
,∇

†

a),

and their left inverses

(3.4.2) Dq(a) = D(a, a
(f−1)) ◦D(a(f−1), a(f−2)) ◦ · · · ◦D(a(1), a).

They induce inverse isomorphisms

(3.4.3) Frob1q(a) : H 1(∇
†

a)→ H 1(∇
†

a)

and

(3.4.4) Dw1
q(a) : H 1(∇

†

a)→ H 1(∇
†

a).

The trace formula in this situation says that

L(a, q, T ) = det(1− qTDw1
q(a)),

from which the Gross–Koblitz formula follows.
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3.5. We can be more explicit. Assume 0< a < 1, where

a =
µ0+ µ1p + · · · + µf−1p

f−1

pf − 1
, 0≤ µi ≤ p − 1.

Then

a(1) =
µ1+ µ2p + · · · + µf−1p

f−2
+ µ0p

f−1

pf − 1
, 0≤ µi ≤ p − 1,

sincepa(1) − a = µ0. Then

(3.5.1) γp(a
(i−1), a(i)) = π

µi−1
DworkΓp(−µi−1+ pa

(i))

and

−Gq(a) = π
µ0+µ1+···+µf−1

f∏
i=1

Γp(−µi−1+ pa
(i))(3.5.2)

≡ π
µ0+µ1+···+µf−1
Dwork

f−1∏
i=0

1

µi !

modulo 1+ (π) in Qp(ζp, ζq−1)
×, a multiplicative congruence due to Stickelberger.

3.6. Dwork’s computation of Chapter 22 of [14] shows that, for((s, t), (s′, t ′)) ∈
Hnon-deg
W ∩ Z4

(p) andp(s′, t ′)− (s, t) ∈ Z2,

(3.6.1) B
crys
p (s, t; s′, t ′) =

γp(s, s
′)γp(t, t

′)

γp(s + t, s′ + t ′)
.

It follows thatBcrys
p (s, t; s′, t ′)may be extended as a meromorphic function on each of the

domains

(3.6.2) D(i)(pρ)×D(j)(pρ)

for fixed i, j ∈ Z. We warn the reader thatBcrys
p (s, t; s′, t ′) is not meromorphic on the

union
⋃
i,j∈ZD(i)(pρ) × D(j)(pρ) of the previous 2-dimensional analytic domains. We

point out that at an irrational point(s, t; s′, t ′), Bcrys
p (s, t; s′, t ′) loses its cohomological

meaning as matrix of the Dwork operator in rigid cohomology (rigid cohomology may be
infinite-dimensional at such a point!). Similarly, the functionBcrys

p (a, b) of (2.2.8) can be
extended to a meromorphic function ofb, for (a, b) in a countable union of 2-dimensional
p-adic analytic domains containingHσ ∩ Z4

(p), for anyσ ∈ W+(Qp/Qp) and anyfixed
pair of integers

(3.6.3) pdegσbi − ai = µi ∈ Z, i = 1,2.

This is then the statement (and essentially, the proof) of the Boyarsky Principle in this
simple unramified case.
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4. FROBENIUS MATRICES OFFERMAT CURVES (AFTER COLEMAN)

4.1. Thep-adic crystalline computations of the previous two sections apply to Fermat
curvesFm, when they have good reduction atp, i.e. to the prime-to-p part of the tower
(1.1.1). So, when(m, p) = 1, one obtains a naturalp-adic definition of the beta function of
(s, t), for s andt inm−1Z, in terms of the action of Frobenius on the rigid differential class
[τs,t ] in H 1

rig((Fm)Fp/Qp) = H
1
dR(Fm/Q)⊗Qp. The situation is much more complicated

whenp |m. The complete analysis of this situation is due to Coleman [9]. We just sketch
the principles of Coleman’s computations.

4.2. Let Qur
p be the maximal unramified subextension ofQp/Qp, and recall theWeil

group W(Qp/Qp) ⊂ Gal(Qp/Qp), which consists of theσ ∈ Gal(Qp/Qp) whose
restriction to Qur

p is an integral power (=: degσ , the degreeof σ ) of the absolute

Frobeniusϕ of Qur
p (we identify Gal(Qur

p /Qp) with Gal(Fp/Fp), for Fp the prime field

of characteristicp, andFp its algebraic closure). Notice that the subgroup I(Qp/Qp) of
elements of degree 0 of W(Qp/Qp) coincides with the inertia subgroup of Gal(Qp/Qp).
Then I(Qp/Qp) carries the (profinite) topology of a subgroup of Gal(Qp/Qp), while
W(Qp/Qp) will be equipped with the group topology for which I(Qp/Qp) is an open
subgroup. We also define

W+(Qp/Qp) = {σ ∈W(Qp/Qp) | degσ ≥ 0}.

We will identify Q/Z with the group of roots of unity inQp, via

(4.2.1) q modZ 7→ ιp(e
2π
√
−1q).

The point of the next subsection is to construct local liftings of the action ofQ×p , identified

via local class field theory to W(Qp/Qp)ab, onQ/Z, to an action onQ. The reason for that
need is that we regard [τs,t ] for (s, t) ∈ Q2 as our variable, while W(Qp/Qp)ab (as was
the case forGQp

) only acts on the charactersχs,t , which depend upon(s, t) modZ2. The
action is simplyχσs,t = σ ◦χs,t . We can make this more explicit via local class field theory,
but the problem of lifting this action to an action on(s, t) itself remains.

We recall that the JacobianJm has potential good reduction overQp. By [5] there
is a natural semi-linear actionρcrys of W(Qp/Qp)ab onH 1

dR(F•/Q) ⊗ Qp. On the other
hand, in this particular case [9], the action descends to a linear action of W(Qp/Qp)ab

on H 1
dR(F•/Q) ⊗ Qp. This action respects the isotypical decomposition ofH 1

dR(F•/Q)
via the characters of̂Z(1)2. So, ifχ, χ ′ are characters of finite order ofẐ(1)2, related by
σ ◦ χ ′ = χ , then

(4.2.2) ρcrys(σ )(H
1
dR(F•/Q)χ ′) ⊂ H

1
dR(F•/Q)χ ⊗Qp.

Now, in order to make sense of our contention, generalizing the classical Boyarsky
Principle, that the action of the Weil group should bep-adically locally analytic, we need
some way to relate the choice of basis elements in the previous eigenspaces, as was done
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in the previous section in the unramified case. In the next subsection, we will indicate a
uniform way to choose, forχ, χ ′ as in (4.2.2),(s, t; s′, t ′) in Q4 so thatχ = χs,t and
χ ′ = χs′,t ′ .

4.3. The action ofGQp
on Q/Z factors through the maximal abelian quotientGab

Qp
=

G(Qmc
p /Qp), whereQmc

p is the maximal cyclotomic extension ofQp andQur
p is its maximal

unramified subextension. We have a diagram

(4.3.1)

Qmc
p

Qp(µp∞)

xxxxxxxx
Qur
p

FFFFFFFF

Qp

FFFFFFFFF

xxxxxxxxx

whereQp(µp∞) is the field generated overQp by all roots of unity of order a power ofp.

So,G(Qmc
p /Qp) is a direct product ofG(Qp(µp∞)/Qp)

∼
−−→ Z×p andG(Qur

p /Qp)
∼
−−→

GFp
∼
−−→ Ẑ. The reciprocity map of local class field theory

Q×p −→ G(Qmc
p /Qp)

identifiesQ×p with the Weil group W(Qmc
p /Qp) = W(Qp/Qp)ab, and mapsα = pnu,

whereu ∈ Z×p andn ∈ Z, to σα ∈ G(Qmc
p /Qp) described as follows:

(i) on Qur
p , σα induces then-th power of the Frobenius automorphism,

(ii) on Qp(µp∞), σα acts as

ζ 7→ ζ u
−1
= 1+

∞∑
n=1

(
u−1

n

)
(ζ − 1)n.

For anya ∈ Q, let 〈a〉p ∈ Z[1/p], 0 ≤ 〈a〉p < 1, be such that [a]p := a−〈a〉p ∈ Z(p),
and let−r := min(vp(a),0) ≤ 0. Forα = pnu ∈ Q×p andσ = σα, as above, letur ∈ N,
0< ur < pr , be such thaturu ≡ 1 modprZ. Then anyb ∈ Q such thatσ(b+Z) = a+Z
satisfies min(vp(b),0) = −r and

(4.3.2) ur 〈b〉p − 〈a〉p ∈ Z

and

(4.3.3) pn[b]p − [a]p = Nσ (a, b) ∈ Z.

We define an extension of the Dwork–Morita crystalline beta function (2.2.6) (originally
only defined onHnon-deg

σ ∩ Z4
(p)) to the entireHnon-deg

σ , for anyσ ∈ W(Qp/Qp); namely,

for (a1, a2; b1, b2) ∈ Hnon-deg
σ we set

(4.3.4) ρcrys(σ )([τb1,b2]) = pdegσB
crys
p (a1, a2; b1, b2)

−1[τa1,a2].
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The functionBcrys
p (a1, a2; b1, b2), defined for(a1, a2; b1, b2) ∈ Hnon-deg

σ , extends to a
locally meromorphic function of(a1, a2; b1, b2), for any fixed pair of integersn1 =

Nσ (a1, b1) andn2 = Nσ (a2, b2). So,Bcrys
p extends (with easily described poles) to a

countable union of 2-dimensional analytic domains containingHW . This is the generalized
Boyarsky Principle in this case. Coleman shows in fact [9] thatB

crys
p can be written in terms

of an extension of the Morita gamma function toQp. He proved recently, at the author’s
request, the local analyticity of his extended gamma function. We plan to give full details
on this point elsewhere.

5. FONTAINE’ S PERIODS

5.1. Fontaine introduced certain topologicalQp-algebrasBcrys,p ⊂ BdR,p endowed with
a continuous action of Gal(Qp/Qp)

(5.1.1) ρGal : Gal(Qp/Qp)× BdR,p → BdR,p, (σ, η) 7→ ρGal(σ, η) = ρGal(σ )(η),

satisfyingρGal(σ )(aη) = σ(a)ρGal(σ )(η) for a ∈ Qp andη ∈ BdR,p.
The embeddingBcrys,p ⊂ BdR,p is equivariant and continuous, but the natural topology

of Bcrys,p is not that of a subspace ofBdR,p. Now, Bcrys,p is aQur
p -algebra and there is a

natural continuous embedding ofBp := Bcrys,p ⊗Qur
p

Qp into BdR. The topologicalQp-
algebraBp carries a further natural continuous operation

(5.1.2) ρcrys : W(Qp/Qp)× Bp → Bp, (σ, η) 7→ ρcrys(σ, η) = ρcrys(σ )(η),

satisfyingρcrys(σ )(aη) = σ(a)ρcrys(σ )(η) for a ∈ Qp andη ∈ Bp, which is not induced

by the action of Gal(Qp/Qp), and whichdoes not extendto BdR,p. We call this operation
crystallineto distinguish it from theGaloisoperation of Gal(Qp/Qp). We recall thatBdR,p

is a complete discretely valued field, with valuation ringB+dR,p and residue field thep-adic

completionCp of Qp. In particular, for any choice of a uniformizert , BdR,p carries a
natural filtration Fili(BdR,p) = B+dR,pt

i , i ∈ Z.
We briefly describe Fontaine’s theory in the case of a smooth and proper varietyX

defined overQp, having potentially good reduction atp.
Under the previous assumptions, the finite-dimensionalQp-vector space

H i
dR(XQp

/Qp) = Qp ⊗Qp
H i

dR(X/Qp) carries the Hodge filtration, an obvious Galois

actionρGal of Gal(Qp/Qp), and a natural actionρcrys of W(Qp/Qp) [5]. On the other
hand, the finite-dimensionalQp-vector spaceH i

ét(XQp
,Qp) carries a non-trivial action

of ρGal of Gal(Qp/Qp). Then Fontaine’s theory says thatBp ⊗Qp
H i

dR(X/Qp) can be

identified withBp ⊗Qp
H i

ét(XQp
,Qp), when equipped with (the tensor product of) all the

previous structures. In particular

FiljH i
dR(X/Qp) = (FiljBp ⊗Qp

H i
ét(XQp

,Qp))Gal(Qp/Qp),(5.1.3)

H i
ét(XQp

,Qp) = (Fil0(Bp ⊗Qp
H i

dR(X/Qp)))
W(Qp/Qp).(5.1.4)
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Equivalently, we may regard Fontaine’s theory for a varietyX as before, as a pairing,
Qp-linear (resp.Qp-linear) in the first (resp. second) variable and non-degenerate,

(5.1.5) Hi,ét(XQp
,Qp)×H i

dR(XQp
/Qp)→ Bp, (δ, ω) 7→ 〈δ, ω〉 =

∫
δ

ω,

satisfying

(5.1.6)
∫
ρGal(σ )(δ)

ω = ρGal(σ )

( ∫
δ

ω

)
for σ ∈ Gal(Qp/Qp), and

(5.1.7)
∫
δ

ρcrys(σ )(ω) = ρcrys(σ )

( ∫
δ

ω

)
for σ ∈W(Qp/Qp), and such that, for anyδ ∈ Hi,ét(XQp

,Qp),

(5.1.8)
∫
δ

FiljH i
dR(XQp

/Qp) ⊂ FiljBp.

The pairing (5.1.5) satisfies a natural functoriality with respect to morphismsf : X → Y

of proper and smoothQp-varieties, namely

(5.1.9)
∫
f∗(δ)

ω =

∫
δ

f ∗ω.

5.2. The simple case ofX = Gm,Q is not covered by the above scheme, still the results
hold true, due to the existence of the nice compactificationP1

Q of Gm,Q.
The first p-adic étale homology group coincides with the Tate moduleTp:

H1,ét(Gm,C,Zp) = Tp(Gm(C)) = Tp(Gm(Q)) = Zp(1), via Q ⊂ C, with the cyclotomic
Galois action of Gal(Q/Q). By restricting the cyclotomic action to Gal(Qp/Qp), this in
turn may be identified, viaιp, with Tp(Gm(Cp)) = H1,ét(Gm,Qp

,Zp).
The choice of a system of primitivepn-th roots of unity inCp, ε = (ε(n))n∈N, with

ε(0) = 1, ε(n) 6= 1, ε(n) = (ε(n+1))p, in our caseε(n) = ιp(e
2π
√
−1/n), determines

a canonical uniformizertp = log([ε]) (in a suitable sense) ofBdR,p, which actually
belongs toBcrys,p. ThenZptp ⊂ BdR,p is isomorphic toZp(1) as a Galois module over
Gal(Qp/Qp) and is a Dieudonńe module via the crystalline action of W(Qp/Qp):

(5.2.1) ρGal(σ )tp = χp(σ )tp and ρcrys(σ )tp = p
degσ tp,

whereχp : Gal(Qp/Qp) → Z×p is the cyclotomic character. Finally, forγ0 as in the
introduction,H1,sing(Gm,C,Z) = Zγ0 is canonically embedded inZp(1), by identifyingγ
with the vectorε = (ε(n))n defined before.

Fontaine’s ringBcrys,p and its elementtp of (5.2.1) play for thep-adic cohomology
theories of the algebraic groupGm,Q the role played by the complex fieldC and
Archimedes’π in the archimedean theories. In fact,∫

ε

dx

x
= tp.
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5.3. The integration pairing (5.1.5) acquires a more concrete description whenX is an
abelian variety (or a formal group) overQp via Colmez integration[11], which we briefly
recalled in the introduction (see (0.13)). We do not give any details here, because our
understanding of the analytic properties of the Colmez period mappings is very primitive.
We expect that any further investigation of the Frobenius action on classical differential
equations arising from variation of cohomology should be confronted with the Fontaine–
Colmez construction. We hope to come back to this question very soon.

6. BETA COCYCLES

We now take (0.14) as our definition ofFontaine’sp-adic beta functionBFont
p (s, t) ∈ Bp,

for anys, t ∈ Q with s, t, s + t /∈ Z. We clearly have, form, n ∈ Z,

(6.1) BFont
p (s +m, t + n) =

B(s +m, t + n)

B(s, t)
BFont
p (s, t).

We point out a consequence of formula (5.1.9). We considerζ, ζ ′ ∈ µm and the
automorphism [ζ, ζ ′] of Jm(Qp). Let s, t ∈ m−1Z with s, t, s + t /∈ Z, and letδ ∈
Tp(Jm,Qp

). We have

(6.2)
∫

[ζ,ζ ′]∗(δ)
τs,t =

∫
δ

[ζ, ζ ′]∗τs,t = χs,t (ζ, ζ
′)

∫
δ

τs,t .

More generally, let(η(p)m )m be the compatible system ofη(p)m ∈ Tp(Jm,Qp
), which defines

η(p), and letf = (fm)m ∈ Zp[[ Ẑ(1)2]] = lim
←−

mZp[µ2
m]. Then, fors, t as before,

(6.3)
∫
f η(p)

τs,t =

∫
η
(p)
m

fm(s, t)τs,t = f (s, t)

∫
η(p)

τs,t .

Notice that, forf ∈ Zp[[ Ẑ(1)2]], σ ∈ GQp
and(s, t, s′, t ′) ∈ Hσ , we have

f (s′, t ′)σ = f (s, t).

Formula (5.1.6), together with the previous remarks, shows that, for anyσ ∈ GQp
and

s, t ∈ Q with s, t, s + t /∈ Z,

ρGal(σ )(B
Font
p (s, t)) = ρGal(σ )

( ∫
η(p)

τs,t

)
=

∫
ρGal(σ )(η

(p))

τs,t =

∫
B ét
σ η

(p)

τs,t

= B ét
σ (s, t)

∫
η(p)

τs,t = B
ét
σ (s, t)B

Font
p (s, t).

Therefore, for(a; b) = (a1, a2; b1, b2) ∈ Hnon-deg
σ ,

(6.4) ρGal(σ )(B
Font
p (b1, b2)) = B

ét
p (a1, a2; b1, b2)B

Font
p (a1, a2).
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If now σ ∈ W(Qp/Qp), we also have the crystalline action onBp. For (a; b) =

(a1, a2; b1, b2) ∈ Hnon-deg
σ , we have

ρcrys(σ )(B
Font
p (b1, b2)) = ρcrys(σ )

( ∫
η(p)

τb1,b2

)
=

∫
η(p)

ρcrys(σ )(τb1,b2)

=

∫
η(p)

B
crys
p (a1, a2; b1, b2)τa1,a2

= B
crys
p (a1, a2; b1, b2)

∫
η(p)

τa1,a2

= B
crys
p (a1, a2; b1, b2)B

Font
p (a1, a2).

Summarizing, we have defined, fors, t ∈ Q with s, t, s + t /∈ Z, a function

(6.5) BFont
p (s, t) =

∫
η(p)

τs,t

such that, for anyσ ∈ Gal(Qp/Q) and(a; b) ∈ Hnon-deg
σ ,

(6.6) ρGal(σ )(B
Font
p (b)) = B ét

p (a; b)B
Font
p (a),

and, ifσ ∈W(Qp/Q),

(6.7) ρcrys(σ )(B
Font
p (b)) = B

crys
p (a; b)BFont

p (a).

The functionsB ét
p andBcrys

p enjoy strong continuity and analyticity properties and
naturally interpolate Jacobi sums.
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