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Partial differential equations. — Homogenization of doubly-nonlinear equations, by
AUGUSTOV ISINTIN, communicated by E. Magenes.

ABSTRACT. — This note deals with a doubly-nonlinear parabolic-hyperbolic equation that represents
electromagnetic processes in a nonhomogeneous metal surrounded by an insulating environment. Existence of a
weak solution is sketched. The constitutive relations are then assumed to exhibit periodic oscillations in space.
As the period vanishes, the solution converges in the sense of Nguetseng to that of a corresponding two-scale
homogenized problem. The homogenization procedure is then completed by eliminating the dependence on the
fine-scale variable. An analogous problem issued from phase transitions is also illustrated.
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INTRODUCTION

In this note we study a doubly-nonlinear model of electromagnetic processes for
composite materials, sketch the proof of existence of a weak solution, and deal with
its homogenization via so-called two-scale convergence. The analytical structure of this
setting is fairly general; this allows us to apply an analogous approach to a doubly-
nonlinear model of phase transitions.

Maxwell’s equations in a nonhomogeneous and anisotropic metal surrounded by
an insulating environment lead to a parabolic-hyperbolic system of partial differential
equations in the whole space. In this note we provide a weak formulation for an initial-
value problem with nonlinear constitutive relations of the formEB = EB( EH, x) and
EJ = EJ ( EE, EH, x), neglecting hysteresis. We allow for discontinuity of the dependence
of EB on EH , thus accounting for the possible occurrence offree boundaries.

In Sect. 1 we study the existence of a solution. Sect. 2 is devoted to reviewing some
results of two-scale convergence. In Sect. 3 we then assume that the above constitutive
relations exhibit fast periodic oscillations in space, let the space-period vanish, and
prove two-scale convergence (in the sense of Nguetseng) to a two-scale homogenized
problem. We then complete the homogenization procedure by eliminating the dependence
on the fine-scale variable. In Sect. 4 we deal with existence of a weak solution and
homogenization of a model of phase transitions, allowing also for a temperature-dependent
thermal conductivity. Details and proofs will appear separately in [31].

A large literature has been devoted to homogenization (see e.g. [3, 7, 9, 17, 20, 24,
25]). In [5, 10, 11, 13, 14, 21] homogenization was also applied to the Maxwell equations
and/or the Stefan model assuming linearity in the elliptic part. The notion of two-scale con-
vergence was introduced by Nguetseng [22] and then developed by Allaire [1] and others.



212 A . VISINTIN

Doubly-nonlinear parabolic equations have been dealt with in a number of papers (see
e.g. [2, 12, 15] and [29, Chap. III]). It seems that the homogenization of these equations
has not yet been addressed. In [28] this author proved existence of a weak solution for a
less general model of electromagnetic evolution than that of this paper; that argument was
based on a fixed-point technique that apparently does not carry over to the present setting.

1. PARABOLIC-HYPERBOLIC PROBLEM FOR A NONLINEAR PERIODIC MATERIAL

LetΩ be a (possibly unbounded) three-dimensional domain, fix a constantT > 0, and set
AT := A×]0, T [ for anyA ⊂ R3, andY := [0,1[3. Let two given functions

ϕ : R3
×Ω×R3

→ R ∪ {+∞}, Eα : R3
×R3

×Ω×R3
→ R3

be such that

(1.1)

Ev 7→ ϕ(Ev, x, y) is convex and lower semicontinuous for anyx and a.a.y,

x 7→ ϕ(Ev, x, y) is piecewise continuous for anyEv and a.a.y,

y 7→ ϕ(Ev, x, y) is measurable andY -periodic for any(Ev, x),

{Ev ∈ R3 : ϕ(Ev, x, y) < +∞} has nonempty interior for anyx and a.a.y,

(1.2)

Ev 7→ Eα(Ev, Ew, x, y) is continuous and maximal monotone for any( Ew, x) and a.a.y,

Ew 7→ Eα(Ev, Ew, x, y) is uniformly continuous with respect toEv, for anyx and a.a.y,

x 7→ Eα(Ev, Ew, x, y) is piecewise continuous for any(Ev, Ew) and a.a.y,

y 7→ Eα(Ev, Ew, x, y) is measurable andY -periodic for any(Ev, Ew, x).

For anyε > 0 we assume that the following vector fields are also given:

EE0
ε ∈ L2(R3

\Ω)3,(1.3)

EB0
ε ∈ L2(R3)3 such that ∇ · EB0

ε = 0 inD′(R3) (∇· := div),(1.4)

Eg ∈ L2(R3
T )

3 such that ∇· Eg(·, t) = 0 inD′(R3) for a.a.t ∈ ]0, T [.(1.5)

We now introduce the weak formulation of an initial-value problem for a system of
nonlinear partial differential equations in the wholeR3

T . Here we set∇× := curl,χΩ := 1
in Ω andχΩ := 0 outsideΩ.

PROBLEM 1ε. Find EBε, EHε, EEε, EJε ∈ L2(R3
T )

3 such that

∇ × EHε = EJε + (1 − χΩ)
∂ EEε

∂t
+ Eg in D′(R3

T )
3,(1.6)

∇ × EEε = −
∂ EBε

∂t
in D′(R3

T )
3,(1.7)

EBε ∈ ∂ϕ( EHε, x, x/ε) a.e. inΩT , EBε = EHε a.e. inR3
T \ΩT ,(1.8)

EJε = Eα( EEε, EHε, x, x/ε) a.e. inΩT , EJε = E0 a.e. inR3
T \ΩT ,(1.9)

(1 − χΩ) EEε(·,0) = (1 − χΩ) EE0
ε ,

EBε(·,0) = EB0
ε in D′(R3)3.(1.10)
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Interpretation. This problem is nonlinear parabolic inΩT , and linear hyperbolic in
R3
T \ΩT . The equations (1.6) and (1.7) correspond to the Ampère–Maxwell and Faraday

laws with normalized units. Conduction currents are here confined toΩ; by the so-called
eddy-current approximation, displacement currents are then neglected inΩ, whereas they
are accounted for outsideΩ. This model represents electromagnetic evolution in a metal
surrounded by an insulator like air. By the properties of electromagnetic radiation, it would
not be natural to confine Maxwell equations toΩ and then to prescribe conditions on its
boundary [4, 6].

The nonlinear relation (1.8) may represent the constitutive behaviour of a large class
of nonhomogeneous magnetic materials. The equation (1.9) generalizes the classical Ohm
law EJε = σ( EEε + EEa), σ being the electric conductivity andEEa a prescribed applied
electromotive force. The nonlinear equation (1.9) may also account for the dependence of
the electric conductivity on the magnetic field, as in the classical Hall effect [18; Sect. 21].

Let us set
L2

rot(R
3)3 := {Ev ∈ L2(R3)3 : ∇ × Ev ∈ L2(R3)3},

L2
div(R

3)3 := {Ev ∈ L2(R3)3 : ∇ · Ev ∈ L2(R3)}.

It is known that these are Hilbert spaces equipped with the respective graph norms.

THEOREM 1.1 ([31]). Let the hypotheses(1.1)–(1.5)be fulfilled, and assume that

(1.11) ∃c > 0, ∃h ∈ L1(Ω) : ϕ(Ev, x, y) ≥ c|Ev|2 + h(x) for any(Ev, x) and a.a.y,

(1.12) ∃C > 0, ∃h̃ ∈ L2(Ω) : ∀Ev ∈ R3,

if Ew ∈ ∂ϕ(Ev, x, y) then | Ew| ≤ C|Ev| + h̃(x) for a.a.(x, y),

(1.13) Ev 7→ ϕ(Ev, x, y) is strictly convex, for anyx and a.a.y,

(1.14) ∃L > 0, ∃λ ∈ L2(R3) :

|Eα(Ev, Ez, x, y)| ≤ L(|Ev| + |Ez|)+ λ(x) for any(Ev, x), for a.a.y.

Then for anyε > 0 there exists a solution of Problem1ε such that

EBε ∈ L∞(0, T ;L2(R3)3) ∩H 1(0, T ; (L2
rot(R

3)3)′),(1.15)

EHε ∈ L∞(0, T ;L2(R3)3) ∩ L2(0, T ;L2
rot(Ω)

3),(1.16)

EEε ∈ L2(R3
T )

3
∩ L∞(0, T ;L2(R3

\Ω)3),(1.17)

EJε ∈ L2(R3
T )

3.(1.18)

Moreover for anyε a solution can be selected so that these fields are uniformly bounded
with respect toε in these spaces.

OUTLINE OF PROOF. The argument is based on approximation via an implicit scheme
of time-discretization, with time-stepT/m (m ∈ N). At each step the problem is reduced
to the minimization of a convex coercive functional, and thus has a solution, that we label
by the indexm. An energy estimate is then derived by multiplying the time-discretized
equations (1.6)m and (1.7)m respectively byEEεm and − EHεm , and then adding the two
equalities. This yields the uniform boundedness of the approximating fieldsEBεm, EHεm,
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EEεm, EJεm in the function spaces (1.15)–(1.18). Asm → ∞ along a suitable sequence,
these fields then weak∗ converge to some fieldsEBε, EHε, EEε, EJε, respectively. Taking the
limit in the time-discretized equations, (1.6) and (1.7) are then obtained.

The nonlinear relation (1.8) can be proved viacompensated compactness[19, 26].
By the hypothesis (1.13) the technique ofcompactness by strict convexityof [27] then
yields EHεm → EHε strongly inL2(ΩT )

3, for any ε. This allows one to derive (1.9) via
monotonicity and semicontinuity, without the need of applying any further compactness
property. 2

Free boundaries. The above hypotheses do not exclude the occurrence of discontinuities
in the EBε vs. EHε constitutive relation. This may correspond to the occurrence of unknown
moving interfaces, orfree boundaries,across which the fieldsEBε and EEε fulfil discontinuity
relations of Rankine–Hugoniot type.

2. TWO-SCALE CONVERGENCE

With a view to the study of the limit asε → 0 and to the formulation of a homogenized
problem, in this section we review some elements of two-scale convergence mainly along
the lines of [1, 22].

We denote byY the setY := [0,1[3 equipped with the topology of the 3-dimensional
torus, and identify any function onY with its Y -periodic extension toR3. We denote byε
a parameter that we assume to tend to zero along a prescribed sequence. For any bounded
sequence{Euε} in L2(Ω)3 and anyEu ∈ L2(Ω × Y)3, we say thatEuε weakly two-scale
convergesto Eu in L2(Ω × Y)3, and writeEuε 2

⇀ Eu, whenever

(2.1)
∫
Ω

Euε(x) · Ev(x, x/ε) dx →

∫∫
Ω×Y

Eu(x, y) · Ev(x, y) dx dy ∀Ev ∈ D(Ω × Y)3.

We similarly define weak∗ two-scale convergence inL∞(Ω × Y)3, which we denote by

Euε
∗

2
⇀ Eu. We also say that{Euε} strongly two-scale convergesto Eu in L2(Ω×Y)3, and write

Euε
2

→ Eu, if (2.1) holds and‖Euε‖L2(Ω)3 → ‖Eu‖L2(Ω×Y)3. We denote the standardone-scale

weak (strong, resp.) convergence by⇀ (→, resp.). The theorem of the next section is
based on Propositions 2.1–2.5 below.

PROPOSITION2.1 ([1, 22]). For any bounded sequence{Euε} in L2(Ω)3, there existsEu ∈

L2(Ω × Y)3 such that, possibly after extracting a subsequence,Euε 2
⇀ Eu in L2(Ω × Y)3.

Throughout the whole paper for any functionEv ∈ L1
loc(R

3
× Y)3 we set

(2.2) Êv(x) :=
∫
Y

Ev(x, y) dy for a.a.x ∈ R3,

and extend toR3 with vanishing value any function defined onΩ. For any function of
(x, y) ∈ R3

× Y, we shall denote by∇x (∇y , resp.) the gradient with respect to the first
(second, resp.) vector argument.
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PROPOSITION 2.2 ([30]). Let {Euε} be a bounded sequence inL2
rot(R3)3 such that

Euε 2
⇀ Eu in L2(R3

× Y)3. Then∇y × Eu = E0 in D′(R3
× Y)3. Moreover there exists

Eu1 ∈ L2(R3
;H 1(Y)3) such that

(2.3) Êu1 = E0 in R3, ∇y · Eu1 = 0 a.e. inR3
× Y,

and, possibly after extracting a subsequence,

(2.4) ∇ × Euε 2
⇀ ∇ × Êu+ ∇y × Eu1 in L2(R3

× Y)3.

The same statement holds if in(2.4), ∇ × Êu is replaced by∇ × Eu, with a different fieldEu1.

Any bounded sequence{Euε} in L2
div(R

3)3 satisfies an analogous statement with curl
and divergence exchanged [30]. In particular, as was already pointed out in [1], in this case
Euε 2
⇀ Eu in L2(R3

× Y)3 implies∇y · Eu = 0 inD′(R3
× Y).

Now we state a simple extension of the classicaldiv-curl lemmaof Murat and Tartar
[19] to two-scale convergence. We also include time-dependence, for it is in this form that
the result is applied to our problem.

PROPOSITION2.3 ([32]). Let {Euε} be a bounded sequence inL2(0, T ;L2
rot(R3)3), and

{ Ewε} be a bounded sequence inL2(0, T ; L2
div(R

3)3). If

(2.5) ∃r, s (r > 0) such that either{Euε} or { Ewε} is bounded inH r(0, T ;H−s(R3)3),

(2.6) Euε 2
⇀ Eu, Ewε 2

⇀ Ew in L2(R3
T × Y)3,

then

(2.7)
∫∫

R3
T

Euε · Ewεθ dx dt →

∫∫∫
R3
T×Y

Eu · Ew θ dx dy dt ∀θ ∈ D([0, T ];D(R3)).

We also extend to two-scale convergence a property ofcompactness by strict convexity
[27; 29, Chap. X].

PROPOSITION2.4 ([32]). Letp ∈ ]1,+∞[, and letϕ fulfil (1.1)and be such that

(2.8) ∃c > 0, ∃ Ew ∈ Lp
′

(Ω), ∃h ∈ L1(Ω) :

ϕ(Ev, x, y) ≥ Ew(x) · Ev + c|Ev|p + h(x) ∀(Ev, x), for a.a.y,

(2.9) Ev 7→ ϕ(Ev, x, y) is strictly convex, for anyx and a.a.y.

For any sequence{Euε} in Lp(ΩT )3, if Euε 2
⇀ Eu in Lploc(ΩT × Y)3 and

(2.10)
∫∫

ΩT

ϕε(Euε(x, t), x, x/ε)θ(x, t) dx dt

→

∫∫∫
ΩT×Y

ϕ(Eu(x, y, t), x, y)θ(x, t) dx dy dt

for anyθ ∈ D(ΩT ), then

(2.11) Euε
2

→ Eu in Lploc(ΩT ;Lp(Y)3).
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The next result is intended for application to functions that also depend on the coarse-
scale variablex. However in constitutive relations usuallyx plays the role of a parameter,
and thus the extension to that setting presents no additional difficulty.

PROPOSITION 2.5 ([32]). Let ϕ : R3
× Y → R ∪ {+∞} be a (possibly nonconvex)

normal integrand. Assume thatϕ fulfils (1.11), that the same holds for the convex conjugate
functionϕ∗, and set, for allEξ, Eη ∈ R3,

(2.12) ϕ0(Eξ) := inf

{ ∫
Y
ϕ(Eξ + Eζ , y) dy : Eζ ∈ L2(Y)3, Êζ = E0, ∇ × Eζ = E0 in D′(Y)3

}
,

(2.13) ψ0(Eη) := inf

{ ∫
Y
ϕ∗(Eη + Eθ, y) dy : Eθ ∈ L2(Y)3, Êθ = E0, ∇ · Eθ = 0 in D′(Y)

}
.

If Eu, Ew ∈ L2(Y)3 are such thatEw(y) ∈ ∂ϕ(Eu(y), y) for a.a.y ∈ Y and

(2.14) ∇ × Eu = E0 in D′(Y)3, ∇ · Ew = 0 in D′(Y),

then

Êw ∈ ∂ϕ0( Êu), (ϕ0)
∗( Êw) = ψ0( Êw),(2.15) ∫

Y
[ϕ(Eu(y), y)+ ϕ∗( Ew(y), y)] dy = ϕ0( Êu)+ (ϕ0)

∗( Êw),(2.16)

Êu ∈ ∂ψ0( Êw), (ψ0)
∗( Êu) = ϕ0( Êu).(2.17)

3. HOMOGENIZATION

Now we letε tend to zero. First we deal with convergence to a solution of a two-scale
problem; we then complete the homogenization procedure by deriving a single-scale
problem. Let us set

(3.1)
W := {Ev ∈ L2(Y)3 : ∇y × Ev = E0 inD′(Y)3},
V := { Ew ∈ L2(Y)3 : ∇y · Ew = 0 inD′(Y)};

these are Banach spaces. Let us assume thatϕ, Eα, EB0
ε , EE0

ε , Eg fulfil the hypotheses (1.1)–
(1.5), and that

(3.2) EB0
ε 2
⇀ EB0, EE0

ε 2
⇀ EE0 in L2(R3

× Y)3.

PROBLEM 2 (two-scale formulation). Find EB, EH, EE, EH1, EE1, EJ ∈ L2(R3
×Y)3 such that

EB ∈ L2(R3
T ;V ) ∩H 1(0, T ;L2(R3

;W ′)),

EH, EE ∈ L2(R3
T ;W), ∇ × ÊH,∇ × ÊE ∈ L2(R3

T )
3,

EH1, EE1 ∈ L2(R3
T ;V ), EJ ∈ L2(R3

T × Y)3,

(3.3)
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ÊH 1 = ÊE1 = E0 a.e. inR3
T ,(3.4)

∇ × ÊH + ∇y × EH1 = EJ + Eg + (1 − χΩ)
∂ EE

∂t
in D′(R3

T × Y)3,(3.5)

∇ × ÊE + ∇y × EE1 = −
∂ EB

∂t
in D′(R3

T × Y)3,(3.6)

EB ∈ ∂ϕ( EH, x, y) a.e. inΩT × Y, EB = EH a.e. in(R3
T \ΩT )× Y,(3.7)

EJ = Eα( EE, EH, x, y) a.e. inΩT × Y, EJ = E0 a.e. in(R3
T \ΩT )× Y,(3.8)

EE(·,0) = EE0 in D′(Ω × Y)3, EB(·,0) = EB0 in D′(R3
× Y)3.(3.9)

THEOREM 3.1 ([31]). Assume that the hypotheses(1.1)–(1.5), (1.11)–(1.14), (3.2)are
fulfilled. For anyε > 0, let ( EBε, EHε, EEε, EJε) be a solution of Problem1ε, and assume
that this family is uniformly bounded with respect toε in the spaces(1.15)–(1.18)(such a
family exists by Theorem1.1). Then there existEB, EH, EE, EJ such that, asε → 0 along a
suitable sequence,

EBε
∗

2
⇀ EB, EHε

∗

2
⇀ EH in L∞(0, T ;L2(R3

× Y)3),(3.10)

EEε
∗

2
⇀ EE in L2(R3

T × Y)3 ∩ L∞(0, T ;L2((R3
\Ω)× Y)3),(3.11)

EJε 2
⇀ EJ in L2(R3

T × Y)3.(3.12)

Moreover, there existEH1, EE1 such that( EB, EH, EE, EJ , EH1, EE1) is a solution of Problem2.

OUTLINE OF PROOF. By Proposition 2.1 the energy estimate yields (3.10)–(3.12) asε

tends to zero along a suitable subsequence. By Proposition 2.2 the equations (3.5) and
(3.6) then follow. (3.7) can be derived from (1.8) via two-scale compensated compactness
(cf. Proposition 2.3). By Proposition 2.4 one can then show thatEHε

2
→ EH strongly in

L2(R3
T × Y)3. Finally, (3.8) follows by passing to the two-scale limit in (1.9). 2

Elimination of they-dependence. Let us now assume thatEα is cyclically monotone with
respect to the first argument; that is, denoting by∂ the subdifferential operator with respect
to the first argument,

(3.13) Eα( EJ , EE, x, y) = ∂%( EJ , EE, x, y) ∀ EJ , EE ∈ R3, ∀x ∈ R3, ∀y ∈ Y,

for some function% : R3
× R3

×Ω × R3
→ R ∪ {+∞} such that

(3.14)

Ev 7→ %(Ev, Ew, x, y) is convex and lower semicontinuous for anyEw, x and a.a.y,

Ew 7→ %(Ev, Ew, x, y) is continuous for anyEv, x and a.a.y,

x 7→ %(Ev, Ew, x, y) is piecewise continuous for anyEv, Ew and a.a.y,

y 7→ %(Ev, Ew, x, y) is measurable andY -periodic for any(Ev, Ew, x),

{Ev ∈ R3 : %(Ev, Ew, x, y) < +∞} has nonempty interior for anyx and a.a.y.
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Let us then set (cf. (2.12)), for allEH, EE ∈ R3 and a.e.x ∈ Ω,

(3.15)

ϕ0( EH, x) := inf
Eη∈W, Êη=E0

∫
Y
ϕ( EH + Eη(y), x, y) dy,

%0( EE, EH, x) := inf
Eη∈W, Êη=E0

∫
Y
%( EE + Eη(y), EH, x, y) dy.

We are now able to introduce a single-scale homogenized problem. We anticipate the
relation with the solution of Problem 2 by appending the hat (ˆ ) to these purely coarse-
scale-dependent fields (cf. (2.2)).

PROBLEM 3 (single-scale formulation).Find ÊB, ÊH, ÊE, ÊJ ∈ L2(R3
T )

3 such that

∇ × ÊH,∇ × ÊE ∈ L2(R3
T )

3,(3.16)

∇ × ÊH = ÊJ + (1 − χΩ)
∂ ÊE

∂t
+ Eg in D′(R3

T )
3,(3.17)

∇ × ÊE = −
∂ ÊB

∂t
in D′(R3

T )
3,(3.18)

ÊB ∈ ∂ϕ0( ÊH, x) a.e. inΩT , ÊB = ÊH a.e. inR3
T \ΩT ,(3.19)

ÊJ ∈ ∂%0( ÊE, ÊH, x) a.e. inΩT , ÊJ = E0 a.e. inR3
T \ΩT ,(3.20)

ÊE(·,0) = EE0 in D′(Ω)3, ÊB(·,0) = EB0 in D′(R3)3.(3.21)

THEOREM 3.2 ([31]). Assume the hypotheses of Theorem3.1 are satisfied, and let
( EB, EH, EE, EH1, EE1, EJ ) be a solution of Problem2 (that exists by Theorem3.1). The

averaged fieldsÊB, ÊH, ÊE, ÊJ (cf. (2.2)) then solve Problem3.

OUTLINE OF PROOF. It is clear that the fine-scale equations (3.5) and (3.6) imply the
corresponding fine-scale equations (3.17) and (3.18). By Proposition 2.5 the relations (3.7)
and (3.8) yield (3.19) and (3.20). 2

4. HOMOGENIZATION OF A MODEL OF PHASE TRANSITIONS

The above approach can also be applied to other models. Here we outline the
homogenization of a doubly-nonlinear Stefan-type model of phase transitions for a
nonhomogeneous material, in which the heat flux depends nonlinearly on the temperature
gradient and on the temperature itself.

Let ϕ : R ×Ω × R3
→ R ∪ {+∞} andEα : R3

× R ×Ω × R3
→ R3 have properties

analogous to (1.1) and (1.2). For anyε > 0 let us consider the following initial- and
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boundary-value problem:

(4.1)



∂wε

∂t
+ ∇ · Eqε = f in D′(ΩT ),

wε ∈ ∂ϕ(uε, x, x/ε) a.e. inΩT ,

Eqε = −Eα(∇u, uε, x, x/ε) a.e. inΩT ,

wε(·,0) = w0 a.e. inΩ,

uε = ũ on ∂Ω×]0, T [,

for given f,w0, ũ. If we interpretwε as the density of internal energy,uε as the
temperature,Eqε as the heat flux, andf as the density of a distributed heat source or sink,
this is a model of nonlinear heat diffusion. It is well known that a multivalued∂ϕ accounts
for phase transitions (cf. e.g. [16, 23, 29]). At variance with the model of electromagnetism
of Sect. 1, here it is more natural to prescribe conditions on the boundary ofΩ, rather than
deal with heat propagation in the wholeR3.

We consider the nonlinear Fourier conduction law (4.1)3, although for many
phemomena a linear dependence ofEqε on ∇uε is physically acceptable. From the point
of view of applications it is more relevant that this relation allows for a dependence of the
heat flux on the temperature.

Existence of a solution for the system (4.1) and convergence to a homogenized problem
can be proved as for Theorems 1.1, 3.1, 3.2. Under assumptions analogous to (1.1), (1.11)–
(1.14) and natural hypotheses on the dataf,w0, ũ, for any ε > 0 there exists a weak
solution of (4.1) such that

(4.2)

wε ∈ L∞(0, T ;L2(Ω)) ∩H 1(0, T ;H−1(Ω)),

uε ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H 1(Ω)),

Eqε ∈ L2(ΩT )
3
;

moreover these functions are uniformly bounded with respect toε in the respective
spaces.

For any ε > 0 here also the approximation may be performed by implicit time-
discretization. The proof of convergence is even simpler than that of Theorem 1.1, for
here one can estimate the approximate solutionuεm in L2(0, T ;H 1(Ω)), so that one can
then take advantage of the compactness of the inclusionH 1(Ω) ⊂ L2

loc(Ω). One can
thus pass to the limit asm → ∞ in thewεm vs.uεm relation without using compensated
compactness. The strong convergence ofuεm in L2(ΩT ) can then be proved via the strict
convexity of the functionalϕ, and this allows one to pass to the limit in the nonlinear
Fourier law.

Homogenized problem.We then let the space-periodε tend to zero, getting a two-scale
formulation similar to Problem 3. More specifically, there exists a set(w, u, u1, Eq, Eq1) of
functions of the coarse-scale variablex ∈ Ω, of the fine-scale variabley ∈ Y and of the
time variablet , such that, using the notation (2.2),
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(4.3)



∂w

∂t
+ ∇ · Êq + ∇y · Eq1 = f in D′(ΩT × Y),

w ∈ ∂ϕ(u, x, y) a.e. inΩT × Y,
Eq = −Eα(∇u+ ∇yu1, u, x, y) a.e. inΩT × Y,

∇y × Eq1 = E0 a.e. inΩT × Y,

û1 = 0, Êq1 = E0 a.e. inΩT ,

w(·, ·,0) = w0 a.e. inΩ × Y,
u = ũ on ∂Ω×]0, T [.

There is a relevant difference between this model and Problem 3: because of the
H 1(Ω)-regularity, the two-scale limitu does not depend ony, thusû = u. This excludes
occurrence of a fine-scale structure for the temperature field.

Let us now assume thatEα is cyclically monotone in the first argument, as in (3.13).
Defining%0 as in (3.15) and settinḡϕ(ξ, x) :=

∫
Y ϕ(ξ, x, y) dy for any(ξ, x) ∈ R3

×Ω,
we then get the following coarse-scale problem:

(4.4)



∂ŵ

∂t
+ ∇ · Êq = f in D′(ΩT ),

ŵ ∈ ∂ϕ̄(u, x) a.e. inΩT ,

Êq = −∂%0(∇u, u, x) a.e. inΩT ,

ŵ(·,0) = ŵ0 a.e. inΩ,

u = ũ on ∂Ω×]0, T [,

in which the fine-scale variabley does not occur at all. (The form of (4.4)2 is different
from that of (3.19)1 becausêu = u.) This completes the homogenization procedure.

REMARK . This setting generalizes the classical (multi-dimensional) Stefan problem. If
∂%0 is linear we retrieve the results of [14] in a more general setting, in particular with
a temperature- and space-dependent conductivity. If we start from the Fourier law for a
composite material,Eqε = −k(uε, x, x/ε)∇uε (k being a Carath́eodory function), and
define a 3× 3 tensork̂(u, x) via a suitable elliptic cell problem, the homogenized relation
(4.4)3 reads

(4.5) Êq = −k̂(u, x)∇u a.e. inΩT .

The above considerations may be extended in several directions; for instance, inserting
a relaxation dynamics in the phase evolution equation (4.1)2 and/or in the nonlinear Fourier
conduction law (4.1)3 does not raise difficulties. An analogous remark applies to the above
electromagnetic problem.
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