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ABSTRACT. — We prove existence and multiplicity of small amplitude periodic solutions of completely resonant
nonlinear wave equations with Dirichlet boundary conditions for asymptotically full measure sets of frequencies,
extending the results df][7] to new types of nonlinearities.
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1. INTRODUCTION

The aim of this note is to prove existence and multiplicity of small amplitude periodic
solutions of the completely resonant wave equation

B Du+f_(x,u)=0_,
u,0) =u(,7) =0,

where[d := 9,; — 0y, is the d’Alembertian operator and
(2) Fx,u) = apu® + az()u® + 0w or  f(x,u) =au*+ 0Wd),

for a Cantor-like set of frequenciasof asymptotically full measure at = 1.
Equation [(1) is said to be completely resonant because any solutior=
ijl aj cogjt + ;) sin(jx) of the linearized equation at= 0,

(3) Uyp — Uxx =0,
u(t,0 =u(,m)=0,
is 2 -periodic in time.

Existence and multiplicity of periodic solutions ¢ (1) were proved for a zero measure,
uncountable Cantor set of frequencie< in [4] fau) = u®+ O (u°) and in [5]-{6] for any
nonlinearity f (u) = a,u” + O wP*t), p > 2.

Existence of periodic solutions for a Cantor-like set of frequencies of asymptotically
full measure has recently been provedLin [7] where, due to the well known “small divisor
difficulty”, the “Oth order bifurcation equation” is required to have nondegenerate periodic
solutions. This property was verified inl [7] for nonlinearities like= axu® + O (u%),
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f = az(x)u®+ Ou*). See alsd[11] forf = u3 + O(u°) (and [9] in the case of periodic
boundary conditions).

In this note we shall prove that, for quadratic, cubic and quartic nonlineayities)
as in [2), the corresponding Oth order bifurcation equation has nondegenerate periodic
solutions (Propositiorig 1 afi#l 2), implying, by the result§ of [7], The¢ijem 1 and Coidllary 1
below.

We remark that our proof is purely analytic (it does not use numerical calculations)
being based on the analysis of the variational equation and exploiting properties of the
Jacobi elliptic functions.

1.1. Main results

Normalizing the period to2, we look for solutions of

wzutt —uxx + flx,u) = 0,
u@,0) =u(t,7)=0,

in the Hilbert algebra (fos > 1/2,0 > 0)

X5 = [u(t, x) =Y coslt)u(x) ‘ u; € H3((0, ), R) ¥/ € Nand
>0

w2, = Y exp@oD)(? + Dljul < +oo}.
>0

It is natural to look for solutions which are even in time because equdtion (1) is
reversible.
We look as well for solutions of {1) in the subalgebras

Xosn :=1{u € Xo5 | uis 2r/n-periodig C X5, neN

(they are particular2-periodic solutions).
The space of solutions of the linear equat@n (3) that belorfgolt(ﬂl‘ x (0, 7), R) and
are even in time is

Vo= {v(l,x) =" costnuy sinx) [ w e R, Y Pluy|? < +oo}

=1 =1

- {v(t,x) = 9t +x) — n(t —x) ‘ n € HYT, R) odd}.

THEOREM1. Let either

@ [, u) = agu® + az()u® + ) ap (ot
k>4

where(az, (az)) # (0,0), (az) == 71 [ az(x)dx, or

(5) fxu) = agu® + ) ap(out

k>5
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whereay # 0, as(r — x) = —as(x), ag(w — x) = ag(x), a7(wr — x) = —a7(x). Assume
moreovera, (x) € H((0, ), R) with 3", llax|l y10* < +o0 for somep > 0. Then there
existsng € N such that for every > ng there aresp, > 0 and aC*-curve[0, &) >
8 — us € X5,2,5,» With the following properties:

() llus — 80nll5 2.5, = O(8?) for some, € VN X5 ., \ {0} with minimal period2r /n;
(ii) there exists a Cantor sét, C [0, §p) of asymptotically full measure @t = 0, i.e.
satisfying

©) im measC, N (0, ¢)) _
e—0t & o

1,

such that, for eacld € C,, us(w(8)t, x) is a2 /(w(§)n)-periodic, classical solution
of (T) with
V1—2s%§2 if fis asin(@),

o) = V1-258 if fisasin(g),

and
—1 if (ag) > n%a3/12,
s*=141 if 0< (a3) < n2a5/12,
1  if {(a3) <0.

By (6) also each Cantor-like set of frequencigd, = {w(8) | § € C,} has
asymptotically full measure at = 1.

Note how the interaction between the second and third order tesa?s az(x)u®
changes the bifurcation diagram, i.e. existence of periodic solutions for frequenieiss
than or/and greater than= 1.

COROLLARY 1 (Multiplicity). There exists a Cantor-like sét/ of asymptotically full
measure atv = 1 such that for eacho € C, equation(d]) has geometrically distinct
periodic solutions

Upgs > Un, - UN,, Ny €N,

with the same perio@r /w. Their number increases indefinitely agends to 1:
lim N, = +o0.
w—1

PROOFE The proof is as in[[[7] and we repeat it for completeness. bfelongs to the
asymptotically full measure set (kfy] (6))

D, =CyyNn...NCy, n=>no,
then there exist — no + 1 geometrically distinct periodic solutions ¢f (1) with the same
period 2r/w(8) (eachu, has minimal period 2/(nw(3))).

There exists a decreasing sequence of positive- 0 such that

meagD; N (0, &,)) < &,27".
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Define the seC = D, on each §,+1, ¢,). ThenC has asymptotically full measure at
8 = 0 and for eachd € C there existN(§) := max{n € N : § < ¢,} geometrically
distinct periodic solutions of {1) with the same period/2(8), and N(§) — +o0 as

§ — 0. O

REMARK 1. Corollary[] is an analogue for equatign (1) of the well known multiplicity
results of Weinstein—Moser [1L3]-[12] and Fadell-Rabinowitz [10] which hold in finite
dimensions. The solutions form a sequence of functions with increasing norms and
decreasing minimal periods. Multiplicity of solutions was also obtainedlin [6] (with the
“optimal” numberN,, ~ C//]o — 1]) but only for a zero measure set of frequencies.

The main point in proving Theorein 1 is to show the existence of nondegenerate
solutions of the Oth order bifurcation equation fb@s in [2). In these cases the Oth order
bifurcation equation involves higher order terms of the nonlinearity, and,lfoge, can be
reduced to an integro-differential equation (which physically describes an averaged effect
of the nonlinearity with Dirichlet boundary conditions).

CASE f(x,u) = agu® + Ow®). Performing the rescaling — Su, § > 0, we look for
27 /n-periodic solutions inX, s, of

@%uyy — tyx +83g(8, x,u) =0,

(7
u(,0) =u(t,7) =0,
where
,0
g, x,u) = % = a4u4 + 8a5(x)u5 + 82a6(x)u6 +....

To find solutions of[([7) we implement the Lyapunov—-Schmidt reduction according to the
orthogonal decompositioKy s ,» = (V, N X.5.n) & (W N Xo.5.n) Where

V, := {v(t, x) = n(nt + nx) — n(nt — nx) | n € HX(T, R) odd},

W= {w = > cosityw(x) € Xo, fﬂ w; (x) sinx)dx =0, VI > 0 }
>0 0

Looking for solutions: = v+ w withv € V, N X5 5., w € WN X4 5.0, and imposing the
frequency-amplitude relation

we are led to solve the bifurcation equation and the range equation

Av =83y, g(8, x, v+ w),
L,ow = 8317an(8, X, v+ w),

where Av = vy, + vy, Ly = —0?3; + 0y and Iy, © Xesn — Vi 0 Xosm
My, : Xg5.n — W N X4 5., denote the projectors.
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With the further rescaling — 83w and since* € W, (Lemma 3.4 of([5]) a5 (x)v°>,
ae(x)ve, a7()c)v7 € W, becauseis(m — x) = —as(x), ag(wr — x) = ag(x), a7(r — x) =
—a7(x) (Lemma 7.1 ofl[7]), the system is equivalent to
Av =11y, (4a4v3w +6r(s, x, v, w)),

Low = aqv* + 8Ty, 7(8, x, v, w),

)

wherer (8, x, v, w) = ag(x)v® + Bas(x)v*w + 0(8) and7 (8, x, v, w) = as(x)v® + O(9).
For§ = 0 system ) reduces to = —as[0~1v* and to the Oth order bifurcation
equation

(©) Av + 4a3 My, w30 Tt =0,

which is the Euler-Lagrange equation of the functiobal: V, — R,

IoIf a3 [ 414
(10) Po(v) = —— — = [ v’ O v
2 2/

wheref2 :=T x (0, 7).

PROPOSITION1. Letagq # 0. There existsig € N such that for alln > ng the Oth
order bifurcation equatior{9) has a solutiorw,, € V,, which is nondegenerate i, (i.e.
Ker D2dq = {0}), with minimal period2r /n.

CASE f(x, u) = aou? + az(x)u® + Ou®). Performing the rescaling — su we look
for 27 /n-periodic solutions of

@iy — iy +88(8, x,u) =0,
u(@,0) =u(t,7)=0,

where 5
g, x,u) = % = amu® + 8a3(x)u3 + 82a4(x)u4 +....
With the frequency-amplitude relation
2
w -1 %02
= —s5%3
2 N

wheres* = +1, we have to solve

—Av = —s*8" Ty, g(8, x, v+ w),
Low = 6ITw,g(8, x, v+ w).

With the further rescaling — sw and since? € W, the system is equivalent to

—Av = s*[1y, (—2avw — asdw? — az(x) (v + Sw)2 — 8r (8, x, v + Sw)),
Low = agv? + 8Ty, (2azvw + Sagw? + az(x) (v + sw)® + 87 (8, x, v + sw)),

wherer(8, x, u) := 84 f(x, Su) — ax8%u? — 83az3(x)u®] = as(x)u*+ . ...
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Fors = 0 the system reduces = —a,>[0~1v? and the Oth order bifurcation equation
(11) —s* Av = 243y, WO~ 1?) — My, (az(x)v?),

which is the Euler-Lagrange equationdg : V,, — R,

o L 2-12 , 1 4
(12) Do(v) ==+ — = | vvO v+ - [ az(x)v".
2 2 Q 4 2

PROPOSITION2. Let (a2, (a3)) # (0,0). There existag € N such that for alln > ng
the Oth order bifurcation equatiorf1) has a solutiorv, € V,, which is nondegenerate in
Vi, with minimal period2r /n.
2. CASE f(x,u) = agu*+ O u®)
We have to prove the existenceraindegenerateritical points of the functional
P,V =R, D, (v) := Po(Hyuv),

where ®q is defined in[(ID). Let, : V — V be the linear isomorphism defined, for
v(t,x) =nt+x)—niEt—x)eV,by

(Hav)(t, x) '=nn(t +x)) — nn( — x))
so thatV, = H,, V.

LEMMA 1 (seel[6]). @, has the following development: fott, x) = n(t +x) — n(t — x)
eV,

(13) @u(pn*?v) = 47”32”8/3[4/(,,) + Ol_R(zn)],
n

wherep = (3/(n2a2))V/%, o := 3/(873),

1
(14) won = f V20 di — 7 (0 + 3P,

T
() denotes the average dh and
24
(15) R() = — f VO Nt drdx + T4(<n4> +3(n%)%)°.
2

PROOFE First, the quadratic term is

12, = ”—2||v||2 L =n?27 / (1) dt

n - —_ .

2 H 2 H T

By Lemma 4.8 in[[6] the nonquadratic term can be developed as

_ R
2

7.[4
/ (M) O (M)t = — (m)?
o 6

n
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wherem : T? — R is defined bym(s1, s2) = (n(s1) — n(s2))?, its average igm) :=
(27)72 [z m(s1, 52) ds1dsp and

7T4
R(>) = —/ VO Nt + —(m)?
o 6

is homogeneous of degree 8. Singés odd we find(m) = 2((n*) + 3(n2)2), where( )
denotes the average fh Collecting these equalities we find that

7T4 Clz
@, = 200 [ 20 dr — Tad (i) + 3077 + SR,
T 3 2n
Via the rescaling) > pn'/3; we get expressionf (14) afjd [15). O

By (@3), in order to find fom large enough a nondegenerate critical poinggf it is
sufficient to find nondegenerate critical pointsiofn) defined on

E :={ne HXT) | n odd),
namely nondegenerate solutionsfirof
(16) i+ AMGBHAN +n> =0, AG) = (n") + 3>

PrRoOPOsITION3. There exists an odd, analytigx -periodic solutiong(r) of (16) which
is nondegenerate if. It is given byg(r) = V sn(£2¢, m) wheresnis the Jacobi elliptic
sine andV, 2 > Oandm € (—1, 0) are suitable constants (therefogdr) has minimal
period27).

We will construct the solutiog of (I6) by means of the Jacobi elliptic sine in Lenima 6.
The existence of a solutiop also follows directly by applying to : E — R the
Mountain-Pass Theorem|[2]. Furthermore this solution is an analytic function by arguing
asin Lemma 2.1 of [7].

2.1. Nondegeneracy of

We now want to prove that is nondegenerate. The linearized equatior of (1@)iat
h+3A()(82)h + g%h) + BA(2)g(gh) + A'(D)[h(3(g’) g + ¢°) =0,

which we write as

17) h+34)(g2) + 8Dh = —(gh) L — (°M) T2

where

I = 6(9(g%)? + (g*)g + 12(g?) g5,

(18)
Ir == 12g(g?) + 4g>.
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For f € E, let H := L(f) be the unique solution belonging Bof the nonhomogeneous
linear system

(19) H+3A(0) (g% + gHH = f;

an integral representation of the Green operatds given in Lemma}4 below. Thuf ([17)
becomes

(20) h = —{gh)L(I1) — (g°h) L(I2).
Multiplying by ¢ and taking averages we get
(21) (gL + (gL()] = ~(¢°h){gL(12),
while multiplying ) byg? and taking averages yields
(22) (¢°MIL +(g°L(12)] = —(gh){(s°L (D).
Sinceg solves|[(1p) we can deduce the following identities.
LEMMA 2. We have

24(9)(°L(9)) = (87).  2A()(s°L(g%) = (g%).

PrROOF The first equality is obtained from the identity fb(g),

d2
2L+ 3A(2)((¢%) + ¢dL(g) = g,

by multiplying by g, taking averages, integrating by parts,
(EL(2) + 3A@I(2)(L(9)g) + (g°L(e)] = (87,

and using the fact that solves[(15).
Analogously, the second equality is obtained from the identity fas®),

d2
ﬁ(ugs)) +34(9)((g?) + gd Lg% = &5,

by multiplying by g, taking averages, integrating by parts, and using the fact ghat
solves[(I1p). O

SinceL is a symmetric operator we can compute the following averages {ising (18) and
Lemmd2:

(gL(I)) = 6((g* +9(g2?)(gL(g)) + 6A(g)"1(g?)2,
(gL(I2)) = 12(g%)(gL(g)) + 2A(g)~1(g?),
(23) 3 B 2

(g3L(I)) = 9(g?),
(

8
§3L(Ip) = 2.
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Thanks to the identitie§ (23), equatiops](2[) (22) simplify to

(gh)[A(g) + 6(g®)?B(g) = —2(g?)B(g)(g°h),
(24) 30 A

(gh) = —3(g°)(gh),
where
(25) B(g) == 1+ 6A(g)(gL(g)).

Solving [24) we geB(g)(gh) = 0. We will prove in Lemm@J} thaB(g) # 0, so(gh) = 0.
Hence by|(2}4) als@g3h) = 0 and therefore, bO); = 0. This concludes the proof of
the nondegeneracy of the solutigrof (16).

It remains to prove thaB(g) # 0. The key is to express the functidr{g) by means
of the variation of constants formula.

We first look for a fundamental set of solutions of the homogeneous equation

(HOM) h+3A(g)((g%) + g2h = 0.

LEMMA 3. There exist two linearly independent solutions(ldDM), it ;= ¢(1)/£(0)
and v, such that

i is even 2x-periodic v is odd not periodic
4(0)=1, u(0) =0, 9(0)=0, v(0) =1,
and
(26) v(t 4+ 21) — v(t) = pu(t) forsomeop > 0.

PrROOF Since[(16) is autonomoug(r) is a solution of the linearized equation (HOM); it
is even and 2-periodic.

We can construct another solution of (HOM) in the following way. The superquadratic
Hamiltonian system (with constant coefficients)

(27) ¥+ 3A()(g%)y + Ag)y3 =0

has a one-parameter family of odfi{ £)-periodic solutionsy(E, 1), close tog, para-
metrized by the energf. Let E denote the energy level ¢f, i.e. ¢ = y(E,r) and
T(E) = 2x. Thenl(t) := (0gy(E, D\E=E is an odd solution of (HOM). Differentiating
the identity y(E,t + T(E)) = vy(E,t) with respect toE we obtain, atE = E,
It +27)—1@1) = —(BET(E))lEZEg(t) and, normalizingi(¢) := () /1(0), we get)
with p 1= —(0p T (E)) 5_38(0)/1(0).

Sincey(E, 0) = Oforall E, the energy identity giveE = %(y(E, 0))2. Differentiating
with respect taf at E = E yields 1= $(0)/(0), so

(28) p=—@T(E)) p_;(8(0)%

We havep > 0 because{aET(E))lE:E < 0 by the superquadraticity of the potential
of (27). This can also be checked by a computation (see Remark after Ligmma 6).
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Now we write an integral formula for the Green operator

LEMMA 4. Foreveryf € E there exists a unique solutidd = L(f) of (I9) which can
be written as

t 2 t
L(f) = (/0 F(si(s)ds + %/ fﬁ)ﬁ(t) _ (/ f(s)ﬁ(s)ds>ﬁ(t) cE.
0 0

PrROOFR The nonhomogeneous equatipn|(19) has the particular solution

H(t) = </t F(8)ii(s) ds)ﬁ(t) - (/l f(s)f)(s)ds)ﬁ(t)
0 0

as can be verified by observing that the Wronskienv(r) — it (t)o(t) = 1 for all 7. Notice
that A is odd.

Any solution H (¢) of ) can be written a#l (r) = H(¢) + aii + b, a, b € R. Since
H is odd,i is even and is odd, requiringH to be odd implies: = 0. Imposing now the
2n-periodicity yields

t+21 t+21 t
0= (/ fﬁ)ﬁ(r +21) — (f fﬁ)ﬁ(r +21) — </ fﬁ)z‘)(t)
0 0 0

t
+ (/ fﬁ)ﬁ(t) + b(B(t + 27) — B(1))
0

t t+21
= (b+/ fﬁ)(z‘;(l—i—Zn)—ﬁ(t))—ﬁ(t)(/ fﬁ),
0 t

because and fi are 2r-periodic and( fi) = 0. By (2§) we have

t t+2m
p(b-l—/ fﬁ)—/ fo=0.
0 t
This expression is constant in time, because, by differentiating in
pf@ut) — f&)(0( + 27) —v(r)) =0
again by ). Hence evaluating at= 0 yieldsb = p~1 fOZ” fv. So there exists a
unique solutiond = L(f) of (I9) belonging toE, and the integral representation of

L follows. O

LEMMA 5. We have

p 1 /(7 \?
<gL<g)>=4nA(g)+%</o gv) -0

becaused(g) > Oandp > 0.
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PrROOF Using the formula of Lemma 4 and integrating by parts we can compute

1 21 t 1 27 2
(gL(g)) = 2—/ (/ gﬁ>ﬁ(t)g(t)dt+2—</ gﬁ)
7 Jo 0 o \Jo
1 2 t
~on A (/0 g{;)ﬁ(t)g(t)dt

1 2n t 1 2n 2
=2— </ gﬁ)ﬁ(t)g(t) dt + —</ gt'))
21 Jo 0 2p \Jo

becausg‘oz” git = 0. Sincei(r) = ¢(t)/£(0) andg(0) = 0, we have

r 1 ) 2 ro\ 1 2n 3.
/0 4 = 52580, /0 < /0 gu)v(t)g(r)dtz—zg(o) /O &%,

so it remains to show that

2 . 0)
29 35 P8O
(29) /o 87 2409

Sinceg solves|[(1p), multiplying by and integrating yields

2
/0 [5()& (1) + 3A(g) (%) g(1)o(r) + A(9)g3(1)D(1)] dr = 0.

Sincew solves (HOM), multiplying bye and integrating gives

2
/O [g()v(r) + 3A(g) (g2 T(1)g(r) + 3A(g)g3(1)v(1)] dr = 0.

Subtracting the last two equalities we get

2n . 21
/0 [W(@®E@) — g®v®)]dr = 2A(g)/0 g%.

Integrating by parts the left hand side, sing®) = g(2r) = 0, #(0) = 1 and [26), we
obtain

2
fo [50E() — gOF®] di = §(Ov(2r) — v(O)] = pg(0).
So24(g) 3" &% = pg(0). O

2.2. Explicit computations

We now give the explicit construction gfby means of the Jacobi elliptic sine defined as
follows. Let an{-, m) : R — R be the inverse function of the Jacobi elliptic integral of the

first kind
dv

Vi—msiy

@
¢ — F(p,m) ::_/(;
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The Jacobi elliptic sine is defined by

sn(t, m) ;= sin(@am(z, m)).
Itis 4K (m)-periodic, whereK (m) is the complete elliptic integral of the first kind
) b4 /2 dv
K(m) = F(E,m) =/0 T
and admits an analytic extension with a polegtl—m) form € (0, 1) andat K (1/(1—
m))/~/I—m for m < 0. Moreover, since, am(z, m) = /1 — m sré(t, m), the elliptic

sine satisfies
(30) (sN? = (1 —srf)(1 — msm).

LEMMA 6. There existV, 2 > 0andm € (—1, 0) such thatg(¢) := V sn(2¢, m) is an
odd, analytic 2 -periodic solution 0) with pole ati K (1/(1 — m))/(£2+/1 — m).

PrRoOF. Differentiating [30) we havesn + (1 + m)sn—2ms® = 0. Therefore
gw,o,m @) ==V sn(§2t,m) is an odd,(4K (m)/$2)-periodic solution of

92
(31) §+.{22(1+m)g—2mwg3:0.
The functiong (v, 2 ) Will be a solution of [(I) if(V, £2, m) satisfy

22(L+m) =3AGQw.2.m) (&% g.m)
(32) —2mQ% = V2A(gv.2.m)

2K (m) = Q7.
Dividing the first equation of (32) by the second yields

(33) —1;—’” — (st2(-, m)).
m

The right hand side can be expressed as

_ K(m) — E(m)
(34) (SIP(-, m)) = Koy

whereE (m) is the complete elliptic integral of the second kind,

/2 K (m)
E(m) :=f V1—msirt o do =f (1 — msre(E, m)) dé
0 0

(in the last passage we make the change of variébleam(¢, m)).
Now, we show that systerpi (32) has a unique solution[B} (33)[arjd (34),

(7 +m)K (m) — 6E(m) = 0.
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By the definitions ofE (m) and K (m) we have

/21 4+ m(1+ 65sirf 9)
(1— msirt9)Y/2

Y(m) = (T +m)K(@m) — 6E(m) = /0

We havey (0) = /2 > 0 andy(~1) = — [7/%6sirf 9 (1+ sir?9)"Y2dv < 0. Since

Y is continuous there exists € (—1, 0) such thaty (7z) = 0. Next the third equation in
(32) fixess2 and finally we findV. Henceg (1) = V sn(£2t, i) solves|(16).

Analyticity and poles follow from([1, 16.2, 16.10.2, pp. 570, 573].

Finally, m is unique becaus&’(m) > 0 form € (—1,0) as can be verified by
differentiating the formula foty. One can also compute thate (—0.30, —0.28). |

REMARK. We can explicitly compute the sign @i /d E andp of (28) in the following
way. The functiong v, .m) are solutions of the Hamiltonian system|(27)

22+ m) =a,
(35) ) )
—2m2“ = V4B,
wherea = 3A(g)(g2), B ‘= A(g) andg is the solution constructed in Lemrﬁ}a 6.
We solve[(3b) with respect ta to find the one-parameter family,,) of odd periodic
solutionsy,, (t) := V (m) sn(§2(m)t, m), close tog, with energy and period

Eom = %Vz(’"mz(m) - ‘%m‘?“(m), T(m) = g((gnn?.

We have
dT(m) 4K'(m)$2(m) — 4K (m)$2' (m) -

07
dm 22(m)

because&’(m) > 0 and from|[(35)2(m) = —2(m)(2(1+m))~! < 0. Then

dE(m)__E 4 _l 3 /
T ;‘39 (m) ﬂm4.Q (m)$2'(m) < 0,

SO

dT dT(m)(dE(m)>_l 0
dE ~ dm \ dm ) =

as stated by general arguments in the proof of Leinma 3.
We can also write an explicit formula far,

m 2T Sre(2t, m)
=— |2 1 T dr|.
g m—l[”( +'")fo dre(21, m) t}

From this formula it follows thap > 0 because-1 < m < 0.
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3. CASE f(x,u) = asu®+ az(x)u® + O u®

We have to prove the existencerafndegenerateritical points of the functiona®,, (v) :=
@o(H,v) wheredy is defined in[(IR).

LEMMA 7 (seel[B]). @, has the following development: fo(z, x) = n(t +x) — n(t — x)
ev,

4

T2 T 4 T T ’
az 7T2 2
2(1) 21/, v v 6 \x n

1
R3(1) = 7 /g (a3(x) — (az)) (Hav)?,

2
@, (Bnv) = 4ﬂﬁ2n4[‘1’(n) + 5 (Ri(;') + R3(n))],

where

o = (Yaz) — nza%)/lz y = m{a3)/2, and
_ | @ep? it e 0,
| @/)YV2 ifa=0.

PROOF By Lemma 4.8 inl[B] withm (s1, s0) = (n(s1) — n(s2))?, for v(z, x) = n(t +x) —
n(t — x) the operatowp,, admits the development

2.2 2
®,(v) = 2ns*n2/ 72(0) di — ”1—‘212</ nz(t)dt)
T T

2 2 2
9 2—-1,2 T~ 2
2n2(fgvlj v 6<An(t)dt>>

1 1
+5(a3) / v“+z1 f (a3(x) — (a3))(Hav)™.
2 2
2
/ v4=27r/n4+3</ n2> ,
2 T T
we write
2 2 2 2
@, (v) =271s*n2/ ﬁz—w(/ 7]2> +}(a3)|:2n/ 774+3</ 772> :|
T 12 \Jr 4 T T

R
+ 5204 Re(,

Since

whereR>, R3 defined above are both homogeneous of degree 4. So

2
R
d5n(v):2ns*n2/ﬁ2+a(/ 772) +y/7]4+ 2(2'7) + R3(n),
T T T n

whereqw, y are defined above. The rescaling> ngn concludes the proof. O
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In order to find forn large a nondegenerate critical point®f, by the decomposition
of Lemmaﬁ it is sufficient to find critical points & on E = {n € H'(T) | n odd} (as in
Lemma 6.2 of[[¥], also the termR3(n) tends to O with its derivatives).

If (a3) € (—o0, 0) U (r2a2/9, +00), thena # 0 and we must choosé = —sign(a),
so that the functional becomes

. 1 1 2
wm=mmw(—2éf+§;Kﬁnﬂ +§Anq)

Since in this case /a > 0, the functional¥ clearly has a mountain-pass critical point
which solves

(36) i+ A+ =0, =250
2ma
The proof of the nondegeneracy of the solutior of (36) is very simple by using the analytic
arguments of the previous section (sirice 0 a positivity argument is sufficient).
If (a3) = 0, then the equation becomést (n%)n = 0, so we find again what was
proved in [7] foraz(x) = 0.
If (a3) = n2a§/9, thena = 0. We must choose* = —1, so that we obtain

/ n*,  ii+n®=0.
T
This equation has periodic solutions which are nondegenerate because of non-isochronicity

(see Proposition 2 in [8]).
Finally, if (a3) € (0, 72a3/9), thena < 0 and there are solutions for bath = £1.

The functional
s* 1 2 y
o= o &) o]
" 2 ']I‘n 8w Tn lex| 11‘77
_S* .2 1 4
—szn +4/Tn[>» o],

. 14 _ Uy n?)?
= o - ,
2 o 2r [0t

has mountain-pass critical points for any- 0 because (as in Lemma 3.14 [of [6])

vy =3 [ i+
77—2T77 4

where

0, QOm

inf =0, su =1
L o) UEE\F{)O} o)

(fora > 1if s* = —1, and for O< A < 1 for boths* = £1).
Such critical points satisfy the Euler—Lagrange equation

37) —s*ii — (P +an® =0

but their nondegeneracy is not obvious. For this, it is convenient to express these solutions
in terms of the Jacobi elliptic sine.
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ProPOSITION4. (i) Lets* = —1. Then for every. € (0, +o0) there exists an odd,
analytic, 2z -periodic solutiong(¢) of (37) which is nondegenerate iB. It is given by
g(t) = V sn(£2t, m) for suitable constant¥, 2 > 0andm € (—oo, —1).

(i) Lets* = 1. Then for everyh € (0, 1) there exists an odd, analyti@r-periodic
solutiong(¢) of (37) which is nondegenerate iA. It is given byg(r) = V sn(§2z, m)
for suitable constant¥, 2 > Oandm € (0, 1).

We prove Propositiofi]4 in several steps. First we construct the solgtias in
Lemmd®.

LeEmMMA 8. (i) Lets* = —1. Then for every. € (0, +00) there existV, 2 > Oandm €
(—o00, —1) such thatg(z) = V sn(2¢, m) is an odd, analytic2z -periodic solution of
(37 with a pole ati K (1/(1 — m))/(2v/1 — m).

(i) Lets* = 1. Then for every. € (0, 1) there existV, 2 > 0andm € (0, 1) such that
g(1) = Vsn(§2t, m) is an odd, analytic2r-periodic solution of(37) with a pole at
iK(1—m)/82.

PrRoOOF We know thafg(v, o m)(f) :== V sn(§2t, m) is an odd (4K (m)/$2)-periodic solu-
tion of (31) (see Lemmi@ 6). So it is a solution [of (37} ¥, £2, m) satisfy

22(1+ m) = s*V2(sré(-, m)),

(38) 2m§22 = s*V2),
2K (m) = 2.
Conditions[(38) give the connection betweeandm:
2m
39 A= P (-, m)).
(39) Tom (st (-, m))
Moreover systenf (38) imposes
m € (—oo, —1) if s* = -1,
me (0,1 if s* =1

We know thatm — (Sre(-, m)) is continuous, strictly increasing ar-oo, 1), and tends
to0asn — —ooandto 1 asn — 1 (see Lemma 12 below). So the right hand sidé of (39)
covers(0, +o0) for m € (—o0, 0), and it coverg0, 1) for m € (0, 1). For this reason for
everyx > 0 there exists a uniqué < —1 satisfying[(3D), and for every € (0, 1) there
exists a uniquer € (0, 1) satisfying [(39).

The valuenn and syste8) uniquely determine the valiies?.

Analyticity and poles follow from([l, 16.2, 16.10.2, pp. 570, 573]. O

Now we have to prove the nondegeneracy of he linearized equation df (B7) atis
I+ 5*((g%) — 3rgPh = —25™(gh)g.

Let L be the Green operator, i.e. fgr € E, let H := L(f) be the unique solution
belonging toE of the nonhomogeneous linear system

H+5*((g%) — 3¢9 H = f.
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We can write the linearized equationas= —2s*(gh)L(g). Multiplying by ¢ and inte-
grating we get
(gh)[1+ 25"(gL(g))] = 0.

If Ag:= 14 2s*(gL(g)) # 0, then(gh) = 0, soh = 0 and the nondegeneracy is proved.
It remains to show thatg # 0. As before, the key is to expregsg) in a suitable way.
We first look for a fundamental set of solutions of the homogeneous equation

(40) h+s*((g%) — 3rgHh =0

LEMMA 9. There exist two linearly independent solutions(f)), i even,2z-periodic
andv odd, not periodic, such thai(0) = 1, #(0) =0, 9(0) =0, v(0) = 1, and

(41) v(t 4+ 2m) — v(t) = pu(t) V¢
for somep # 0. Moreover
u(r) = §(1)/8(0) = sn(2t, m),

o n 1+m (9 s, "

PROOFR g solves [@7) s@ solves|[(4D); normalizing we find.
By (37)), the functiony(t) = V sn(£2t, m) solves

(42) §+ 5% g%y —s* a3 =0
if (V, £2, m) satisfy

Q2%(L+m) = 5*(g?),
2m§2% = s*V2,.

We solve this system with respect to. We obtain a one-parameter family,,) of

odd periodic solutions of (42)y. (1) = V(m)sn(2(m)t, m). SOL(t) = (OmYm)m=rm

solves (46 .) We normalizei(r) := [(r)/[(0) and we compute the coefficients by

differentiating the system with respect ta From the definitions of the Jacobi elliptic

functions we find that
3 SN(x, m) = —Sn(x m)}/ SUGLOW
m £ - ) 2 dnz(s m)

thanks to this formula we obtain the expression of
Since Zr 2 = 4K (i) is the period of the Jacobi functions sn and dn, from the formulae
for i, v we obtain[(4]l) with

r12

If s* =1, thenm € (0, 1) and we can see directly that< 0. If s* = —1, thenm < —1.
From the equalitysr? / drf) = (1—m)~1(1— (sr?)) (seel[3, Lemma 3, (L.2)]), it follows
thatp > 0. O
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Note that the integral representation of the Green opefatmlds again in the present
case. The formula and the proof are just as for Lefnma 4.

LEMMA 10. We canwritedg := 1+ 2s*(gL(g)) as a function ok, m,

_ M- m)2q — (1 — 221+ m)? + mq?

A
0 A1 —in)%q

whereg = g (i, m) := 2 — A(1+ m)?(2m) 1. Moreoverg > 0.

PrROOF First, we calculatdgL(g)) by means of the integral formula of Leminp 4. The

first two equalities in the proof of Lemnjg 5 still hold, while similar calculations give

02” ¢3%0 = —s*$(0)p/2x instead of). So

— * o 1 o s 2
(43) (gL(g)) = —s ey + 271_,0(/0 gv)

and the sign ofAg is not obvious. We calculath” gv recalling thatg (1) = V sn(82t, i),
using the formula fob of Lemmd 9 and integrating by parts:

2n _ _ 1 [ _
f SN2HSN2H) () dt = ——_/ srA(£20) () dt,
0 282 Jo

whereu(r) ==t + (1+m)$2 1 [ srP(€)/ dré(&) d. From [3, (L.2), (L.3) in Lemma 3],
we obtain the formula
<ﬁ> 14 (m —2)(srP)
a2/ ml—m)

and consequently
2 7.[‘_/
v = —_——— 1 7 - 2’7_1 Sr? .
./o gv Q(l—m)Z( +m (srr)
By the second equality of (B8) ar{d {43),

1 T~ 2i(s)?
Ao_l+)\|: pi el Zm(Snz)):|

for boths* = 1. From the proof of Lemn‘@ 9 we haye= —27mq/(1 — m)?, whereg
is defined above; inserting this expressiornpdh the last equality we obtain the formula
for Ao.

Finally, form < —1 we have immediately > 0, while form € (0, 1) we getg =
2 — (1+m)(srf) by (39). Since(sr?) < 1, it follows thatg > 0. O

LEMMA 11. Ag # 0. More preciselysign(Ag) = —s*.
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PROOF. From Lemma 1040 > 0 iff A(1 — m)%g — (1 — M)2(1 + m)? 4 mg? > 0. This
expression is equal te (1 — m)2p, where
1 ~\2
p=pi,m= (::—_”1),\2—2A+1,
soAg > 0 iff p < 0. The polynomialp(i) has degree 2 and its determinantds=
—(1—m)?/m. So, ifs* = 1, then/m € (0, 1), A < 0andp > 0, so thatdg < O.

It remains to consider the cas& = —1. Fora > 0, we havep(A) < 0 iff A > x*,
wherex* is the positive root op, x* := 2R(1+ R)2, R := |m|Y2. By (89),1 > x* iff
R-1
srP (-, ) > ————.
SrC.m) > R DR

By formula [34) and by definition of complete elliptic integr&isand E we can write this
inequality as

(44) /m(R—_l — sir? ﬁ)d—ﬁ <0
0 (R+DR V1+ R2sirt .

We puto := (R — 1)/((R + 1)R) and note thatr < 1/2 for everyR > 0.
We haves — sirf 9 > 0 iff & € (0, 9*), whered* := arcsin/o), i.e. sirf 9* = o.
Moreover 1< 1+ RZsir? ¢ < 1+ R2 for everyd € (0, 7/2). So

/2 — Sir® o /2 6 —sirf ¥
(45) / B LIS (a—sinzﬂ)dz?—i—/ T2 Y .
0 1+ RZsiPY 0 « J1+R?

Thanks to the formula

b _ : e
/ S 9 do — b . a sin(2b) . sin(2a)

the right hand side of (45) is equal to

sin(Zz‘}*)[(2 _1)( 20* N 1 n—21§‘*>+(1_ 1 )}
4 “ sin(29*) /1 + R2 sin(29*) J1I+RZ) |

Since & — 1 < 0 andu > sina for everya > 0, this quantity is less than

sin(29*) [(2 1)(1+ 1 > 4 (1 1 )]
o — — ———a R
4 Ji+R2 V1t R
By definition of o, the last quantity is negative for evely > 0, so [44) is true.
Consequentlyh > x*, p < 0 andAp > 0. O
APPENDIX

We show the properties of the functien— (sré(-, m)) used in the proof of Lemnﬁ 8.

LEMMA 12. The functiong : (—00,1) — R, m > (Srf(-, m)), is continuous, diff-
erentiable, and strictly increasing. It tends to zeroras— —oco andtolasm — 1.
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PrRoOF By (34) and by definition of complete elliptic integralsandE,

oy — K —EGn) _ (712 sir?y do (fﬂ/z dv )‘1
mK (m) o Vi—msits \Jo  V1_msie/

so the continuity ofy is evident.
Using the equality sth+ cos = 1 and the change of variabfe > 7/2 — ¢ in the
integrals which defin& and E, we obtain, for everyn < 1,

K(m) =

E(m) = V1= mE(L>
m—1

At lte)

We putu :=m/(m — 1), so

E(w)
my=1-——+ .
Y W K ()
Sincep tendsto 1 ag 1 — —ocoandE(1) = 1 and lim,_.1 K (1) = +o0, the last formula
gives lim,_, _o ¢(m) = 0. SinceE(m)/K (m) tends to 0 asn — 1, (34) implies that
lim,,—1@@m) = 1.
Differentiating the integrals which defin€ and E with respect ton we obtain

s _ B =K@ 172 ay .
m) = 2m ’ (m)_ﬂ</o (1—msit9)3/2 (m))

SO
dv

1 1 /2 2
v m = 2m2K?(m) [E(m)/o (1—msirt9)3/2 K (m)]

The term in square brackets is positive by the stridker inequality fo1—m sin? 9)=3/4
and(1—msifr»)¥4. O
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