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Partial differential equations. — Weak convergence, local bifurcations and uniqueness
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ABSTRACT. — We show how weak convergence techniques can be used to improve classical theorems on local
bifurcation and on uniqueness when a parameter is large.
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The purpose of this paper is to show how weak convergence ideas can be used to
considerably improve a number of known bifurcation results and uniqueness theorems.
We improve the theorems by weakening the assumptions. We improve considerably some
ideas of Katriel [19] which were for some particular problems in the one-dimensional
case. The main idea is to show that certain terms converge weakly and use this to pass to
the limit. The main lemma proves weak convergence in a non-obvious case.

In particular, we weaken the assumptions in classical results that the solutions of

Au=rf(m) In2, u=0 o0nas2,

bifurcating from zero (or from infinity) at a simple eigenvalue form a single arc. (In the
case of bifurcation from zero, we assumi@) = 0, f'(0) = 1.)

In addition, we improve results on when the same equation has a unique positive
solution for largex.

We also improve some results of mine on multiple solutions of Ambrosetti—Prodi type
problems for jumping nonlinearities.

It is clear that weak convergence ideas should have other applications.

1. WEAK CONVERGENCE
We start with the key lemma.

LEMMA 1. Assume that2 has finite measurey € C1(£2) whereT = {x € 2 :
Vu(x) = 0} has measure zero, thgt : R — R is Lipschitz and thay 1 f(y) — 0 as
ly| = oo. In addition assume thaw, — 0 in C1(2) and &, — oo asn — oo. Then
f(an (v + wy)) — Oweakly inL?(£2) for 1 < p < oo.

REMARK. There is a problem in the definition of (a,,(v + wy)) in that it is not
defined a.e. on the set wheVdv + w,,) = 0 and f’ is not differentiable at, (v + wy).
However, by our assumptions dn, this set has small measurerifis large and hence
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it only makes a small contribution to the integral folarge. Thus it will not affect the
conclusion. (Alternatively, we could definf (a, (v + w,)) to be zero on this set.) As
another alternative in our applicationg(v + w,) only vanishes on a set of measure zero
and hencef’ (o, (v + wy)) is defined a.e.

PROOF STEP1.
0 .
/ £ (o, (v + wn))a—(v +w,)¢p - 0 asn — xoif ¢ € CF(£2).
Q Xi

This follows since by integration by parts the integral becomes

0
M —o [ o+ wg?.

Xi
Here we have used the fact that the we#k partial derivative off (a,(v + w,)) is
%fmﬁw+wh%w+wﬁ®tﬂﬂ)§maﬂw|5dﬂ+ﬂ&onRﬁe>Oﬁw
see that

lot, L f (@ (v + wa))| < e€(v] + lwa]) 4+ 1M,

and hence this term tends to zero uniformly@nThus our claim follows.

STEP 2. ]
/ f/(an(v—i—u)n))a—vqb—) 0 asn— coif ¢ € C3°(£2).
2 Xi

This follows trivially from Step 1 sincg’ is bounded ofR andv 4+ w, —v — 0in C1(£2)
asn — oo. Since f’(a, (v + wn))g—; is bounded, we see by density the result is still true

if ¢ € L2(£2).

STEP3. Note thatf’ is bounded and thus to prove weak convergence, it suffices to prove
that

/ fa,(v+wy)ep — 0 asn— oo
I?)

for ¢ in a dense subset @f?(£2). Hereg~1 4+ p~1 = 1. Now if M is a closed subset of
measure zero a2, the set ofL4(£2) functions vanishing in a neighbourhooda® U M
is dense inLY(£2). This follows easily from the dominated convergence theorem, since
if M, ={x € 2 :dx,M) > 1/n,d(x,382) > 1/n} the characteristic function of
My, xum,), satisfiesyu,) — 1 a.e. on2 asn — oo (becausei has measure zero). (We
replacep by ¢ x(u,).) We setM = {x € §2 : Vv(x) = 0}. This has measure zero.

If x € 2\M, there is a neighbourhodd, of x such that some partial derivative /9x;
is non-zero onV, and thus|dv/dx;| has a positive lower bound aN,. If ¢ € LI(2)
vanishes on a neighbourhoodMfU 952, then a finite number aW,,’s cover the support
of ¢ (by compactness). Hence we can write

’ ko v (( v >1¢ )
= X(N') .
=1 3xi(h \\9xi¢j) !
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Since(ai"_':j) )_1¢X(ij> € L1(£2), the result now follows from the last remark in Step 2.
COROLLARY. Assume the assumptions of Lemhrt#old for bothw, andw, andw, —
w, # 0a.e. ong. Thenfo1 [ (o (v + twy, + (1 — H)wy))dt — 0weakly inL?(£2) as
n — oQ.

REMARK. f’is measurable and bounded and the integral is defined for almostlall
would suffice to assume that the $ete 2 : w,(x) = w,(x), f is not differentiable at
o, (v + w,)(x)} has measure zero.

PrROOFR If ¢ € C3°(£2),

1 1
(/ f/(an(v +tw, + (1 - t)wn))dt» ¢> = / (f/(an(v +tw, + (1 - t)&jn))v @) dt.
0 0

Now the integrand on the right hand side is bounded uniformlyand tends to zero for

eachr asn — oo by Lemma 1. Thus the dominated convergence theorem implies the right
hand side tends to zero and hence so does the left hand side. As before, this suffices to
prove the result.

ReEmMARKS. 1. It would suffice thatw,, converges to zero irwé'cl(fz) asn — oo if f
is CL.

2. There is an obvious variant wherg — 0 asn — oo and we assume thdtis Lipschitz
and f(0) = f/(0) = 0. The proof is essentially the same.

3. If v = ¢ # 0 on a setS of positive measure, theviv = 0 a.e. onS (by [26]) and thus

our assumption fails. Moreover, it is easy to see that the conclusion fails in this case unless
f'(y) = 0asy — oo. We suspect that the result fails for sorief classC! whenevertl

has positive measure.

4. Our methods also apply to mapgx, u(x)) on £2 providedf is C1, |fy(x, »)I < K on

2 x Randy (| fi(x, y)| + | f(x, y)|) = 0 as|y| — oo uniformly in x. (It is clear that

the condition thatf is C* can be weakened and that our result is not best possible because
it is a consequence of Lemma 1 thatit L (£2), thena(x) f'(a(v + w,)) — 0 weakly

in L1(82) if the assumptions of Lemma 1 hold.

5. Our argument in fact implies thaf’ (o, (v + w,)) — 0 in L9(£) if and only if
(v +wy)) — 0in LI(T).

6. We discuss briefly when (7T) = 0 in the important case whevds a non-trivial solution
of a linear elliptic equation

(a2 5,2 L ru=0 ine

—\aii— i— +r(x)u = .

3x,' Y 8x]' / 3xj'

We discuss other cases in later sections. Provided the coefficients are regular enough to
ensure thaut € Wlf)’cp({z) except for possibly a sef of measure zero, thefi having
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positive measure implies that all the second (generalized) partial derivatiuearefzero

a.e. onT (cf. [26]) and hence'(x)u = 0 a.e. onT providedaq;; are locally Lipschitz

a.e. onT. On the other hand, under reasonable assumptions (cf. [2], [17] and [&3n

only vanish on a set of measure zero. Thus, we see that under quite weak assumptions
must vanish on a subset @fof positive measure. Provideds real analytic in2, except
possibly for a singular s&t; of measure zero which does not disconn@cit follows that

r = 0. In this case, one can frequently deduce by maximum principles tisatonstant

(for example for Neumann or Dirichlet or Robin boundary conditions). Thus, we see that
in many cases wherg has positive measure,is constant. Note on the other hand that it

is easy to construct examples whetr€T') > 0 and the coefficients are &l functions.

7. It is not difficult to choosef Lipschitz such thatf’(y)| = 1 a.e. andf(y) — C as

y — oo. In this case, it is easy to see thé{a, (v + w,)) does not converge strongly to 0
inany L?(£2) asn — oco. We can obtain examples with C1 by rounding off the corners

of f carefully. On the other hand if’ € L (for example if f is eventually monotone),

it is not difficult to use the coarea formula much as is Schaaf and Schmitt [24] (but rather
more locally) to show that strong convergence holdd.#i£2) and thus inL?($2) for

1 < p < oo. (Note that the contribution near the critical point is small ghe: L>°.)

8. Under appropriate hypotheses, we could prove similar resulgs’(g% (o (v + wp))).

LEMMA 2. Assume the hypotheses of Lentrfeold,a € L (2) and—A — a(x)] is
invertible onW*2(£2). Then the operator A — (a(x) + f'(etn (v 4 wy)))1 is invertible on
W12(£2) for large n and the two operators have the same number of negative eigenvalues.

ProoE If
3 =AY, = (a(x) + f(an (v + wn) ¥y

wherey,, € WL2(£2) and||y, |2 = 1 for all n, then standard estimates ensure thais
bounded inW12(£2) (since f” is uniformly bounded) and thus a subsequence converges
weakly in W12(£2) and strongly inL2(£2) to y where|y[l2 = 1. Now, if ¢ € C5°(£2),
then

(f"(@n (v + w)¥n, @) = (f (@ (v + wp)), Ynp) - 0  asn — oo
since Y, — Y¢ strongly in L2(£2) asn — oo and f/(a, (v + w,)) — 0 weakly in
L?(£2) asn — oo by Lemma 1. Thus, we can pass to the weak limit in (2) and deduce that
—AYy = ax)y, ||[¥]l2 = 1, which contradicts our assumptions. Since we can use the same
argument to prove that A — (a + tf” (o, (v + wy)))1 is invertible for largen uniformly
inz for r € [0, 1], we deduce that for large, —A — a and—A — (a + f/(a, (v + wy))) 1
have the same number of negative eigenvalues counting multiplicity, as required.

ReEMARKS. 1. If M is a closed subspace 8f12(2) such thaty,, € M for a sequence
of largen, then our proof shows that there exigtsc M N W12(£2), ¥ # 0, such that
—AYy = a(x)y, that is,— Ay — al has an eigenfunction i corresponding to the
eigenvalue zero.

2. It is possible to allow perturbations which are quite singular AéarWe do this in 83
and the idea can be readily generalized. That weak convergence can be used is also implicit
in work of Daners [16].
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2. APPLICATION TO BIFURCATION THEOREMS

In this section, we show that our ideas can be used to weaken the assumptions in some
classical bifurcation results. We only look at the simplest cases.

We first consider bifurcation from zero. Assume tifat R — R is locally Lipschitz,
f() = 0, f/(0) exists andf’(0) = 1. Letg(y) = f(y) — y. We consider the small
non-zero solutions of

—Au=Arf(u) ing,

3
3) u=~0 onos2,

with A neari; where); is a simple eigenvalue of A on §2 for Dirichlet boundary
conditions. Here?2 is a bounded domain with smooth boundary. Letlenote the non-
trivial solutions of (3) considered as a subse#ot? (£2) x R wherep > %N, and leth;
be a normalized eigenfunction efA corresponding t@;. Let N be a closed complement
to sparh; in W27 (£2).

THEOREM 1. Under the above assumptions, there is a neighbourtibaxf (0, 1;) in
D U{(, 1))}, e > 0, and continquus functions : (—¢,¢) — N andi : (—e€,¢) > R
such thatw(0) = 0, A(0) = A; andT = {(a(h + v), AM(@)) : |a| < €}.

REMARK. Thus the solutions form a continuous arc. This is well known [6] i C1
near zero ang”(0) # 0. (Note that if f’(0) # 0, we can rescale so th#t(0) = 1.)

PROOF By a standard degree argument (cf. [22]), for each small nonezgettrere is a
Ala) neari; andv(a) € N small such thata(h; + v(a)), A(a)) € D and in fact these
form continua. Moreover, any solution i near(0, A;) has this form. It suffices to prove
the uniqueness ab(x), A(«)) because a simple compactness argument then implies their
continuity. If not, we have two solutior®1, A1), (32, A2) of (3) such thaby — 72 € N, 3;

are small and.; are neatg. Now

(@) —A@L—T) = m(f@1) — fF@2) + (1 — 22) f([D2)
1
= 2101 — 1) /0 F (V1 + (L= DV2) dt + (k1 — A2) (V2 + g(D2)).

There is a technical point on the existence of the integral which we return to at the end of
the proof.
We will deduce from this that

(5) le| ~IT1 — D2llz,p = o(h1 — A2).

We do this in two steps. If we recall that, for all the small solutianss « (k2 + v) where

vis small andv € N, we see that = fol f'(t71 + (1 — 1)v2) dt must converge weakly to

one inL?($2) asa — 0 by the corollary to Lemma 1 (using Remark 2 after Lemma 1). It
follows easily from this by a simple compactness argument (and the ideas in the proof of
Lemma 2) that there exists> 0 such thaf|—Aw — A1Zw|l, > kllwl|2,, wheneverw is
small,w € N andw = 0 0nd$2. Nowv2 + g(v2) = a(h; +v(a)) + g(a(h; +v(a)). Since
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g'(0) = 0andPh; = 0 andv(x) is small, we easily see th&(v> + g(v2)) is o(«), where

P is the projection with kernel spanned by and rangeV. Hence the claim (5) follows
easily from (4). To prove an estimate the other way, we take the scalar product of (4) with
a~th;. We find

- 1
©® 1 /0 (@1 + (L= 0T2) = i, a Y@L — T) di
= (k1 — A2) (@ 1@ + ¢@1), hi).

Now on the left hand sidg’ is bounded near the origin so we can easily bound the
left hand side byK |a~1| |1 — V22 < K|a| 7|1 — D1]l2,,. On the other hand, we have
o v+ g(W1), hi) = (hi, hi) + o(1) sinceg’(0) = 0 andvy = ah; + o(a). Hence (6)
implies that/Ay — Ao| < K|o|™ 1|71 — v2|l2, . This contradicts (5) unless; = A, and
v1 = 2. This completes the proof except for the technical point.

It is easy to see from (4) that

(7) — AV — V2) = r(x) (V1 — V2) + ps(x)

wherer (x) = (D1(x) — 72(x)) 1 (f @1(x)) — f(@2(x)) € L>(£2) ands(x) = f(¥1). We
prove that ifvy # o, then{x € £ : V1(x) = v2(x)} has measure zero. There are two
cases. Ifu = 0, thenv; — v solves a linear equation and the result follows from [2]. If
w # 0, us(x) #0a.e. on2. (We prove this claim below). if; — vz vanishes on a sét of
positive measure, thea(v; — v2) = 0 a.e. onf'. Thus by (7)us(x) = 0 a.e. orll’, which
contradicts our claim. Thus it suffices to prove that) only vanishes on a set of measure
zero. Sincef’(0) = 1 andv; is small it is easy to see thatandv; have the same zeros.
Now — A1 = k(x)v1 wherek € L*®°(£2) (sincev: solves (1)). Hence [2] again implies
thatvi only vanishes on a set of measure zero, which proves our claim.

REMARK. Clearly, the arguments are valid for much more general differential operators
(using Remark 6 after Lemma 1) and some other boundary conditions. We do not need
self-adjointness. By some of the remarks after Lemma 1, we could allow more general
nonlinearities. We can also prove the reduction to a finite-dimensional problem if the kernel
is multidimensional.

We also have the corresponding result for bifurcation from infinity. We assfiise
globally Lipschitz,y =1 f (y) — f/(c0) — 0 as|y| — oo andf’(co) is non-zero. As before,
we can assume without loss of generality tifatoo) = 1. As before, we assunig is a
simple eigenvalue of A. The following theorem generalizes a result in [9].

THEOREMZ2. There exisK, ¢ > 0and continuous functions: {s e R: |s| > K} > N
andi i {s e R:|s| > K} - Rwithv(t) - 0as|t| - co andA(t) — A; as|t| — oo
such that the solutions @B) with ||«||, large andx near A; are {(«(h + v(®)), A(e)) :
|| > K}.

PROOE As in [23] or [27], one can easily use the asymptotic linearity to show that any
large solution with neara; is of the above form. Moreover, a simple degree argument on
N shows that for each large, v and exist. As before, the proof reduces to proving the
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uniqueness ob andi. The proof of this is very similar to the proof of Theorem 1 (using
Lemma 1 again, or more particularly the corollary to Lemma 1).

REMARK. If fisC?, one can go further and check theanda areC* and one can relate
the Morse index of the solutions to the sigméfe) (as in [6] and [7]).

3. UNIQUENESS THEOREMS WHEN A PARAMETER IS LARGE
We prove several uniqueness theorem when a parameter is large for

®) —Auikf(u) in £2,
u=20 onoas.

Heres2 is a smooth bounded domainit.

THEOREM3. Assume thaf is globally Lipschitz off0, co), f(0) > 0, |yf'(y)| < K for
y large andf(y) — M asy — oo. Then there exist, 8 > 0 such that(8) has a unique
positive solution: with |u|l o > a if A > B.

PrROOFE STEP1. There existex > 0 such that ifA; — oo andu; are positive solutions
of (1) with Jlu;llec > o for all i, theni u; — M(—A)~1 in CX(2) asi — co. Let
up = M(—2A)"1(1).

Suppose that; are positive solutions for = A; wherei; — oo and|ju;||cc — o0 as
i — oco. We prove thakl._lu,- — ugin C1(2) asi — co. We writeu; = ||u;||ooii;. Then

— Al = Al £l oot

Since f is bounded and%;|l» = 1, standardL® estimates (as in [16]) imply
that A; [|u; |3} has a positive lower bound. Eitheg|u; |-t — y > 0 asi — oo or
Aillui ||g0l — oo asi — oo, after taking subsequences.

In the former casef||; |} is bounded inW2?(2) N C1*(2)if0 < « < 1 and
n < p < oo and thus we can choose a subsequence converging strongly(sn) and
weakly in W27(2) to v wherew > 0,7 = 0 ondf2 and|[T]e = 1. If T(x) > O,
thenu; (x) has a positive lower bound for largeand hencd|u;||oi; (x) — oo (since
lluti]loo — 00 @Si — 00). Hencef (||u; look; (x)) — f(o0) and thus in the limit we find
that—Av(x) = yf(oc0) > 0on{x € 2 : v(x) > 0}. On the other handAv(x) = 0 a.e.
on{x € 2 : v(x) = 0} (cf. [26]). Hencev is superharmonic and since it is non-trivial,
v(x) > 0on 2. Thus—Av(x) = yf(c0) on £2 and henc& = yug. Thus our claim
follows in this case.

If A;llu; ||g0l — oo asi — oo, we show that we get a contradiction. We use a simple and
standard blowing up argument near the maximuri;dfs in [10]). We rescale thevari-

ables by a factoxi_l/znui ||;ol/2 and in the new variables we obtain a solutigrof —Av =
f(v) on a large domaif2; such thati; has its maximum at 0}i; |c = 1 andi; is zero
ond4£2;. By local estimates, a subsequencé ofonverges uniformly on compact sets to a
bounded functiori on either all ofR” or a half spacd such thati(0) = 1 andi = 0 on

oT inthe second case. Much as before, we find thati = f(oco) wherei > 0 andAu =
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0 a.e. o = 0. Thusz is superharmonic and henge> 0 everywhere. (Remember that

is non-trivial.) Thus—Aii = f(oc0) onR” or T (depending on the case). In either case, this

contradicts known results. For example, in the full space cases, this contradicts Proposition

3in [10] while we can use Theorem 2 in [12] (or [1]) to prove that éxisted in the half

space case, there would have to be a full space solution of the same equation in dimension

N — 1 (where2 € R") and we have a contradiction as before. This proves our claim.
Hence we can fin such that, ifA; > K and||u;|lcc > K, thenki‘lui is C1 close

toup. In particular, this implies that, ifu; || > K andx; is large,||u; |« IS large and hence

Aflu,- — ug in C1(£2). This completes the proof of this step.

STEP 2. We writeu = Av. Then our equation becomesAv = f(Av) in £ with
Dir{chlet boundary conditions. Now; — (—A)~1M in C1(2) asi — oo, wherev; =
X; uj.

Now if X is a compact subset @2 which is also a smooth manifold with boundary,
thenx; f/(Ajv;) — 0in L%(K) asi — oo. This follows by a slight modification of the
proof of Lemma 1 once we note thet; £/ (A;v;)| < v A /()| < Kvt < Ko
on kK fori large. If w; is another solution fok = A;, then the proof of the corollary to
Lemma 1 shows thqﬁol Aif (v + (A —Hw;)dt — 0in LZ(I?) asi — oo. Note thatVug
cannot vanish on a set of positive measure, andithatw; satisfies—Az = k(x)z where
k € L*°(£2) and thusy; — w; only vanishes on a set of measure zero. (The clainugor
follows because iVug vanishes on a set of positive measirethen 82u0/8xi8x]- must
vanish a.e. oif’ and thusAug = 0 a.e. orT'. This is impossible since Aug = M on £2.)
Now let/; bew; — v; normalized to havé.? norm 1. Then by a simple calculation

’
—Ah; Zhi/ )»,-f/(tv,- + (1 —1w;)dt.
0

If we can bounds; in W2(£2), then we can choose a subsequence converging weakly
to i in W2(£2) where| k|2 = 1. As in the proof of Lemma 2, we can then pass to the
limit in the weak form of the equation fdr; when using a test functiop € C5°(K) (and
thus the support ap is contained ink whereK cc 2) to proveh is weakly harmonic.
Sinceh € W2(2), we see thak = 0 a.e., which contradicts the fact tHgi» = 1.

Thus it remains to bount; in W12(£2) where

—Ah; = a;(x)h; and |a;(x)| < K (uo(x)) L.

Note that sincédug/on > 0 0n9ds2, ug(x) > Kid(x, 082) if x is neard$2. On the other
hand, by Hardy's inequalityl,, d(x, 3£2)~2h? < K| Vh;|/5. Now

/ |Vhl~|2=/ ai(x)h,?gKgf d(x,a.Q)_lhl-2+K4/ h?
2 2 25 2

wheref2; = {x € 2 : d(x,382) < 8} and we have used the fact thatis bounded in the
interior of £2, and also our bound far; nearas2. Here K3 does not depend ahbut K4
might. Sincel|a; |2 = 1, we see that if we choogesmall,

1 1
/ \Vhi? < — | d(x,32)7?|hi|?+ Ks < —/ IVhi|? + Ks
2 2K Jo; 2)a

by Hardy’s inequality. Hence we have the required bound:fon W1-2(2).
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REMARKS. Once again we can clearly allow more general differentiable operators (so
that the inverse is positive), some other boundary conditions and mujtibiyg (x) where

g is non-negative and bounded.fifis non-negative and does not decay too rapidly at zero,
one can usually combine our ideas with those in [10] to understand all the positive solutions
for A large. Whenf has positive limit abo and is space independent, our result is more
general than those in [4], [10], [18], [24], [27]. Our ideas could also be used to improve
results in [14].

Our second theorem concerns the case whferg globally Lipschitz, 0< « < 1,
Yy “f(y) > C > 0asy — oo and y1=|f'(y)| < K for large (and hence all) non-
negativey. Note that it is easy to see that the equation

—Au=Cu* In2, u=0 o0noas2,
has a unique positive solutiom (cf. [10]).

THEOREM 4. Assume that the above conditions grhold and f(0) > 0. Then there
exista, 8 > 0 such that(8) has a unique positive solution witfx||.c > « if A > .

PrROOF STEP 1. By rescaling, we can assume titat= 1. We can easily combine the
ideas in the proof of Step 1 of the proof of Theorem 3 with pp. 433-434 in [10] to prove
that there is amv > 0 such that ify; are positive solutions of (8) withu; || > « for all

i andi; — oo asi — oo, then||u; |l — oo asi — oo andklfl/(l*”‘)ui — Tgin CX(2)

asi — oo. (We mostly work with the rescaled functiam /-,

STEP 2. Assume that;; andv; are distinct positive solutions of (8) for = A; such
thati; — oo asi — oo andki_l/(l_"‘)ui — o, Ai_l/(l_"‘)vi — o in CY(2) asi — oo.
Since a large positive constant (depending uppiis a supersolution, there must be a
maximal solution. Thus, we may assume thak v;. Letu; = Ai_l/(l_“)ui and definey;
analogously. Ther-A%; = A;“/(lfa).f(kil/(lf"‘)ﬁi) with an analogous result fa§. Thus

—A@; — ;) = M (T — ) / F1O7 Y0 G+ Q- 0F)) dr.
0

Now if )Lil/(lfo‘)d(xi, 0£2) is large our estimate fof’ shows that,; times the modulus
of the integrand is bounded by Kd (x, 852)"‘*1)\1.‘1 which is bounded ifc is not close
to 852 and is bounded bX1d (x, 352)*~1 otherwise. (If)\il/(lf"‘)d(x, 0£2) is boundedy;
times the integrand is bounded byK >, which is bounded b ad (x, 852)*~.) Moreover,
diy()\fa/(lfa)f(kl/(lfa)y)) — Af/(kl/(lfa)y) and )Lfa/(lfa)f(kl/(lfa)y) N yot as
A — o0o. Thus we are back very much in the situation of Theorem 3 and we can complete
the proof as there. There is one difference. The limiting operator in the equatigin-faf;
is
—Ah— o th=0 ong

with Dirichlet boundary conditions. This potential is weakly singular on the boundary but
this causes no problem. As in [10], we prove that there is no non-trivial solution of this
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equation by comparison with Ah — ﬁg‘lh = 0in £ with Dirichlet boundary conditions
which has zero as the principal eigenvalue with positive eigenfunatioifhe proof that

Vi only vanishes on a set of measure zero is similar to the corresponding argument in the
proof of Theorem 3.

REMARKS. 1. We could produce similar results for the uniqueness of the large positive
solution of (8) forsmalkh if 1 < p < (n +2)/(n — 2), f(y) ~ y? asy — oo, f(0) > 0,
fislocally Lipschitz,| f/(y)| < Ky?~1for largey, and the positive solution 6f Au = u?

in 2,u = 00nds2, is unique and non-degenerate. We have an analogous theorem for small
solutions forx large if f(y) ~ y? asy — 0%, fislocally Lipschitz and f'(y)| < Ky?~1

for small positivey.

2. To prove the theorem for more general differential operators, it is convenient to know
that Viig # 0 a.e. One can frequently use Morrey’s Theorem 5.8.5 of [21] to pigus

real analytic inf2 and hence deduce this. We can probably use different rescalings to cover
many cases when the growth is not asymptotically a power (as in [18]).

4, MULTIPLE SOLUTIONS OFAMBROSETTHPRODI PROBLEMS

In this section, we consider the problem

—Au = gu) — (thy +v) ing,

9
©) u=0 onos2,

whereuv is orthogonal tdi1, &1 is the positive eigenfunction corresponding to the principal
eigenvaluer; of —A for Dirichlet boundary conditions, is large positiveg : R — R is
globally Lipschitz andc! and y~1g(y) — u (resp.v) asy — oo (resp.—oo). We also
assumeu, v > A1, u # v, the problem—Au = pu™ +vu~ in 2,u = 0 ondL2, has
only the trivial solution and neither nor v are eigenvalues of A (though this could
be weakened). We finally assume that the intefyalv) contains an eigenvalue efA
(where without loss of generality we may assume: v). This is exactly the situation of
[11] except that we have considerably weakened the conditiop @rt-oo. Let s(y) =
2(y) — ny™ — vy~. Note thats satisfies the conditions of Lemma 1.

Let N be the subspace spanned by the eigenspaces corresponding to eigenvalues in
(w, v). We write elements of¥12(§2) asn + m wheren € N, m € N+ and letP be
the corresponding projection onté". It is easily proved (as in [11]) that the equation
P(W(m + n)) = 0 can be uniquely solved for as a function of:, that is,m = S(n).
HereW(u) = —Au — pu™ —vu~. Let F(n) = (I — P)W(n + S(n)). This is easily seen
to be a gradient map (cf. [11]). We prove the following result, which generalizes a result
in [11] by weakening a condition o,

THEOREMS5. Ifthe critical groups ofF (with Z coefficients) at zero are neither all trivial
or are notsk0Z (wheres*0 is the Kronecker delta), the(®) has at least three distinct
solutions for all large positive.

REMARK. There are 3-solution results in [20] under weaker assumptiogsidowever,
they do not apply for all the range af andv where Theorem 5 applies. The ideas in [13]
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are sometimes useful for calculating the critical groups. As in [11] there is an analogous
theorem for large negative.

PROOE We can follow the proof in [11] exactly if we prove that the problem
(10) PW(m+n)—t Ys@tm+n) +11v) =0

can be uniquely solved for as a function of: if ¢ is large andu is close to a zero of

(I — P)W(n+ S(n)) — h1 = 0. (The zeros are a compact gehot containing zero.) The
existence follows by a simple degree argument. Moreover, as in 81 of [11], easy estimates
show that for large any solutiom: of (10) is uniformly close te5(n). If z is large and: is

nearC, and ifm1, my are solutions of (10) witlny # m», thenm andmg are uniformly

close toS(n). Remember as in [11] thav is strictly differentiable akg + S(no) in the

sense of [3] ifng € C. Thus subtracting the equations e andmy, we find that

1
- P)[W/(no + S(no))(m1 — mp) + (m1 — myz) / s'"(t(n +rm1+ (1 —r)my)) dr}
0

wherer is large and is close tong € C. SinceV(ng + S(ng)) only vanishes on a set
of measure zero itg € C (as we prove below), the integral converges weakly to zero in
L1(£2) ast — oo for all ¢ with 1 < g < oo (cf. the corollary to Lemma 1). Thus we can
pass to the weak limit as— oo much as in 81 to find

(I - P)W (ng+ S(ng)h =0

whereh is the limit of m1 — m normalized/: # 0 andh € N-1. By the argument in [11],
this is impossible. Hence we have uniqueness. Fhdépends continuously onfollows
by a limit and compactness argument. We can then provesthdgpends differentiably
on n by first using a similar argument to above to show thlat- P)(W'(n + S(n)) +
s'(t(n + S(n)))) is invertible onN =+ if n is neamg € C (cf. [11]).

It remains to prove that the gradientmaf + S(n¢) can only vanish on a set of measure
zero ifng € C. In this casen + S(ng) is a solution of-Au = pu™t +vu™ — hq. First note
that such a cannot vanish on a set of positive measure since if it vanished on sucli a set
thenAu = 0 a.e. onT', which is impossible sinck; > 0 on£2. Thus if Vu vanished on
a set of positive measure, then it must vanish on a set of positive measure di (or
u < 0). We only consider the former case. The other is similar. Thew = puu — h1 on
u > 0 and hence by Theorem 5.8.5 in Morrey [21]s real analytic there. Sinaecannot
be constant on a componentof> 0, it follows thatdu/dx; can only vanish on a set of
measure zero in each componeniof 0 and hence on a set of measure zera of 0.
(There are only countably many componenta of 0. There are many variants of this last
argument.)

REMARK. With much more care it is possible to delete the assumptionghatC?.
Clearly, we could replace-A by rather more general self-adjoint operators, and some
other boundary conditions.
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254 E. N. DANCER

REFERENCES

[1] H. BERESTYCKI- L. CAFFARELLI - L. NIRENBERG, Further qualitative properties of elliptic
equations in unbounded domairgnn. Scuola Norm. Sup. Pisa 25 (1997), 69-94.
[2] L. CAFFARELLI - A. FRIEDMAN, Partial regularity of the zero-set of solutions of linear and
superlinear elliptic equations). Differential Equations 60 (1985), 420-433.
[3] H. CARTAN, Calcul Differentiel Hermann, Paris, 1967.
[4] A. CASTRO - R. SHIVAJI, Uniqueness of positive solutions for a class of elliptic boundary
value problemsProc. Roy. Soc. Edinburgh Sect. A 98 (1984), 267—269.
[5] K. C. CHANG, Infinite Dimensional Morse Theory and Multiple Solution Problems
Birkhauser, Boston, 1993.
[6] M. CRANDALL - P. H. RaBINOWITZ, Bifurcation from simple eigenvalue3. Funct. Anal. 8
(1971), 321-340.
[7] M. CRANDALL - P. H. RaBINOWITZ, Bifurcation, perturbation of simple eigenvalues and
linearized stability Arch. Rat. Mech. Anal. 2 (1973), 161-180.
[8] E. N. DANCER, Corrigendum: On the Dirichlet problem for weakly nonlinear elliptic
differential equationsProc. Roy. Soc. Edinburgh Sect. A 89 (1981), 15.
[9] E. N. DANCER, A note on bifurcation from infinityQuart. J. Math. Oxford 25 (1974), 81-84.
[10] E. N. DANCER, On the number of positive solutions for a nonlinear elliptic equation when a
parameter is largeProc. London Math. Soc. 53 (1986), 429-452.
[11] E. N. DANCER, Multiple solutions of asymptotically homogenous probleAran. Mat. Pura
Appl. 152 (1988), 63—78.
[12] E. N. DANCER, A note on the method of moving planBsill. Austral. Math. Soc. 46 (1992),
425-434.
[13] E. N. DANCER, Some results for jumping nonlinearitieopol. Methods Nonlinear Anal. 19
(2002), 221-235.
[14] E. N. DANCER - J. P. $i1, Uniqueness of positive solutions to sublinear semipositive
problems Preprint.
[15] D. DANERS, Dirichlet problems on varying domaing. Differential Equations 188 (2003),
591-624.
[16] D. GILBARG - N. TRUDINGER, Elliptic Partial Differential Equations of Second Order
Springer, Berlin, 1983.
[17] R. HARDT - L. SIMON, Nodal sets for solutions for elliptic equatiank Differential Geom.
30 (1989), 505-522.
[18] D. D. HoE- R. C. SMiTH, On uniqueness for a class of nonlinear boundary value prohlems
Preprint.
[19] G. KATRIEL, Uniqueness of periodic solutions for asymptotically linear Duffing equations with
strong forcing Topol. Methods Nonlinear Anal. 12 (1998), 263-274.
[20] A. MARINO - A. MICHELETTI - A. PISTOIA, A nonsymmetric asymptotically linear problem
Topol. Methods Nonlinear Anal. 4 (1994), 289-339.
[21] C. MoRREY, Multiple Integrals in the Calculus of VariationSpringer, Berlin, 1966.
[22] P. H. RaBINOWITZ, Some global results for nonlinear eigenvalue probledngunct. Anal. 7
(1971), 487-513.
[23] P. H. RaBINOWITZ, Some aspects of nonlinear eigenvalue problédasky Mountain J. Math.
3(1973), 161-202.
[24] R. SCHAAF - K. ScHMITT, Asymptotic behaviour of positive solution branches of elliptic
problems with linear part at resonancg. Angew. Math. Phys. 43 (1992), 645-676.



WEAK CONVERGENCE LOCAL BIFURCATIONS AND UNIQUENESS THEOREMS 255

[25] V. ScHUCHMAN, About uniqueness for nonlinear boundary value probleitesth. Ann. 267
(1984), 537-542.

[26] G. STAMPACCHIA, Equations elliptiques du second ordiecoefficients discontinu®resses
Univ. de Montgal, 1976.

[27] J. ToLAND, Asymptotic linearity and nonlinear eigenvalue proble@sart. J. Math. (Oxford)
24 (1973), 241-250.

[28] M. WIEGNER, A uniqueness theorem for some nonlinear boundary value problems with a large
parameter Math. Ann. 270 (1985), 401-402.

Received 11 October 2005,
and in revised form 18 October 2005.

School of Mathematics and Statistics
The University of Sydney
SYDNEY, NSW 2006, Australia
normd@maths.usyd.edu.au



