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ABSTRACT. — We prove existence and multiplicity of small amplitude periodic solutions of completely resonant
nonlinear wave equations with Dirichlet boundary conditions for asymptotically full measure sets of frequencies,
extending the results of [7] to new types of nonlinearities.
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1. INTRODUCTION

The aim of this note is to prove existence and multiplicity of small amplitude periodic
solutions of the completely resonant wave equation

(1)

{
�u+ f (x, u) = 0,

u(t,0) = u(t, π) = 0,

where� := ∂t t − ∂xx is the d’Alembertian operator and

(2) f (x, u) = a2u
2
+ a3(x)u

3
+O(u4) or f (x, u) = a4u

4
+O(u5),

for a Cantor-like set of frequenciesω of asymptotically full measure atω = 1.
Equation (1) is said to be completely resonant because any solutionv =∑

j≥1 aj cos(j t + ϑj ) sin(jx) of the linearized equation atu = 0,

(3)

{
ut t − uxx = 0,

u(t,0) = u(t, π) = 0,

is 2π -periodic in time.

Existence and multiplicity of periodic solutions of (1) were proved for a zero measure,
uncountable Cantor set of frequencies in [4] forf (u) = u3

+O(u5) and in [5]–[6] for any
nonlinearityf (u) = apu

p
+O(up+1), p ≥ 2.

Existence of periodic solutions for a Cantor-like set of frequencies of asymptotically
full measure has recently been proved in [7] where, due to the well known “small divisor
difficulty”, the “0th order bifurcation equation” is required to have nondegenerate periodic
solutions. This property was verified in [7] for nonlinearities likef = a2u

2
+ O(u4),
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f = a3(x)u
3
+O(u4). See also [11] forf = u3

+O(u5) (and [9] in the case of periodic
boundary conditions).

In this note we shall prove that, for quadratic, cubic and quartic nonlinearitiesf (x, u)

as in (2), the corresponding 0th order bifurcation equation has nondegenerate periodic
solutions (Propositions 1 and 2), implying, by the results of [7], Theorem 1 and Corollary 1
below.

We remark that our proof is purely analytic (it does not use numerical calculations)
being based on the analysis of the variational equation and exploiting properties of the
Jacobi elliptic functions.

1.1. Main results

Normalizing the period to 2π , we look for solutions of{
ω2ut t − uxx + f (x, u) = 0,

u(t,0) = u(t, π) = 0,

in the Hilbert algebra (fors > 1/2, σ > 0)

Xσ,s :=
{
u(t, x) =

∑
l≥0

cos(lt)ul(x)
∣∣∣ ul ∈ H 1

0 ((0, π),R) ∀l ∈ N and

‖u‖2
σ,s :=

∑
l≥0

exp(2σ l)(l2s + 1)‖ul‖
2
H1 < +∞

}
.

It is natural to look for solutions which are even in time because equation (1) is
reversible.

We look as well for solutions of (1) in the subalgebras

Xσ,s,n := {u ∈ Xσ,s | u is 2π/n-periodic} ⊂ Xσ,s, n ∈ N

(they are particular 2π -periodic solutions).
The space of solutions of the linear equation (3) that belong toH 1

0 (T × (0, π),R) and
are even in time is

V :=
{
v(t, x) =

∑
l≥1

cos(lt)ul sin(lx)
∣∣∣ ul ∈ R,

∑
l≥1

l2|ul |
2 < +∞

}
=

{
v(t, x) = η(t + x)− η(t − x)

∣∣∣ η ∈ H 1(T,R) odd
}
.

THEOREM 1. Let either

(4) f (x, u) = a2u
2
+ a3(x)u

3
+

∑
k≥4

ak(x)u
k

where(a2, 〈a3〉) 6= (0,0), 〈a3〉 := π−1
∫ π

0 a3(x) dx, or

(5) f (x, u) = a4u
4
+

∑
k≥5

ak(x)u
k
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wherea4 6= 0, a5(π − x) = −a5(x), a6(π − x) = a6(x), a7(π − x) = −a7(x). Assume
moreoverak(x) ∈ H 1((0, π),R) with

∑
k ‖ak‖H1ρk < +∞ for someρ > 0. Then there

existsn0 ∈ N such that for everyn ≥ n0 there areδ0, σ̄ > 0 and aC∞-curve[0, δ0) 3

δ 7→ uδ ∈ Xσ̄ /2,s,n with the following properties:

(i) ‖uδ − δv̄n‖σ̄ /2,s,n = O(δ2) for somev̄n ∈ V ∩Xσ̄ ,s,n \{0} with minimal period2π/n;
(ii) there exists a Cantor setCn ⊂ [0, δ0) of asymptotically full measure atδ = 0, i.e.

satisfying

(6) lim
ε→0+

meas(Cn ∩ (0, ε))

ε
= 1,

such that, for eachδ ∈ Cn, uδ(ω(δ)t, x) is a 2π/(ω(δ)n)-periodic, classical solution
of (1) with

ω(δ) =

{√
1 − 2s∗δ2 if f is as in(4),

√
1 − 2δ6 if f is as in(5),

and

s∗ =


−1 if 〈a3〉 ≥ π2a2

2/12,

±1 if 0< 〈a3〉 < π2a2
2/12,

1 if 〈a3〉 ≤ 0.

By (6) also each Cantor-like set of frequenciesWn := {ω(δ) | δ ∈ Cn} has
asymptotically full measure atω = 1.

Note how the interaction between the second and third order termsa2u
2, a3(x)u

3

changes the bifurcation diagram, i.e. existence of periodic solutions for frequenciesω less
than or/and greater thanω = 1.

COROLLARY 1 (Multiplicity). There exists a Cantor-like setW of asymptotically full
measure atω = 1 such that for eachω ∈ C, equation(1) has geometrically distinct
periodic solutions

un0, . . . , un, . . . , uNω , Nω ∈ N,

with the same period2π/ω. Their number increases indefinitely asω tends to 1:

lim
ω→1

Nω = +∞.

PROOF. The proof is as in [7] and we repeat it for completeness. Ifδ belongs to the
asymptotically full measure set (by (6))

Dn := Cn0 ∩ . . . ∩ Cn, n ≥ n0,

then there existn − n0 + 1 geometrically distinct periodic solutions of (1) with the same
period 2π/ω(δ) (eachun has minimal period 2π/(nω(δ))).

There exists a decreasing sequence of positiveεn → 0 such that

meas(Dcn ∩ (0, εn)) ≤ εn2
−n.
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Define the setC ≡ Dn on each [εn+1, εn). ThenC has asymptotically full measure at
δ = 0 and for eachδ ∈ C there existN(δ) := max{n ∈ N : δ < εn} geometrically
distinct periodic solutions of (1) with the same period 2π/ω(δ), andN(δ) → +∞ as
δ → 0. 2

REMARK 1. Corollary 1 is an analogue for equation (1) of the well known multiplicity
results of Weinstein–Moser [13]–[12] and Fadell–Rabinowitz [10] which hold in finite
dimensions. The solutions form a sequence of functions with increasing norms and
decreasing minimal periods. Multiplicity of solutions was also obtained in [6] (with the
“optimal” numberNω ≈ C/

√
|ω − 1|) but only for a zero measure set of frequencies.

The main point in proving Theorem 1 is to show the existence of nondegenerate
solutions of the 0th order bifurcation equation forf as in (2). In these cases the 0th order
bifurcation equation involves higher order terms of the nonlinearity, and, forn large, can be
reduced to an integro-differential equation (which physically describes an averaged effect
of the nonlinearity with Dirichlet boundary conditions).

CASE f (x, u) = a4u
4

+ O(u5). Performing the rescalingu → δu, δ > 0, we look for
2π/n-periodic solutions inXσ,s,n of

(7)

{
ω2ut t − uxx + δ3g(δ, x, u) = 0,

u(t,0) = u(t, π) = 0,

where

g(δ, x, u) :=
f (x, δu)

δ4
= a4u

4
+ δa5(x)u

5
+ δ2a6(x)u

6
+ . . . .

To find solutions of (7) we implement the Lyapunov–Schmidt reduction according to the
orthogonal decompositionXσ,s,n = (Vn ∩Xσ,s,n)⊕ (W ∩Xσ,s,n) where

Vn := {v(t, x) = η(nt + nx)− η(nt − nx) | η ∈ H 1(T,R) odd},

W :=

{
w =

∑
l≥0

cos(lt)wl(x) ∈ X0,s

∣∣∣∣ ∫ π

0
wl(x) sin(lx) dx = 0, ∀l ≥ 0

}
.

Looking for solutionsu = v+w with v ∈ Vn ∩Xσ,s,n,w ∈ W ∩Xσ,s,n, and imposing the
frequency-amplitude relation

ω2
− 1

2
= −δ6

we are led to solve the bifurcation equation and the range equation{
∆v = δ−3ΠVng(δ, x, v + w),

Lωw = δ3ΠWng(δ, x, v + w),

where∆v := vxx + vt t , Lω := −ω2∂t t + ∂xx andΠVn : Xσ,s,n → Vn ∩ Xσ,s,n,
ΠWn : Xσ,s,n → W ∩Xσ,s,n denote the projectors.
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With the further rescalingw 7→ δ3w and sincev4
∈ Wn (Lemma 3.4 of [5]),a5(x)v

5,
a6(x)v

6, a7(x)v
7

∈ Wn becausea5(π − x) = −a5(x), a6(π − x) = a6(x), a7(π − x) =

−a7(x) (Lemma 7.1 of [7]), the system is equivalent to

(8)

{
∆v = ΠVn(4a4v

3w + δr(δ, x, v,w)),

Lωw = a4v
4
+ δΠWn r̃(δ, x, v,w),

wherer(δ, x, v,w) = a8(x)v
8
+ 5a5(x)v

4w+O(δ) andr̃(δ, x, v,w) = a5(x)v
5
+O(δ).

For δ = 0 system (8) reduces tow = −a4�−1v4 and to the 0th order bifurcation
equation

(9) ∆v + 4a2
4ΠVn(v

3�−1v4) = 0,

which is the Euler–Lagrange equation of the functionalΦ0 : Vn → R,

(10) Φ0(v) =
‖v‖2

H1

2
−
a2

4

2

∫
Ω

v4�−1v4

whereΩ := T × (0, π).

PROPOSITION1. Let a4 6= 0. There existsn0 ∈ N such that for alln ≥ n0 the 0th
order bifurcation equation(9) has a solutionv̄n ∈ Vn which is nondegenerate inVn (i.e.
KerD2Φ0 = {0}), with minimal period2π/n.

CASE f (x, u) = a2u
2

+ a3(x)u
3

+ O(u4). Performing the rescalingu 7→ δu we look
for 2π/n-periodic solutions of{

ω2ut t − uxx + δg(δ, x, u) = 0,

u(t,0) = u(t, π) = 0,

where

g(δ, x, u) :=
f (x, δu)

δ2
= a2u

2
+ δa3(x)u

3
+ δ2a4(x)u

4
+ . . . .

With the frequency-amplitude relation

ω2
− 1

2
= −s∗δ2

wheres∗ = ±1, we have to solve{
−∆v = −s∗δ−1ΠVng(δ, x, v + w),

Lωw = δΠWng(δ, x, v + w).

With the further rescalingw 7→ δw and sincev2
∈ Wn, the system is equivalent to{

−∆v = s∗ΠVn(−2a2vw − a2δw
2
− a3(x)(v + δw)3 − δr(δ, x, v + δw)),

Lωw = a2v
2
+ δΠWn(2a2vw + δa2w

2
+ a3(x)(v + δw)3 + δr(δ, x, v + δw)),

wherer(δ, x, u) := δ−4[f (x, δu)− a2δ
2u2

− δ3a3(x)u
3] = a4(x)u

4
+ . . . .
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Forδ = 0 the system reduces tow = −a2�−1v2 and the 0th order bifurcation equation

(11) −s∗∆v = 2a2
2ΠVn(v�

−1v2)−ΠVn(a3(x)v
3),

which is the Euler–Lagrange equation ofΦ0 : Vn → R,

(12) Φ0(v) := s∗
‖v‖2

H1

2
−
a2

2

2

∫
Ω

v2�−1v2
+

1

4

∫
Ω

a3(x)v
4.

PROPOSITION2. Let (a2, 〈a3〉) 6= (0,0). There existsn0 ∈ N such that for alln ≥ n0
the0th order bifurcation equation(11) has a solution̄vn ∈ Vn which is nondegenerate in
Vn, with minimal period2π/n.

2. CASE f (x, u) = a4u
4
+O(u5)

We have to prove the existence ofnondegeneratecritical points of the functional

Φn : V → R, Φn(v) := Φ0(Hnv),

whereΦ0 is defined in (10). LetHn : V → V be the linear isomorphism defined, for
v(t, x) = η(t + x)− η(t − x) ∈ V , by

(Hnv)(t, x) := η(n(t + x))− η(n(t − x))

so thatVn ≡ HnV .

LEMMA 1 (see [6]).Φn has the following development: forv(t, x) = η(t + x)− η(t − x)

∈ V ,

(13) Φn(βn
1/3v) = 4πβ2n8/3

[
Ψ (η)+ α

R(η)
n2

]
,

whereβ := (3/(π2a2
4))

1/6, α := 3/(8π3),

(14) Ψ (η) :=
1

2

∫
T
η′2(t) dt −

π

4
(〈η4

〉 + 3〈η2
〉
2)2,

〈 〉 denotes the average onT, and

(15) R(η) := −

∫
Ω

v4�−1v4 dt dx +
2π4

3
4(〈η4

〉 + 3〈η2
〉
2)2.

PROOF. First, the quadratic term is

1

2
‖Hnv‖2

H1 =
n2

2
‖v‖2

H1 = n22π
∫

T
η′2(t) dt.

By Lemma 4.8 in [6] the nonquadratic term can be developed as∫
Ω

(Hnv)4�−1(Hnv)4 =
π4

6
〈m〉

2
−
R(η)
n2
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wherem : T2
→ R is defined bym(s1, s2) := (η(s1) − η(s2))

4, its average is〈m〉 :=
(2π)−2

∫
T2 m(s1, s2) ds1 ds2 and

R(η) := −

∫
Ω

v4�−1v4
+
π4

6
〈m〉

2

is homogeneous of degree 8. Sinceη is odd we find〈m〉 = 2(〈η4
〉 + 3〈η2

〉
2), where〈 〉

denotes the average onT. Collecting these equalities we find that

Φn(η) = 2πn2
∫

T
η′2(t) dt −

π4

3
a2

4(〈η
4
〉 + 3〈η2

〉
2)2 +

a2
4

2n2
R(η).

Via the rescalingη 7→ βn1/3η we get expressions (14) and (15). 2

By (13), in order to find forn large enough a nondegenerate critical point ofΦn, it is
sufficient to find nondegenerate critical points ofΨ (η) defined on

E := {η ∈ H 1(T) | η odd},

namely nondegenerate solutions inE of

(16) η̈ + A(η)(3〈η2
〉η + η3) = 0, A(η) := 〈η4

〉 + 3〈η2
〉
2.

PROPOSITION3. There exists an odd, analytic,2π -periodic solutiong(t) of (16) which
is nondegenerate inE. It is given byg(t) = V sn(Ωt,m) wheresn is the Jacobi elliptic
sine andV,Ω > 0 andm ∈ (−1,0) are suitable constants (thereforeg(t) has minimal
period2π).

We will construct the solutiong of (16) by means of the Jacobi elliptic sine in Lemma 6.
The existence of a solutiong also follows directly by applying toΨ : E → R the
Mountain-Pass Theorem [2]. Furthermore this solution is an analytic function by arguing
as in Lemma 2.1 of [7].

2.1. Nondegeneracy ofg

We now want to prove thatg is nondegenerate. The linearized equation of (16) atg is

ḧ+ 3A(g)(〈g2
〉h+ g2h)+ 6A(g)g〈gh〉 + A′(g)[h](3〈g2

〉g + g3) = 0,

which we write as

(17) ḧ+ 3A(g)(〈g2
〉 + g2)h = −〈gh〉I1 − 〈g3h〉I2

where {
I1 := 6(9〈g2

〉
2
+ 〈g4

〉)g + 12〈g2
〉g3,

I2 := 12g〈g2
〉 + 4g3.

(18)
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Forf ∈ E, letH := L(f ) be the unique solution belonging toE of the nonhomogeneous
linear system

(19) Ḧ + 3A(g)(〈g2
〉 + g2)H = f ;

an integral representation of the Green operatorL is given in Lemma 4 below. Thus (17)
becomes

(20) h = −〈gh〉L(I1)− 〈g3h〉L(I2).

Multiplying (20) byg and taking averages we get

〈gh〉[1 + 〈gL(I1)〉] = −〈g3h〉〈gL(I2)〉,(21)

while multiplying (20) byg3 and taking averages yields

〈g3h〉[1 + 〈g3L(I2)〉] = −〈gh〉〈g3L(I1)〉.(22)

Sinceg solves (16) we can deduce the following identities.

LEMMA 2. We have

2A(g)〈g3L(g)〉 = 〈g2
〉, 2A(g)〈g3L(g3)〉 = 〈g4

〉.

PROOF. The first equality is obtained from the identity forL(g),

d2

dt2
(L(g))+ 3A(g)(〈g2

〉 + g2)L(g) = g,

by multiplying byg, taking averages, integrating by parts,

〈g̈L(g)〉 + 3A(g)[〈g2
〉〈L(g)g〉 + 〈g3L(g)〉] = 〈g2

〉,

and using the fact thatg solves (16).
Analogously, the second equality is obtained from the identity forL(g3),

d2

dt2
(L(g3))+ 3A(g)(〈g2

〉 + g2)L(g3) = g3,

by multiplying by g, taking averages, integrating by parts, and using the fact thatg

solves (16). 2

SinceL is a symmetric operator we can compute the following averages using (18) and
Lemma 2: 

〈gL(I1)〉 = 6(〈g4
〉 + 9〈g2

〉
2)〈gL(g)〉 + 6A(g)−1

〈g2
〉
2,

〈gL(I2)〉 = 12〈g2
〉〈gL(g)〉 + 2A(g)−1

〈g2
〉,

〈g3L(I1)〉 = 9〈g2
〉,

〈g3L(I2)〉 = 2.

(23)
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Thanks to the identities (23), equations (21), (22) simplify to{
〈gh〉[A(g)+ 6〈g2

〉
2]B(g) = −2〈g2

〉B(g)〈g3h〉,

〈g3h〉 = −3〈g2
〉〈gh〉,

(24)

where

B(g) := 1 + 6A(g)〈gL(g)〉.(25)

Solving (24) we getB(g)〈gh〉 = 0. We will prove in Lemma 5 thatB(g) 6= 0, so〈gh〉 = 0.
Hence by (24) also〈g3h〉 = 0 and therefore, by (20),h = 0. This concludes the proof of
the nondegeneracy of the solutiong of (16).

It remains to prove thatB(g) 6= 0. The key is to express the functionL(g) by means
of the variation of constants formula.

We first look for a fundamental set of solutions of the homogeneous equation

(HOM) ḧ+ 3A(g)(〈g2
〉 + g2)h = 0.

LEMMA 3. There exist two linearly independent solutions of(HOM), ū := ġ(t)/ġ(0)
and v̄, such that{

ū is even, 2π -periodic,

ū(0) = 1, ˙̄u(0) = 0,

{
v̄ is odd, not periodic,

v̄(0) = 0, ˙̄v(0) = 1,

and

(26) v̄(t + 2π)− v̄(t) = ρū(t) for someρ > 0.

PROOF. Since (16) is autonomous,ġ(t) is a solution of the linearized equation (HOM); it
is even and 2π -periodic.

We can construct another solution of (HOM) in the following way. The superquadratic
Hamiltonian system (with constant coefficients)

ÿ + 3A(g)〈g2
〉y + A(g)y3

= 0(27)

has a one-parameter family of odd,T (E)-periodic solutionsy(E, t), close tog, para-
metrized by the energyE. Let Ē denote the energy level ofg, i.e. g = y(Ē, t) and
T (Ē) = 2π . Thenl(t) := (∂Ey(E, t))|E=Ē is an odd solution of (HOM). Differentiating

the identity y(E, t + T (E)) = y(E, t) with respect toE we obtain, atE = Ē,
l(t + 2π) − l(t) = −(∂ET (E))|E=Ē ġ(t) and, normalizinḡv(t) := l(t)/l̇(0), we get (26)

with ρ := −(∂ET (E))|E=Ē ġ(0)/l̇(0).

Sincey(E,0) = 0 for allE, the energy identity givesE =
1
2(ẏ(E,0))

2. Differentiating
with respect toE atE = Ē yields 1= ġ(0)l̇(0), so

(28) ρ = −(∂ET (E))|E=Ē(ġ(0))
2.

We haveρ > 0 because(∂ET (E))|E=Ē < 0 by the superquadraticity of the potential
of (27). This can also be checked by a computation (see Remark after Lemma 6).2
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Now we write an integral formula for the Green operatorL.

LEMMA 4. For everyf ∈ E there exists a unique solutionH = L(f ) of (19) which can
be written as

L(f ) =

(∫ t

0
f (s)ū(s) ds +

1

ρ

∫ 2π

0
f v̄

)
v̄(t)−

(∫ t

0
f (s)v̄(s) ds

)
ū(t) ∈ E.

PROOF. The nonhomogeneous equation (19) has the particular solution

H̄ (t) =

(∫ t

0
f (s)ū(s) ds

)
v̄(t)−

(∫ t

0
f (s)v̄(s) ds

)
ū(t)

as can be verified by observing that the Wronskianū(t) ˙̄v(t)− ˙̄u(t)v̄(t) ≡ 1 for all t . Notice
thatH̄ is odd.

Any solutionH(t) of (19) can be written asH(t) = H̄ (t)+ aū+ bv̄, a, b ∈ R. Since
H̄ is odd,ū is even and̄v is odd, requiringH to be odd impliesa = 0. Imposing now the
2π -periodicity yields

0 =

(∫ t+2π

0
f ū

)
v̄(t + 2π)−

(∫ t+2π

0
f v̄

)
ū(t + 2π)−

(∫ t

0
f ū

)
v̄(t)

+

(∫ t

0
f v̄

)
ū(t)+ b(v̄(t + 2π)− v̄(t))

=

(
b +

∫ t

0
f ū

)
(v̄(t + 2π)− v̄(t))− ū(t)

(∫ t+2π

t

f v̄

)
,

becausēu andf ū are 2π -periodic and〈f ū〉 = 0. By (26) we have

ρ

(
b +

∫ t

0
f ū

)
−

∫ t+2π

t

f v̄ = 0.

This expression is constant in time, because, by differentiating int ,

ρf (t)ū(t)− f (t)(v̄(t + 2π)− v̄(t)) = 0

again by (26). Hence evaluating att = 0 yields b = ρ−1
∫ 2π

0 f v̄. So there exists a
unique solutionH = L(f ) of (19) belonging toE, and the integral representation of
L follows. 2

LEMMA 5. We have

〈gL(g)〉 =
ρ

4πA(g)
+

1

2πρ

(∫ 2π

0
gv̄

)2

> 0

becauseA(g) > 0 andρ > 0.
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PROOF. Using the formula of Lemma 4 and integrating by parts we can compute

〈gL(g)〉 =
1

2π

∫ 2π

0

(∫ t

0
gū

)
v̄(t)g(t) dt +

1

2πρ

(∫ 2π

0
gv̄

)2

−
1

2π

∫ 2π

0

(∫ t

0
gv̄

)
ū(t)g(t) dt

= 2
1

2π

∫ 2π

0

(∫ t

0
gū

)
v̄(t)g(t) dt +

1

2πρ

(∫ 2π

0
gv̄

)2

because
∫ 2π

0 gū = 0. Sinceū(t) = ġ(t)/ġ(0) andg(0) = 0, we have∫ t

0
gū =

1

2ġ(0)
g2(t),

∫ 2π

0

(∫ t

0
gū

)
v̄(t)g(t) dt =

1

2ġ(0)

∫ 2π

0
g3v̄,

so it remains to show that

(29)
∫ 2π

0
g3v̄ =

ρġ(0)

2A(g)
.

Sinceg solves (16), multiplying bȳv and integrating yields∫ 2π

0
[v̄(t)g̈(t)+ 3A(g)〈g2

〉g(t)v̄(t)+ A(g)g3(t)v̄(t)] dt = 0.

Sincev̄ solves (HOM), multiplying byg and integrating gives∫ 2π

0
[g(t) ¨̄v(t)+ 3A(g)〈g2

〉v̄(t)g(t)+ 3A(g)g3(t)v̄(t)] dt = 0.

Subtracting the last two equalities we get∫ 2π

0
[v̄(t)g̈(t)− g(t) ¨̄v(t)] dt = 2A(g)

∫ 2π

0
g3v̄.

Integrating by parts the left hand side, sinceg(0) = g(2π) = 0, ū(0) = 1 and (26), we
obtain ∫ 2π

0
[v̄(t)g̈(t)− g(t) ¨̄v(t)] dt = ġ(0)[v(2π)− v(0)] = ρġ(0).

So 2A(g)
∫ 2π

0 g3v̄ = ρġ(0). 2

2.2. Explicit computations

We now give the explicit construction ofg by means of the Jacobi elliptic sine defined as
follows. Let am(·, m) : R → R be the inverse function of the Jacobi elliptic integral of the
first kind

ϕ 7→ F(ϕ,m) :=
∫ ϕ

0

dϑ√
1 −m sin2ϑ

.
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The Jacobi elliptic sine is defined by

sn(t, m) := sin(am(t, m)).

It is 4K(m)-periodic, whereK(m) is the complete elliptic integral of the first kind

K(m) := F

(
π

2
, m

)
=

∫ π/2

0

dϑ√
1 −m sin2ϑ

,

and admits an analytic extension with a pole atiK(1−m) form ∈ (0,1) and atiK(1/(1−

m))/
√

1 −m for m < 0. Moreover, since∂t am(t, m) =

√
1 −m sn2(t, m), the elliptic

sine satisfies

(30) (ṡn)2 = (1 − sn2)(1 −m sn2).

LEMMA 6. There existV,Ω > 0 andm ∈ (−1,0) such thatg(t) := V sn(Ωt,m) is an
odd, analytic,2π -periodic solution of(16)with pole atiK(1/(1 −m))/(Ω

√
1 −m).

PROOF. Differentiating (30) we haves̈n + (1 + m) sn−2m sn3
= 0. Therefore

g(V ,Ω,m)(t) := V sn(Ωt,m) is an odd,(4K(m)/Ω)-periodic solution of

(31) g̈ +Ω2(1 +m)g − 2m
Ω2

V 2
g3

= 0.

The functiong(V ,Ω,m) will be a solution of (16) if(V ,Ω,m) satisfy
Ω2(1 +m) = 3A(g(V ,Ω,m))〈g2

(V ,Ω,m)〉,

−2mΩ2
= V 2A(g(V ,Ω,m)),

2K(m) = Ωπ.

(32)

Dividing the first equation of (32) by the second yields

(33) −
1 +m

6m
= 〈sn2(·, m)〉.

The right hand side can be expressed as

(34) 〈sn2(·, m)〉 =
K(m)− E(m)

mK(m)
,

whereE(m) is the complete elliptic integral of the second kind,

E(m) :=
∫ π/2

0

√
1 −m sin2ϑ dϑ =

∫ K(m)

0
(1 −m sn2(ξ,m)) dξ

(in the last passage we make the change of variableϑ = am(ξ,m)).
Now, we show that system (32) has a unique solution. By (33) and (34),

(7 +m)K(m)− 6E(m) = 0.
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By the definitions ofE(m) andK(m) we have

ψ(m) := (7 +m)K(m)− 6E(m) =

∫ π/2

0

1 +m(1 + 6 sin2ϑ)

(1 −m sin2ϑ)1/2
dϑ.

We haveψ(0) = π/2 > 0 andψ(−1) = −
∫ π/2

0 6 sin2ϑ (1 + sin2ϑ)−1/2 dϑ < 0. Since
ψ is continuous there exists̄m ∈ (−1,0) such thatψ(m̄) = 0. Next the third equation in
(32) fixesΩ̄ and finally we findV̄ . Henceg(t) = V̄ sn(Ω̄t, m̄) solves (16).

Analyticity and poles follow from [1, 16.2, 16.10.2, pp. 570, 573].
Finally, m̄ is unique becauseψ ′(m) > 0 for m ∈ (−1,0) as can be verified by

differentiating the formula forψ . One can also compute thatm̄ ∈ (−0.30,−0.28). 2

REMARK . We can explicitly compute the sign ofdT /dE andρ of (28) in the following
way. The functionsg(V ,Ω,m) are solutions of the Hamiltonian system (27)

(35)

{
Ω2(1 +m) = α,

−2mΩ2
= V 2β,

whereα := 3A(g)〈g2
〉, β := A(g) andg is the solution constructed in Lemma 6.

We solve (35) with respect tom to find the one-parameter family(ym) of odd periodic
solutionsym(t) := V (m) sn(Ω(m)t,m), close tog, with energy and period

E(m) =
1

2
V 2(m)Ω2(m) = −

1

β
mΩ4(m), T (m) =

4K(m)

Ω(m)
.

We have
dT (m)

dm
=

4K ′(m)Ω(m)− 4K(m)Ω ′(m)

Ω2(m)
> 0,

becauseK ′(m) > 0 and from (35),Ω ′(m) = −Ω(m)(2(1 +m))−1 < 0. Then

dE(m)

dm
= −

1

β
Ω4(m)−

1

β
m4Ω3(m)Ω ′(m) < 0,

so

dT

dE
=
dT (m)

dm

(
dE(m)

dm

)−1

< 0

as stated by general arguments in the proof of Lemma 3.
We can also write an explicit formula forρ,

ρ =
m

m− 1

[
2π + (1 +m)

∫ 2π

0

sn2(Ωt,m)

dn2(Ωt,m)
dt

]
.

From this formula it follows thatρ > 0 because−1< m < 0.
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3. CASE f (x, u) = a2u
2
+ a3(x)u

3
+O(u4)

We have to prove the existence ofnondegeneratecritical points of the functionalΦn(v) :=
Φ0(Hnv) whereΦ0 is defined in (12).

LEMMA 7 (see [6]).Φn has the following development: forv(t, x) = η(t + x)− η(t − x)

∈ V ,

Φn(βnv) = 4πβ2n4
[
Ψ (η)+

β2

4π

(
R2(η)

n2
+ R3(η)

)]
,

where

Ψ (η) :=
s∗

2

∫
T
η̇2

+
β2

4π

[
α

(∫
T
η2

)2

+ γ

∫
T
η4

]
,

R2(η) := −
a2

2

2

[∫
Ω

v2�−1v2
−
π2

6

(∫
T
η2

)2]
,

R3(η) :=
1

4

∫
Ω

(a3(x)− 〈a3〉)(Hnv)4,

α := (9〈a3〉 − π2a2
2)/12, γ := π〈a3〉/2, and

β =

{
(2|α|)−1/2 if α 6= 0,

(π/γ )1/2 if α = 0.

PROOF. By Lemma 4.8 in [6] withm(s1, s2) = (η(s1)−η(s2))
2, for v(t, x) = η(t + x)−

η(t − x) the operatorΦn admits the development

Φn(v) = 2πs∗n2
∫

T
η̇2(t) dt −

π2a2
2

12

(∫
T
η2(t) dt

)2

−
a2

2

2n2

(∫
Ω

v2�−1v2
−
π2

6

(∫
T
η2(t) dt

)2)
+

1

4
〈a3〉

∫
Ω

v4
+

1

4

∫
Ω

(a3(x)− 〈a3〉)(Hnv)4.

Since ∫
Ω

v4
= 2π

∫
T
η4

+ 3

(∫
T
η2

)2

,

we write

Φn(v) = 2πs∗n2
∫

T
η̇2

−
π2a2

2

12

(∫
T
η2

)2

+
1

4
〈a3〉

[
2π

∫
T
η4

+ 3

(∫
T
η2

)2]
+
R2(η)

n2
+ R3(η),

whereR2, R3 defined above are both homogeneous of degree 4. So

Φn(v) = 2πs∗n2
∫

T
η̇2

+ α

(∫
T
η2

)2

+ γ

∫
T
η4

+
R2(η)

n2
+ R3(η),

whereα, γ are defined above. The rescalingη 7→ ηβn concludes the proof. 2
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In order to find forn large a nondegenerate critical point ofΦn, by the decomposition
of Lemma 7 it is sufficient to find critical points ofΨ onE = {η ∈ H 1(T) | η odd} (as in
Lemma 6.2 of [7], also the termR3(η) tends to 0 with its derivatives).

If 〈a3〉 ∈ (−∞,0) ∪ (π2a2
2/9,+∞), thenα 6= 0 and we must chooses∗ = −sign(α),

so that the functional becomes

Ψ (η) = sign(α)

(
−

1

2

∫
T
η̇2

+
1

8π

[(∫
T
η2

)2

+
γ

α

∫
T
η4

])
.

Since in this caseγ /α > 0, the functionalΨ clearly has a mountain-pass critical point
which solves

(36) η̈ + 〈η2
〉η + λη3

= 0, λ =
γ

2πα
> 0.

The proof of the nondegeneracy of the solution of (36) is very simple by using the analytic
arguments of the previous section (sinceλ > 0 a positivity argument is sufficient).

If 〈a3〉 = 0, then the equation becomesη̈ + 〈η2
〉η = 0, so we find again what was

proved in [7] fora3(x) ≡ 0.
If 〈a3〉 = π2a2

2/9, thenα = 0. We must chooses∗ = −1, so that we obtain

Ψ (η) = −
1

2

∫
T
η̇2

+
1

4

∫
T
η4, η̈ + η3

= 0.

This equation has periodic solutions which are nondegenerate because of non-isochronicity
(see Proposition 2 in [8]).

Finally, if 〈a3〉 ∈ (0, π2a2
2/9), thenα < 0 and there are solutions for boths∗ = ±1.

The functional

Ψ (η) =
s∗

2

∫
T
η̇2

+
1

8π

[
−

(∫
T
η2

)2

+
γ

|α|

∫
T
η4

]
=
s∗

2

∫
T
η̇2

+
1

4

∫
T
η4[λ−Q(η)],

where

λ :=
γ

2π |α|
> 0, Q(η) :=

(
∫
T η

2)2

2π
∫
T η

4
,

has mountain-pass critical points for anyλ > 0 because (as in Lemma 3.14 of [6])

inf
η∈E\{0}

Q(η) = 0, sup
η∈E\{0}

Q(η) = 1

(for λ ≥ 1 if s∗ = −1, and for 0< λ < 1 for boths∗ = ±1).
Such critical points satisfy the Euler–Lagrange equation

(37) −s∗η̈ − 〈η2
〉η + λη3

= 0

but their nondegeneracy is not obvious. For this, it is convenient to express these solutions
in terms of the Jacobi elliptic sine.
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PROPOSITION4. (i) Let s∗ = −1. Then for everyλ ∈ (0,+∞) there exists an odd,
analytic,2π-periodic solutiong(t) of (37)which is nondegenerate inE. It is given by
g(t) = V sn(Ωt,m) for suitable constantsV,Ω > 0 andm ∈ (−∞,−1).

(ii) Let s∗ = 1. Then for everyλ ∈ (0,1) there exists an odd, analytic,2π-periodic
solutiong(t) of (37) which is nondegenerate inE. It is given byg(t) = V sn(Ωt,m)
for suitable constantsV,Ω > 0 andm ∈ (0,1).

We prove Proposition 4 in several steps. First we construct the solutiong as in
Lemma 6.

LEMMA 8. (i) Let s∗ = −1. Then for everyλ ∈ (0,+∞) there existV,Ω > 0 andm ∈

(−∞,−1) such thatg(t) = V sn(Ωt,m) is an odd, analytic,2π -periodic solution of
(37)with a pole atiK(1/(1 −m))/(Ω

√
1 −m).

(ii) Let s∗ = 1. Then for everyλ ∈ (0,1) there existV,Ω > 0 andm ∈ (0,1) such that
g(t) = V sn(Ωt,m) is an odd, analytic,2π -periodic solution of(37) with a pole at
iK(1 −m)/Ω.

PROOF. We know thatg(V ,Ω,m)(t) := V sn(Ωt,m) is an odd,(4K(m)/Ω)-periodic solu-
tion of (31) (see Lemma 6). So it is a solution of (37) if(V ,Ω,m) satisfy

Ω2(1 +m) = s∗V 2
〈sn2(·, m)〉,

2mΩ2
= s∗V 2λ,

2K(m) = Ωπ.

(38)

Conditions (38) give the connection betweenλ andm:

(39) λ =
2m

1 +m
〈sn2(·, m)〉.

Moreover system (38) imposes{
m ∈ (−∞,−1) if s∗ = −1,

m ∈ (0,1) if s∗ = 1.

We know thatm 7→ 〈sn2(·, m)〉 is continuous, strictly increasing on(−∞,1), and tends
to 0 asm → −∞ and to 1 asm → 1 (see Lemma 12 below). So the right hand side of (39)
covers(0,+∞) for m ∈ (−∞,0), and it covers(0,1) for m ∈ (0,1). For this reason for
everyλ > 0 there exists a uniquēm < −1 satisfying (39), and for everyλ ∈ (0,1) there
exists a uniquēm ∈ (0,1) satisfying (39).

The valuem̄ and system (38) uniquely determine the valuesV̄ , Ω̄.
Analyticity and poles follow from [1, 16.2, 16.10.2, pp. 570, 573]. 2

Now we have to prove the nondegeneracy ofg. The linearized equation of (37) atg is

ḧ+ s∗(〈g2
〉 − 3λg2)h = −2s∗〈gh〉g.

Let L be the Green operator, i.e. forf ∈ E, let H := L(f ) be the unique solution
belonging toE of the nonhomogeneous linear system

Ḧ + s∗(〈g2
〉 − 3λg2)H = f.
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We can write the linearized equation ash = −2s∗〈gh〉L(g). Multiplying by g and inte-
grating we get

〈gh〉[1 + 2s∗〈gL(g)〉] = 0.

If A0 := 1 + 2s∗〈gL(g)〉 6= 0, then〈gh〉 = 0, soh = 0 and the nondegeneracy is proved.
It remains to show thatA0 6= 0. As before, the key is to expressL(g) in a suitable way.

We first look for a fundamental set of solutions of the homogeneous equation

ḧ+ s∗(〈g2
〉 − 3λg2)h = 0.(40)

LEMMA 9. There exist two linearly independent solutions of(40), ū even,2π -periodic
and v̄ odd, not periodic, such that̄u(0) = 1, ˙̄u(0) = 0, v̄(0) = 0, ˙̄v(0) = 1, and

(41) v̄(t + 2π)− v̄(t) = ρū(t) ∀t

for someρ 6= 0. Moreover

ū(t) = ġ(t)/ġ(0) = ṡn(Ω̄t, m̄),

v̄(t) =
1

Ω̄(1 − m̄)
sn(Ω̄t)+

m̄

m̄− 1
ṡn(Ω̄t)

[
t +

1 + m̄

Ω̄

∫ Ω̄t

0

sn2(ξ, m̄)

dn2(ξ, m̄)
dξ

]
.

PROOF. g solves (37) sȯg solves (40); normalizing we find̄u.
By (31), the functiony(t) = V sn(Ωt,m) solves

(42) ÿ + s∗〈g2
〉y − s∗λy3

= 0

if (V ,Ω,m) satisfy {
Ω2(1 +m) = s∗〈g2

〉,

2mΩ2
= s∗V 2λ.

We solve this system with respect tom. We obtain a one-parameter family(ym) of
odd periodic solutions of (42),ym(t) = V (m) sn(Ω(m)t,m). So l(t) := (∂mym)|m=m̄

solves (40). We normalizēv(t) := l(t)/l̇(0) and we compute the coefficients by
differentiating the system with respect tom. From the definitions of the Jacobi elliptic
functions we find that

∂m sn(x,m) = −ṡn(x,m)
1

2

∫ x

0

sn2(ξ,m)

dn2(ξ,m)
dξ ;

thanks to this formula we obtain the expression ofv̄.
Since 2πΩ̄ = 4K(m̄) is the period of the Jacobi functions sn and dn, from the formulae

for ū, v̄ we obtain (41) with

ρ =
m̄

m̄− 1
2π

(
1 + (1 + m̄)

〈
sn2

dn2

〉)
.

If s∗ = 1, thenm̄ ∈ (0,1) and we can see directly thatρ < 0. If s∗ = −1, thenm̄ < −1.
From the equality〈sn2 /dn2

〉 = (1−m)−1(1−〈sn2
〉) (see [3, Lemma 3, (L.2)]), it follows

thatρ > 0. 2
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Note that the integral representation of the Green operatorL holds again in the present
case. The formula and the proof are just as for Lemma 4.

LEMMA 10. We can writeA0 := 1 + 2s∗〈gL(g)〉 as a function ofλ, m̄,

A0 =
λ(1 − m̄)2q − (1 − λ)2(1 + m̄)2 + m̄q2

λ(1 − m̄)2q

whereq = q(λ, m̄) := 2 − λ(1 + m̄)2(2m̄)−1. Moreover,q > 0.

PROOF. First, we calculate〈gL(g)〉 by means of the integral formula of Lemma 4. The
first two equalities in the proof of Lemma 5 still hold, while similar calculations give∫ 2π

0 g3v̄ = −s∗ġ(0)ρ/2λ instead of (29). So

〈gL(g)〉 = −s∗
ρ

4πλ
+

1

2πρ

( ∫ 2π

0
gv̄

)2
(43)

and the sign ofA0 is not obvious. We calculate
∫ 2π

0 gv̄ recalling thatg(t) = V̄ sn(Ω̄t, m̄),
using the formula for̄v of Lemma 9 and integrating by parts:∫ 2π

0
sn(Ω̄t)ṡn(Ω̄t)µ(t) dt = −

1

2Ω̄

∫ 2π

0
sn2(Ω̄t)µ̇(t) dt,

whereµ(t) := t+ (1+ m̄)Ω̄−1
∫ Ω̄t

0 sn2(ξ)/dn2(ξ) dξ . From [3, (L.2), (L.3) in Lemma 3],
we obtain the formula 〈

sn4

dn2

〉
=

1 + (m− 2)〈sn2
〉

m(1 −m)

and consequently ∫ 2π

0
gv̄ =

πV̄

Ω̄(1 − m̄)2
(1 + m̄− 2m̄〈sn2

〉).

By the second equality of (38) and (43),

A0 = 1 +
2

λ

[
−
ρ

4π
+

πm̄

ρ(1 − m̄)4
(1 + m̄− 2m̄〈sn2

〉)2
]

for boths∗ = ±1. From the proof of Lemma 9 we haveρ = −2πm̄q/(1 − m̄)2, whereq
is defined above; inserting this expression ofρ in the last equality we obtain the formula
for A0.

Finally, for m̄ < −1 we have immediatelyq > 0, while for m̄ ∈ (0,1) we getq =

2 − (1 + m̄)〈sn2
〉 by (39). Since〈sn2

〉 < 1, it follows thatq > 0. 2

LEMMA 11. A0 6= 0. More precisely,sign(A0) = −s∗.
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PROOF. From Lemma 10,A0 > 0 iff λ(1 − m̄)2q − (1 − λ)2(1 + m̄)2 + m̄q2 > 0. This
expression is equal to−(1 − m̄)2p, where

p = p(λ, m̄) =
(1 + m̄)2

4m̄
λ2

− 2λ+ 1,

soA0 > 0 iff p < 0. The polynomialp(λ) has degree 2 and its determinant is∆ =

−(1 − m̄)2/m̄. So, if s∗ = 1, thenm̄ ∈ (0,1),∆ < 0 andp > 0, so thatA0 < 0.
It remains to consider the cases∗ = −1. Forλ > 0, we havep(λ) < 0 iff λ > x∗,

wherex∗ is the positive root ofp, x∗ := 2R(1 + R)−2, R := |m̄|
1/2. By (39),λ > x∗ iff

〈sn2(·, m̄)〉 >
R − 1

(R + 1)R
.

By formula (34) and by definition of complete elliptic integralsK andE we can write this
inequality as ∫ π/2

0

(
R − 1

(R + 1)R
− sin2ϑ

)
dϑ√

1 + R2 sin2ϑ
< 0.(44)

We putσ := (R − 1)/((R + 1)R) and note thatσ < 1/2 for everyR > 0.
We haveσ − sin2ϑ > 0 iff ϑ ∈ (0, ϑ∗), whereϑ∗ := arcsin(

√
σ), i.e. sin2ϑ∗

= σ .
Moreover 1< 1 + R2 sin2ϑ < 1 + R2 for everyϑ ∈ (0, π/2). So∫ π/2

0

σ − sin2ϑ√
1 + R2 sin2ϑ

dϑ <

∫ ϑ∗

0
(σ − sin2ϑ) dϑ +

∫ π/2

ϑ∗

σ − sin2ϑ
√

1 + R2
dϑ.(45)

Thanks to the formula∫ b

a

sin2ϑ dϑ =
b − a

2
−

sin(2b)− sin(2a)

4

the right hand side of (45) is equal to

sin(2ϑ∗)

4

[
(2σ − 1)

(
2ϑ∗

sin(2ϑ∗)
+

1
√

1 + R2

π − 2ϑ∗

sin(2ϑ∗)

)
+

(
1 −

1
√

1 + R2

)]
.

Since 2σ − 1< 0 andα > sinα for everyα > 0, this quantity is less than

sin(2ϑ∗)

4

[
(2σ − 1)

(
1 +

1
√

1 + R2

)
+

(
1 −

1
√

1 + R2

)]
.

By definition of σ , the last quantity is negative for everyR > 0, so (44) is true.
Consequently,λ > x∗, p < 0 andA0 > 0. 2

APPENDIX

We show the properties of the functionm 7→ 〈sn2(·, m)〉 used in the proof of Lemma 8.

LEMMA 12. The functionϕ : (−∞,1) → R, m 7→ 〈sn2(·, m)〉, is continuous, diff-
erentiable, and strictly increasing. It tends to zero asm → −∞ and to1 asm → 1.
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PROOF. By (34) and by definition of complete elliptic integralsK andE,

ϕ(m) =
K(m)− E(m)

mK(m)
=

∫ π/2

0

sin2ϑ dϑ√
1 −m sin2ϑ

(∫ π/2

0

dϑ√
1 −m sin2ϑ

)−1

,

so the continuity ofϕ is evident.
Using the equality sin2 + cos2 = 1 and the change of variableϑ 7→ π/2 − ϑ in the

integrals which defineK andE, we obtain, for everym < 1,

K(m) =
1

√
1 −m

K

(
m

m− 1

)
, E(m) =

√
1 −mE

(
m

m− 1

)
.

We putµ := m/(m− 1), so

ϕ(m) = 1 −
1

µ
+

E(µ)

µK(µ)
.

Sinceµ tends to 1 asm → −∞ andE(1) = 1 and limµ→1K(µ) = +∞, the last formula
gives limm→−∞ ϕ(m) = 0. SinceE(m)/K(m) tends to 0 asm → 1, (34) implies that
limm→1 ϕ(m) = 1.

Differentiating the integrals which defineK andE with respect tom we obtain

E′(m) =
E(m)−K(m)

2m
, K ′(m) =

1

2m

(∫ π/2

0

dϑ

(1 −m sin2ϑ)3/2
−K(m)

)
so

ϕ′(m) =
1

2m2K2(m)

[
E(m)

∫ π/2

0

dϑ

(1 −m sin2ϑ)3/2
−K2(m)

]
.

The term in square brackets is positive by the strict Hölder inequality for(1−m sin2ϑ)−3/4

and(1 −m sin2ϑ)1/4. 2
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