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ABSTRACT. — We study the Steklov eigenvalue problem for thelLaplacian. To this end we consider the limit
asp — oo of solutions of—Apu, = 0in a domaing with [Vu,|P~29u,/dv = AJu|P~2u 0on352. We obtain a
limit problem that is satisfied in the viscosity sense and a geometric characterization of the second eigenvalue.
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1. INTRODUCTION

Let Ayu = div(|Vu|?~2Vu) be thep-Laplacian The limit operator iMoo 4p = Axo
is theoco-Laplaciangiven by

Nodu 8% du
Asoll = — —
=1 ax]' BXjaxi 8x,~

in the viscosity sense (seel [5].)[6] arid [10]). This operator appears naturally when one
considers absolutely minimizing Lipschitz extensions of a boundary fungti¢see [1],
[2], and [11]).

Our concern in this paper is the study of the Steklov eigenvalue problem fexthe
Laplacian. To this end we consider the-Laplacian in a bounded smooth domain as limit
of the p-Laplacian agp — oo. Therefore our aim is to analyze the limit as— oo for
the Steklov eigenvalue problem

—Apu=0 in $2,

11 9
(&1 |Vu|P’28—u = AlulP2 onog.
V

Here 2 is a bounded domain iRY with smooth boundary anél/dv is the outer normal
derivative. Steklov eigenvalues have been introduced in [16pfer 2. For the existence

of a sequence of variational eigenvalues $eé [16]yfo= 2 and [7] for generap. As
happens for the eigenvalues for the Dirichlet problem forgHeaplacian, in general, it is

not known if this sequence constitutes the whole spectrum. Note that the first eigenvalue of
(L.7) isr1,, = 0 with eigenfunctiont; , = 1. Hence we can trivially pass to the limit and
obtaini1 . = 0 with eigenfunction:; o, = 1. Our main result in this paper shows that we
can pass to the limit in the variational eigenvalues defined in [7]. Since the first eigenvalue
is isolated[[15], there exists a second eigenvalue that has a variational charactefization [8].
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We can pass to the limit in this second eigenvalue and obtain a geometric characterization
of the second Steklov eigenvalue for tikeLaplacian. Moreover we obtain a uniform limit

of the sequence of eigenfunctions (along subsequences) and we find a limit eigenvalue
problem that is satisfied in a viscosity sense which involvesdhieaplacian together with

a boundary condition with the normal derivati&e/dv.

THEOREM1.1. For the first eigenvalue ofI.1) we have

1
lim kl/p = Ao =0,
p>oo  Lp .

with eigenfunction given by o, = 1. For the second eigenvalue,

1/p 2

lim A = )\.2,00 = m

p—00 2,p
Moreover, given eigenfunctionsy , of (L1.J) with eigenvaluesi , normalized by
lluz, pll(882) = 1, there exists a sequenge — oo such thatuy ,, — uz o in C*(£2).
The limituz,~ is a solution of

Aot =0 in £,

(1.2)
Alx,u,Vu) =0 onds,

in the viscosity sense, where

min{|Vu| — A2.00lu|, du/dv} if u > 0,
A(x,u, Vu) = { max{rocolul — |Vul, du/dv} ifu <0,
ou/ov ifu=0.

For thek-th eigenvalue, i, is thek-th variational eigenvalue off.T)with eigenfunction
ug,p normalized byllur, ,llz=@2) = 1, then every sequence tending to infinity has a
subsequencg; such that

lim 37 = Ay o0

i—00
andug, p;, — ts00 IN C%(£2), Where(uy, «, As.00) iS @ solution of (T.2).

We thus have a simple geometrical characterizatiokp@f, as 2/diam(£2). From this
characterization and the convergence of the eigenfunctions we conclude that the second
Steklov eigenfunction in an annulus or a ball is not radial. Also we find that the domain
that maximizes., ., among domains with fixed volume is a ball.

We end the introduction with a brief comment on the Dirichlet case. Eigenvalues of
the p-Laplacian,—A,u = Alu|P~2u, with Dirichlet boundary conditions; = 0 onds2,
have been extensively studied sinck [9]. The limipas> co was studied in[113],[12]. In
these papers the authors prove results similar to ours. However our proofs are necessarily
different due to the presence of the Neumann boundary condition. An anisotropic version
of the Dirichlet problem was studied ini[4].
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2. THE STEKLOV EIGENVALUE PROBLEM

First, let us recall some well known results concerning the Steklov eigenvalue problem for
the p-Laplacian. To this end, we introduce a topological tool,deraus(see [14]).

DEFINITION 2.1. Given a Banach spac&, we consider the clasf¥ = {A C X :
Ais closed,A = —A}. Over this class we define tigenusy : ¥ — N U {0}, as

¥(A) = min{k € N : there existg € C(A, R¥ — {0}) such that
p(x) = —p(—x) forall x € A}.

We have the following result whose proof can be obtained following [7]; we omit the
detalils.

THEOREM2.1. There exists a sequence of eigenvalyesf (I.J)such thatr, — oo as
n — oo. The so-called variational eigenvalugs can be characterized by

1 lall s
(2.1) — = supmin ﬂ,

13
)"k CECk ueC ||u||Wlp(.Q)

whereC, = {C ¢ WLP(2) : Cis compact, symmetric and(C) > k} and y is the
genus.

There exists a second eigenvalue for|(1.1) and it coincides with the second variational
eigenvalueX, , (see [8]). Moreover, the following characterization of the second
eigenvalue.,, , holds:

. fg |Vul|?P dx
Ao, p = inf supy ==——>—1,
CeAyec fa.q lu|P do

whereA = {C ¢ WLP(2) : Cis compact, symmetric and(C) > 2}. Observe that
every eigenfunction associated with changes sign o2 (see[15]).

Following [3] let us recall the definition of viscosity solution taking into account
general boundary conditions.

DEFINITION 2.2. Consider the boundary value problem

22) { F(x,Vu, D2u) =0 in £,

B(x,u,Vu) =0 onos2.

(1) A lower semicontinuous functianis a viscosity supersolutioof (2:9) if for every
¢ € C2(R2) such thatu — ¢ has a strict minimum atg € £2 with u(xg) = ¢ (xg) we
have: Ifxg € 082 then

max{ B(xo, ¢ (x0), V¢ (x0)), F(xo, V6 (x0), D?¢ (x0))} = O,

and ifxg € £2 then
F(x0, Vo (x0), D%} (x0)) > O.
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(2) An upper semicontinuous functianis a viscosity subsolutiorof (22) if for every
¢ € C?(R2) such thatu — ¢ has a strict maximum afp € 2 with u(xp) = ¢ (xo) we
have: Ifxg € 952 then

min{B(xo, ¢ (x0), V¢ (x0)), F(x0, Vo (x0), D?p(x0))} < O,

and if xg € £2 then
F(x0, V¢ (x0), D%} (x0)) < 0.

(3) Finally, u is aviscosity solutiorif it is a viscosity super- and subsolution.
In our case for the Steklov problem for thelaplacian we have

Fy,(n, X) = —TracgA,(n)X),

where ®

Ap(n) =1d+(p — 2)% ifn#£0, A0 =y,
and
(2.3) By(x,u,m) = InlP~2(n, v(x)) — Alul?~2u.

With this notation we have

|V (x0)[2A¢ (x0)
p—2

Apu = Fy(Vu, D%u) = —{ + Aooq)(xo)}.

REMARK 2.1. If B, is monotone in the variabléx/dv, Definition[2.2 takes a simpler
form (seel[3]). This is indeed the case for {2.3). More concretelyjsfa supersolution of
(T.1) andp € C?(£2) is such thau — ¢ has a strict minimum ato with u(xp) = ¢ (xo),
then:

(1) if xo € £2, then

B { |V (x0)|2A¢b (x0)

+ Aoo¢(x0)} >0,
p—2

(2) if xo € 382, then
IV (x0)|”~2(V (x0). v(x0)) = Al (x0)|” % (x0).
Let us state a lemma that says that weak solutiorfs df (1.1) are viscosity solutions.
LEMMA 2.1. A continuous weak solution dL.1)is a viscosity solution.

PROOF Letxg € £2 and letg be a test function such thatxg) = ¢ (xg) andu — ¢ has a
strict minimum atvg. We want to show that

—(p — 2)|V¢|p_4Aoo¢(x0) - |V¢IP_ZA¢(XO) > 0.
Assume that this is not the case; then there exists a radiu® such that

—(p = 2DIVPI" A (x) — IVIP2Ap(x) < 0



STEKLOV EIGENVALUES FOR THEoCO-LAPLACIAN 203

for everyx € B(xg, r). Setm = infjx_ = (u — ¢)(x) and letyr (x) = ¢ (x) + m/2. This
functiony satisfiesy (xg) > u(xg) and

—div(|Vy|P~?Vy) < 0.

Multiplying by (v — u)™ extended by zero outsidg(xo, r) we get
/ IV P2V y V(i —u) <0
{Y>u}
Taking (¥ — u)™* as a test function in the weak form we get
/ [VulP72VuV(y —u) = 0.
{¥>u}
Hence,

C(N, p) VY — Vul|? S/ (VY 1P72Vy — [VulP"2Vu, V(i —u)) <O,
{Y>u} {¥>u}

a contradiction.
If xg € 952 we want to prove

max{| Ve (x0)|” (Ve (x0), v(x0)) — Al (x0)|” 26 (x0),
— (p = 2IV¢I" Ao (x0) — [V|P A (x0)} > O.

Assume that this is not the case. We proceed as before to obtain

/ IVYIP 2V V(¥ — u) </ MulP~2u(y — u),
{Y>u} A2N{Y>u)

and
/ \VulP~2VuV (i — u) z/ MulP~2u(y — u).
{¥>u} 32N{y>u)
Therefore,
C(N, p) VY — Vul? S/ <|V1/f|”_2V¢—IVMI”_ZVM,V(I/f—u)> <0,
{r>u} (¥ >u}

again a contradiction. This proves thais a viscosity supersolution. The proof thais a
viscosity subsolution runs as above; we omit the details.0

With all these preliminaries we are ready to pass to the limipas> oo in the
eigenvalue problem.

Sinceuy , = 1is the first eigenfunction of (I].1) associated g, = 0 we can trivially
pass to the limit and obtain

1
lim )‘1,/,1; =0=A1oo

p—>00
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and

lim uip = 1= Ul co-
p—>00

Now let us prove a geometrical characterization of the second Steklov eigenvalue for
the co-Laplacian, defined by

i V||
o Ao = inf su ”“”_L@}
CeAoyec | llullLe@pe)

wheredg = {C ¢ W1>(2) : C is compact, symmetric and(C) > 2}. We have

LEMMA 2.2. A2 has the following geometrical characterization:

2
A = —.
220 = Jiam(2)
PROOF Let
— diam($2
R = sufr : Ixp, x1 € 2 with B(xg, r) N B(x1,7) = ¥} = %

We can take as test functions|in (2.4) normalized linear combinations of two cones centered
atxg andxy with radiusRr, that is, if

_ (4 |x = xol (1 x—x]
Co(x) = (1 R >+, Ci(x) = (1 R )+,

¢(x) = aCo(x) + BC1(x) With [|]lL=pe) = 1.
We obtain (as in([13])

we consider

L1 2
200 =R = diam(2)

To prove the reverse inequality, take a functioin W1 (£2) that changes sign and is

such that
[Vullpe@)

)\2,00 =
llullL= @)
Now u™ andu~ have disjoint supports and we may normalize so that| . ~@se) =
lu™llL>@e) = 1; then
IVut o2y = /R or [[Vu ™ |Lo2) > 1/R.

Therefore,

2
A > — — = — — £,
200 = R 78T Giam)  ©

Since this holds for every, the proof is complete. O

LEMMA 2.3.
lim sup)hi/;’ < A2.00-

p—>00
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PROOF As above, leCy(x) andC1(x) be two cones centered &t andx, of radiusR as
above, that is,

_ (4 |x —xol _ 4 x—x]
Co(x)_(l = >+, C1(x) = (1 - >+.

Let us normalize a function = aCq — bC1 (a, b > 0) by ||v]| =) = 1; then

(fo IVvI)P

1/p
A < ==
2P (fyo WIMYP
Hence 1
lim sup)é/]’,’ < & = h2cos

as we wanted to prove. O

LEMMA 2.4. Given eigenfunctionsy , of (L.1]) with eigenvalues.» , normalized by
luz, pllz=a2) = 1, there exists a sequenge — oo such that

U2 p —> U200 INCY(82).

The limituy o satisfies|uz |l L~ke) = 1 and it changes sign ofs2. Moreover it is a
minimizer of (2.4) and

; 1/p
lim A5

= A2,00-
p—oo &P ’

PrROOF If g < p,then

1/q 1/p
(2.5) ( f |Vuz,p|q> s|:2|1/q—1/"(/ |w2,p|">
22 2

L 1/p 1
_ )\2{12,'9'1/(171/1, (/ |u2,p|p> < A2{£|Q|l/qfl/P|852|l/P.
fiXes

Therefore, by Lemma 2.3, there exists a constaittdependent op such that

1/q
(2.6) (/Q |Vu2,p|q) <C.

Hence, asi, , are uniformly bounded irWl’q(Q_) we can take a subsequence which
converges weakly iw17(£2) (and hence irC*(2) if ¢ > N) to a limit uz . Since
this can be done for anywe infer thatuz, ., € W1°(£2). Indeed, from[(2}5), we get

1/q 1/q
(2.7) (/ |vu2,oo|q> slimsuri<f |V’42,p,~|q> < A2.00l2/M4.
2 pi—>00 k2]

Hence, letting; — oo in (2.7) we get

. 1
(2.8) Vit coll o) < liminf 257 < 3z 0.
p—00 g
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From the convergence irC%(£2) of the sequenceuz ,, and the normalization
llu2, p; lL>@p2) = 1 we obtain

(2.9) luz,00ll L2y = 1.

To end the proof we need to check that., changes sign. Assume that .. > O.
Henceu, , converges uniformly to zero . From [2.9) there existsg € 352 such
thatus - (x0) = 1. At level p we have

/ u|”~2u =0,
082

@H? = @)t
082 982

SO

Therefore,

r (=D
4 1/(pi—1) I
= (/E;Q |M2_)pi|17t* ) < 1082| /(pi— )””ip,.”LOO(am.

From the uniform convergence 0 ,, and [2.8), lettingp; — oo we get

1/r
(2.11) |asz|1/f</ |u;m|’> <o.
082 ’

A contradiction. This proves thab », changes sign and satisfi¢s (2.8) gnd](2.9). Hence,
from the definition ofi» », we obtain

iminf 3 /P
A2.00 < |;rglorlf k2,p'
This fact and Lemmia 2.3 end the proof. O

Now let us analyze the equation satisfiediys.. Let

min{in| — Az.colul, (n, v(x))} if u >0,
A(x,u, ) = { max{azoolul = Inl, (n, v(x))} if u >0,
(n, v(x)) if u=0.

LEMMA 2.5. The limituy, « is a viscosity solution of

Asout =0 in 2,

(2.12)
A(x,u,Vu) =0 onas2.
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PROOF First, let us check that Axu2 . = O in the viscosity sense if2. Let us recall

the standard proof. Let be a smooth test function such that., — ¢ has a strict maximum
atxg € £2. Sinceuy ,, converges uniformly tas ., we see thaty ,, —¢ has a maximum at
some pointy; € £2 with x; — xg. Now we use the fact thab, ,, is a viscosity solution of

—Apu =0
to obtain
(2.13) —(pi — DIVPIP ™ Asop (xi) — IVBIP "2 Ag(x;) < O.

If Vo (xg) = 0 we get— Ao (xg) < 0. If this is not the case, we find th&ip (x;) #~ O for
largei and then

—Asop(xi) < IVo|2Ad(x;) — 0 asi — oo.

pi — 2
We conclude that
— A (x0) < 0.

That is,uz « is a viscosity subsolution 6f Asu = 0.

Now we check the boundary condition.

Assume thati », — ¢ has a strict minimum atp € 92 such thatz . (x0) = ¢ (x0)
> 0. Using the uniform convergence 8} ,, t0 u2 . We deduce that; ,, — ¢ has a
minimum at some;; € 2 with x; — xo. If x; € £ for infinitely manyi, we can argue as
before to obtain

—Ax¢(x0) = 0.
On the other hand, if; € 02 we have

0
|V¢>|f’f—2<x,»)£<xi> > 22y 1817200 ().

If Vop(x0) =0, then

¢
— =0.
3y (x0)
If V¢ (xo) # O we obtain
1/(pi—1) 2
d¢ 1/(pi=1) )”Z,Pi 4 b
5(%’) = )”2,171' W(xi) ¢ (xi).
Sincekéflgp_l) — X200 @Sp — 00 We conclude that
)¥2 oo|¢|
- (x0) < L.
Vol
Moreover,

0
8—‘f(xo) >0,
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Hence, ifu2 oo — ¢ has a strict minimum atp € 92 with ¢ (xo) = u2 - (x0) > 0, we have

. a
(2.14) ma>{mln{(—)»2,oo|¢| + VD) (xo), %(XO)}: —Aoo¢>(XO)} = 0.

Now assume thais », — ¢ has a strict maximum afp € 92 with u «(x0) = ¢ (x0)
> 0. The u_niform convergence ab p, 10 up  implies thatu, ,, — ¢ has a maximum at
someyx; € 2 with x; — xp. If x; € £2 for infinitely manyi, as before we obtain

_Aoou2,oo(x0) <0.

On the other hand, if; € 352 we have

0
|V¢|”f*2(x,»)a—f<x,-) < 22 1817200 ().

If V¢p(xg) = 0, then
d¢

— =0.
™ (xo0)
If Vo (xo) # O we obtain
1/(pi—1) )
9 (A, [t pi
a—(i(x,') < )é/[(){)' 1)<2’TV—¢|(X1')> o (x;).

If A2,0010|(x0) < [V@|(x0), then
%(xo) <0
av

Hence,

. . a
(2.15) mln{mln{(—lz,oolw + Vo) (xo), a—f(Xo)}, —Aoo¢>(XO)} =<0.

Inequalities (2.14) and (2.15) give the boundary condition, in the viscosity sense, in
the regioru > 0. The rest of the cases are handled similarly; we just state the final results:
If u2. 00 — ¢ has a strict maximum aj such thaiz ~ (xo) = ¢ (xo0) < 0, then we get

. 0
(2.16)  minmax ()»z,oo|¢|—|V¢|)(XO),£(XO) —Awd(x0)} <0,

If u2 00 — ¢ has a strict minimum aty € 952 with u » (x0) = ¢ (x0) < 0, then we get

0
(217)  max max (Az,oo|¢|—|V¢|><xo),£(xo> — Ao | = 0.

Ift u2, 00 — ¢ has a strict minimum aty € 952 such thaiz . (x0) = ¢ (xg) = 0 we get

(2.18) ma{%(m), —Aoo¢<xo>} > 0.
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Finally, if u2 .o — ¢ has a strict maximum afy with us , (x0) = ¢ (xp) = 0 it follows
that

(2.19) min{z—f(xo), _Aoo¢(x0)} <0

Inequalities[(2.14)£(2.19) prove the result. O

Using the same ideas we can prove the following lemma.

LEMMA 2.6. Let At , be thek-th variational eigenvalue of(I.1) with eigenfunction
uk,p normalized byllux ,llr~me) = 1. Then every sequence tending to infinity has a
subsequencg; such that

lim )»,1/11;[ = hioos  Uk,p; = Usoo N C* (%),

i—oo P

where (i, o0, Mx.00) IS @ solution of(1.7).
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