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Partial differential equations. — Homogenization of doubly-nonlinear equatiory
AUGUSTOVISINTIN, communicated by E. Magenes.

ABSTRACT. — This note deals with a doubly-nonlinear parabolic-hyperbolic equation that represents
electromagnetic processes in a nonhomogeneous metal surrounded by an insulating environment. Existence of a
weak solution is sketched. The constitutive relations are then assumed to exhibit periodic oscillations in space.
As the period vanishes, the solution converges in the sense of Nguetseng to that of a corresponding two-scale
homogenized problem. The homogenization procedure is then completed by eliminating the dependence on the
fine-scale variable. An analogous problem issued from phase transitions is also illustrated.
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gence.
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INTRODUCTION

In this note we study a doubly-nonlinear model of electromagnetic processes for
composite materials, sketch the proof of existence of a weak solution, and deal with
its homogenization via so-called two-scale convergence. The analytical structure of this
setting is fairly general; this allows us to apply an analogous approach to a doubly-
nonlinear model of phase transitions.

Maxwell's equations in a honhomogeneous and anisotropic metal surrounded by
an insulating environment lead to a parabolic-hyperbolic system of partial differential
equations in the whole space. In this note we provide a weak formulation for an initial-
value problem with nonlinear constitutive relations of the foBn = E(H x) and
J = J(E H,x), neglecting hysteresis. We allow for discontinuity of the dependence
of B on H, thus accounting for the possible occurrencéed boundaries.

In Sect. 1 we study the existence of a solution. Sect. 2 is devoted to reviewing some
results of two-scale convergence. In Sect. 3 we then assume that the above constitutive
relations exhibit fast periodic oscillations in space, let the space-period vanish, and
prove two-scale convergence (in the sense of Nguetseng) to a two-scale homogenized
problem. We then complete the homogenization procedure by eliminating the dependence
on the fine-scale variable. In Sect. 4 we deal with existence of a weak solution and
homogenization of a model of phase transitions, allowing also for a temperature-dependent
thermal conductivity. Details and proofs will appear separately ih [31].

A large literature has been devoted to homogenization (see_é[g.[[Bl _7,[9.] 17] 20, 24,
25]). In [5,[10[11] 18, 14, 21] homogenization was also applied to the Maxwell equations
and/or the Stefan model assuming linearity in the elliptic part. The notion of two-scale con-
vergence was introduced by Nguetsengd [22] and then developed by Allaire [1] and others.
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Doubly-nonlinear parabolic equations have been dealt with in a number of papers (see
e.g. [2[12[15] and [29, Chap. IlI]). It seems that the homogenization of these equations
has not yet been addressed.[In|[28] this author proved existence of a weak solution for a
less general model of electromagnetic evolution than that of this paper; that argument was
based on a fixed-point technique that apparently does not carry over to the present setting.

1. PARABOLIC-HYPERBOLIC PROBLEM FOR A NONLINEAR PERIODIC MATERIAL

Let £2 be a (possibly unbounded) three-dimensional domain, fix a coriBtan®, and set
A7 := Ax]0, T[forany A c R3, andY := [0, 1[3. Let two given functions

9 R3x2xR%® > RU {400}, &:R3xR3xQ2xR®— R®
be such that

v~ @(v, x, y) is convex and lower semicontinuous for angnd a.ay,
x = @(v, x, y) is piecewise continuous for anyand a.ay,

1.1 - . - .
y = @(v, x, y) is measurable and-periodic for any(v, x),

{0 € R3: @(¥, x, y) < +00} has nonempty interior for anyand a.ay,
v — a(v, w, x, y) is continuous and maximal monotone for ahy, x) and a.ay,
x, y) is uniformly continuous with respect i for anyx and a.ay,
x, y) is piecewise continuous for anty, w) and a.ay,

x,y) is measurable anH-periodic for any(v, w, x).

W — a(v,
(1.2)

W,
W,
x = a(v,w,
W,

y = a(,
For anye > 0 we assume that the following vector fields are also given:
(1.3) E% e L2(R3\2)3,
(1.4) B% e L?(R%°® suchthat V- B%=0inD'(R%) (V- :=div),
(15 geL?R3)3 suchthat V-g(,1) =0 inD'(R3 fora.ar €10, T[.
We now introduce the weak formulation of an initial-value problem for a system of

nonlinear partial differential equations in the Whmé. Herewe seV x :=curl, xo :=1
in 2 andyg := 0 outsides2.

PROBLEM 1. Find Be, He, Ee, J. € L3(R3)3 such that
. - 0Ee | . . . 3.3
(16) Vx Ho=Jo+ Q- xa) 5t 4§ nDED?,

- 3B, .
(1.7) VxE,=— a; inD'(R3)3,

(18 B, €dg(He, x,x/e) aein@r, B.=H, ae. inkR:\Qr,
1.9  J. =a(E., He,x,x/e) a.e.inf2r, f 0 ae inR3\ 27,

(1100 Q- x@)Ee(-0) =1 — x2)E®,  B.(,0 =B inD'®S

6‘
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Interpretation. This problem is nonlinear parabolic if27, and linear hyperbolic in

R% \ £27. The equations (1.6) and (1.7) correspond to the ArepMaxwell and Faraday
laws with normalized units. Conduction currents are here confiné2); toy the so-called
eddy-current approximatigrdisplacement currents are then neglecte® jrwhereas they

are accounted for outside. This model represents electromagnetic evolution in a metal
surrounded by an insulator like air. By the properties of electromagnetic radiation, it would
not be natural to confine Maxwell equationss@oand then to prescribe conditions on its
boundary([4, B].

The nonlinear relation (1.8) may represent the constitutive behaviour of a large class
of nonhomogeneous magnetic materials. The equation (1.9) generalizes the classical Ohm
law J, = o(Es + Eq), 0 being the electric conductivity and, a prescribed applied
electromotive force. The nonlinear equation (1.9) may also account for the dependence of
the electric conductivity on the magnetic field, as in the classical Hall effect [18; Sect. 21].

Let us set
L2(R3% = (3 e L2R33: V x 1 € L2(R%)3},
L3, (R33:= (i e L2R®3: V.7 e LAR3)).
It is known that these are Hilbert spaces equipped with the respective graph norms.

THEOREM1.1 ([31]). Letthe hypothesd4.1)—(1.5)be fulfilled, and assume that

(11) 3¢ >0,3h e LX) : 9@, x, y) > c[3[> + h(x) forany(¥,x) and a.a.y,
(L12) 3C > 0,3h € L%(2) : Vo € R3,
if e dp@,x,y) then |b| < C|3|+h(x) foraa.(x,y),
(1.13) v+~ ¢(v,x,y) isstrictly convex, for any and a.a.y,
(L14) 3L >0,3r e L2R®):
l&@(D,Z,x, y)| < L(3| + |Z]) + A(x) forany (@, x), fora.a.y.

Then for any > 0 there exists a solution of Problety such that

(1.15) B. € L™(0, T; L2(R%)%) N HY(O, T; (L2,(R3)%)),
(1.16) ﬁ € L®(0, T; L2R®®) N L2(0, T; L2,(2)%),
(1.17) e € LPR3)3NL®O, T; L3R3\ 2)3),

(1.18) J. € L2(R3)3.

Moreover for anye a solution can be selected so that these fields are uniformly bounded
with respect te: in these spaces.

OUTLINE OF PROOF The argument is based on approximation via an implicit scheme
of time-discretization, with time-stef@/m (m € N). At each step the problem is reduced

to the minimization of a convex coercive functional, and thus has a solution, that we label
by the indexm. An energy estimate is then derived by multiplying the time-discretized
equations (1.6) and (1.7), respectively byEgm and —H,,, , and then adding the two
equalities. This yields the uniform boundedness of the approximating ffﬁl;;isljlgm,
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Em, fsm in the function spaces (1.15)—(1.181. A§—> oo along a suitable sequence,
these fields then weélconverge to some fieldB,, H,, E“s, fg, respectively. Taking the
limit in the time-discretized equations, (1.6) and (1.7) are then obtained.

The nonlinear relation (1.8) can be proved eiampensated compactned$, [26].
By the hypothesis (1.13) the technique afmpactness by strict convexiy [27] then
yields H,,, — H, strongly in L2(£27)3, for anye. This allows one to derive (1.9) via
monotonicity and semicontinuity, without the need of applying any further compactness
property. O

Free boundaries. The above hypotheses do not exclude the occurrence of discontinuities
in the B, vs. H, constitutive relation. This may correspond to the occurrence of unknown
moving interfaces, diree boundariesacross which the fieldég andES fulfil discontinuity
relations of Rankine—Hugoniot type.

2. TWO-SCALE CONVERGENCE

With a view to the study of the limit as — 0 and to the formulation of a homogenized
problem, in this section we review some elements of two-scale convergence mainly along
the lines of [1[ 22].

We denote by the sett := [0, 1[° equipped with the topology of the 3-dimensional
torus, and identify any function gy with its Y -periodic extension t&3. We denote by
a parameter that we assume to tend to zero along a prescribed sequence. For any bounded
sequencdii,} in L2(2)% and anyii € L%(22 x ))3, we say thati, weakly two-scale
convergeso i in L2(2 x Y)3, and writeii, — i, whenever

2.1 / e (x)-v(x,x/e)dx — f/ i(x,y) - 0(x,y)dxdy VieD(R2 x>
Q 2xy

We similarly define weaktwo-scale convergence ib™ (2 x ))3, which we denote by

e —Z\ ii. We also say thdii, } strongly two-scale convergésii in L2(2 x )3, and write
Ug e i, if (2.1) holds and|iic || 1 2()3 — lliill 12(g <3 We denote the standaothe-scale

weak (strong, resp.) convergence by (—, resp.). The theorem of the next section is
based on Propositions 2.1-2.5 below.

PrROPOSITION2.1 ([1,22]). For any bounded sequen¢g.} in L2(£2)3, there existsi €
L2(£2 x V)3 such that, possibly after extracting a subsequefige; i in L?(22 x Y)°.

Throughout the whole paper for any functiore Li (R3 x )3 we set
(2.2) D(x) = / 3(x,y)dy fora.ax eRS,
Y

and extend tdR3 with vanishing value any function defined @n. For any function of
(x,y) € R3 x ), we shall denote by, (Vy, resp.) the gradient with respect to the first
(second, resp.) vector argument.
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PROPOSITION 2.2 ([30]). Let {ii.} be a bounded sequence i, (R%)?3 such that
i — i in L2R3 x Y)3. ThenV, x i = 0in D'(R® x ))3. Moreover there exists
i1 € L4R3; HY(Y)3) such that

2.3 i1=0 inR%, V,.i;=0 ae inRx),

and, possibly after extracting a subsequence,

(2.4) V xiie - Vxii+Vyxiy inL*R3x )3

The same statement holds if(4), V x u is replaced byV x i, with a different fieldi.

Any bounded sequend&.} in Lﬁiv(R3)3 satisfies an analogous statement with curl
and divergence exchanged [30]. In particular, as was already pointed but in [1], in this case
lig = 00 in L%(R3 x V)% impliesV, -i = 0in D'(R3 x V).

Now we state a simple extension of the classistcurl lemmaof Murat and Tartar
[19] to two-scale convergence. We also include time-dependence, for it is in this form that
the result is applied to our problem.

PROPOSITION2.3 ([32]). Let {ii.} be a bounded sequence irf(0, T; L2,(R3)3), and
{w,} be a bounded sequencelif(0, T; L3, (R3)3). If

(25) 3, s (r > 0) such that eithefii,} or {i,} is bounded inH" (0, T; H ™ (R%)3),
(2.6) fie — 0, we—w inLAR} x V)3,

then

@7 f /
R3

T

e 0.0 dxdt — /// i -wOdxdydt Yo eD(0,T]: DR3)).
R%xy

We also extend to two-scale convergence a propertpofpactness by strict convexity
[27;129, Chap. X].
PROPOSITION2.4 ([32]). Letp €]1, +o0[, and lety fulfil (1.1)and be such that

(28 3Jc>03w el (2),3he LY Q):
e, x,y) > wkx)-0+c|v|’ +h(x) V(@,x), foraa.y,
(29 v+ (1, x,y) is strictly convex, for any and a.a.y.

For any sequenci,} in L7 (27)3, if i, — i in L{) (27 x ¥)* and
(2.10 // e (e(x, 1), x,x/8)0(x, ) dx dt
fr

- /// eUi(x,y, 1), x,»)0(x,t)dxdydt
Qrxy

foranyf € D(£27), then
(2.11) e @i N (27 L7,
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The next result is intended for application to functions that also depend on the coarse-
scale variable:. However in constitutive relations usuallyplays the role of a parameter,
and thus the extension to that setting presents no additional difficulty.

PROPOSITION2.5 ([32]). Letg : R3 x Y — R U {+o0} be a (possibly nonconvex)
normal integrand. Assume thatulfils (1.11) that the same holds for the convex conjugate
functione*, and set, for alk, ij € RS,

(212 o@) = inf { fy 9E+7,y)dy: L e L2D)% ¢ =0, Vx¢ =0in D’(y>3},
(213 Yo() = inf { f (G +8,y)dy:6eL?))3 6 =0, V-4 =0in D/(y)}.
Y

If i, w € L2())® are such thaib(y) € d¢(ii(y), y) fora.a.y € Y and

(2.14) Vxi=0 inDQ)% V-w=0 inDQ),
then

(2.15) W € dgoli).  (p0)" (W) = Yo(w),

(216 /y [p(i(y). y) + @* (W (), »]dy = go(it) + (¢0)" (),
(2.17) i € 0Yo()., (Vo) (i) = goli).

3. HOMOGENIZATION

Now we lete tend to zero. First we deal with convergence to a solution of a two-scale
problem; we then complete the homogenization procedure by deriving a single-scale
problem. Let us set

a1 W= (5 e L2))3:V, x 1 =0 inD' )3,
' Vi={welL?Y)?3:V,-w=0inDQ)}

these are Banach spaces. Let us assumepthat E?, ES, g fulfil the hypotheses (1.1)—
(1.5), and that
(3.2 BY - B% E?— E° inL*®R3x )%
PROBLEM 2 (two-scale formulation). Find B, H, E, Hi1, E1, J € L2(R3 x )3 such that
B e L2R3; v)n HYO, T: L3[R3; W),
(3.3 H EcL?R3:; W), VxHVxEeL*R3)S,
Hy, Ey e L2R}: V), T e L*®R} x»)°,
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(3.4) Hi=E;=0 ae.inR3,

= I 0E . o3 3
(3.5 VxH—l—Vnyl:J—i—g—i—(l—X_Q)E in D'(R7 x )7,
(3.6) VxE—i—VyxElz—E inD'(Ry x V),

(37) Bedp(H,x,y) aein@rxy, B=H aein@®\Qr)x),
0

(38 J=&(E,H,x,y) aein@2rxy, J=0 aein®\2r) x,

(3.9) EC,00=E° inD'©@x))3 B0 =B inD®R3xY)?3

THEOREM 3.1 ([31]). Assume that the hypothes@s1)—(1.5), (1.11)—(1.14), (3.Bre
fulfilled. For anye > O, let (B, He, E;, J;) be a solution of Probleni,, and assume
that this family is uniformly bounded with respectto the space¢1.15)—(1.18)such a
family exists by Theorerh.1). Then there exisB, H, E, J such that, ag — 0 along a
suitable sequence,

(3.10) B. > B, H.—H inL®0 T; L*R®x Y)%),
(3.11) E.—E inL2R3 x V)3 NL20, T; LAR®\ 2) x V)%,
(3.12) Jo5J inL2®3 x V)%

Moreover, there exisﬁl, E"l such that(l?, 1-7, E“, f, Fll, El) is a solution of Problen2.

OUTLINE OF PROOF By Proposition 2.1 the energy estimate yields (3.10)—(3.12) as
tends to zero along a suitable subsequence. By Proposition 2.2 the equations (3.5) and
(3.6) then follow. (3.7) can be derived from (1.8) via two-scale compensated compactness
(cf. Proposition 2.3). By Proposition 2.4 one can then show Hgat—; H strongly in

L?(R3 x Y)3. Finally, (3.8) follows by passing to the two-scale limit in (1.9). O
Elimination of they-dependence. Let us now assume thatis cyclically monotone with

respect to the first argument; that is, denotindltlge subdifferential operator with respect
to the first argument,

(3.13) a(J,E,x,y)=00(J,E,x,y) VJI,EcR3 VxeR® Vye),
for some functiorp : R3 x R3 x £ x R® — R U {400} such that

v — o(U, w, x, y) is convex and lower semicontinuous for anyx and a.ay,
w — o(v, w, x, y) is continuous for any, x and a.ay,

(3.14) x — o(V, w, x,y) is piecewise continuous for any w and a.ay,
y — o(¥, w, x, y) is measurable and-periodic for any(v, w, x),

{# € R®: o(¥, W, x, y) < +oo} has nonempty interior for anyand a.ay.
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Let us then set (cf. (2.12)), for alf, E € R and a.ex € £2,

9o(H, x) = inf / O(H +7i(y), x, y) dy,
new,n=0JY
(3.15)
0o(E. H.x):= inf / o(E +7i(y). . x, y)dy.
new,n=0JY

We are now able to introduce a single-scale homogenized problem. We anticipate the
relation with the solution of Problem 2 by appending the hal to these purely coarse-
scale-dependent fields (cf. (2.2)).

PrROBLEM 3 (single-scale formulation). Find B, H, E, J € L2(R3)3 such that

(3.16) Vx H VxEeL2R3)S,

> 2 BE' - /33
(3.17) VxH=J+1-xa)5-+i inD®®,

2 Bfg .

(3.18 VxE=-——in D'(R3)3,
(3.19 B € dgo(H, x) ae.in2r, B=H ae inR>\Qr,
(3.20) J €doo(E.H,x) ae.inQr, J=0 ae inkR3\Qr,
(3.21) ECO)=E" inD'(@)3 B0 =58 inD®RS.

THEOREM 3.2 ([31]). Assume the hypotheses of Theor@rh are satisfied, and let
(B,H,E, Hi, E1,J) be a solution of Problen® (that exists by Theorer3.1). The

averaged field$, H, E, J (cf. (2.2)) then solve Probler8.

OUTLINE OF PROOF It is clear that the fine-scale equations (3.5) and (3.6) imply the
corresponding fine-scale equations (3.17) and (3.18). By Proposition 2.5 the relations (3.7)
and (3.8) yield (3.19) and (3.20). O

4. HOMOGENIZATION OF A MODEL OF PHASE TRANSITIONS

The above approach can also be applied to other models. Here we outline the
homogenization of a doubly-nonlinear Stefan-type model of phase transitions for a
nonhomogeneous material, in which the heat flux depends nonlinearly on the temperature
gradient and on the temperature itself.

Lety : R x 2 x R® - RU {+oo} anda : R® x R x £ x R® — RS have properties
analogous to (1.1) and (1.2). For any> O let us consider the following initial- and
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boundary-value problem:

dwe - .
a7 +V.g.=f in D' (27),
we € dp(ue, X, x/€) a.e.inQr,
@D Ge = —a(Vu,ug, x,x/e) a.e.infr,
we (-, 0) = w® a.e.ins,
e =i ond2x]0, T,

for given f,w®, i. If we interpretw, as the density of internal energy, as the
temperatureg, as the heat flux, and as the density of a distributed heat source or sink,
this is a model of nonlinear heat diffusion. It is well known that a multivalteéccounts

for phase transitions (cf. e.g. [16./23] 29]). At variance with the model of electromagnetism
of Sect. 1, here it is more natural to prescribe conditions on the bound&yrather than

deal with heat propagation in the whdté.

We consider the nonlinear Fourier conduction law (4.1although for many
phemomena a linear dependencejpfon Vu, is physically acceptable. From the point
of view of applications it is more relevant that this relation allows for a dependence of the
heat flux on the temperature.

Existence of a solution for the system (4.1) and convergence to a homogenized problem
can be proved as for Theorems 1.1, 3.1, 3.2. Under assumptions analogous to (1.1), (1.11)—
(1.14) and natural hypotheses on the data°, i, for anye > 0 there exists a weak
solution of (4.1) such that

w, € L0, T; L2(£2)) N HYX(O, T; H~1(2)),
(4.2 ue € L0, T; L>(2)) N L3O, T; HY(R)),
s € L2(21)%;

moreover these functions are uniformly bounded with respect o the respective
spaces.

For anye > 0 here also the approximation may be performed by implicit time-
discretization. The proof of convergence is even simpler than that of Theorem 1.1, for
here one can estimate the approximate solutignin L2(0, T'; H1(£2)), so that one can
then take advantage of the compactness of the inclugibf2) c L%C(Q). One can
thus pass to the limit ag — oo in the w,,, vs. u,,, relation without using compensated
compactness. The strong convergence.gf in L2($27) can then be proved via the strict
convexity of the functional, and this allows one to pass to the limit in the nonlinear
Fourier law.

Homogenized problem.We then let the space-periedtend to zero, getting a two-scale
formulation similar to Problem 3. More specifically, there exists aseu, u1, g, g1) of
functions of the coarse-scale variable= 2, of the fine-scale variable € ) and of the
time variabler, such that, using the notation (2.2),
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Z—f+v-§+vyﬁl=f inD'(2r x ),

w € dp(u, x, y) a.e.inf2r x Y,

g =—a(Vu+Vyui,u,x,y) a.e.inr xY,
(4.3 Vy X g1 = 0 a.e.in2r x Y,

i1 =0, 31 -0 a.e. inf2r,

w(-, - 0) = w® a.e.in2 x Y,

u=1ua onas2 x]0, TI.

There is a relevant difference between this model and Problem 3: because of the
H1(£2)-regularity, the two-scale limit does not depend o thusii = u. This excludes
occurrence of a fine-scale structure for the temperature field.

Let us now assume that is cyclically monotone in the first argument, as in (3.13).
Definingp as in (3.15) and setting(&, x) = fy @(&, x,y)dy forany (&, x) € R® x £,
we then get the following coarse-scale problem:

S tVea=r  inD@p.

W e dp(u, x) a.e.inf2r,
@4 g =—d00(Vu,u,x) a.e.ingr,

W(,0) = ° a.e.ing,

u=u onds2x]o, T|,

in which the fine-scale variable does not occur at all. (The form of (44is different
from that of (3.19) becausé = u.) This completes the homogenization procedure.

REMARK. This setting generalizes the classical (multi-dimensional) Stefan problem. If
doo is linear we retrieve the results of [14] in a more general setting, in particular with
a temperature- and space-dependent conductivity. If we start from the Fourier law for a
composite materialy, = —k(u., x, x/s)Vu, (k being a Caratkodory function), and
define a 3x 3 tensork (u, x) via a suitable elliptic cell problem, the homogenized relation
(4.4)% reads

(4.5) G =—k@,x)Vu ae.in2r.

The above considerations may be extended in several directions; for instance, inserting
arelaxation dynamics in the phase evolution equation{4d/or in the nonlinear Fourier
conduction law (4.X) does not raise difficulties. An analogous remark applies to the above
electromagnetic problem.
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