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perturbative cases—~Part 1: Necessary condition and study of the unperturbed prbiglem
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ABSTRACT. — We study the problem ak, t)-loops, i.e. closed curves in the three-dimensional Euclidean space
with prescribed curvature and torsiorc. We state a necessary condition for the existence of a bounded sequence
of (kn, T)-loops when the functions, andz, converge to the constants 1 and 0, respectively. Moreover we prove
some Fredholm-type properties for the “unperturbed” problem, wigh1 andr = 0.
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1. INTRODUCTION

Recent years have seen a growing interest in some geometrical problems concerning the
existence and possible location/etlimensional manifolds embedded ifkd with given
topological type and prescribed curvature (see, e.g.,[[1],[[2], (6], 8], [11] and the recent
monograph[[B] with the references therein).

Here we investigate a problem in low dimension. More precisely, we study the
existence of closed curves in the three-dimensional Euclidean space with prescribed
curvature and torsion. The problem can be stated as follows: given smooth functions
k : R® — (0,+00) andr : R® — R, find closed curved™ in R® such that at every
point p € I the curvature of” equals«(p) and the torsion iz (p). We shall call such
curves(k, t)-loops

A specially relevant case corresponds to the cheiee g andt = 0, wherexg is a
positive constant. In this situation the only closed curves with such curvature and torsion
are circles of radius /kg placed anywhere iiR® (see Lemml). We remark that the
set of closed curves with constant curvatugeand torsion O defines a manifol@ of
dimension 5, diffeomorphically parametrized By x R3, whereP? := R3/R, denotes
the two-dimensional projective space, namely the space of directioRs$ {every pair
(n, p) € P? x R3 corresponds to the circle of radiugk centered ap and lying on the
plane orthogonal te).

Now let us focus on the problem ¢f, t)-loops when the curvatureand torsiorr are
perturbations of the constants > 0 and O respectively, and depend on a small parameter
¢ in the following way:

k(p) = ke(p) =Ko+ K(g, p),
T(p) = te(p) '=T(e, p),
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whereK, T : R x R3 — R are smooth functions such that
(1.2) K@©O,)=0 and T(, ) =0.

Let us observe that, is admissible as a prescribed curvature, since- 0 on compact
subsets oR? as|e| is small enough.

In general some conditions da andT are needed for the existence(®f, t.)-loops.
Indeed, considering the cage= 0 andT = ¢, one can see that for every£ 0 the only
curves with constant curvatukg and constant torsion are portions of helicoids. Hence
in this case there is no closed curve. Also whee= 0, i.e., when one deals with planar
curves, some restrictions @ are necessary (se€ [5]).

Hereafter we shall assume for simplicity = 1, which is not restrictive, by obvious
normalization. Henceforth, for afl € R andp < R3 we shall take

(1.2) ke(p) =1+ K(e,p) and tw.(p) =T(e, p).

We will see that the existence and nonexistencécpfz.)-loops is strongly related to
the properties of the zero set of the mappiig T? x R® — R® defined as follows:
[ 8:K (0, Ryz(1) + p) cog2t) dt
[ 0:K (0, Ryz(t) + p) sin(r) di
(1.3) M(¢.p)i=| [30.T(O, Ryz(t) + p)cos2mr)di for (¢, p) € T2 x R3
J38eT (0, Ryz(r) + p) sin(2rt) dt
Jo 8T (0. Ryz(t) + p) dt

whereT? := (R/27Z)? is the two-dimensional torus,

COSp2 —Sing2C0Sp1  Sing1 Sing:
(1.4) Ry :=| sing> cospocospr —sing1cospy | € SO(I)

0 sing1 COS¢1
for everyg = (¢1, ¢o) € T?
and
cog2rt)
(1.5) z(t) = | sin(2rt) for everyt € R.
0

By natural periodic extension, we shall also consitfer RZ x R3 — RS,

If (e1, e, e3) is the canonical basis @2, thenz is a uniforrﬁ] parametrization of the
unit circle centered at the origin and lying on the plane orthogonal. téloreover,Ryz+ p
parametrizes the unit circle centeredpaand lying on the plane orthogonal Ryes. Vice
versa, any solution of the unperturbed problem, i.e., the problem correspondirg &
admits such a parametrization, so tHét= {Ryz(R) + p | (¢, p) € T? x R3}.

1a parametrization of a curvel is calleduniformif |«’| is constant.
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Hence the mapping/ establishes a link between the perturbati@h, 7) and the
unperturbed manifold* and, borrowing a notion from perturbation theory for dynamical
systems|[[9], it can be interpreted as the Poiéebtelnikov vector associated to the
problem.

We point out that defining/ in terms of the coordinate®, p) € T? x R® we can
ensure as much regularity faf as we need, since the mapping— Ry from T? into
SO(3) is of classC®™. If we parametrizeZ by means of global coordinat&s, p) €
P2 x R3, even continuity is lost because of the Hairy Ball Theorem which prevents the
existence of continuous mappings— R(n) from P2 into SO (3) such thatR(n)es has
directionn.

As a first result we show that the fact tha&t vanishes somewhere is a necessary
condition for the existence of a bounded sequende Qfr.)-loops with|e| small.

THEOREM1.1. LetK,T € C1(R x R3) satisfy(L.1)and letx. andz, be as in(1.2). If
there is a sequeneg — 0, ¢, # 0, and a corresponding sequen@g,) of (¢, , 7, )-loops
such that for every € N one has

0< Co<lengthl;) <C and dist0,I},) <C

for some constant§y and C independent ok € N, then, up to a subsequendg, —
Rpz(R) + pin Ct asn — +oo, for some(g, p) € T? x R® and M (¢, p) = 0, with M
defined by(1.3).

Then we prove some properties concerning the unperturbed problem. More precisely,
denoting byC’rger the space ofC* functions fromR into R® which are periodic with
period 1, set

£2 := {(u1, u2) € Cher X Cpgr | u1 NONCONStaNtu # 0}
and define the operatdi : £2 C Cler X Cer = Cler X Cper DY

N (u})
N(u2)

(1.6) Fo(ur, up) = <—u/1/ + Uz Auy, —u/2> for every(uy, uz) € £2,

where
1
N@) = /|u|2 for everyu € Cpe.
0

We will see thatFo(u1, u2) = 0 for some(u1, up) € £2 if and only if u1 is a uniform,
1-periodic parametrization of @, 0)-loop, that is, a unit circle placed somewhereRif
Notice also thatFy is of classC® on its domain. Setting

1.7 Z = ((Ryz + p, Rgea) | (9, p) € T? x B3,
we will prove the following result:

THEOREM1.2. For every (ui,up) € Z the function Fj(u1, uz) : Cger x Céer N
Cler X Cper is @ Fredholm operator of indef. In particular, dimkerFy(uz, uz) =
codimimF(uy, uz) = 7.
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We point out that the mapping cannot be expressed as the gradient of any functional
and, even fo(uy, up) € Z, the operatofy(uz, uz) is not symmetric.

The information stated by Theor¢mL.2 will be essential in order to get existence results
for the perturbed problem, as we will see in the seduel [4] of the present paper.

The study developed here and lin [4] constitutes a part of the PhD thesis [10] of the
second author.

2. PRELIMINARIES

Let I" be a closed, regular, parametric curveRifof classC3 and letp : R — R3be a
parametrization of” by arc length, i.e.|p’(s)| = 1 for all s € R. The curvature of" at
the pointp(s) is given by the value (p(s)) := |p”(s)|. If k(p(s)) # 0 one defines the
normal and binormal vectors to the curve at the ppitt) asn(s) := p”(s)/«x(p(s)) and
b(s) := p'(s) A n(s) respectively. The tripl¢p’(s), n(s), b(s)} of orthogonal unit vectors
at p(s) is the so-called Frenet trihedron and the valgg(s)) := b'(s) - n(s) is the torsion
of I' at the pointp(s). We point out that the curvatukeand the torsion are geometrical
entities associated to the curve which in fact depend on the pgint(and not on the
parametrization).

According to the classical theory of parametric curvesRih (see [7]), the triple
{p’, n, b} satisfies the following equations, known as Frenet formulas:

"

=Kn,
(2.1) n' = —«kp' —1bh,
b =1n,
and the orthonormality conditions:
(2.2) pl=Inl=bl=1, p'-n=p -b=n-b=0.

In fact, in (2.1) only two equations are independent becausep’ A n. In particular,
sincen = b A p’, (2.1) and[(2.R) hold true if and only if

2.3) pi=wbnp,
' b =tbAp,
and
(2.4) Ip'l=1bl=1 p -b=0.

Moreover, agp parametrizes a closed curyejs a nonconstant periodic function.

The system[(Z2]3) together with the conditiofis [2.4) and the periodicity conditions
provides the analytical formulation of the problem of finding closed curves with prescribed
curvaturec and torsionr, called(k, t)-loops.

Since in general the length of the curve (or, equivalently, the period of solutions of
(2.3)) is also unknown, it is convenient to write the system]|(2.3) in an equivalent way as
suggested by the next lemma (we will use the notaﬁég}, £2 andN (u) already defined
in the Introduction).
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LEMMA 2.1. Letk € CL(R®) andt € CO(R®), withk > 0in R3. A pair (u1, uz) € 2
solves

L
2.5) uj = ;K(ul)ug Ay,

uy = t(uy)uz A uj,

with ¢ = N(u}) andv = N (u2) if and only if the mappingg(s) := u1(s/¢) andb(s) :=
(1/v)uz(s/¢) are nonconstant periodic solutions@). Inthis casdp’(s)| = |b(s)| =1
forall s e Randp’(s) - b(s) is constant. If in addition’, (o) - u2(to) = 0 for somerg € R,
then p is a parametrization by arc length of @&, t)-loop I, and ¢ is a multiple of the
length ofrI".

PROOF. By direct computations, one checks the equivalence between the sygtems (2.3)
and [2.5). Moreover, by (2.3), one also obtaihs |2 = (162 = (p' - b)' = 0, so|p/],
|b| and p’ - b are constant. In particular the equali)f@’z(|p’|2 =¢1 fol u}|? = ¢ yields
[p’(s)| = 1. In a similar way one getid(s)| = 1. If u/ (o) - u2(t0) = 0 for somerg € R
then p/(so) - b(sg) = 0 for sg = £zg and consequently’(s) - b(s) = 0 for everys € R.
Hence the orthonormality conditiorjs (R.4) are fulfilled and the conclusion followsD

3. PROOF OFTHEOREM[L]

As a first step, let us explicitly describe the set of nonconstant 1-periodic solutions of the
problem

NG

" o__ 1 /

3.1) 1= N 2N
u, =0,

which corresponds t§ (3.5) with= 1 andr = 0.
LEMMA 3.1. Any solution(u1, u2) € $2 of (3.1) can be written in the following form:

u1(t) = Rz(j1) + p,
(3.2) uz(t) = ARes,

with j € N, R € SO(3), p € R3, 1 > 0and defined in(1.5).

Notice that all the solutioné1, up) € 2 of (3.7)) automatically satisfy the orthogo-
nality conditionu’ (r) - u2(r) = O for all z.

PROOF First, one hasi»(r) = Aa with A > 0 anda € S2. Thus one is led to look for
1-periodic solutions of the linear equation

(3.3 u] =ta Auj
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with £ = N (u}). Integrating[(3.8) once, one obtains

uy(t) = sin(¢r)a A b+ (1 — cog¥t))(a - b)a + cos{t)b
with b € R3 arbitrary. Then the general solution pf (3.3) is

u1(t) = Wa Ab+t(a-b)a+ Sinft)

(b—(a-b)a)+c

with ¢ € R3 arbitrary. From the equatio.3) it follows thau/l(t)|2)’ = 0, souj| is
constant. In particulafu’ (r)| = |u}(0)| = |b| and thent = N(u3) = |b|. Therefore
b # 0 and one can write = ¢b with b € S2. Now let us impose the periodicity condition
u1(0) = u1(1). On the one hand, the equatief0) - a = u1(1) - a impliesa - b = 0. On
the other hand, fronu1(1)| = |u1(0)| it follows that cog = 1, that is,¢ = 2z for some

j € N. Henceu; takes the form

ui(t) = —cos2jnt)a Ab+sin@jrt)b +a nb+c
witha - b = 0. Settingpy = —a A b, pp = b andp = a A b + ¢ one writes
u(t) = cos2jmt)p1 + sin(2jrt)p2 + p

with |p1] = |p2| = 1, p1- p2 = 0 andu2(r) = ra = Ap1 A p2. Equivalently, [(3.R) holds
for someR € SO(3). O

REMARK 3.2. If we represent a matriR € SO(3) by means of Euler angles, every
solution(uy, u2) € £2 of (3.7)) can be equivalently written in the following form:

u1(t) = Rypz(jt + ¢o) + p,
uz(t) = ARges,

with j € N, p € R%, A > 0,¢0 € R/Z, ¢ € T? andR,, andz defined as i (1]4) anfi (1.5),
respectively.

The parameterp, A, ¢o and¢ reflect corresponding symmetries for the problgm](3.1).
Some symmetries are of analytical type and arise from the formulation of the problem in
terms of a system of ode’s. This is the case for invariance under dilation with respect to the
second component and invariance under the change> jt + ¢o. These invariances are
exhibited also by any problem likg (2.5). The more meaningful symmetries are those of
geometrical type, expressed by the paramepeesT? and p € R3, and which are broken
if ¥ is nonconstant and is nonzero.

PROOF OFTHEOREM. Letl, be a(ke,. .,)-loop and letu, € C3,, be a uniform
parametrization of,, with |u},| = ¢,. Notice that

”
|,

(34) Ke, (un) =

> -
Cu
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Define

Uln = Up,
’ ”
ul, Au

uz,n = .
Cgka,, (un)

Then(ui,, uz,) € £2 solves

"o /
(35) !Ml,n = CnKg, (ul,n)MZ,n A Uy po

’ ’
Uy = Tey (u1,n)u2.n A Uy p-

Moreover|u) ,| = ¢, and thusN(u’Ln) = ¢,. In addition, by the definition ofy ,, using
) and the fact that),-u), = 0 (becausgu/ | is constant), one also deduces that,| = 1

and thusN (u2,) = 1. By hypothesis, the sequenge, ,,) is bounded inger. Moreover

the sequencéuy ) is bounded ircger. Thanks to), the sequences ,) and (u2,,)

are bounded im’,‘lger and in Céer, respectively. By the Ascoli—Arzaltheorem, passing to
subsequences, we may assume that

ui, — u1 in Céer and uz, — up in Cr?er

for some(us, uz) € Cher x Cler In particularc, = N(u} ) — N(u}) = c andN(uz) =

1. By hypothesig # 0, that is,u; is nonconstant. In addition, by the uniform continuity,
ke, (u1,,) — 1 andr, (u1,,) — O uniformly on [Q 1]. By standard arguments we can pass
to the limit in (3.3), finding thatu1, u2) is a nonconstant solution of

" o__ /
uj = cup Auj,
;o
uy =0,

with ¢ = N(u}). Then, by Lemma 3|1 and Remark[3id(r) = Ryz(jt + o) + p and
us(t) = Ryes for somep € T2, p € R3, j € N, and¢go € R/Z. Now we show that
M(n, p) = 0. Set

K(e, p) .
Re. p) = 0K (0, p) — . if & #0,
0 if e =0,

T, p) .
f“(g, ) = 9. T (0, p) — — if e #0,
0 ife=0.

Sinced. K, 3, T € CO(R x R3), one sees thak (¢, p) — 0 andT (¢, p) — Oase — 0
uniformly on compact sets @2. As a consequence, singg,, — u1 uniformly on [0, 1],
one finds thak (e, u1.,) — 0 and7 (¢,, u1,) — O uniformly on [Q 1]. Then, since the
sequencéusz , A ”/1,;1) is uniformly bounded on [01],

(3.6) K (ep, U1)U2.n A u’ln —~0 and T, u1)U2.n A u’ln -0
uniformly on [0, 1].
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Then, by[(3.B), one has

1 1 1 1
/ 9T (0, ug )z Auy, = / T (en, urn)u2n AUy, + 8—/ up, — 0
0 0 n JO

and

1
/
/0 0: K (0, ugn)ugn Auy,

1 1 1
5 , 1 P 1 ,
= K (e, usn)uzn A Ui + — Uy, — — U Ny,
0 Cnén JO &n Jo

1 1
=0(1)+—/ Uy, AUy
En Jo ’

n

1
=o0(1) +f0 (0T (O, ul,n) — T (&n, ul,n))(uz,n A ué]_)n) AUl n

1
=o(1) + / 0T (0, ur)(uz A uy) Aui.
0

Knowing explicitly u; anduz one can computé:, A u) A uy = 27jp A u to obtain

1 1
(3.7) /0 0. K (0, u n)uzy A ”/1,n — an/O 0:T(0,u1)p A ui.

On the other hand, sineg, A u/l g > U2 A u’l = 27 j(p — u1) uniformly on [0, 1], one

has
1

1
fo 3T (0, uyn)uzp Auy, — an/O 9T (0, u1)(p — u1)

and then
1
(3.8) /0 3:T(0,u1)(p —u1) =0,
hence
1 1
0= / 8T (0. Ryz(jt + do) + p)z(jt + do) di = / 9.7(0, Rz + )z,
0 0

that is,M3(¢, p) = Ma(¢, p) = 0. In a similar way one has

1 1
/O 0eK (O, utuzn Ay, — 27 /0 0K (0, u1)(p — u1)

and from [[3.}) one deduces that

1 1
foaemo,ul)(p—ul):/o 3.T(0, up)p Auz =0
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where the last equality follows from the equalpy\ u1(t) = (p A Rype1)z(jt + ¢o) - e1 +
(p A Rpe2)z(jt + ¢o) - e2 and from the fact thadlz(¢, p) = Ma(¢, p) = 0. Hence,
arguing as before, one infers that al&Q (¢, p) = Ma(¢p, p) = 0. Finally, using the
second equation i.5) and the fact th’g;, -up, =0, we obtain

1
/
/ T (&, ul,n)“Z,n A Uy - Uln = 0,
0

which, using alsd(3]6), implies that

1
/
/(; 0:T (0, ur n)uzny A Uy, -Uln = 0

and then

1 1
0=/ BST(O,ul)uz/\u/l-bq:an/ 0:T (0, u)us - (p — u1).
0 0

Therefore, usingd (3]8), we obtain

1 1 1
0=—/0 38T(0,u1)u1'(P—u1)+p'/0 3sT(0,u1)(P—M1)=/O 9T (0, u1),

that is,M5(¢, p) = 0. o

4. PROOF OFTHEOREM[I.Z

Let

X 1= Choyx Cpep ¥ i= Cpoy X Cley
be the Banach spaces endowed with their standard norms, and consider the dferator
2 C X — Y defined in[(1.B). One haBy € C*°(£2, Y). In particular, for fixed(uy, u2)
€ £2, the differential Fj(u1, u2) is a bounded linear operator frominto ¥ acting in the
following way:

(u}, x7) N(uy)

4.1 F(u1, up)[x1, x2] = (—x” + ——=2 o AU+ ——=(up A Xy +x2 Auh)
° PUN@ON@2) T Nu) ' !
N (uy)(uz, x2) , ,
N(uz)3

for every(x1, x2) € X, where in general
1
(u,v) = / u-v.
0
In the following, X andY will be equipped with the.2 inner product:

1
42) (1 u2), (o1, 2)) = (1, v1) + (2, v2) = /0 (1 - v1+ 12 - v2).

The notion of orthogonality we will consider will always refer to the above inner product.
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LEMMA 4.1. Forevery(usy, up) € Z (with Z defined in(1.7)) one has
ker Fy(uy, uz) = {(a Aur+b,a Nup+up) | a,b € RS, A e R}.

PROOF First, let us prove the lemma takinig, p) = (0, 0), that is, (u1, u2) = (z, e3).
Notice that(x1, x2) € ker Fy(z, e3) if and only if (x1, x2) is a 1-periodic solution of

(4.3) {xi’ =2me3 Axj+2mx2 A2 — (2, x1) — (2m)%{e3, x2))z,
x5, =0.

First, observe that, has to be constant. Hengg(r) = a> € R3 and one is led to look for
1-periodic solutions of

(4.49) x] =2me3Axyi+2maa A7 —az
with
(4.5) a=(,x1)— (27)%e3 - az.

Integrating [(4.4) once, one gets

t
xj(t) = L(t)b1 + L(t)/ L(—s)q(s)ds
0

where

(4.6) L(t)p =sin(2rt)ez A p + (1 —co2rt))(e3 - p)ez + cog2xt)p,
' q(t) =2maz A7 (1) — az(t)
andb; e R3 is arbitrary. Making computations one finds

L(=9)q(s) = —(@ + (21)%azg)er + (27)(SiN(27s)azz + COL2ms)azy)es

where we have seb; = a» - ¢; fori = 1, 2, 3. Therefore
t
/ L(=$)q(s)ds = —(a + (27)2az3)te1 + 2m((1 — oS 2rt))azz + SiN(2r1)az1)es
0
and then

x’l(t) =L({t)b1 — (¢ + (Zﬂ)zazg)tz(t) + 27 ((1 — coS(2rmt))azy + SinN(2rwt)azq)es.

Observing thatrj(0) = by andxj(1) = by — (a + (27)2az3)e1, and imposing the
periodicity conditiony; (0) = x7(1) one obtains

4.7 o + (27)%az3 = 0.

Moreover, after computation$, (#.5) and {4.7) imply

1
O=/ 7 - x]=27b1 - e.
0



CURVES WITH PRESCRIBED CURVATURE AND TORSION 237

Hence,
x1(t) = (b13 + 2waz)e3 + sin(2t) (b11ez + 2wazies) + coS2nt)(biier — 2mazzes)
where, as beforéy 1 = b1 - e1 andby3 = b1 - e3. Thus
x1(t) = a1+ (b13 + 2maz)tes
11

b ) b
4+ (1 —co92nt))| =——e2 + azie3 | + sin(2rt) ilel — aze3
21 2

wherea; € R3 is arbitrary. Sincer1(0) = a1 andx1(1) = ay + (b13 + 2w azy)es, in order
thatx(z) be 1-periodic, one must haves + 2raz; = 0. Hence, 1-periodic solutions of

(4.3) are given by
b11 . b11
(4.8) x1(t) = a1 + (1 — cog2nrt)) <Z€2 + 02163) + sin(2rt) (Eel — a22€3> ,
x2(1) = az,

whereas, ax € R3 andby1 € R are arbitrary. If we sett = e3 A ap — (b11/27)e3,
b = a1 — a A e1 andx = az3, the solution[(4.8) takes the form

x1(t) =a Az(t) + b,
x2(t) = a N e3 + Aes,

with arbitrarya, b € R3 andx € R.

Finally, we prove the result for anyi1, u2) € Z. For everyR € SO(3) and(p1, p2) €
R3 x R3 setR(p1, p2) := (Rp1, Rpz). Using this notation andl (4.1) one can check that
(4.9) Fo(Rz + p, Re3)[Rx1, Rx2] = R(Fy(z, e3)[x1, x2]).

Hence, taking(u1, u2) = (Ryz + p, Rge3) € Z, thanks to the result proved in case
(¢, p) = (0, 0), we have

ker Fy(Rsz + p, Ryes) = {(Ryp(a Az +b). Rs(a Aes+hea)) |a,b € R, & € R},

which, up to an obvious equivalence, yields the statement of the lemmal

Given any(u1, u2) € Z, let us introduce the following linear subspacerof
Yo(u1, u2) := {(y1, y2) € ¥ | (Fy(u1, u2)[x1, x2], (y1, y2)) = 0 for all (x1, x2) € X}.
For further purposes, the following more explicit characterizatioFg6f 1, u>) is useful.
LEMMA 4.2. For every(ui, u2) € Z one has

Yo(ui, up) = {Qu) +a,2ma Aug+b) | L €R, a, b € R3.
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PROOF. Let (u1,u2) = (Rpz + p, Rye3) € Z. Thanks to[(4.p) one has

(4.10) Yo(Rpz + p, Rye3) = {(Rpy1, Rpy2) | (v1, y2) € Yo(z, €3)}

and so we can limit ourselves to proving the lemma (or, u2) = (z, e3). For every
(x1, x2) € X set

(4.11) a(x], x2) = (2, x)) — (27)(e3. x2).

Hence(y1, y2) € Yo(z, e3) if and only if (y1, y2) is a 1-periodic solution of
(4.12) (—x] —a(xy, x2)z+ 2w (e3 Ax; +x2 A 2'), —x3), (y1, ¥2)) =0
for all (x1, x2) € X. In particular, takinge, = 0, we must have

(4.13) (—x{ —a(x},00z+ 2rez Axy, y1) =0 forallxy € Che.

Sincea(x7, 0) = (27)%(z, x1), (4.13) is equivalent to

1 1 1 1
(4.14) —f x/l/-y1+27T/ x/1~y1/\63—(27'[)2</ z-x1)</ z-yl)zo
0 0 0 0

forall x1 € C3e. Itis standard to recognize thet € Cle, solves|(4.14) if and only i1 is
a (weak) 1-periodic solution of

yi =2me3 A y; — Bz,
B = (27)2(z, y1).

Arguing as in the proof of Lemnja 4.1 one finds
y1(t) = L(t)b1 — Brz(1)

whereL (z) is given by [4.5) and; € R is an arbitrary vector. Imposing the periodicity
conditiony; (0) = y;(1) one infers thap = 0, so that

1
(4.15) / z-y1=0.
0

Integrating once more, one obtains

1—co92nt) sin(2rt)
yi(t) = a1+ — >, @A b1+ (e3 - by)tes — ((e3 - b1)es — b1)
with a1 € R3 arbitrary. The periodicity condition; (0) = y1(1) yieldses- b1 = 0 and thus
1—co92rt sin(2rt
yi(t) = a1+ ¢63 A b1+ ﬂbl'
21 21

Now we impose[(4.75) obtaining the further restriction by = 0. Thereforeb1 = b11e1
whereb1 € R is arbitrary, and thus

b11

b
——=Z )+ ﬂez + as.
(2m)2 2

n@) =
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Hence, up to redefining the constants one concludes that the general solufion|of (4.14) is
given by

(4.16) yi(t) =17 (1) +a
with arbitraryx € R anda € R3. Now one plugs6) int2) finding the following
equation forys:

1 1
’r_ / 1
zjm.]c; XoAZ _A x5-y2 forall x2 € Cpep

so thatys is a (weak) 1-periodic solution af A a + %yé = 0. Hence
yo(t) = 2ma A z(t) + b

with b e R® arbitrary. Finally, one can check that any pair of the fasm y2) = (Az' +a,
2ma A z + b) solves[(4.IP). This concludes the proof. O

Notice that, by definitionYo(u1, u2) = (im Fy(uz, u2))*, where the orthogonality is
meant with respect to the inner prodyct {4.2). In fact we also have:

LEMMA 4.3. Forevery(uy, uz) € Z one hasm Fy(uy, up) = (Yo(ux, uz))*.

PROOF. Since by definitionVo(uz, uz) = (im Fy(uz, u2))*, the inclusion imFg(ug, uz)

C (Yo(u1, u2))* is trivial and we just have to prove the opposite one. Let us begin with
(u1, u2) = (z,e3). For any fixed(wi, wp) € (Yo(z, e3))t we look for (x1, x2) € X
satisfyingFj(z, e3)[x1, x2] = (w1, wp), that s,

4.17) !—x/l/—oc(x/l,xz)z+271(e3/\x/1+x2/\z’) = w1,

—Xp = w2,

wherea(x}, x2) is given by [4.1]). Sincé(w1, w2), (y1, y2)) = 0 for every(y1, y2) €
Yo(z, e3), the representation stated by Lemimg 4.2 yields

(4.18) {((w1, w), (Z,0) =0, i.e, (wg,z)=0,
1
(4.19) ((wy,w2),(0,¢))=0 fori =1,2,3, i.e, / wy =0,
0

(4.20) ((w1,w2), (e1,2me1 A2)) =0, ie, (wi, e1)=—27(wo, (e2-2)e3),
(4.21) ((w1,w2), (e2,2me2 A 2)) =0, i.e, (w1, e2) =27 (wy, (e1-2)es),
(4.22) (w1, wp), (e3,2me3 Az)) =0, i.e, (wy,e3) =—{(wy 7).

Now, the second equation in (4|17) is solved by

'
(4.23) x2(t) =dp —/ wo
0
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wheredp € R3 is arbitrary. Notice that, belongs tole}er thanks to ). Integrating the
first equation in[(4.17) we obtain

1
(4.24) xXj(t) = L(t)er + L(t)/o L(=s)f(s)ds

whereL(t) is given in ),cl € R8s an arbitrary constant vector which should satisfy
some restrictions and

f(s) = 2mxa(s) A2/ (s) — ae(xy, x2)z(s) — wa(s).
One can explicitly compute
L(=$)f(s) = (—(2m)%x2(s) - e3 — at(x], x2) — w1 - 2(5))e1

1
- Zwl(s) -7/ (s)ez + ((21)%x2(s) - 2(s) — wi(s) - e3)es.

The periodicity conditionc; (0) = x7(1) is equivalent tOfOlL(—s)f(s) ds = 0, that is:

1
(4.25) / (=(21)2x2- €3 — a(x}, x2) — w1 - 2) = O,
0
1
(4.26) / w7 =0,
0
1
(4.27) / ((271)2xz -z—wjp-e3) =0.
0

One sees thaf (4.26) is (4]18) and thus it holds true. Also](4.27) is satisfied because, by
(4.23) and by the second equation[in (4.17), one(mases) = —(w2,2') = (x5, Z) =
—(x2,2) = (27)(x2, z). Hence it suffices to check (4]25) which in fact, using (#.11), is
equivalent to

(4.28) (Z', x1) = — (w1, 2).

By explicit computations[ (4.24) gives

1
(4.29) x1 (1) = A1(0)z () — ZAz(l)Z/(l) + Az(0)es

where
t
A1(t) = c11— /0 ((Zn)zxz ez +a(xy, x2) +z - wi),
1 t
(4.30) Ao(t) = —c12+ —/ 7w,
21 0

t
A3(t) = 13+ fo (@122 — e3- wy),
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andcy; = c1-¢; fori =1, 2, 3. Thus[(4.2B) turns out to be equivalent to

1 1
(4.32) c12 = — / (1=07 —2) w1
21 0
Integrating [(4.2P) one obtains
! 1
(4.32) x1(t) = co+ / <A1Z — — A+ A3€3)
0 2w

whereco € R3 is arbitrary. Using[(4.20)[ (4.21) and the second equatidn in|(4.17), one can
check thatfol(Alz — %Azz/) = 0, so thatx; is periodic if and only if [y A3 = 0, i.e.,
upon explicit computations,

1 1
(4.33) c13= —d02+/ (1—-1e3-wy +/ Q=07 +z—e1) w2
0 0

wheredgy = do - e2. Hence for arbitrango, c1, dg € R3 with ¢1» and ¢13 satisfying
(4.37) and[(4.33) the paitr1, x2) given by [4.3R) and (4.23) yields a periodic solution
of (@.17). This concludes the proof in the caga,u2) = (z,e3). For an arbitrary
(u1, u2) = (Rpz+ p, Ryes) € Z one observes tha¥o(u1, u2))t = Ry ((Yo(z, e3)) 1), by
(4.10). Therefore, fixingu1, v2) € (Yo(u1, u2))*, by the first part of the proof, there exists
(x1.x2) € X such thatFj(z. es) = (Ry v1, Ry v2) € (Yo(z. e3))*. Then from ) it
follows that Fy(u1, u2)[Rpx1, Rgx2] = Ry (Fy(z, e3)[x1, x2]) = (v1, v2). This completes
the proof. DO

Let us make a final technical remark which will be usedLin [4] for the study of the
perturbed problem, about existence(af, . )-loops.

REMARK 4.4. Thanks to[(4.29)[ (4.B0)] (4133], (4/23) and |(4.9), fixing, u2) =
(Rpz + p, Ryes) € Z, if Fy(ui, uz)[x1, x2] = (y1, y2) then

1 1
x1(0) - Rgez + 2mx2(0) - Rgen = /0 (1—1)es- R(;lyl +/0 Q-1 +z—e1)- R;lyz.
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