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Partial differential equations. — Weak convergence, local bifurcations and uniqueness
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ABSTRACT. — We show how weak convergence techniques can be used to improve classical theorems on local
bifurcation and on uniqueness when a parameter is large.
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The purpose of this paper is to show how weak convergence ideas can be used to
considerably improve a number of known bifurcation results and uniqueness theorems.
We improve the theorems by weakening the assumptions. We improve considerably some
ideas of Katriel [19] which were for some particular problems in the one-dimensional
case. The main idea is to show that certain terms converge weakly and use this to pass to
the limit. The main lemma proves weak convergence in a non-obvious case.

In particular, we weaken the assumptions in classical results that the solutions of

∆u = λf (u) in Ω, u = 0 on∂Ω,

bifurcating from zero (or from infinity) at a simple eigenvalue form a single arc. (In the
case of bifurcation from zero, we assumef (0) = 0, f ′(0) = 1.)

In addition, we improve results on when the same equation has a unique positive
solution for largeλ.

We also improve some results of mine on multiple solutions of Ambrosetti–Prodi type
problems for jumping nonlinearities.

It is clear that weak convergence ideas should have other applications.

1. WEAK CONVERGENCE

We start with the key lemma.

LEMMA 1. Assume thatΩ has finite measure,v ∈ C1(Ω) whereT = {x ∈ Ω :
∇v(x) = 0} has measure zero, thatf : R → R is Lipschitz and thaty−1f (y) → 0 as
|y| → ∞. In addition assume thatwn → 0 in C1(Ω) and αn → ∞ as n → ∞. Then
f ′(αn(v + wn)) ⇀ 0 weakly inLp(Ω) for 1< p < ∞.

REMARK . There is a problem in the definition off ′(αn(v + wn)) in that it is not
defined a.e. on the set where∇(v + wn) = 0 andf ′ is not differentiable atαn(v + wn).
However, by our assumptions onT , this set has small measure ifn is large and hence
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it only makes a small contribution to the integral forn large. Thus it will not affect the
conclusion. (Alternatively, we could definef ′(αn(v + wn)) to be zero on this set.) As
another alternative in our applications,∇(v + wn) only vanishes on a set of measure zero
and hencef ′(αn(v + wn)) is defined a.e.

PROOF. STEP 1.∫
Ω

f ′(αn(v + wn))
∂

∂xi
(v + wn)φ → 0 asn → ∞ if φ ∈ C∞

0 (Ω).

This follows since by integration by parts the integral becomes

(1) −α−1
n

∫
f (αn(v + wn))

∂φ

∂xi
.

Here we have used the fact that the weakith partial derivative off (αn(v + wn)) is
αnf

′(αn(v + wn)
∂
∂xi
(v + wn) (cf. [16]). Since|f (y)| ≤ ε|y| + Mε on R if ε > 0, we

see that
|α−1
n f (αn(v + wn))| ≤ ε(|v| + |wn|)+ α−1

n Mε

and hence this term tends to zero uniformly onΩ. Thus our claim follows.

STEP 2. ∫
Ω

f ′(αn(v + wn))
∂v

∂xi
φ → 0 asn → ∞ if φ ∈ C∞

0 (Ω).

This follows trivially from Step 1 sincef ′ is bounded onR andv+wn−v → 0 inC1(Ω)

asn → ∞. Sincef ′(αn(v + wn))
∂v
∂xi

is bounded, we see by density the result is still true

if φ ∈ L2(Ω).

STEP 3. Note thatf ′ is bounded and thus to prove weak convergence, it suffices to prove
that ∫

Ω

f ′(αn(v + wn)φ → 0 asn → ∞

for φ in a dense subset ofLq(Ω). Hereq−1
+ p−1

= 1. Now if M is a closed subset of
measure zero ofΩ, the set ofLq(Ω) functions vanishing in a neighbourhood of∂Ω ∪M

is dense inLq(Ω). This follows easily from the dominated convergence theorem, since
if Mn = {x ∈ Ω : d(x,M) ≥ 1/n, d(x, ∂Ω) ≥ 1/n} the characteristic function of
Mn, χ(Mn), satisfiesχ(Mn) → 1 a.e. onΩ asn → ∞ (becauseM has measure zero). (We
replaceφ by φχ(Mn).) We setM = {x ∈ Ω : ∇v(x) = 0}. This has measure zero.

If x ∈ Ω\M, there is a neighbourhoodNx of x such that some partial derivative∂v/∂xi
is non-zero onNx and thus|∂v/∂xi | has a positive lower bound onNx . If φ ∈ Lq(Ω)

vanishes on a neighbourhood ofM ∪ ∂Ω, then a finite number ofNxi ’s cover the support
of φ (by compactness). Hence we can write

φ =

k∑
j=1

∂v

∂xi(j)

((
∂v

∂xi(j)

)−1

φχ(Nj )

)
.
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Since( ∂v
∂xi(j)

)−1φχ(Nxj )
∈ Lq(Ω), the result now follows from the last remark in Step 2.

COROLLARY. Assume the assumptions of Lemma1 hold for bothwn andw̃n andwn −

w̃n 6= 0 a.e. onΩ. Then
∫ 1

0 f
′(αn(v + twn + (1 − t)w̃n)) dt ⇀ 0 weakly inLp(Ω) as

n → ∞.

REMARK . f ′ is measurable and bounded and the integral is defined for almost allx. It
would suffice to assume that the set{x ∈ Ω : wn(x) = w̃n(x), f is not differentiable at
αn(v + wn)(x)} has measure zero.

PROOF. If φ ∈ C∞

0 (Ω),( ∫ 1

0
f ′(αn(v + twn + (1 − t)w̃n)) dt, φ

)
=

∫ 1

0
(f ′(αn(v + twn + (1 − t)w̃n)), φ) dt.

Now the integrand on the right hand side is bounded uniformly int and tends to zero for
eacht asn → ∞ by Lemma 1. Thus the dominated convergence theorem implies the right
hand side tends to zero and hence so does the left hand side. As before, this suffices to
prove the result.

REMARKS. 1. It would suffice thatwn converges to zero inW1,1
loc (Ω) asn → ∞ if f

isC1.

2. There is an obvious variant whereαn → 0 asn → ∞ and we assume thatf is Lipschitz
andf (0) = f ′(0) = 0. The proof is essentially the same.

3. If v = c 6= 0 on a setS of positive measure, then∇v = 0 a.e. onS (by [26]) and thus
our assumption fails. Moreover, it is easy to see that the conclusion fails in this case unless
f ′(y) → 0 asy → ∞. We suspect that the result fails for somef of classC1 wheneverT
has positive measure.

4. Our methods also apply to mapsf (x, u(x)) onΩ providedf isC1, |f ′
y(x, y)| ≤ K on

Ω × R andy−1(|fx(x, y)| + |f (x, y)|) → 0 as|y| → ∞ uniformly in x. (It is clear that
the condition thatf isC1 can be weakened and that our result is not best possible because
it is a consequence of Lemma 1 that ifa ∈ L∞(Ω), thena(x)f ′(α(v +wn)) ⇀ 0 weakly
in Lq(Ω) if the assumptions of Lemma 1 hold.

5. Our argument in fact implies thatf ′(αn(v + wn)) ⇀ 0 in Lq(Ω) if and only if
f ′(αn(v + wn)) ⇀ 0 inLq(T ).

6. We discuss briefly whenm(T ) = 0 in the important case wherev is a non-trivial solution
of a linear elliptic equation

∂

∂xi

(
aij

∂u

∂xj

)
+ bj

∂u

∂xj
+ r(x)u = 0 inΩ.

We discuss other cases in later sections. Provided the coefficients are regular enough to
ensure thatu ∈ W

2,p
loc (Ω) except for possibly a setZ of measure zero, thenT having
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positive measure implies that all the second (generalized) partial derivatives ofu are zero
a.e. onT (cf. [26]) and hencer(x)u = 0 a.e. onT providedaij are locally Lipschitz
a.e. onT . On the other hand, under reasonable assumptions (cf. [2], [17] and [8]),v can
only vanish on a set of measure zero. Thus, we see that under quite weak assumptionsr

must vanish on a subset ofT of positive measure. Providedr is real analytic inΩ, except
possibly for a singular setZ1 of measure zero which does not disconnectΩ, it follows that
r ≡ 0. In this case, one can frequently deduce by maximum principles thatv is constant
(for example for Neumann or Dirichlet or Robin boundary conditions). Thus, we see that
in many cases whereT has positive measure,v is constant. Note on the other hand that it
is easy to construct examples wherem(T ) > 0 and the coefficients are allC∞ functions.

7. It is not difficult to choosef Lipschitz such that|f ′(y)| = 1 a.e. andf (y) → C as
y → ∞. In this case, it is easy to see thatf ′(αn(v +wn)) does not converge strongly to 0
in anyLp(Ω) asn → ∞. We can obtain examples withf C1 by rounding off the corners
of f carefully. On the other hand iff ′

∈ L1 (for example iff is eventually monotone),
it is not difficult to use the coarea formula much as is Schaaf and Schmitt [24] (but rather
more locally) to show that strong convergence holds inL1(Ω) and thus inLp(Ω) for
1< p < ∞. (Note that the contribution near the critical point is small andf ′

∈ L∞.)

8. Under appropriate hypotheses, we could prove similar results forf ′( ∂
∂xi
(αn(v + wn))).

LEMMA 2. Assume the hypotheses of Lemma1 hold, a ∈ L∞(Ω) and−∆ − a(x)I is
invertible onẆ1,2(Ω). Then the operator−∆− (a(x)+f ′(αn(v+wn)))I is invertible on
Ẇ1,2(Ω) for largen and the two operators have the same number of negative eigenvalues.

PROOF. If

(2) −∆ψn = (a(x)+ f ′(αn(v + wn)))ψn

whereψn ∈ Ẇ1,2(Ω) and‖ψn‖2 = 1 for all n, then standard estimates ensure thatψn is
bounded inẆ1,2(Ω) (sincef ′ is uniformly bounded) and thus a subsequence converges
weakly inẆ1,2(Ω) and strongly inL2(Ω) to ψ where‖ψ‖2 = 1. Now, if φ ∈ C∞

0 (Ω),
then

(f ′(αn(v + wn))ψn, φ) = (f ′(αn(v + wn)), ψnφ) → 0 asn → ∞

sinceψnφ → ψφ strongly inL2(Ω) asn → ∞ andf ′(αn(v + wn)) ⇀ 0 weakly in
L2(Ω) asn → ∞ by Lemma 1. Thus, we can pass to the weak limit in (2) and deduce that
−∆ψ = a(x)ψ , ‖ψ‖2 = 1, which contradicts our assumptions. Since we can use the same
argument to prove that−∆ − (a + tf ′(αn(v + wn)))I is invertible for largen uniformly
in t for t ∈ [0,1], we deduce that for largen, −∆− a and−∆− (a + f ′(αn(v + wn)))I

have the same number of negative eigenvalues counting multiplicity, as required.

REMARKS. 1. If M is a closed subspace oḟW1,2(Ω) such thatψn ∈ M for a sequence
of largen, then our proof shows that there existsψ ∈ M ∩ Ẇ1,2(Ω), ψ 6= 0, such that
−∆ψ = a(x)ψ , that is,−∆ψ − aI has an eigenfunction inM corresponding to the
eigenvalue zero.

2. It is possible to allow perturbations which are quite singular near∂Ω. We do this in §3
and the idea can be readily generalized. That weak convergence can be used is also implicit
in work of Daners [16].
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2. APPLICATION TO BIFURCATION THEOREMS

In this section, we show that our ideas can be used to weaken the assumptions in some
classical bifurcation results. We only look at the simplest cases.

We first consider bifurcation from zero. Assume thatf : R → R is locally Lipschitz,
f (0) = 0, f ′(0) exists andf ′(0) = 1. Let g(y) = f (y) − y. We consider the small
non-zero solutions of

(3)
−∆u = λf (u) in Ω,

u = 0 on∂Ω,

with λ nearλi whereλi is a simple eigenvalue of−∆ on Ω for Dirichlet boundary
conditions. HereΩ is a bounded domain with smooth boundary. LetD denote the non-
trivial solutions of (3) considered as a subset ofW2,p(Ω)× R wherep > 1

2N , and lethi
be a normalized eigenfunction of−∆ corresponding toλi . LetN be a closed complement
to spanhi in W2,p(Ω).

THEOREM 1. Under the above assumptions, there is a neighbourhoodT̂ of (0, λi) in
D ∪ {(0, λi)}, ε > 0, and continuous functionsv : (−ε, ε) → N andλ : (−ε, ε) → R
such thatv(0) = 0, λ(0) = λi and T̂ = {(α(h+ v), λ(α)) : |α| < ε}.

REMARK . Thus the solutions form a continuous arc. This is well known [6] iff is C1

near zero andf ′(0) 6= 0. (Note that iff ′(0) 6= 0, we can rescale so thatf ′(0) = 1.)

PROOF. By a standard degree argument (cf. [22]), for each small non-zeroα, there is a
λ(α) nearλi andv(α) ∈ N small such that(α(hi + v(α)), λ(α)) ∈ D and in fact these
form continua. Moreover, any solution inD near(0, λi) has this form. It suffices to prove
the uniqueness of(v(α), λ(α)) because a simple compactness argument then implies their
continuity. If not, we have two solutions(̃v1, λ̃1), (̃v2, λ̃2) of (3) such that̃v1 − ṽ2 ∈ N , ṽi
are small and̃λi are nearλ0. Now

(4) −∆(̃v1 − ṽ2) = λ̃1(f (̃v1)− f (̃v2))+ (̃λ1 − λ̃2)f (̃v2)

= λ̃1(̃v1 − ṽ2)

∫ 1

0
f ′(t ṽ1 + (1 − t )̃v2) dt + (̃λ1 − λ̃2)(̃v2 + g(̃v2)).

There is a technical point on the existence of the integral which we return to at the end of
the proof.

We will deduce from this that

(5) |α|
−1

‖̃v1 − ṽ2‖2,p = o(|̃λ1 − λ̃2|).

We do this in two steps. If we recall that, for all the small solutions,u = α(h + v) where
v is small andv ∈ N , we see that̃z ≡

∫ 1
0 f

′(t ṽ1 + (1 − t )̃v2) dt must converge weakly to
one inLp(Ω) asα → 0 by the corollary to Lemma 1 (using Remark 2 after Lemma 1). It
follows easily from this by a simple compactness argument (and the ideas in the proof of
Lemma 2) that there existsk > 0 such that‖−∆w − λ̃1̃zw‖p ≥ k‖w‖2,p wheneverα is
small,w ∈ N andw = 0 on∂Ω. Now ṽ2+g(̃v2) = α(hi +v(α))+g(α(hi +v(α)). Since
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g′(0) = 0 andPhi = 0 andv(α) is small, we easily see thatP (̃v2 + g(̃v2)) is o(α), where
P is the projection with kernel spanned byhi and rangeN . Hence the claim (5) follows
easily from (4). To prove an estimate the other way, we take the scalar product of (4) with
α−1hi . We find

(6) λ̃1

∫ 1

0
〈(f ′(t ṽ1 + (1 − t )̃v2)− λi)hi, α

−1(̃v1 − ṽ2)〉 dt

= (̃λ1 − λ̃2)〈α
−1(̃v1 + g(̃v1)), hi〉.

Now on the left hand sidef ′ is bounded near the origin so we can easily bound the
left hand side byK|α−1

| ‖̃v1 − ṽ2‖2 ≤ K|α|
−1

‖̃v1 − ṽ1‖2,p. On the other hand, we have
α−1

〈̃v1 + g(̃v1), hi〉 = 〈hi, hi〉 + o(1) sinceg′(0) = 0 andṽ1 = αhi + o(α). Hence (6)
implies that|̃λ1 − λ̃2| ≤ K|α|

−1
‖̃v1 − ṽ2‖2,p. This contradicts (5) unless̃λ1 = λ̃2 and

ṽ1 = ṽ2. This completes the proof except for the technical point.
It is easy to see from (4) that

(7) −∆(̃v1 − ṽ2) = r(x)(̃v1 − ṽ2)+ µs(x)

wherer(x) = (̃v1(x)− ṽ2(x))
−1(f (̃v1(x))− f (̃v2(x)) ∈ L∞(Ω) ands(x) = f (̃v1). We

prove that ifṽ1 6= ṽ2, then{x ∈ Ω : ṽ1(x) = ṽ2(x)} has measure zero. There are two
cases. Ifµ = 0, thenṽ1 − ṽ2 solves a linear equation and the result follows from [2]. If
µ 6= 0,µs(x) 6= 0 a.e. onΩ. (We prove this claim below). Ifv1−v2 vanishes on a set̃T of
positive measure, then∆(̃v1 − ṽ2) = 0 a.e. oñT . Thus by (7),µs(x) = 0 a.e. oñT , which
contradicts our claim. Thus it suffices to prove thats(x) only vanishes on a set of measure
zero. Sincef ′(0) = 1 andṽ1 is small it is easy to see thats andṽ1 have the same zeros.
Now −∆ṽ1 = k(x)̃v1 wherek ∈ L∞(Ω) (sinceṽ1 solves (1)). Hence [2] again implies
that ṽ1 only vanishes on a set of measure zero, which proves our claim.

REMARK . Clearly, the arguments are valid for much more general differential operators
(using Remark 6 after Lemma 1) and some other boundary conditions. We do not need
self-adjointness. By some of the remarks after Lemma 1, we could allow more general
nonlinearities. We can also prove the reduction to a finite-dimensional problem if the kernel
is multidimensional.

We also have the corresponding result for bifurcation from infinity. We assumef is
globally Lipschitz,y−1f (y)−f ′(∞) → 0 as|y| → ∞ andf ′(∞) is non-zero. As before,
we can assume without loss of generality thatf ′(∞) = 1. As before, we assumeλi is a
simple eigenvalue of−∆. The following theorem generalizes a result in [9].

THEOREM2. There existK, ε > 0 and continuous functionsv : {s ∈ R : |s| > K} → N

andλ : {s ∈ R : |s| > K} → R with v(t) → 0 as |t | → ∞ andλ(t) → λi as |t | → ∞

such that the solutions of(3) with ‖u‖p large andλ nearλi are {(α(h + v(α)), λ(α)) :
|α| > K}.

PROOF. As in [23] or [27], one can easily use the asymptotic linearity to show that any
large solution withλ nearλi is of the above form. Moreover, a simple degree argument on
N shows that for each largeα, v andλ exist. As before, the proof reduces to proving the
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uniqueness ofv andλ. The proof of this is very similar to the proof of Theorem 1 (using
Lemma 1 again, or more particularly the corollary to Lemma 1).

REMARK . If f isC1, one can go further and check thatv andλ areC1 and one can relate
the Morse index of the solutions to the sign ofλ′(α) (as in [6] and [7]).

3. UNIQUENESS THEOREMS WHEN A PARAMETER IS LARGE

We prove several uniqueness theorem when a parameter is large for

(8)
− ∆u = λf (u) in Ω,

u = 0 on∂Ω.

HereΩ is a smooth bounded domain inRn.

THEOREM 3. Assume thatf is globally Lipschitz on[0,∞), f (0) ≥ 0, |yf ′(y)| ≤ K for
y large andf (y) → M asy → ∞. Then there existα, β > 0 such that(8) has a unique
positive solutionu with ‖u‖∞ ≥ α if λ > β.

PROOF. STEP 1. There existsα > 0 such that ifλi → ∞ andui are positive solutions
of (1) with ‖ui‖∞ ≥ α for all i, thenλ−1

i ui → M(−∆)−11 in C1(Ω) as i → ∞. Let
u0 = M(−∆)−1(1).

Suppose thatui are positive solutions forλ = λi whereλi → ∞ and‖ui‖∞ → ∞ as
i → ∞. We prove thatλ−1

i ui → u0 in C1(Ω) asi → ∞. We writeui = ‖ui‖∞ũi . Then

−∆ũi = λi‖ui‖
−1
∞ f (‖ui‖∞ũi).

Since f is bounded and‖ũi‖∞ = 1, standardL∞ estimates (as in [16]) imply
that λi‖ui‖−1

∞ has a positive lower bound. Eitherλi‖ui‖−1
∞ → γ > 0 as i → ∞ or

λi‖ui‖
−1
∞ → ∞ asi → ∞, after taking subsequences.

In the former case,{‖ũi‖∞} is bounded inW2,p(Ω) ∩ C1,α(Ω) if 0 < α < 1 and
n < p < ∞ and thus we can choose a subsequence converging strongly inC1(Ω) and
weakly inW2,p(Ω) to v wherev ≥ 0, v = 0 on ∂Ω and ‖v‖∞ = 1. If v(x) > 0,
then ũi(x) has a positive lower bound for largei and hence‖ui‖∞ũi(x) → ∞ (since
‖ui‖∞ → ∞ asi → ∞). Hencef (‖ui‖∞ũi(x)) → f (∞) and thus in the limit we find
that−∆v(x) = γf (∞) > 0 on{x ∈ Ω : v(x) > 0}. On the other hand,∆v(x) = 0 a.e.
on {x ∈ Ω : v(x) = 0} (cf. [26]). Hencev is superharmonic and since it is non-trivial,
v(x) > 0 onΩ. Thus−∆v(x) = γf (∞) onΩ and hencev ≡ γ u0. Thus our claim
follows in this case.

If λi‖ui‖−1
∞ → ∞ asi → ∞, we show that we get a contradiction. We use a simple and

standard blowing up argument near the maximum ofũi (as in [10]). We rescale thex vari-
ables by a factorλ−1/2

i ‖ui‖
−1/2
∞ and in the new variables we obtain a solutionûi of −∆v =

f (v) on a large domainΩi such thatûi has its maximum at 0,‖ûi‖∞ = 1 andûi is zero
on∂Ωi . By local estimates, a subsequence ofûi converges uniformly on compact sets to a
bounded function̂u on either all ofRn or a half spaceT such that̂u(0) = 1 andû = 0 on
∂T in the second case. Much as before, we find that−∆û = f (∞)whereû > 0 and∆û =
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0 a.e. onû = 0. Thusû is superharmonic and henceû > 0 everywhere. (Remember thatû
is non-trivial.) Thus−∆û = f (∞) onRn orT (depending on the case). In either case, this
contradicts known results. For example, in the full space cases, this contradicts Proposition
3 in [10] while we can use Theorem 2 in [12] (or [1]) to prove that ifû existed in the half
space case, there would have to be a full space solution of the same equation in dimension
N − 1 (whereΩ ⊆ RN ) and we have a contradiction as before. This proves our claim.

Hence we can findK such that, ifλi ≥ K and‖ui‖∞ ≥ K, thenλ−1
i ui is C1 close

to u0. In particular, this implies that, if‖ui‖ ≥ K andλi is large,‖ui‖∞ is large and hence
λ−1
i ui → u0 in C1(Ω). This completes the proof of this step.

STEP 2. We writeu = λv. Then our equation becomes−∆v = f (λv) in Ω with
Dirichlet boundary conditions. Nowvi → (−∆)−1M in C1(Ω) as i → ∞, wherevi =

λ−1
i ui .

Now if K̃ is a compact subset ofΩ which is also a smooth manifold with boundary,
thenλif ′(λivi) ⇀ 0 in L2(K̃) as i → ∞. This follows by a slight modification of the
proof of Lemma 1 once we note that|λif

′(λivi)| ≤ v−1
i |λivif

′(λivi)| ≤ Kv−1
i ≤ K2

on K̃ for i large. Ifwi is another solution forλ = λi , then the proof of the corollary to
Lemma 1 shows that

∫ 1
0 λif

′(tvi + (1− t)wi) dt ⇀ 0 inL2(K̃) asi → ∞. Note that∇u0
cannot vanish on a set of positive measure, and thatvi − wi satisfies−∆z = k(x)z where
k ∈ L∞(Ω) and thusvi − wi only vanishes on a set of measure zero. (The claim foru0
follows because if∇u0 vanishes on a set of positive measureT , then∂2u0/∂xi∂xj must
vanish a.e. onT and thus∆u0 = 0 a.e. onT . This is impossible since−∆u0 = M onΩ.)
Now lethi bewi − vi normalized to haveL2 norm 1. Then by a simple calculation

−∆hi = hi

∫
′

0
λif

′(tvi + (1 − t)wi) dt.

If we can boundhi in Ẇ1,2(Ω), then we can choose a subsequence converging weakly
to h in Ẇ1,2(Ω) where‖h‖2 = 1. As in the proof of Lemma 2, we can then pass to the
limit in the weak form of the equation forhi when using a test functionφ ∈ C∞

0 (K̃) (and
thus the support ofφ is contained inK̃ whereK̃ ⊂⊂ Ω) to proveh is weakly harmonic.
Sinceh ∈ Ẇ1,2(Ω), we see thath = 0 a.e., which contradicts the fact that‖h‖2 = 1.

Thus it remains to boundhi in Ẇ1,2(Ω) where

−∆hi = ai(x)hi and |ai(x)| ≤ K(u0(x))
−1.

Note that since∂u0/∂n > 0 on∂Ω, u0(x) ≥ K1d(x, ∂Ω) if x is near∂Ω. On the other
hand, by Hardy’s inequality,

∫
Ω
d(x, ∂Ω)−2h2

i ≤ K2‖∇hi‖
2
2. Now∫

Ω

|∇hi |
2

=

∫
Ω

ai(x)h
2
i ≤ K3

∫
Ωδ

d(x, ∂Ω)−1h2
i +K4

∫
Ω

h2
i

whereΩδ = {x ∈ Ω : d(x, ∂Ω) ≤ δ} and we have used the fact thatai is bounded in the
interior ofΩ, and also our bound forai near∂Ω. HereK3 does not depend onδ butK4
might. Since‖hi‖2 = 1, we see that if we chooseδ small,∫

Ω

|∇hi |
2

≤
1

2K2

∫
Ωδ

d(x, ∂Ω)−2
|hi |

2
+K5 ≤

1

2

∫
Ω

|∇hi |
2
+K5

by Hardy’s inequality. Hence we have the required bound forhi in Ẇ1,2(Ω).
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REMARKS. Once again we can clearly allow more general differentiable operators (so
that the inverse is positive), some other boundary conditions and multiplyf by g(x) where
g is non-negative and bounded. Iff is non-negative and does not decay too rapidly at zero,
one can usually combine our ideas with those in [10] to understand all the positive solutions
for λ large. Whenf has positive limit at∞ and is space independent, our result is more
general than those in [4], [10], [18], [24], [27]. Our ideas could also be used to improve
results in [14].

Our second theorem concerns the case wheref is globally Lipschitz, 0< α < 1,
y−αf (y) → C > 0 asy → ∞ and y1−α

|f ′(y)| ≤ K for large (and hence all) non-
negativey. Note that it is easy to see that the equation

−∆u = Cuα in Ω, u = 0 on∂Ω,

has a unique positive solutioñu0 (cf. [10]).

THEOREM 4. Assume that the above conditions onf hold andf (0) ≥ 0. Then there
existα, β > 0 such that(8) has a unique positive solution with‖u‖∞ ≥ α if λ ≥ β.

PROOF. STEP 1. By rescaling, we can assume thatC = 1. We can easily combine the
ideas in the proof of Step 1 of the proof of Theorem 3 with pp. 433–434 in [10] to prove
that there is anα > 0 such that ifui are positive solutions of (8) with‖ui‖∞ ≥ α for all
i andλi → ∞ asi → ∞, then‖ui‖∞ → ∞ asi → ∞ andλ−1/(1−α)

i ui → ũ0 in C1(Ω)

asi → ∞. (We mostly work with the rescaled functionλ−1/(1−α)u.)

STEP 2. Assume thatui andvi are distinct positive solutions of (8) forλ = λi such
thatλi → ∞ asi → ∞ andλ−1/(1−α)

i ui → ũ0, λ
−1/(1−α)
i vi → ũ0 in C1(Ω) asi → ∞.

Since a large positive constant (depending uponλ) is a supersolution, there must be a
maximal solution. Thus, we may assume thatui ≤ vi . Let ũi = λ

−1/(1−α)
i ui and definẽvi

analogously. Then−∆ũi = λ
−α/(1−α)
i f (λ

1/(1−α)
i ũi) with an analogous result for̃vi . Thus

−∆(̃vi − ũi) = λi (̃vi − ũi)

∫
′

0
f ′(λ

1/(1−α)
i (tũi + (1 − t )̃vi)) dt.

Now if λ1/(1−α)
i d(xi, ∂Ω) is large our estimate forf ′ shows thatλi times the modulus

of the integrand is bounded byλiKd(x, ∂Ω)α−1λ−1
i which is bounded ifx is not close

to ∂Ω and is bounded byK1d(x, ∂Ω)
α−1 otherwise. (Ifλ1/(1−α)

i d(x, ∂Ω) is bounded,λi
times the integrand is bounded byλiK2, which is bounded byK3d(x, ∂Ω)

α−1.) Moreover,
d
dy
(λ−α/(1−α)f (λ1/(1−α)y)) = λf ′(λ1/(1−α)y) and λ−α/(1−α)f (λ1/(1−α)y) → yα as

λ → ∞. Thus we are back very much in the situation of Theorem 3 and we can complete
the proof as there. There is one difference. The limiting operator in the equation forṽi − ũi
is

−∆h− αũα−1
0 h = 0 onΩ

with Dirichlet boundary conditions. This potential is weakly singular on the boundary but
this causes no problem. As in [10], we prove that there is no non-trivial solution of this
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equation by comparison with−∆h− ũα−1
0 h = 0 inΩ with Dirichlet boundary conditions

which has zero as the principal eigenvalue with positive eigenfunctionũ0. The proof that
∇ũ0 only vanishes on a set of measure zero is similar to the corresponding argument in the
proof of Theorem 3.

REMARKS. 1. We could produce similar results for the uniqueness of the large positive
solution of (8) for smallλ if 1 < p < (n+ 2)/(n− 2), f (y) ∼ yp asy → ∞, f (0) ≥ 0,
f is locally Lipschitz,|f ′(y)| ≤ Kyp−1 for largey, and the positive solution of−∆u = up

inΩ, u = 0 on∂Ω, is unique and non-degenerate. We have an analogous theorem for small
solutions forλ large iff (y) ∼ yp asy → 0+, f is locally Lipschitz and|f ′(y)| ≤ Kyp−1

for small positivey.

2. To prove the theorem for more general differential operators, it is convenient to know
that∇ũ0 6= 0 a.e. One can frequently use Morrey’s Theorem 5.8.5 of [21] to proveũ0 is
real analytic inΩ and hence deduce this. We can probably use different rescalings to cover
many cases when the growth is not asymptotically a power (as in [18]).

4. MULTIPLE SOLUTIONS OFAMBROSETTI–PRODI PROBLEMS

In this section, we consider the problem

(9)
−∆u = g(u)− (th1 + v) in Ω,

u = 0 on∂Ω,

wherev is orthogonal toh1, h1 is the positive eigenfunction corresponding to the principal
eigenvalueλ1 of −∆ for Dirichlet boundary conditions,t is large positive,g : R → R is
globally Lipschitz andC1 andy−1g(y) → µ (resp.ν) asy → ∞ (resp.−∞). We also
assumeµ, ν > λ1, µ 6= ν, the problem−∆u = µu+

+ νu− in Ω, u = 0 on ∂Ω, has
only the trivial solution and neitherµ nor ν are eigenvalues of−∆ (though this could
be weakened). We finally assume that the interval(µ, ν) contains an eigenvalue of−∆
(where without loss of generality we may assumeµ < ν). This is exactly the situation of
[11] except that we have considerably weakened the condition ong at ±∞. Let s(y) =

g(y)− µy+
− νy−. Note thats satisfies the conditions of Lemma 1.

Let N be the subspace spanned by the eigenspaces corresponding to eigenvalues in
(µ, ν). We write elements ofẆ1,2(Ω) asn + m wheren ∈ N , m ∈ N⊥ and letP be
the corresponding projection ontoN⊥. It is easily proved (as in [11]) that the equation
P(W(m + n)) = 0 can be uniquely solved form as a function ofn, that is,m = S(n).
HereW(u) = −∆u− µu+

− νu−. LetF(n) = (I − P)W(n+ S(n)). This is easily seen
to be a gradient map (cf. [11]). We prove the following result, which generalizes a result
in [11] by weakening a condition ong.

THEOREM 5. If the critical groups ofF (with Z coefficients) at zero are neither all trivial
or are not δk0Z (whereδk0 is the Kronecker delta), then(9) has at least three distinct
solutions for all large positivet .

REMARK . There are 3-solution results in [20] under weaker assumptions ong. However,
they do not apply for all the range ofµ andν where Theorem 5 applies. The ideas in [13]
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are sometimes useful for calculating the critical groups. As in [11] there is an analogous
theorem fort large negative.

PROOF. We can follow the proof in [11] exactly if we prove that the problem

(10) P(W(m+ n)− t−1s(t (m+ n))+ t−1v) = 0

can be uniquely solved form as a function ofn if t is large andn is close to a zero of
(I − P)W(n+ S(n))− h1 = 0. (The zeros are a compact setC not containing zero.) The
existence follows by a simple degree argument. Moreover, as in §1 of [11], easy estimates
show that fort large any solutionm of (10) is uniformly close toS(n). If t is large andn is
nearC, and ifm1, m2 are solutions of (10) withm1 6= m2, thenm1 andm2 are uniformly
close toS(n). Remember as in [11] thatW is strictly differentiable atn0 + S(n0) in the
sense of [3] ifn0 ∈ C. Thus subtracting the equations form1 andm2, we find that

(I − P)

[
W ′(n0 + S(n0))(m1 −m2)+ (m1 −m2)

∫ 1

0
s′(t (n+ rm1 + (1 − r)m2)) dr

]
wheret is large andn is close ton0 ∈ C. Since∇(n0 + S(n0)) only vanishes on a set
of measure zero ifn0 ∈ C (as we prove below), the integral converges weakly to zero in
Lq(Ω) ast → ∞ for all q with 1 < q < ∞ (cf. the corollary to Lemma 1). Thus we can
pass to the weak limit ast → ∞ much as in §1 to find

(I − P)W ′(n0 + S(n0))h = 0

whereh is the limit ofm1 −m2 normalized,h 6= 0 andh ∈ N⊥. By the argument in [11],
this is impossible. Hence we have uniqueness. Thatm depends continuously onn follows
by a limit and compactness argument. We can then prove thatm depends differentiably
on n by first using a similar argument to above to show that(I − P)(W ′(n + S(n)) +

s′(t (n+ S(n)))) is invertible onN⊥ if n is nearn0 ∈ C (cf. [11]).
It remains to prove that the gradient ofn0 + S(n0) can only vanish on a set of measure

zero ifn0 ∈ C. In this case,n+S(n0) is a solution of−∆u = µu+
+ νu−

−h1. First note
that such au cannot vanish on a set of positive measure since if it vanished on such a setT̃ ,
then∆u = 0 a.e. oñT , which is impossible sinceh1 > 0 onΩ. Thus if∇u vanished on
a set of positive measure, then it must vanish on a set of positive measure ofu > 0 (or
u < 0). We only consider the former case. The other is similar. Then−∆u = µu− h1 on
u > 0 and hence by Theorem 5.8.5 in Morrey [21],u is real analytic there. Sinceu cannot
be constant on a component ofu > 0, it follows that∂u/∂xi can only vanish on a set of
measure zero in each component ofu > 0 and hence on a set of measure zero ofu > 0.
(There are only countably many components ofu > 0. There are many variants of this last
argument.)

REMARK . With much more care it is possible to delete the assumption thatg is C1.
Clearly, we could replace−∆ by rather more general self-adjoint operators, and some
other boundary conditions.

The research was partially supported by the Australian Research Council.
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