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Partial differential equations. — Concentration at manifolds of arbitrary dimension
for a singularly perturbed Neumann problerny FETHI MAHMOUDI and ANDREA
MALCHIODI, communicated on 10 March 2006.

ABSTRACT. — We consider the equationszAu +u =uP in 2 < RN, wheres2 is open, smooth and bounded,

and we prove concentration of solutions aldadimensional minimal submanifolds 6f2, for N > 3 and for

kefl, ..., N — 2}. We impose Neumann boundary conditions, assumirgd < (N —k +2)/(N —k — 2)

ande — 0T, This result settles in full generality a phenomenon previously considered only in the particular case
N =3 andk = 1.
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1. INTRODUCTION
We study concentration phenomena for the problem

—2Au+u=uP ing,

0

(P:) M_o onas,
ov
u>0 in 2,

wheres2 is a smooth bounded domainii’, p > 1, and where denotes the unit normal

to 9£2. Problem arises in different contexts, as a nonlinear ®dimger equation

or from modeling reaction-diffusion systems (see for example [1], [8], [20]). A typical
phenomenon one observes is the existence of solutions which are sharply concentrated
near some subsets of their domain.

When dealing with reaction-diffusion systems, this phenomenon is related to the
so-called Turing’s instabilityl [25], according to which reaction-diffusion systems whose
reactants have very different diffusivities might generate stable non-trivial patterns. Well-
known examples of solutiongf) arespike-layersnamely solutions which concentrate at
one or multiple points of2 (see [5], [6], [9], [10], [12], [21], [22]). The profile of these
solutions, which exist only fop < (N + 2)/(N — 2), after a scaling irz converges to a
functionwg which solves

Q) —Au+u=u? inRY (or inRﬁ ={(x1,...,xn) € RY : xy > 0)),

and which tends to zero at infinity. The limit domain depends on whether the spikes sit in
the interior or at the boundary 2.
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In recent years, some new types of solutions have been constructed: for example in
[16], [17] it has been shown that given any smooth bounded dofaia RV, N > 2,
and anyp > 1, there exists a sequeneg — 0 such that(P;;) possesses solutions
concentrating ab$2 along this sequence. Their profile is still a solution [gf (1), but in
this case it does not decay to zero at infinity, and depends on one variable only. Indeed the
profile, viewed as a function of one variable only, is a solution of the GRE + u = u?
on the real half-lindx, > 0}, and satisfies the conditiori(0) = 0.

Later in [15] it has been proved that, N = 3 and if & is a closed, simple non-
degenerate geodesic 02, then there exists again a sequeligg; converging to zero
such that P;;) admits solutions,; concentrating along as j tends to infinity. In this case
the profile ofu,; is a decaying solution of[1) iR?, extended to a cylindrical solution in
higher dimensions.

The goal of this note is to describe the recent progress in [13], where the last result has
been extended to the case of general dimensicand general codimension of the limit
set. Here and below, for brevity reasons, we shall be sketchy and sometimes not completely
rigorous, referring td [13] for details. The main result we want to illustrate is the following
one.

THEOREM1.1. Let 2 < RN, N > 3, be a smooth and bounded domain, and let

K < 052 be a compact embedded non-degenerate minimal submanifold of dimension
ke{l, ...,N—2}. Then,ifp € (1, %:’;ig), there exists a sequeneg — 0 such that

(Pe;) admits positive solutions,; concentrating alongk as j — oo. The profile ofu;,
scaled in any plane orthogonal %, is the unique radial solution of

—Au 4+ u =u? in Rﬁ_k,
u
2 — =0 on RNk,
@ av +

u>0,uc Hl(Rﬁ_k).

REMARKS 1.2. (@) In contrast to the previous works concerning the éése 3, or
concentration on the whol#?, an upper bound op is needed. This condition is indeed
natural, since(2) is well known to be solvable if and onlyik (N —k+2)/(N —k — 2).

(b) Observe that we have concentration along a sequgnee 0 and not for any
smalle. This is caused by a resonance phenomenon, namely the existerséofvhich
the linearized operator at the solutinpis not invertible. Similar phenomena also appear
in different contexts: see for example [2]] [7],[14] ahd][19].

In the next sections we sketch the main ideas of the proof of the above result.

2. GEOMETRIC PRELIMINARIES

In this section we recall some basic facts in differential geometry; we refer for example to
[3] and [24] for the details.

We endowd 2 with the metricg induced fromR”, and we letk be ak-dimensional
submanifold of(0£2, g) (1 < k < N — 2). We denote by the connection induced by the
metricg and byAg the Laplace—Beltrami operator d@n.
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The normal bundleVK of K consists of the tangent vectors a62 at points of K
which are perpendicular t&. The normal connectioRY on a normal fieldV is defined
as the projection oV V ontoNK. Let C*°(K, NK) be the space of smooth normal vector
fields onK. The normal Laplaciam% : C*®(K,NK) - C*°(K, NK) is defined by
duality as [ (VNV, VNW)y dVg = — [, (AR V, W)y d Vg for any normal vector fields
V andW, where(-, -) y denotes the restriction @to NK.

For® € C*(K, NK), we can define the one-parameter family of submanifolds
K10 by

(3) Kio = {exg?(®(x)) : x € K},
where exp* is the exponential map at € K in 352. The first variation formula of the
volume is the equation

@ -

tli—o

Vol(K; ) = / (@, h)y dV,
K

whereh is themean curvaturgvector) ofK in £2 andd Vg the volume element of.
The submanifoldK is said to beminimal if it is a critical point for the volume
functional, that is, if
d
(5) % Vol(K; ) =0 forany® € C*(K, NK)
t=0
or, equivalently by[(4), if the mean curvatunés identically zero ork .
The Jacobi operatory appears in the expression of the second variation of the volume
functional for a minimal submanifold :
2

© o

VOI(K; 0) = —/ (G®, By dVk, D e C(K, NK),
=0 K

and is given by
(1) 30 = -0 + D0,

where® : NK — NK is a bounded linear operator (of order zero) which depends on
the geometries oK andd 2. A submanifoldK is said to benon-degeneraté the Jacobi
operatory is invertible, or equivalently if the equatigqg® = 0 has only the trivial solution
among the sections & K .
Let (p;)i>0 and (w;);>0 denote the eigenvalues efAg (respectively of—A%)
chosen to be non-decreasing i(respectively inj) and counted with multiplicity. Weyl’s
1

asymptotic formula tells that
2/k
asj ,
Vol (K) VO|(K)) S e

whereCy, (respectivelyCy i) depends o (respectively onV andk) only. Observe that,
sincey differs from —A’,}] only by a bounded quantity, the eigenvalygs); of J satisfy
the same asymptotic formula of tag’s.

Our next goal is to define a metricon NK. A tangent vectoV € T,NK, where
v € NK, can be identified with the velocity of a curvér) in N K which is equal tow

2/k
® pi~ Ck( > asi > oo and w; ~ CN,k<
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at timer = 0. The same holds true for another tangent vedtoe T, NK, to which we
associate a curve(r). Then the metri¢ on NK can be defined on the coupl&, W) in
the following way (se€ [3, p. 79)):

t:O>N.

In this formulaz denotes the natural projection fromK onto K, and DV v/dt is the
(normal) covariant derivative of the vector fiald) along the curver (v(z)).

DNy

dt

DVw

t=0 dt

3. A MODEL LINEAR PROBLEM

In this section we introduce a model problem for the linearizatiofiPgf &t approximate
solutions. To do this we need first to study a suitable eigenvalue problem in a half-
space ofR"t1 wheren = N — k — 1. We denote points oR"*1 by (n + 1)-tuples

(€1, s Gns Sng1) = (€', Gut2), and we let

RO = (@1, Loy Gar1) € R'TE: Gun > 0).

Forp € (1, "—ﬁ) (Z%f is the critical Sobolev exponent R**1) we consider problenf]2)

n

which, with our definition ofs, is

—Au+u=uP in Rffrl,
u _ onoR" 1
v +

u>0,uc Hl(RTrl).

It is well known that this problem has a radial solutiag(r), r2 = Y75 ¢2, with the
properties

wq(r) <0 foreveryr > 0,
9 /
©) lim e’r"/zwo(r) =aup, >0 lim o(r) =-1,
r— 00 ’ r—o00 wo(r)

wherew, , is a positive constant depending onlyand p. Solutions of[(2) can be found
as critical points of the functional defined by

_ 1 1
1) Jw=[  (VuP+u®)-— P, uwe HYRYH,
2 RT']' p —+ 1 RT'l

and it turns out thatwp is @ mountain-pass critical point of. Since [[2) is invariant
under translation in the directiontg, ..., ¢,, wo is @ degenerate solution df](2), since
9z, Wo, . . ., I, wo belong to the kernel af”(wo). Actually, also the converse is true, in the
sense specified by the following proposition (seé [23]).
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PROPOSITION3.1. The kernel of/”(wp) is generated by the functiorfang/d¢1, . .
dwp/d¢,. More precisely,

L)

J"(wo)wo, wol = =(p = DIwollfs g,

and

T (wo)[v, v] = C—l||u||§11(m+l), Vv e HX R, v L wo, dwo, - ., 3, wo,
for some positive constant. In particular, we have) < 0,0 = 0andt > 0, wheren, o
and are respectively the first, second and third eigenvalug’@fvg). Furthermore, the
eigenvalue; is simple whiles has multiplicityn.

We notice that if a function: satisfies the eigenvalue equatigti(wo)u = Au in
HYR™), then

—Au+u— pwgflu =A—=Au+u) in R’i+l,
11 Pl
h a—u =0 ondR" .
y

Our next goal is to consider a variant of problgm|(11). Preciselys for 0 and fory €
(0, 1) small we define

(12) Be, ={x e R x| <77},

and let
H}={u e HYB:,) :u(x) =0for|x| = &7}

After these definitions we consider the following problem,fos Hgl:

—Au+ (14 a)u — pwg_lu =AM—-Au+ 1+®)u) inB,,,
(13) ou
— =0 on{euy1 = 0},
av
wherea > 0. Notice that wher tends to zeroB. , approachesR"™, so whena = 0
the two problems[(11) and ([L3) almost coincide. It is convenient to (13) as an

abstract eigenvalue equation Hj, ., which is nothing but the spaoﬁfgl endowed with
the equivalent norm

lull? =/ (IVul?+ A+ a)u?, ueHL

Be,y

(and the corresponding scalar product), ), and definely, . by duality as

(To.ctt, V)ge = / [(Vu-Vv)+ QA+ a)uv — pwg_luv], u,v € Hy.
Bey
In fact, by integration by parts it can be shown tiigtu = Au in Hy . if and only if u
satisfies[(IB). We are interested in the first two eigenvalu@&s pfor equivalently of[(I]L)),
depending on the parameterand in the symmetries of the corresponding eigenfunctions.
One can prove the following result.
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PROPOSITION3.2. There existgg > 0 such that fors € (0, gg) the following properties
hold true. Letny. ., 0. and t, . denote the first three eigenvalues Bf.. Thenn, ;,
o4 andt, . are non-decreasing . For everya, nq . is simple,dny../da > 0 and
nee = lasa — +4o0. For « belonging to any fixed bounded subsefRof, we also
havedn, /0o > 7 for some positivg). For « sufficiently smallg, . has multiplicityn
and doy /0 > 0. Furthermorenq . (resp.oo.) converges to) (resp.o’) exponentially
fast ase — 0. The eigenfunction, . corresponding toy, . is radial in ¢ and radially
decreasing, while the eigenspace corresponding,te is spanned by functions, . ; of
the formuy i (¢) = Va(1CD¢i/1C], i = 1,...,n, for some radial functiory . (|¢]).
The eigenvectony . (resp.vq,c.i), normalized by|ug ¢ |lo.e = 1 (resp. |lva.c.illa.e = 1),
corresponding t0y,.. (resp.oy.. for o small) depends smoothly en Moreover, for some
fixedC > 0,

(14) IVOug e ()] + 1V D006 (0)] < Cre ¥V fori=0,....n
providedu stays in a fixed bounded subseffofFurthermorez, . > 7 for all « ande.

We now turn to the construction of the model operator. @ (0, 1) ande small, we
consider the set

Se ={(v.{utr1) € NK x Ry - (0P + g2 Y2 < e'77), Ry = {Gus1 t Gug1 > O},
We introduce a metric oS, inherited fromg simply by
g = g ® dCy12+1'

ChoosingFermi coordinates(y, ¢), ¥y = (¥,)a=1
Section 2]), we have

k, at some poiny € K (see [13,

.....

(15) Azu = 02,1 + 02u + 84“2,1+1§n+1”;
here and throughout, we are using the summation convention for repeated indices.

If v =wv(|¢]) is aradial function irt, one can prove that, in the above coordinates, for
any functiong defined onk and for any normal sectio#, at the poiny we have

(16) Az @GILD) = (AkdTNV(LD + ) Acv (g ;
(17) Ag(w%vm)) - (A%w)h@)%v(w 4 w’l@m;(vucn%).

Herey = y"E, where(Ey)p=1....» is an orthonormal frame faV K in 92 associated
to the Fermi coordinates.
Now we introduce the function spaés;, defined as the family of functions HL(S,)

which vanish or{[v|? + ;2 = £27%}, endowed with the scalar product

(18) (u, v)gg, = / (Vzu - Vv +uv) dVg,
Se
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and the operatofs, : Hs, — Hs, defined by duality as
(19) (Ts,u, V)H, = / (Vgu - Vzu +uv — pwg_1(|§|/£)uv) dV;
Se

for arbitraryu, v € H, .

We will use the operatofs, as our model for the linearization ¢P{), and therefore
it is important to understand the structure of its spectrum and in particular of the small
eigenvalues. For any fixed € K, we can decompose any functiedy, ¢), u € Hs,,
into spherical harmonics with respect to the variapld=rom formulas[(16),[(17) it can
be shown thaf’s, preserves the subspaces spanned by functions of theg¢ym (|¢|)
or of the formy"(¢,/|¢))v(¢]), and hencels, has some eigenfunctions belonging to
these spaces. It turns out that indeed these kinds of eigenfunctions correspond to the
smallest eigenvalues dfs,. More precisely, in the next proposition we characterize the
eigenvalues smaller thary4 and the corresponding eigenfunctions (see the notation of

Propositiory 3.p).

PROPOSITION3.3. Leteg, ¢ be as in Propositiof.2 Leti < /4 be an eigenvalue of
Ts,. Then eithet = n; . for somej, or » = o; . for some. Here we have sef.. = 1.2, .
ando; . = 0.2, ., Where(p;);, (w;); are as in(8). The corresponding eigenfunctions
are of the form

0)  u(.0)= Y agOMup/+ D> gl (Dueic/e),

{Jnj.e=2} {I:01e=A}

where (y, ¢) denote the above coordinates &g, («;);, (B;); are arbitrary constants;
anduje = ug, .. o.c.i- ViCe versa, every function of the forf&d) is an
eigenfunction ofs, with eigenvaluer. The functiong¢;); and (¢;); are respectively the
eigenfunctions of-Ax and —A],‘(’ corresponding ta(p;); and (w;);. In particular the
eigenvalues of’s, which are smaller tharr/4 coincide with those numbegy; .); or
(01.¢)1 Which are smaller than /4.

Ulei = Ug2

4. PROOF OFTHEOREM[L]

Since the solutions we are looking for have a given asymptotic profile, it is convenient to
prove the theorem using local inversion arguments. We divide the proof into three steps:
first of all we construct approximate solutiong. to (P;). Then we perform a careful
analysis in order to understand the structure of the small eigenvalues of the linearization of
atuy .. Finally, we establish invertibility of the linearized operator for suitable values
of ¢ and we prove Theorefn 1.1 via a contraction mapping argument.

Step 1: finding approximate solutionsGiven any positive integetf, we construct
functionsu; . which solve up to an error of ordee’. First of all, we identify S,
with a neighborhood oK in £2 using the map

@, &r+1) = expl (v) + v(exd? (v),
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wherey denotes the base point ofexg*? the exponential map fror into the boundary
of £2, andv the inner unit normal td £2.

Given a smooth cutoff functiog () which is identically 1 near = 0 and identically
zero fort > 1, locally nealg € K we defineu; . (using the above Fermi coordinates) as

@D x (%) (wo(i + o), C”“) + gw1<y, LY ﬂ)
e+ e © e

€
4. -{—glwl (i, % + D), §n+1>),

&

where® (y) = ®o(3) + - - - + ¢! 2®;_»(7) is a smooth normal section, and where the
functions(w;); are determined by an iteration procedure.

One can indeed expand the expressiofu; . + uy . — uf,g formally in powers ofe
and set each term of the expansion identically equal to zero. If we do this we find that for
any integer < I the functionw; satisfies the equation

E(bU)i = F;(y,¢, wo, w1, ..., wj_q, Do, ..., Pj_,) in ]R:'_'H,

22 ow;

( ) —L = 0 on {§n+l = 0}7
8§11+l

whereLy is defined by

Lou=—Au—+u— pwé’fl(C’ + D)), Lnyu,

and wherefF; is some smooth function of its arguments (which we are assuming to be
determined by induction on the indéx By Fredholm’s alternative] (22) is solvable if and
only if the right-hand side of the equation is orthogonal to the kernelgf which, by
Propositiorf 3.1, is spanned by, wo(- + @, -,11), i = 1,...,n. Imposing orthogonality

we find that®;_, satisfies the equation

IP;_ =G (¥, wo, w1, ..., Wj_q, PO, ..., Pj_3)

for some expressio;_,, whereJ is the Jacobi operator of . The latter equation is
solvable by the non-degeneracy assumptiokomand hence als§ (22) is solvableuir;.

Using this procedure, and letting : H1(£2) — R be the Euler-Lagrange functional
associated toK;), namely

1 1
Je(u) = §L<82|Vu|2+u2>—p—+lf9|u|”“,

one can prove the following result.

PROPOSITION4.1. For any ! € N there exists a functiom; . : £2, — R with the
following properties:

. ou
(23) (o)l gaggy < Cre N0y, >0 ing; Le

=0 onas,

whereC; depends only o2, K, p and /.
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The functional/, is indeed well defined o®/1(£2) only if p < (N +2)/(N —2). The

casey € (%—fg, %jﬁfg) can be handled using a truncation procedure, as described in [17,

Section 5].

Step 2: study of the linearization a§ .. Having obtained approximate solutions|[®@)

via Propositiol, we can now study the spectrum/ftu; ) and in particular its
invertibility. Using the Rayleigh quotient and some elementary estimates one can prove
the following result about the eigenvaluesiaf and those off/ (u; ).

LEMMA 4.2. There exists a fixed constafit depending orf2, K and p, such that the
eigenvalues of /' (u; ) and T, satisfy

|2 (I upe)) — 2j(Ts,)| < Ce¥™,  provideda; (J] (ur0)) < t/2.
Here we are indexing the eigenvalues in non-decreasing order, counted with multiplicity.

By the Weyl asymptotic formulas ifi}(8) and by Proposifior] 3.3, one can checkghat
possesses eigenvalues which approach zero at ratelmiR} ase tends to zero. Therefore
the estimate in Lemn@z cannot yield invertibility fiif(u; ), and a more sophisticated
argument is needed. Nevertheless, still fr¢th (8) and by Propositign 3.3, we can obtain
an asyrr;ptotic estimate on the Morse indexJdfu, ) ase tends to zero, which is of
ordere™*.

To understand better the spectral structurg.td:; ) we expand formally in powers of
¢ some of its eigenfunctions, perturbing the eigenspacé&y,ajenerated by the functions
<p;' (¥)v1.¢.i (¢ /¢) for smallvalues of the indek Through such an expansion we can produce
a sequenceéy;); of approximate eigenfunctions with the following property.

LEMMA 4.3. There exist a polynomiaP(¢), a positive constant and a sequencé’;);
of positive constants, depending &1 K, p and, such that

=AY + W — pull W — P Cu (— AW + W] < Ce®P (g /e)e e,

As a consequencd satisfies the eigenvalue equatidfi(u; . )¥; = e2C ¥ (in the
spaceH1(£2)) up to an error of order?.

Since the numbergu;); are the eigenvalues of the Jacobi operator, we see from the
above result that the invertibility of keeps some of the eigenvalues Kf(u; ;) away
from zero at an ordes?, and this plays a crucial role in proving its invertibility. Letting
(¢))j, ()1 denote the eigenfunctions efA g andJ corresponding t@p;); and(u;);, we
define the following subspaces:

(24) Hy = sparig; Mu;(¢/e) 1i =0,...,00};
Ho=spani¥; :1=0,...,%);

(25) T m —\A -4 Cok
Hy = spany;" Mvem(C/e) :l=6e""4+1,...,Ce™"};
(26) Hy=H, ® Hy;, Hz= (H1® Hp)",

whereC ands are some small constants. It turns out tHa(s2) decomposes uniquely as a
direct sum ofH1, Hp, Hz, thatJ/ (u; ) is positive-definite orHz (with a uniform positive
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lower bound), and that/ (u; ) is nearly diagonal with respect to this decomposition (see
Sections 5 and 6 in [1.3] for precise statements).

Step 3: invertibility of the linearized operator.The main difficulty in proving Theorem
[1.7 is the presence of the resonance phenomenon described above. In order to overcome
this problem we look at small eigenvalues &f(u; ) as functions ot and then, using
a classical theorem due to Kato (seel[11, p. 45]), we estimate the derivatives of these
eigenvalues with respect to. We prove that ifA = o(g?) is an eigenvalue of the
linearized operator, thed./d¢ is close to a number depending enV, p and K only.
As a consequence, the spectral gaps near zercshifl without squeezingse varies,
and we obtain invertibility for suitable values of the parameter. This method also provides
estimates on the norm of the inverse operator, which blows up with ratémax 2} as
¢ tends to zero. The result then follows by using the contraction mapping theorem near the
approximate solution; ..

Using the analysis of/(u; ) one can prove that, for an eigenfunction corresponding
to a resonant eigenvalue, tli® and H3 components tend to zero asends to zero. More
precisely, one has the following result.

PropPoOsITION4.4. For ¢ sufficiently small, letx be an eigenvalue of/ (u;.) such
that || < &S for somes > 2, and letu € H'(£2) be an eigenfunction of(u; .)
corresponding td. with ||u|| y1.5) = 1. In the above notation, let = u1 + u2 + uz, with
u; € H;,i =1,2,3. Ifu; = Z;’ioaﬁp/@)uj,g(l{/sl), then

R — 0 ase— 0.

H” - > il
{J i Inj.el<e@-1)/2}

Using Kato’s theorem, one can prove that the resonant eigenvalugs(of ;) are
differentiable with respect to and if A is such an eigenvalue, then

A
(27) z— = {eigenvalues oD, },
&

whereQ;, : H, x H; — Risthe quadratic form given by

(28) Oy(u,v) =©1A- )L)g/ Vu-Vv—p(p— 1)/ uvufzz(aul’g)

& Jo Q ! ae
HereH; < H1(£2) stands for the eigenspace ff(u; ) corresponding ta.. Notice that,
sinceA might have multiplicity greater than 1, when we varyhis eigenvalue can split
into a multiplet, which is allowed by formul@ (R7). Takirigsmall, we can apph[ (27),
and evaluate the quadratic form jn[28) on the couples of eigenfunctidrsg,iwhich are
characterized by Propositipn #.4. Reasoning as ih [15, Proposition 5.1], one can prove the
following result.

PROPOSITION4.5. Letx be as in Propositioff.4 Then fore small one has
or 1
P —(F +0.(1)),
& &

whereF is a positive constant depending only 8k and p.
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Using the last proposition and choosing suitable values of the parametee can
obtain the invertibility of//(u; .) along a sequencg — 0, with a quantitative estimate
on the inverse operator.

PROPOSITION4.6. For a suitable sequencg — 0, the operatorJ/ (u; ) : HY(92) >
H1(£2) is invertible and the inverse operator satisfies

I re) gy < ————5
A B2 mln{sj.‘, EJZ}

for all j € N and for some fixed positive constant

Having the invertibility of the linearized operator, the existence of a critical poirt of
follows easily by applying the contraction mapping theorem nearfor I sufficiently
large, depending ok, N and p. In fact, since the norm of the inverse operator blows up
ase tends to zero, it is necessary to choose approximate solutions which[Bg)weith a
good accuracy (see Propositjon]4.1). When the expopésisupercritical, probleni&)
is not variational any more, but in this case it is sufficient to use some truncations on the
Euler functional and to apply standard elliptic regularity estimates.
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