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ABSTRACT. — We study the Steklov eigenvalue problem for the∞-Laplacian. To this end we consider the limit
asp → ∞ of solutions of−∆pup = 0 in a domainΩ with |∇up |

p−2∂up/∂ν = λ|u|p−2u on∂Ω. We obtain a
limit problem that is satisfied in the viscosity sense and a geometric characterization of the second eigenvalue.
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1. INTRODUCTION

Let∆pu = div(|∇u|p−2
∇u) be thep-Laplacian. The limit operator limp→∞∆p = ∆∞

is the∞-Laplaciangiven by

∆∞u =

N∑
i,j=1

∂u

∂xj

∂2u

∂xj∂xi

∂u

∂xi

in the viscosity sense (see [5], [6] and [10]). This operator appears naturally when one
considers absolutely minimizing Lipschitz extensions of a boundary functionf (see [1],
[2], and [11]).

Our concern in this paper is the study of the Steklov eigenvalue problem for the∞-
Laplacian. To this end we consider the∞-Laplacian in a bounded smooth domain as limit
of thep-Laplacian asp → ∞. Therefore our aim is to analyze the limit asp → ∞ for
the Steklov eigenvalue problem

(1.1)

−∆pu = 0 inΩ,

|∇u|p−2∂u

∂ν
= λ|u|p−2u on ∂Ω.

HereΩ is a bounded domain inRN with smooth boundary and∂/∂ν is the outer normal
derivative. Steklov eigenvalues have been introduced in [16] forp = 2. For the existence
of a sequence of variational eigenvalues see [16] forp = 2 and [7] for generalp. As
happens for the eigenvalues for the Dirichlet problem for thep-Laplacian, in general, it is
not known if this sequence constitutes the whole spectrum. Note that the first eigenvalue of
(1.1) isλ1,p = 0 with eigenfunctionu1,p ≡ 1. Hence we can trivially pass to the limit and
obtainλ1,∞ = 0 with eigenfunctionu1,∞ ≡ 1. Our main result in this paper shows that we
can pass to the limit in the variational eigenvalues defined in [7]. Since the first eigenvalue
is isolated [15], there exists a second eigenvalue that has a variational characterization [8].
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We can pass to the limit in this second eigenvalue and obtain a geometric characterization
of the second Steklov eigenvalue for the∞-Laplacian. Moreover we obtain a uniform limit
of the sequence of eigenfunctions (along subsequences) and we find a limit eigenvalue
problem that is satisfied in a viscosity sense which involves the∞-Laplacian together with
a boundary condition with the normal derivative∂u/∂ν.

THEOREM 1.1. For the first eigenvalue of(1.1)we have

lim
p→∞

λ
1/p
1,p = λ1,∞ = 0,

with eigenfunction given byu1,∞ = 1. For the second eigenvalue,

lim
p→∞

λ
1/p
2,p = λ2,∞ =

2

diam(Ω)
.

Moreover, given eigenfunctionsu2,p of (1.1) with eigenvaluesλ2,p normalized by
‖u2,p‖L∞(∂Ω) = 1, there exists a sequencepi → ∞ such thatu2,pi → u2,∞ in Cα(Ω).
The limitu2,∞ is a solution of

(1.2)

{
∆∞u = 0 in Ω,

Λ(x, u,∇u) = 0 on ∂Ω,

in the viscosity sense, where

Λ(x, u,∇u) ≡


min{|∇u| − λ2,∞|u|, ∂u/∂ν} if u > 0,

max{λ2,∞|u| − |∇u|, ∂u/∂ν} if u < 0,

∂u/∂ν if u = 0.

For thek-th eigenvalue, ifλk,p is thek-th variational eigenvalue of(1.1)with eigenfunction
uk,p normalized by‖uk,p‖L∞(∂Ω) = 1, then every sequence tending to infinity has a
subsequencepi such that

lim
i→∞

λ
1/pi
k,pi

= λ∗,∞

anduk,pi → u∗,∞ in Cα(Ω), where(u∗,∞, λ∗,∞) is a solution of(1.2).

We thus have a simple geometrical characterization ofλ2,∞ as 2/diam(Ω). From this
characterization and the convergence of the eigenfunctions we conclude that the second
Steklov eigenfunction in an annulus or a ball is not radial. Also we find that the domain
that maximizesλ2,∞ among domains with fixed volume is a ball.

We end the introduction with a brief comment on the Dirichlet case. Eigenvalues of
thep-Laplacian,−∆pu = λ|u|p−2u, with Dirichlet boundary conditions,u = 0 on∂Ω,
have been extensively studied since [9]. The limit asp → ∞ was studied in [13], [12]. In
these papers the authors prove results similar to ours. However our proofs are necessarily
different due to the presence of the Neumann boundary condition. An anisotropic version
of the Dirichlet problem was studied in [4].
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2. THE STEKLOV EIGENVALUE PROBLEM

First, let us recall some well known results concerning the Steklov eigenvalue problem for
thep-Laplacian. To this end, we introduce a topological tool, thegenus(see [14]).

DEFINITION 2.1. Given a Banach spaceX, we consider the classΣ = {A ⊂ X :
A is closed,A = −A}. Over this class we define thegenus, γ : Σ → N ∪ {∞}, as

γ (A) = min{k ∈ N : there existsϕ ∈ C(A,Rk − {0}) such that

ϕ(x) = −ϕ(−x) for all x ∈ A}.

We have the following result whose proof can be obtained following [7]; we omit the
details.

THEOREM 2.1. There exists a sequence of eigenvaluesλn of (1.1)such thatλn → ∞ as
n → ∞. The so-called variational eigenvaluesλk can be characterized by

(2.1)
1

λk
= sup
C∈Ck

min
u∈C

‖u‖
p

Lp(∂Ω)

‖u‖
p

W1,p(Ω)

,

whereCk = {C ⊂ W1,p(Ω) : C is compact, symmetric andγ (C) ≥ k} and γ is the
genus.

There exists a second eigenvalue for (1.1) and it coincides with the second variational
eigenvalueλ2,p (see [8]). Moreover, the following characterization of the second
eigenvalueλ2,p holds:

λ2,p = inf
C∈A

sup
u∈C

{∫
Ω

|∇u|p dx∫
∂Ω

|u|p dσ

}
,

whereA = {C ⊂ W1,p(Ω) : C is compact, symmetric andγ (C) ≥ 2}. Observe that
every eigenfunction associated withλ2 changes sign on∂Ω (see [15]).

Following [3] let us recall the definition of viscosity solution taking into account
general boundary conditions.

DEFINITION 2.2. Consider the boundary value problem

(2.2)

{
F(x,∇u,D2u) = 0 in Ω,

B(x, u,∇u) = 0 on ∂Ω.

(1) A lower semicontinuous functionu is a viscosity supersolutionof (2.2) if for every
φ ∈ C2(Ω) such thatu − φ has a strict minimum atx0 ∈ Ω with u(x0) = φ(x0) we
have: Ifx0 ∈ ∂Ω then

max{B(x0, φ(x0),∇φ(x0)), F (x0,∇φ(x0),D
2φ(x0))} ≥ 0,

and ifx0 ∈ Ω then
F(x0,∇φ(x0),D

2φ(x0)) ≥ 0.
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(2) An upper semicontinuous functionu is a viscosity subsolutionof (2.2) if for every
φ ∈ C2(Ω) such thatu − φ has a strict maximum atx0 ∈ Ω with u(x0) = φ(x0) we
have: Ifx0 ∈ ∂Ω then

min{B(x0, φ(x0),∇φ(x0)), F (x0,∇φ(x0),D
2φ(x0))} ≤ 0,

and ifx0 ∈ Ω then
F(x0,∇φ(x0),D

2φ(x0)) ≤ 0.

(3) Finally, u is aviscosity solutionif it is a viscosity super- and subsolution.

In our case for the Steklov problem for thep-Laplacian we have

Fp(η,X) ≡ − Trace(Ap(η)X),

where

Ap(η) = Id +(p − 2)
η ⊗ η

|η|2
if η 6= 0, Ap(0) = IN ,

and

(2.3) Bp(x, u, η) ≡ |η|p−2
〈η, ν(x)〉 − λ|u|p−2u.

With this notation we have

∆pu = Fp(∇u,D
2u) ≡ −

{
|∇φ(x0)|

2∆φ(x0)

p − 2
+∆∞φ(x0)

}
.

REMARK 2.1. If Bp is monotone in the variable∂u/∂ν, Definition 2.2 takes a simpler
form (see [3]). This is indeed the case for (2.3). More concretely, ifu is a supersolution of
(1.1) andφ ∈ C2(Ω) is such thatu − φ has a strict minimum atx0 with u(x0) = φ(x0),
then:

(1) if x0 ∈ Ω, then

−

{
|∇φ(x0)|

2∆φ(x0)

p − 2
+∆∞φ(x0)

}
≥ 0,

(2) if x0 ∈ ∂Ω, then

|∇φ(x0)|
p−2

〈∇φ(x0), ν(x0)〉 ≥ λ|φ(x0)|
p−2φ(x0).

Let us state a lemma that says that weak solutions of (1.1) are viscosity solutions.

LEMMA 2.1. A continuous weak solution of(1.1) is a viscosity solution.

PROOF. Let x0 ∈ Ω and letφ be a test function such thatu(x0) = φ(x0) andu− φ has a
strict minimum atx0. We want to show that

−(p − 2)|∇φ|
p−4∆∞φ(x0)− |∇φ|

p−2∆φ(x0) ≥ 0.

Assume that this is not the case; then there exists a radiusr > 0 such that

−(p − 2)|∇φ|
p−4∆∞φ(x)− |∇φ|

p−2∆φ(x) < 0
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for everyx ∈ B(x0, r). Setm = inf|x−x0|=r(u− φ)(x) and letψ(x) = φ(x)+m/2. This
functionψ satisfiesψ(x0) > u(x0) and

−div(|∇ψ |
p−2

∇ψ) < 0.

Multiplying by (ψ − u)+ extended by zero outsideB(x0, r) we get∫
{ψ>u}

|∇ψ |
p−2

∇ψ∇(ψ − u) < 0.

Taking(ψ − u)+ as a test function in the weak form we get∫
{ψ>u}

|∇u|p−2
∇u∇(ψ − u) = 0.

Hence,

C(N, p)

∫
{ψ>u}

|∇ψ − ∇u|p ≤

∫
{ψ>u}

〈|∇ψ |
p−2

∇ψ − |∇u|p−2
∇u,∇(ψ − u)〉 < 0,

a contradiction.
If x0 ∈ ∂Ω we want to prove

max{|∇φ(x0)|
p−2

〈∇φ(x0), ν(x0)〉 − λ|φ(x0)|
p−2φ(x0),

− (p − 2)|∇φ|
p−4∆∞φ(x0)− |∇φ|

p−2∆φ(x0)} ≥ 0.

Assume that this is not the case. We proceed as before to obtain∫
{ψ>u}

|∇ψ |
p−2

∇ψ∇(ψ − u) <

∫
∂Ω∩{ψ>u}

λ|u|p−2u(ψ − u),

and ∫
{ψ>u}

|∇u|p−2
∇u∇(ψ − u) ≥

∫
∂Ω∩{ψ>u}

λ|u|p−2u(ψ − u).

Therefore,

C(N, p)

∫
{ψ>u}

|∇ψ − ∇u|p ≤

∫
{ψ>u}

〈|∇ψ |
p−2

∇ψ − |∇u|p−2
∇u,∇(ψ − u)〉 < 0,

again a contradiction. This proves thatu is a viscosity supersolution. The proof thatu is a
viscosity subsolution runs as above; we omit the details.2

With all these preliminaries we are ready to pass to the limit asp → ∞ in the
eigenvalue problem.

Sinceu1,p ≡ 1 is the first eigenfunction of (1.1) associated toλ1,p = 0 we can trivially
pass to the limit and obtain

lim
p→∞

λ
1/p
1,p = 0 = λ1,∞
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and
lim
p→∞

u1,p = 1 = u1,∞.

Now let us prove a geometrical characterization of the second Steklov eigenvalue for
the∞-Laplacian, defined by

(2.4) λ2,∞ = inf
C∈A0

sup
u∈C

{
‖∇u‖L∞(Ω)

‖u‖L∞(∂Ω)

}
,

whereA0 = {C ⊂ W1,∞(Ω) : C is compact, symmetric andγ (C) ≥ 2}. We have

LEMMA 2.2. λ2,∞ has the following geometrical characterization:

λ2,∞ =
2

diam(Ω)
.

PROOF. Let

R = sup{r : ∃x0, x1 ∈ Ω with B(x0, r) ∩ B(x1, r) = ∅} =
diam(Ω)

2
.

We can take as test functions in (2.4) normalized linear combinations of two cones centered
atx0 andx1 with radiusR, that is, if

C0(x) =

(
1 −

|x − x0|

R

)
+

, C1(x) =

(
1 −

|x − x1|

R

)
+

,

we consider
φ(x) = αC0(x)+ βC1(x) with ‖φ‖L∞(∂Ω) = 1.

We obtain (as in [13])

λ2,∞ ≤
1

R
=

2

diam(Ω)
.

To prove the reverse inequality, take a functionu in W1,∞(Ω) that changes sign and is
such that

λ2,∞ ≥
‖∇u‖L∞(Ω)

‖u‖L∞(∂Ω)

− ε.

Now u+ andu− have disjoint supports and we may normalize so that‖u+
‖L∞(∂Ω) =

‖u−
‖L∞(∂Ω) = 1; then

‖∇u+
‖L∞(Ω) ≥ 1/R or ‖∇u−

‖L∞(Ω) ≥ 1/R.

Therefore,

λ2,∞ ≥
1

R
− ε =

2

diam(Ω)
− ε.

Since this holds for everyε, the proof is complete. 2

LEMMA 2.3.
lim sup
p→∞

λ
1/p
2,p ≤ λ2,∞.
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PROOF. As above, letC0(x) andC1(x) be two cones centered atx0 andx1 of radiusR as
above, that is,

C0(x) =

(
1 −

|x − x0|

R

)
+

, C1(x) = −

(
1 −

|x − x1|

R

)
+

.

Let us normalize a functionv = aC0 − bC1 (a, b > 0) by‖v‖L∞(∂Ω) = 1; then

λ
1/p
2,p ≤

(
∫
Ω

|∇v|p)1/p

(
∫
∂Ω

|v|p)1/p
.

Hence

lim supλ1/p
2,p ≤

1

R
= λ2,∞,

as we wanted to prove. 2

LEMMA 2.4. Given eigenfunctionsu2,p of (1.1) with eigenvaluesλ2,p normalized by
‖u2,p‖L∞(∂Ω) = 1, there exists a sequencepi → ∞ such that

u2,pi → u2,∞ in Cα(Ω).

The limitu2,∞ satisfies‖u2,∞‖L∞(∂Ω) = 1 and it changes sign on∂Ω. Moreover it is a
minimizer of(2.4)and

lim
p→∞

λ
1/p
2,p = λ2,∞.

PROOF. If q < p, then

(2.5)

(∫
Ω

|∇u2,p|
q

)1/q

≤ |Ω|
1/q−1/p

(∫
Ω

|∇u2,p|
p

)1/p

= λ
1/p
2,p |Ω|

1/q−1/p
(∫

∂Ω

|u2,p|
p

)1/p

≤ λ
1/p
2,p |Ω|

1/q−1/p
|∂Ω|

1/p.

Therefore, by Lemma 2.3, there exists a constantC independent ofp such that

(2.6)

(∫
Ω

|∇u2,p|
q

)1/q

≤ C.

Hence, asu2,p are uniformly bounded inW1,q(Ω) we can take a subsequence which
converges weakly inW1,q(Ω) (and hence inCα(Ω) if q > N) to a limit u2,∞. Since
this can be done for anyq we infer thatu2,∞ ∈ W1,∞(Ω). Indeed, from (2.5), we get

(2.7)

(∫
Ω

|∇u2,∞|
q

)1/q

≤ lim sup
pi→∞

(∫
Ω

|∇u2,pi |
q

)1/q

≤ λ2,∞|Ω|
1/q .

Hence, lettingq → ∞ in (2.7) we get

(2.8) ‖∇u2,∞‖L∞(Ω) ≤ lim inf
p→∞

λ
1/p
2,p ≤ λ2,∞.
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From the convergence inCα(Ω) of the sequenceu2,pi and the normalization
‖u2,pi‖L∞(∂Ω) = 1 we obtain

(2.9) ‖u2,∞‖L∞(∂Ω) = 1.

To end the proof we need to check thatu2,∞ changes sign. Assume thatu2,∞ ≥ 0.
Henceu−

2,pi
converges uniformly to zero inΩ. From (2.9) there existsx0 ∈ ∂Ω such

thatu2,∞(x0) = 1. At levelp we have∫
∂Ω

|u|p−2u = 0,

so ∫
∂Ω

(u+)p−1
=

∫
∂Ω

(u−)p−1.

Therefore,

(2.10) |∂Ω|
1/r−1/(pi−1)

(∫
∂Ω

|u+

2,pi
|
r

)1/r

≤

(∫
∂Ω

|u+

2,pi
|
pi−1

)1/(pi−1)

=

(∫
∂Ω

|u−

2,pi
|
pi−1

)1/(pi−1)

≤ |∂Ω|
1/(pi−1)

‖u−

2,pi
‖L∞(∂Ω).

From the uniform convergence ofu2,pi and (2.8), lettingpi → ∞ we get

(2.11) |∂Ω|
1/r

(∫
∂Ω

|u+

2,∞|
r

)1/r

≤ 0.

A contradiction. This proves thatu2,∞ changes sign and satisfies (2.8) and (2.9). Hence,
from the definition ofλ2,∞ we obtain

λ2,∞ ≤ lim inf
p→∞

λ
1/p
2,p .

This fact and Lemma 2.3 end the proof. 2

Now let us analyze the equation satisfied byu2,∞. Let

Λ(x, u, η) ≡


min{|η| − λ2,∞|u|, 〈η, ν(x)〉} if u > 0,

max{λ2,∞|u| − |η|, 〈η, ν(x)〉} if u > 0,

〈η, ν(x)〉 if u = 0.

LEMMA 2.5. The limitu2,∞ is a viscosity solution of

(2.12)

{
∆∞u = 0 in Ω,

Λ(x, u,∇u) = 0 on ∂Ω.
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PROOF. First, let us check that−∆∞u2,∞ = 0 in the viscosity sense inΩ. Let us recall
the standard proof. Letφ be a smooth test function such thatu2,∞−φ has a strict maximum
atx0 ∈ Ω. Sinceu2,pi converges uniformly tou2,∞ we see thatu2,pi−φ has a maximum at
some pointxi ∈ Ω with xi → x0. Now we use the fact thatu2,pi is a viscosity solution of

−∆pu = 0

to obtain

(2.13) −(pi − 2)|∇φ|
pi−4∆∞φ(xi)− |∇φ|

pi−2∆φ(xi) ≤ 0.

If ∇φ(x0) = 0 we get−∆∞φ(x0) ≤ 0. If this is not the case, we find that∇φ(xi) 6= 0 for
largei and then

−∆∞φ(xi) ≤
1

pi − 2
|∇φ|

2∆φ(xi) → 0 asi → ∞.

We conclude that
−∆∞φ(x0) ≤ 0.

That is,u2,∞ is a viscosity subsolution of−∆∞u = 0.
Now we check the boundary condition.
Assume thatu2,∞ − φ has a strict minimum atx0 ∈ ∂Ω such thatu2,∞(x0) = φ(x0)

> 0. Using the uniform convergence ofu2,pi to u2,∞ we deduce thatu2,pi − φ has a
minimum at somexi ∈ Ω with xi → x0. If xi ∈ Ω for infinitely manyi, we can argue as
before to obtain

−∆∞φ(x0) ≥ 0.

On the other hand, ifxi ∈ ∂Ω we have

|∇φ|
pi−2(xi)

∂φ

∂ν
(xi) ≥ λ2,pi |φ|

pi−2(xi)φ(xi).

If ∇φ(x0) = 0, then
∂φ

∂ν
(x0) = 0.

If ∇φ(x0) 6= 0 we obtain

∂φ

∂ν
(xi) ≥ λ

1/(pi−1)
2,pi

(
λ

1/(pi−1)
2,pi

|φ|

|∇φ|
(xi)

)pi−2

φ(xi).

Sinceλ1/(p−1)
2,p → λ2,∞ asp → ∞ we conclude that

λ2,∞|φ|

|∇φ|
(x0) ≤ 1.

Moreover,
∂φ

∂ν
(x0) ≥ 0.
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Hence, ifu2,∞−φ has a strict minimum atx0 ∈ ∂Ω with φ(x0) = u2,∞(x0) > 0, we have

(2.14) max

{
min

{
(−λ2,∞|φ| + |∇φ|)(x0),

∂φ

∂ν
(x0)

}
,−∆∞φ(x0)

}
≥ 0.

Now assume thatu2,∞ − φ has a strict maximum atx0 ∈ ∂Ω with u2,∞(x0) = φ(x0)

> 0. The uniform convergence ofu2,pi to u2,∞ implies thatu2,pi − φ has a maximum at
somexi ∈ Ω with xi → x0. If xi ∈ Ω for infinitely manyi, as before we obtain

−∆∞u2,∞(x0) ≤ 0.

On the other hand, ifxi ∈ ∂Ω we have

|∇φ|
pi−2(xi)

∂φ

∂ν
(xi) ≤ λ2,pi |φ|

pi−2(xi)φ(xi).

If ∇φ(x0) = 0, then
∂φ

∂ν
(x0) = 0.

If ∇φ(x0) 6= 0 we obtain

∂φ

∂ν
(xi) ≤ λ

1/(pi−1)
2,pi

(
λ

1/(pi−1)
2,pi

|φ|

|∇φ|
(xi)

)pi−2

φ(xi).

If λ2,∞|φ|(x0) < |∇φ|(x0), then
∂φ

∂ν
(x0) ≤ 0.

Hence,

(2.15) min

{
min

{
(−λ2,∞|φ| + |∇φ|)(x0),

∂φ

∂ν
(x0)

}
,−∆∞φ(x0)

}
≤ 0.

Inequalities (2.14) and (2.15) give the boundary condition, in the viscosity sense, in
the regionu > 0. The rest of the cases are handled similarly; we just state the final results:

If u2,∞ − φ has a strict maximum atx0 such thatu2,∞(x0) = φ(x0) < 0, then we get

(2.16) min

{
max

{
(λ2,∞|φ| − |∇φ|)(x0),

∂φ

∂ν
(x0)

}
,−∆∞φ(x0)

}
≤ 0.

If u2,∞ −φ has a strict minimum atx0 ∈ ∂Ω with u2,∞(x0) = φ(x0) < 0, then we get

(2.17) max

{
max

{
(λ2,∞|φ| − |∇φ|)(x0),

∂φ

∂ν
(x0)

}
,−∆∞φ(x0)

}
≥ 0.

Ift u2,∞ −φ has a strict minimum atx0 ∈ ∂Ω such thatu2,∞(x0) = φ(x0) = 0 we get

(2.18) max

{
∂φ

∂ν
(x0),−∆∞φ(x0)

}
≥ 0.
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Finally, if u2,∞ − φ has a strict maximum atx0 with u2,∞(x0) = φ(x0) = 0 it follows
that

(2.19) min

{
∂φ

∂ν
(x0),−∆∞φ(x0)

}
≤ 0.

Inequalities (2.14)–(2.19) prove the result. 2

Using the same ideas we can prove the following lemma.

LEMMA 2.6. Let λk,p be thek-th variational eigenvalue of(1.1) with eigenfunction
uk,p normalized by‖uk,p‖L∞(∂Ω) = 1. Then every sequence tending to infinity has a
subsequencepi such that

lim
i→∞

λ
1/pi
k,pi

= λ∗,∞, uk,pi → u∗,∞ in Cα(Ω),

where(u∗,∞, λ∗,∞) is a solution of(1.2).
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