
Rend. Lincei Mat. Appl. 17 (2006), 309–334
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ABSTRACT. — We consider the nonlinear elliptic eigenvalue problem

−∇ · {A(x)∇u(x)} = λf (u(x)) for x ∈ Ω,

u(x) = 0 for x ∈ ∂Ω,

whereΩ is a bounded open subset ofRN andf ∈ C1(R) with f (0) = 0 andf ′(0) = 1. The ellipticity is
degenerate in the sense that 0∈ Ω andA(x) > 0 for x 6= 0 but limx→0A(x)/|x|

2
= 1. We show that there

is vertical bifurcation at all pointsλ in the interval(N2/4,∞). Bifurcation also occurs at any eigenvalues of
the linearized problem that are belowN2/4. Our treatment is based on recent results concerning the bifurcation
points of equations with nonlinearities that are Hadamard differentiable, but not Fréchet differentiable.
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1. INTRODUCTION

For N ≥ 3, let Ω be a bounded open subset ofRN with a Lipschitz boundary and let
0 ∈ Ω. We consider the nonlinear degenerate elliptic boundary-value problem

−∇ · {A(x)∇u(x)} = λf (u(x)) for x ∈ Ω.(1.1)

u(x) = 0 for x ∈ ∂Ω,(1.2)

where

(D1) A ∈ C(Ω) with A(x) > 0 for all x ∈ Ω \ {0} and lim|x|→0A(x)/|x|
2

= 1,
(D2) f ∈ C1(R) with f (0) = 0, f ′(0) = 1, sup{|f ′(s)| : s ∈ R} = M < ∞.

Of course, by rescalingλ we can accommodate the more general assumptions

lim
|x|→0

A(x)/|x|2 = α > 0 and f ′(0) = β > 0.

Furthermore, in Section 5.1, we show how the assumption (D2) can be replaced by the
condition

(F) For someT > 0,f ∈ C1([−T , T ]) is an odd function that is strictly concave on [0, T ]
with f (0) = f (T ) = 0 andf ′(0) = 1.
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The condition (F) does not requiref ′ to be bounded on the whole real line and it enables
us to deal with nonlinearities such asf (s) = s − s3.

It follows from (D1) and the boundedness ofΩ that

(1.3) α1|x|
2

≤ A(x) ≤ α2|x|
2 for all x ∈ Ω where 0< α1 ≤ 1 ≤ α2 < ∞.

We are interested in solutions of (1.1), (1.2) that have finite energy

Eλ(u) =
1

2

∫
Ω

A(x)|∇u(x)|2 dx − λ

∫
Ω

F(u(x)) dx < ∞ whereF(s) =

∫ s

0
f (t) dt.

Since ∫
Ω

A(x)|∇u(x)|2 dx < ∞ ⇔

∫
Ω

|x|2|∇u|2 dx < ∞

by (1.3), and|F(s)| ≤ Ms2/2 by (D2), we seek solutions in the space

H =

{
u ∈ L2(Ω) : u admits generalized derivatives

∂iu onΩ \ {0} and
∫
Ω

|x|2|∇u|2 dx < ∞

}
.

ClearlyH, with the scalar product

(1.4) (u, v) =

∫
Ω

uv dx +

∫
Ω

|x|2∇u · ∇v dx,

is a Hilbert space and (by a slight abuse of notation)H ⊂ W1,2(Ω\Bε) whereε > 0 is
small enough so that the closed ballBε = {x ∈ RN : |x| ≤ ε} ⊂ Ω. Let

(1.5) H0 = {u ∈ H : Γ u = 0}

whereΓ : W1,2(Ω\Bε) → L2(∂Ω) is the usual trace operator (see [2, A 5.7] for
example). The continuity ofΓ ensures that(H0, (·, ·)) is a Hilbert space. We use| · |p

to denote the usual norm onLp(Ω).We show in Appendix 1 that ifu ∈ H0, thenu admits
generalized derivatives onΩ and, in fact,H0 ⊂ W1,1(Ω).

DEFINITION 1.1. Under the hypotheses(D1) and(D2) a solutionof (1.1), (1.2) is a pair
(λ, u) ∈ R ×H0 such that

(1.6)
∫
Ω

A(x)∇u(x) · ∇ϕ(x) dx = λ

∫
Ω

f (u(x))ϕ(x) dx for all ϕ ∈ H0.

A pointΛ ∈ R is a bifurcation pointfor (1.1), (1.2) if there is a sequence{(λn, un)} ⊂

R × [H0 \ {0}] of solutions such thatλn → Λ and|un|2 → 0.

We show in Appendix 1 thatC∞

0 (Ω) is dense inH0, so our definition is equivalent to
requiring that(λ, u) ∈ R ×H0 be such that∫

Ω

A(x)∇u(x) · ∇ϕ(x) dx = λ

∫
Ω

f (u(x))ϕ(x) dx for all ϕ ∈ C∞

0 (Ω).
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It follows from Proposition 4.1 in Section 4 that our definition of solution of (1.1), (1.2) is
equivalent to requiringu to be a stationary point of the energyEλ in H0.

Our main results are Theorems 5.1 and 5.2. They show that, under some additional
assumptions on the nonlinearityf, but without further assumptions about the domainΩ
and the coefficientA, the set of bifurcation points for (1.1), (1.2) contains the interval
[N2/4,∞). Whether or not there are other bifurcation points depends on additional
properties ofA.

If the degeneracy of (1.1) is subquadratic, in the sense that lim|x|→0A(x)/|x|
t

= 1
for somet ∈ [0,2), rather than quadratic as in (D1), then the set of bifurcation points
for (1.1), (1.2) is a discrete set and, as we show in Theorem 7.3 in Appendix 2, this can
be deduced rather easily from standard results concerning compact Fréchet differentiable
operators. Other recent work on subquadratic, degenerate elliptic nonlinear boundary value
problems can be found in [10], [11] and [21]. A one-dimensional boundary value problem
involving quadratic degeneracy is treated in [6], but the nonlinearity is superlinear so there
is bifurcation to the left at 1/4 which is the infimum of the spectrum of the linearized
problem. Some nonexistence results are given in [13]. The existence and interesting
behaviour of branches of positive solutions for problems inN dimensions with quadratic
degeneracy and various types of nonlinearity are studied in [12].

To present our approach to (1.1), (1.2), which is based on our recent work on problems
that are differentiable in the sense of Hadamard, but not in the sense of Fréchet, we
begin with following result, which will be proved in Appendix 1, providing some basic
information for our treatment of the problem.

LEMMA 1.2. (i) For all u ∈ H0 \ {0}, we have

(1.7)
∫
Ω

u2 dx <
4

N2

∫
Ω

|x|2|∇u|2 dx

and in fact,

sup

{ ∫
Ω
u2 dx∫

Ω
|x|2|∇u|2 dx

: u ∈ H0 \ {0}

}
=

4

N2
.

Hence

(1.8) 〈u, v〉 =

∫
Ω

|x|2∇u · ∇v dx for u, v ∈ H0

defines a scalar product onH0 with a norm‖ · ‖ = 〈·, ·〉1/2 which is equivalent to
(·, ·)1/2.

(ii) For a functionA that satisfies(D1), we can define another scalar product onH0 by

(1.9) 〈u, v〉A =

∫
Ω

A(x)∇u · ∇v dx for u, v ∈ H0.

Then‖ · ‖A = 〈·, ·〉
1/2
A is a norm that is also equivalent to(·, ·)1/2 onH0 and

|u|2 ≤
2

N
‖u‖ ≤

2

N
√
α1

‖u‖A for all u ∈ H0.

Suppose that the conditions(D1) and(D2) are satisfied.
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(iii) If {(λn, un)} is a sequence of solutions of(1.1), (1.2)andλn → Λ, then

|un|2 → 0 ⇔ ‖un‖A → 0 and |un|2 → 0 ⇒ E(un) → 0.

(iv) If (λ, u) is solution of(1.1), (1.2)andu 6= 0, then

|λ| ≥
N2α1

4M
.

From now on we use(HA, 〈·, ·〉A) to denote the Hilbert spaceH0 equipped with the
scalar product〈·, ·〉A. Using part (i) of the lemma and the fact thatf (u) ∈ L2(Ω) for all
u ∈ H0 by (D2), we can defineK(u),G(u) ∈ H0 by the relations

(1.10) 〈K(u), v〉A =

∫
Ω

uv dx and 〈G(u), v〉A =

∫
Ω

f (u)v dx for all u, v ∈ H0.

Note that(λ, u) ∈ R ×H0 satisfies (1.6) if and only if

(1.11) u = λG(u).

It follows from the lemma thatK ∈ B(HA, HA) and we shall show thatG : HA → HA is
Hadamard differentiable atu = 0 withG′(0) = K.

In the next section we recall some general results, which we have established recently,
about bifurcation for equations like (1.11) involving a functionG that is differentiable
in the sense of Hadamard, but not necessarily in the sense of Fréchet. Our conclusions
concerning the bifurcation points of (1.1), (1.2) are deduced from these abstract results in
Section 5. Sections 3 and 4 are devoted to proving the requisite properties of the operators
K andG. The fact that every point in the interval [N2/4,∞) is a bifurcation point for
the problem (1.1), (1.2) is related to the facts that 4/N2 is the supremum of the essential
spectrum of the self-adjoint operatorK ∈ B(HA, HA) andG is Hadamard differentiable,
but not Fŕechet differentiable, atu = 0 withG′(0) = 0.

Our abstract results apply directly to (1.1), (1.2) under the hypotheses (D1) and (D2).
When (D2) is replaced by (F), we show thatf can be extended beyond [−T , T ] in such a
way that the extension satisfies (D2) and all solutions(λ, u) of (1.1), (1.2) for this extension
have|u|∞ ≤ T .

In [16], we have made a more detailed study of the radially symmetric version of (1.1),
(1.2) under the hypotheses (D1) and (F). We find that at every bifurcation pointλ, and
hence at everyλ ≥ N2/4, there is a sequence{(λn, un)} of nontrivial radially symmetric
solutions of (1.1), (1.2) such thatλn → λ and|un|p → 0 asn → ∞ for all p ∈ [1,∞).

However, it is not the case that|un|∞ → 0 asn → ∞. Indeed,|un|∞ = T for all n and the
solutionsun concentrate to a spike at the origin in the sense thatun converges uniformly
to zero on all compact subsets ofΩ that do not contain the origin.

The Bernoulli–Euler model for the buckling of a heavy tapered rod under its own
weight leads to a one-dimensional problem with the same structure as the radially
symmetric case (1.1), (1.2) withf (s) = sins which satisfies (F) withT = π . It has
been treated in [23]–[26] where the quadratic degeneracy required in (D1) corresponds to
what is called the critical case for the tapering of the column. In this critical case, we again
encounter a nonlinearity which is Hadamard, but not Fréchet, differentiable.
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The existence of an interval of bifurcation points for a nonlinear eigenvalue problem
was first established by Benci and Fortunato [4] for the problem

(1.12) −∆u+ q(x)|u(x)|σu(x) = λu(x) with u ∈ W1,2(RN )

whereσ > 0 andq ∈ C(RN ) with q(x) ≥ C|x|t for all x ∈ RN for some constantsC > 0
and t > Nσ/2. In [5], they gave a more abstract formulation of their approach which is
based on Lyusternik–Schnirelman theory and Clark’s use of the genus. Further progress in
understanding the bifurcation theory of (1.12) was made in [7] and [19]. In [15], we show
how our approach using Hadamard differentiability can be used to deal with (1.12) as well
as problems of the form

(1.13) −∆u(x)+ p(x)u(x) = λq−1(x)f (q(x)u(x)) for u ∈ W1,2(RN )

and

(1.14) −∆u(x)+ p(x)u(x)− q−1(x)f (q(x)u(x)) = λu(x) for u ∈ W1,2(RN )

wheref satisfies (D2),p ∈ L∞(RN ) andq is a positive measurable function such that∫
|x|≥R

q(x)−2 dx < ∞ for someR > 0.

2. HADAMARD DIFFERENTIABILITY AND BIFURCATION

In this section we recall the relevant parts of a general study of bifurcation in the context
of Hadamard differentiable functions.

Throughout this section,(H, 〈·, ·〉, ‖ · ‖) denotes any real Hilbert space.

DEFINITION 2.1. A functionF : H → H is Hadamard differentiableat u ∈ H if there
existsT ∈ B(H,H) such that

lim
n→∞

F(u+ tnvn)− F(u)

tn
= T v for all v ∈ H

for all {tn} ⊂ R \ {0} with tn → 0 and all {vn} ⊂ H with vn → v.

Replacing strong convergence by weak convergence, we arrive at the final notion
of differentiability that we shall use. These definitions are examined in detail in our
paper [14].

DEFINITION 2.2. A functionF : H → H is w-Hadamard differentiableat u ∈ H if
there existsT ∈ B(H,H) such that

lim
n→∞

〈
F(u+ tnvn)− F(u)

tn
, ϕ

〉
= 〈T v, ϕ〉 for all v ∈ H and allϕ ∈ H

for all {tn} ⊂ R \ {0} with tn → 0 and all {vn} ⊂ H with vn ⇀ v weakly inH .



314 G. EVÉQUOZ - C. A . STUART

Now consider an equation of the form

(2.1) G(u) = µu for µ ∈ R andu ∈ H,

whereG : H → H with G(0) = 0. We shall use the following terminology.
A real numberµ is called abifurcation point for (2.1) if there exists a sequence

{(µn, un)} ⊂ R × H of solutions of (2.1) such thatun 6= 0, ‖un‖ → 0 andµn → µ.

The set of all bifurcation points for (2.1) is denoted byBG. We say that there isvertical
bifurcationatµ if the sequence{(µn, un)} can be chosen with the additional property that
µn = µ for all n ∈ N.We say that there isbifurcation to the right(left) atµ if the sequence
{(µn, un)} can be chosen with the additional property thatµn > (<)µ for all n ∈ N.

For a bounded linear operatorT : H → H we denote its spectrum byσ(T ) and its
essential spectrum by

σe(T ) = {λ ∈ R : T − λI : H → H is not a Fredholm operator}.

The first result, which is part of Corollary 4.3 in [15], gives necessary conditions for
bifurcation atµ.

PROPOSITION2.3. LetG : H → H be a function such thatG(0) = 0 andG is w-
Hadamard differentiable atu = 0 with G′(0) = G′(0)∗. If µ ∈ BG ∩ (Λe,∞) where
Λe = supσe(G′(0)) and

lim sup
‖u‖→0

〈G(u)−G′(0)u, u〉

‖u‖2
< d(µ, σ(G′(0))),

thenµ ∈ σ(G′(0)).

In formulating some sufficient conditions forµ to be a bifurcation point we suppose
thatG is a gradient map with the following properties.

(H1) There exists an even potentialψ ∈ C1(H,R) with ψ(0) = 0 such that

lim
‖u‖→∞

ψ(u)/‖u‖2
= 0

and
ψ ′(u)u < 2ψ(u) for all u ∈ H \ {0}.

We useG to denote the gradient ofψ defined by

〈G(u), v〉 = ψ ′(u)v for all u, v ∈ H

and make the following additional assumptions:

(H2) G : H → H is compact.
(H3) G : H → H is either Hadamard or w-Hadamard differentiable atu = 0 with a

derivativeG′(0) ∈ B(H,H) that is self-adjoint.

We set
Λe = inf σe(G

′(0)) and Λe = supσe(G
′(0)).
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PROPOSITION2.4. Suppose that the conditions(H1)–(H3) are satisfied.

(A) If Λe > 0, then[0,Λe] ⊂ BG, and there is vertical bifurcation at everyµ ∈ (0,Λe).
(B) Also (Λe+,∞) ∩ σ(G′(0)) ⊂ BG whereΛe+ = max{0,Λe} and there is bifurcation

to the left at everyµ ∈ (Λe+,∞) ∩ σ(G′(0)), If in addition G is w-Hadamard
differentiable atu = 0, then(Λe+,∞) ∩ σ(G′(0)) = (Λe+,∞) ∩ BG.

This is part of Corollary 5.2 in [15].

3. PROPERTIES OF THE OPERATORK

We expose the main features of the spectrum of the linear operatorK ∈ B(HA, HA)

defined by (1.10).

PROPOSITION3.1. Under the hypothesis(D1),K ∈ B(HA, HA) is a positive self-adjoint
operator with

(i) supσ(K) = ‖K‖ = sup{〈Ku, u〉A/‖u‖2
A : u ∈ HA \ {0}} ≤ 4/N2α1 and inf σ(K)

= 0,
(ii) supσe(K) = 4/N2,

(iii) µ ∈ (4/N2,∞) ∩ σ(K) if and only if there existsu ∈ HA \ {0} such that∫
Ω

A∇u · ∇v dx =
1

µ

∫
Ω

uv dx for all v ∈ HA.

PROOF. (i) For anyu, v ∈ HA,

|〈Ku, v〉A| =

∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ |u|2|v|2 ≤
4

N2α1
‖u‖A‖v‖A

so‖K‖ ≤ 4/N2α1. ClearlyK is self-adjoint and positive. Henceσ(K) ⊂ [0, ‖K‖] and
supσ(K) = ‖K‖ = sup{〈Ku, u〉/‖u‖2

A : u ∈ HA \ {0}}. To see that 0∈ σ(K), consider
any ballB = B(x0, r) such thatB ⊂ Ω \ {0} and any nonzero functionz ∈ H 1(B). For
n ∈ N, set

zn(x0 + x) =

{
nN/2z(x0 + nx) for |x| ≤ r/n,

0 otherwise,

wherex0 is the centre ofB and let

m = min
x∈B

A(x).

Thenzn ∈ HA with 〈Kzn, zn〉A = |zn|
2
2 = |z|22 and

‖zn‖
2
A =

∫
Ω

A(x)|∇zn|
2 dx ≥ m

∫
|x0−x|≤r/n

|∇zn(x)|
2 dx = mn2

∫
|x0−y|≤r

|∇z(y)|2 dy

wherem > 0, showing that〈Kzn, zn〉A/‖zn‖2
A → 0.
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(ii) We begin by recalling (see Theorem 7.24 of [27], for example) thatλ ∈ σe(K)

if and only if there is a singular sequence forK − λ, that is, a sequence{vn} having the
following properties:

vn ⇀ 0 inHA, lim inf ‖vn‖A > 0 and ‖(K − λ)vn‖A → 0.

We split the proof into two parts. First we construct a singular sequence forK − 4/N2,

then we show that forλ > 4/N2 there are no singular sequences forK − λ.

Part 1. By part (i) of Lemma 1.2, there exists a sequence{un} ⊂ HA such that suppun ⊂

Bε ⊂ Ω with

|un|2 = 1 and
∫
Ω

|x|2|∇un|
2 dx ≤

N2

4
+

1

n
for all n ∈ N.

Now definevn by

vn(x) =

{
nN/2un(nx) for |x| ≤ ε/n,

0 otherwise.

Thenvn ∈ HA with suppvn ⊂ Bε/n ⊂ Ω and

|vn|
2
2 =

∫
|x|≤ε/n

nNun(nx)
2 dx =

∫
|y|≤ε

un(y)
2 dy = 1,

‖vn‖
2

=

∫
Ω

|x|2|∇vn(x)|
2 dx =

∫
|x|≤ε/n

|x|2n2+N
|∇un(nx)|

2 dx

=

∫
|y|≤ε

|y|2|∇un(y)|
2dy ≤

N2

4
+

1

n
.

Since 1= |vn|
2
2 ≤

4
N2 ‖vn‖

2 by (1.7), it follows that

N2

4
≤ ‖vn‖

2
≤
N2

4
+

1

n
.

For anyu ∈ HA,

〈vn, u〉 =

∫
|x|≤ε/n

|x|2∇vn · ∇u dx

≤

{∫
|x|≤ε/n

|x|2|∇vn|
2 dx

}1/2{∫
|x|≤ε/n

|x|2|∇u|2 dx

}1/2

= ‖vn‖

{∫
|x|≤ε/n

|x|2|∇u|2 dx

}1/2

≤

√
N2

4
+

1

n

{∫
|x|≤ε/n

|x|2|∇u|2 dx

}1/2

→ 0 asn → ∞,
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showing thatvn ⇀ 0 weakly inHA. Since‖vn‖A → N/2, this means that{vn} has no
subsequence converging strongly inHA. Furthermore, for allu ∈ HA,∣∣∣∣〈(K −

4

N2

)
vn, u

〉
A

∣∣∣∣ =

∣∣∣∣∫
Ω

(
vnu−

4

N2
A(x)∇vn · ∇u

)
dx

∣∣∣∣
≤

∣∣∣∣∫
Ω

(
vnu−

4

N2
|x|2∇vn · ∇u

)
dx

∣∣∣∣ +
4Ln
N2

‖vn‖ ‖u‖

whereLn = sup0<|x|≤ε/n |A(x)/|x|2 − 1| → 0 asn → ∞. But∫
Ω

(
vnu−

4

N2
|x|2∇vn · ∇u

)
dx =

〈(
K̃ −

4

N2

)
vn, u

〉
whereK̃ : HA → HA is defined by

〈K̃w, u〉 =

∫
Ω

wudx for all u,w ∈ HA

and so ∣∣∣∣∫
Ω

(
vnu−

4

N2
|x|2∇vn · ∇u

)
dx

∣∣∣∣≤∥∥∥∥(
K̃ −

4

N2

)
vn

∥∥∥∥‖u‖.

It follows that∣∣∣∣〈(K −
4

N2

)
vn, u

〉
A

∣∣∣∣ ≤

{∥∥∥∥(
K̃ −

4

N2

)
vn

∥∥∥∥ +
4Ln
N2

‖vn‖

}
‖u‖

≤

{∥∥∥∥(
K̃ −

4

N2

)
vn

∥∥∥∥ +
4Ln
N2

‖vn‖

}
‖u‖A
√
α1

and hence that∥∥∥∥(
K −

4

N2

)
vn

∥∥∥∥
A

≤
1

√
α1

{∥∥∥∥(
K̃ −

4

N2

)
vn

∥∥∥∥+
4Ln
N2

‖vn‖

}
.

But

|〈K̃w, u〉| =

∣∣∣∣∫
Ω

wudx

∣∣∣∣ ≤ |w|2|u|2 ≤
4

N2
‖w‖ ‖u‖

showing that‖K̃w‖ ≤ (4/N2)‖w‖ for all w ∈ HA. Thus∥∥∥∥(
K̃ −

4

N2

)
vn

∥∥∥∥2

= ‖K̃vn‖
2
−

8

N2
〈K̃vn, vn〉 +

16

N4
‖vn‖

2

≤
16

N4
‖vn‖

2
−

8

N2

∫
Ω

v2
n dx +

16

N4
‖vn‖

2

≤
32

N4

(
N2

4
+

1

n

)
−

8

N2
=

32

N4n

and ∥∥∥∥(
K −

4

N2

)
vn

∥∥∥∥
A

≤
1

√
α1

{√
32

N4n
+

4Ln
N2

√
N2

4
+

1

n

}
.
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Thus‖(K − 4/N2)vn‖A → 0 and we have shown that{vn} is a singular sequence for
K − 4/N2. This implies that 4/N2

∈ σe(K).

Part 2. Fix λ > 4/N2. Consider a sequence{vn} ⊂ HA such that

vn ⇀ 0 inHA and ‖(K − λ)vn‖A → 0.

It is enough to prove that these two properties imply that‖vn‖A → 0.
First we observe thatvn ⇀ 0 inW1,2(Ω\Bε) for all ε > 0 such thatBε ⊂ Ω where

Bε = {x ∈ RN : |x| < ε}. This implies that

(3.1)
∫
Ω\Bε

v2
n dx → 0 for all ε > 0 such thatBε ⊂ Ω.

Sinceλ > 4/N2, we can chooseδ > 0 such thatλ(1 − δ) > 4/N2. Then we can choose
ε > 0 such thatBε ⊂ Ω andA(x) ≥ (1− δ)|x|2 for all x ∈ Bε. Let ϕ ∈ C∞(RN ) be such
that

ϕ(x) = 1 for |x| ≤ ε/2, 0 ≤ ϕ(x) ≤ 1 for ε/2 ≤ |x| < ε, ϕ(x) = 0 for |x| ≥ ε.

Thenϕvn ∈ HA and∫
Ω

(λA(x)|∇(ϕvn)|
2
− (ϕvn)

2) dx

≥

∫
Ω

(
λA(x)|∇(ϕvn)|

2
−

4

N2
|x|2|∇(ϕvn)|

2
)
dx by (1.7)

=

∫
Bε

(
λA(x)|∇(ϕvn)|

2
−

4

N2
|x|2|∇(ϕvn)|

2
)
dx

≥

∫
Bε

(
λ(1 − δ)|x|2|∇(ϕvn)|

2
−

4

N2
|x|2|∇(ϕvn)|

2
)
dx

=

{
λ(1 − δ)−

4

N2

} ∫
Bε

|x|2|∇(ϕvn)|
2 dx =

{
λ(1 − δ)−

4

N2

}
‖ϕvn‖

2.

On the other hand,∫
Ω

(λA(x)|∇(ϕvn)|
2
− (ϕvn)

2) dx

=

∫
Ω

(λA(x){ϕ∇vn + vn∇ϕ} · ∇(ϕvn)− ϕ2v2
n) dx

=

∫
Ω

(λA(x)∇vn · ∇(ϕvn)− vnϕvn) dx +

∫
Ω

ϕ(1 − ϕ)v2
n dx

+

∫
Ω

λA(x){(ϕ − 1)∇vn + vn∇ϕ} · ∇(ϕvn) dx

= 〈(λ−K)vn, ϕvn〉A +

∫
Ω

ϕ(1 − ϕ)v2
n dx

+

∫
Ω

λA(x){(ϕ − 1)∇vn + vn∇ϕ} · ∇(ϕvn) dx
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and∫
Ω

λA(x){(ϕ − 1)∇vn + vn∇ϕ} · ∇(ϕvn) dx

=

∫
Ω

λA(x){(ϕ − 1)ϕ|∇vn|
2
+ (ϕ − 1)vn∇vn · ∇ϕ + vn∇ϕ · ∇(ϕvn)} dx

≤

∫
Ω

λA(x){(ϕ − 1)vn∇vn · ∇ϕ + vn∇ϕ · ∇(ϕvn)} dx

=

∫
Ω\Bε/2

λA(x){(ϕ − 1)vn∇vn · ∇ϕ + vn∇ϕ · ∇(ϕvn)} dx

=

∫
Ω\Bε/2

λA(x){(2ϕ − 1)vn∇vn · ∇ϕ + v2
n|∇ϕ|

2
} dx.

Hence{
λ(1 − δ)−

4

N2

}
‖ϕvn‖

2
≤ 〈(λ−K)vn, ϕvn〉A +

∫
Ω

ϕ(1 − ϕ)v2
n dx

+

∫
Ω

λA(x){(ϕ − 1)∇vn + vn∇ϕ} · ∇(ϕvn) dx

≤ |〈(λ−K)vn, ϕvn〉A| +

∫
Ω\Bε/2

v2
n dx

+

∫
Ω\Bε/2

λA(x){(2ϕ − 1)vn∇vn · ∇ϕ + v2
n|∇ϕ|

2
} dx.

Settingρ = {λ(1 − δ)− 4/N2
}, we see thatρ > 0 and

|〈(λ−K)vn, ϕvn〉A| ≤ ‖(K − λ)vn‖A‖ϕvn‖A ≤
√
α2‖(K − λ)vn‖A‖ϕvn‖

≤
α2

2ρ
‖(K − λ)vn‖

2
A +

ρ

2
‖ϕvn‖

2.

Thus we obtain

ρ

2
‖ϕvn‖

2
≤
α2

2ρ
‖(K − λ)vn‖

2
A +

∫
Ω\Bε/2

v2
n dx

+

∫
Ω\Bε/2

λA(x){(2ϕ − 1)vn∇vn · ∇ϕ + v2
n|∇ϕ|

2
} dx.

But
∫
Ω\Bε/2

v2
n dx → 0 by (3.1), and∫

Ω\Bε/2

|∇vn|
2 dx ≤

∫
Ω\Bε/2

|x|2

(ε/2)2
|∇vn|

2 dx ≤
4

ε2

∫
Ω

|x|2|∇vn|
2 dx ≤

4

ε2α1
‖vn‖

2
A,

showing that∫
Ω\Bε/2

v2
n dx +

∫
Ω\Bε/2

λA(x){(2ϕ − 1)vn∇vn · ∇ϕ + v2
n|∇ϕ|

2
} dx → 0.
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This proves that‖ϕvn‖ → 0 and consequently
∫
Bε/2

v2
n dx → 0 because∫

Bε/2

v2
n dx ≤

∫
Ω

(ϕvn)
2 dx ≤

4

N2
‖ϕvn‖

2.

Recalling (3.1), we now deduce that〈Kvn, vn〉A =
∫
Ω
v2
n dx → 0. But

λ‖vn‖
2
A = 〈Kvn, vn〉A − 〈(K − λ)vn, vn〉A

≤ |〈Kvn, vn〉A| + ‖(K − λ)vn‖A‖vn‖A

where {‖vn‖A} is bounded and‖(K − λ)vn‖A → 0 by hypothesis. This proves that
‖vn‖A → 0 and soλ /∈ σe(K).

(iii) This follows from part (ii) and the definition (1.10) ofK. 2

4. PROPERTIES OF THE OPERATORG

We now turn to the nonlinear operatorG : HA → HA defined by (1.10) and the
corresponding potentialψ : HA → R defined by

(4.1) ψ(u) =

∫
Ω

F(u(x)) dx where F(s) =

∫ s

0
f (t) dt.

PROPOSITION4.1. Under the hypotheses(D1) and(D2), we have:

(i) G : HA → HA is Lipschitz continuous.
(ii) G : HA → HA is both Hadamard and w-Hadamard differentiable atu = 0 with

G′(0) = K.

(iii) ψ : HA → R is continuously Fŕechet differentiable andψ ′(u)v = 〈G(u), v〉A for all
u, v ∈ HA.

(iv) If in addition,

(D3) sup{|f (s)| : s ∈ R} = m < ∞,

thenG : HA → HA is compact andG : HA → HA is not Fŕechet differentiable at
u = 0.

PROOF. Suppose throughout thatu, v,w ∈ HA.

(i) We have

|〈G(u)−G(v),w〉A| ≤

∫
Ω

|f (u)− f (v)| |w| dx ≤

∫
Ω

M|u− v| |w| dx

≤ M|u− v|2|w|2 ≤
4M

N2α1
‖u− v‖A‖w‖A

and hence

‖G(u)−G(v)‖A ≤
4M

N2α1
‖u− v‖A.
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(ii) In view of (i), to establish Hadamard differentiability atu = 0, it is enough to prove
thatG is Gateaux differentiable atu = 0. Fort ∈ R \ {0},∣∣∣∣〈G(tv)−G(0)

t
−K(v),w

〉
A

∣∣∣∣ =

∣∣∣∣∫
Ω

{
f (tv)

t
− v

}
w dx

∣∣∣∣
=

∣∣∣∣∫
Ω

∫ 1

0

{
1

t

d

ds
f (stv)− v

}
w ds dx

∣∣∣∣ =

∣∣∣∣∫
Ω

∫ 1

0
{f ′(stv)− 1}vw ds dx

∣∣∣∣
≤

∫
Ω

∫ 1

0
|v| |w| |f ′(stv)− 1| ds dx

≤

{∫
Ω

∫ 1

0
|v|2|f ′(stv)− 1|

2 ds dx

}1/2{∫
Ω

∫ 1

0
|w|

2 ds dx

}1/2

= |w|2

{∫
Ω

∫ 1

0
|v|2|f ′(stv)− 1|

2 ds dx

}1/2

≤
2

N
√
α1

‖w‖A

{∫
Ω

∫ 1

0
|v|2|f ′(stv)− 1|

2 ds dx

}1/2

so that∥∥∥∥G(tv)−G(0)

t
−K(v)

∥∥∥∥
A

≤
2

N
√
α1

{∫
Ω

∫ 1

0
|v|2|f ′(stv)− 1|

2 ds dx

}1/2

.

But v ∈ L2(Ω) and|f ′(stv(x)) − 1| ≤ M + 1 for all |t | ≤ 1, s ∈ [0,1] and almost all
x ∈ Ω. It follows from dominated convergence thatG is Gateaux differentiable atu = 0.

For the w-Hadamard differentiability, we now consider sequences{vn} ⊂ HA and
{tn} ⊂ R \ {0} such thatvn ⇀ v weakly inHA andtn → 0. Then

〈K(vn)−K(v),w〉A = 〈vn − v,Kw〉A → 0

and ∣∣∣∣〈G(tnvn)−G(0)

tn
−K(vn), w

〉
A

∣∣∣∣ ≤

∫
Ω

∫ 1

0
|vn| |w| |f ′(stnvn)− 1| ds dx.

Since{vn} is bounded inHA, there is a constantC > 0 such that

|vn|2 ≤
2

N
√
α1

‖vn‖A ≤ C for all n ∈ N.

Then, for anyε > 0 such thatBε ⊂ Ω andn ∈ N,∫
Bε

∫ 1

0
|vn| |w| |f ′(stnvn)− 1| ds dx ≤ (M + 1)|vn|2

{∫
Bε

w2 dx

}1/2

≤ (M + 1)C

{∫
Bε

w2 dx

}1/2

.
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We claim that∫
Ω\Bε

∫ 1

0
|vn| |w| |f ′(stnvn)− 1| ds dx → 0 asn → ∞.

Indeed, if this were false, there would existε ∈ (0,1), δ > 0 and a subsequence{nk} such
that

(4.2)
∫
Ω\Bε

∫ 1

0
|vnk | |w| |f ′(stnkvnk )− 1| ds dx ≥ δ for all nk.

But the fact thatvn ⇀ v weakly inHA implies thatvn ⇀ v weakly inH 1(Ω\Bε) and
hence strongly inL2(Ω\Bε). Therefore, passing to a further subsequence, we may suppose
(see Theorem IV.6 in [8], for example) that there existsz ∈ L2(Ω\Bε) such that

|vnk | ≤ z a.e. onΩ\Bε and vnk → z a.e. onΩ\Bε.

Hence∫ 1

0
|vnk | |w| |f ′(stnkvnk )− 1| ds ≤ (M + 1)|vnk | |w| ≤ (M + 1)|z| |w| a.e. onΩ\Bε

where|z| |w| ∈ L1(Ω\Bε). Recalling thatf ′(0) = 1, dominated convergence now shows
that ∫

Ω\Bε

∫ 1

0
|vnk | |w| |f ′(stnkvnk )− 1| ds dx → 0,

contradicting (4.2). Thus we find that, for anyε > 0 such thatBε ⊂ Ω,

lim sup
n→∞

∫
Ω

∫ 1

0
|vn| |w| |f ′(stnvn)− 1| ds dx

≤ lim sup
n→∞

∫
Bε

∫ 1

0
|vn| |w| |f ′(stnvn)− 1| ds dx

≤ (M + 1)C

{∫
Bε

w2 dx

}1/2

.

Butw ∈ L1(Ω) so{
∫
Bε
w2 dx}1/2

→ 0 asε → 0+ and we have proved that∫
Ω

∫ 1

0
|vn| |w| |f ′(stnvn)− 1| ds dx → 0.

Finally,∣∣∣∣〈G(0)−G(tnvn)

tn
−K(v),w

〉
A

∣∣∣∣
≤

∣∣∣∣〈G(0)−G(tnvn)

tn
−K(vn), w

〉
A

∣∣∣∣ + |〈K(vn)−K(v),w〉A|

≤

∫
Ω

∫ 1

0
|vn| |w| |f ′(stnvn)− 1| ds dx + |〈K(vn)−K(v),w〉A|

and it follows thatG is w-Hadamard differentiable atu = 0.
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(iii) By part (i), it is enough to prove thatψ is Gateaux differentiable atu with
ψ ′(u)v = 〈G(u), v〉A for all u, v ∈ HA. For anyt ∈ R \ {0},∣∣∣∣ψ(u+ tv)− ψ(u)

t
− 〈G(u), v〉A

∣∣∣∣ =

∣∣∣∣∫
Ω

(
1

t

∫ 1

0

d

ds
F (u+ stv)ds − f (u)v

)
dx

∣∣∣∣
=

∣∣∣∣∫
Ω

∫ 1

0
{f (u+ stv)− f (u)}v ds dx

∣∣∣∣
≤

∫
Ω

∫ 1

0
M|stv| |v| ds dx ≤

M|t |

2
|v|22

and the result follows.
(iv) Consider a sequence{vn} ⊂ HA such thatvn ⇀ v weakly inHA. For anyε > 0

such thatBε ⊂ Ω and anyw ∈ HA, we have

|〈G(vn)−G(v),w〉A|

≤

∫
Ω

|f (vn)− f (v)| |w| dx

≤ 2m
∫
Bε

|w| dx +

∫
Ω\Bε

|f (vn)− f (v)| |w| dx

≤ 2m

[∫
Bε

dx

]1/2

|w|2 +

[∫
Ω\Bε

|f (vn)− f (v)|2 dx

]1/2

|w|2

≤

{
2m

[∫
Bε

dx

]1/2

+

[∫
Ω\Bε

|f (vn)− f (v)|2 dx

]1/2} 2

N
√
α1

‖w‖A

and hence

‖G(vn)−G(v)‖A ≤

{
2m

[∫
Bε

dx

]1/2

+

[∫
Ω\Bε

|f (vn)− f (v)|2 dx

]1/2} 2

N
√
α1

≤

{
2m

[ ∫
Bε

dx

]1/2

+M

[∫
Ω\Bε

|vn − v|2 dx

]1/2} 2

N
√
α1
.

Sincevn → v strongly inL2(Ω\Bε), it follows that

lim sup
n→∞

‖G(vn)−G(v)‖A ≤
4m

N
√
α1

[∫
Bε

dx

]1/2

for anyε > 0 such thatBε ⊂ Ω. Thus‖G(vn) − G(v)‖A → 0 asn → ∞, establishing
the compactness ofG : HA → HA. Since supσe(K) > 0,K = G′(0) : HA → H is not a
compact linear operator and soG cannot be Fŕechet differentiable atu = 0. 2

5. BIFURCATION FOR (1.1), (1.2)

As we have shown in Section 1,(λ, u) ∈ R × H0 is a solution of (1.1), (1.2) if and
only if (λ, u) satisfies (1.11). Furthermore, if(λ, u) is a solution andu 6= 0, then |λ| ≥
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N2α1/4M and soλ is a bifurcation point for (1.1), (1.2) if and only ifµ = 1/λ ∈ BG in
the terminology of Section 2 withG : HA → HA defined by (1.10).

Similarlyµ ∈ σ(K) ∩ (4/N2,∞) if and only if the linear boundary value problem

−∇ · {A(x)∇u(x)} = λu(x) for x ∈ Ω,

u = 0 for x ∈ ∂Ω,

has a nontrivial solutionu ∈ HA for λ = 1/µ. Let

Σ = {1/µ : µ ∈ σ(K) ∩ (4/N2,∞)}

be the set of all such eigenvalues of this linearization of (1.1), (1.2).
Under the assumption (D1), the setΣ may be empty. For example, ifA(x) ≥ |x|2 for

all x ∈ Ω, it follows from Proposition 3.1(i) that

‖K‖ = sup

{
〈Ku, u〉A

‖u‖2
A

: u ∈ HA \ {0}

}
= sup

{ ∫
Ω
u2 dx∫

Ω
A|∇u|2 dx

: u ∈ HA \ {0}

}
≤ sup

{ ∫
Ω
u2 dx∫

Ω
|x|2|∇u|2 dx

: u ∈ HA \ {0}

}
=

4

N2

and soσ(K) ∩ (4/N2,∞) = ∅. HenceΣ = ∅ if A(x) ≥ |x|2 for all x ∈ Ω.

On the other hand, there are coefficientsA satisfying (D1) for whichΣ contains
many points. LetΛ1 denote the first eigenvalue of the Laplacian with Dirichlet boundary
condition onΩ. Then

Λ1 = inf

{∫
Ω

|∇u|2 dx∫
Ω
u2 dx

: u ∈ W
1,2
0 (Ω) \ {0}

}
and so, sinceW1,2

0 (Ω) ⊂ HA,

‖K‖ = sup

{ ∫
Ω
u2 dx∫

Ω
A|∇u|2 dx

: u ∈ HA \ {0}

}
≥ sup

{ ∫
Ω
u2 dx∫

Ω
A|∇u|2 dx

: u ∈ W
1,2
0 (Ω) \ {0}

}
≥

1

maxΩ A
sup

{ ∫
Ω
u2 dx∫

Ω
|∇u|2 dx

: u ∈ W
1,2
0 (Ω) \ {0}

}
=

1

Λ1 maxΩ A
.

If A satisfies (D1) and

(5.1) max
Ω
A <

N2

4Λ1
,

we see that‖K‖ > 4/N2
= supσe(K), and consequently‖K‖ ∈ σ(K) ∩ (4/N2,∞) by

the self-adjointness ofK in HA. This shows that 1/‖K‖ ∈ Σ when (5.1) is satisfied.



BIFURCATION POINTS OF A DEGENERATE ELLIPTIC PROBLEM 325

THEOREM 5.1. Suppose that the conditions(D1) and(D2) are satisfied and letB denote
the set of all bifurcation points for the problem(1.1), (1.2).

(i) If 0 ≤ f (s)/s ≤ 1 for all s 6= 0, thenB ⊂ Σ ∪ [N2/4,∞).

(ii) If f is odd with

sup
s∈R

|f (s)| < ∞ and sf (s) < 2
∫ s

0
f (t) dt for all s > 0,

thenΣ ∪ [N2/4,∞) ⊂ B. More precisely, there is bifurcation to the right at every
λ ∈ Σ , vertical bifurcation at everyλ ∈ (N2/4,∞) andB∩(0,∞) = Σ∪[N2/4,∞).

PROOF. Under our hypotheses,G : HA → HA is both Hadamard differentiable and
w-Hadamard differentiable atu = 0 with G′(0) = K = K∗. We also haveσ(K) ⊂

[0,4/N2α1] and supσe(K) = 4/N2.

(i) By the assumptions aboutf,

0 ≤

∫
Ω

f (u)u dx ≤

∫
Ω

u2 dx for all u ∈ HA ⊂ L2(Ω).

If (λ, u) ∈ R ×HA is a solution of (1.1), (1.2), then by (1.6),∫
Ω

A(x)|∇u(x)|2 dx = λ

∫
Ω

f (u)u dx

and soλ ≥ 0. Using Lemma 1.2(iv), we then deduce thatB ⊂ [N2/4α1,∞) ⊂ (0,∞).

Thus ifλ ∈ B, thenµ = 1/λ ∈ BG ∩ (0,∞).

Suppose thatλ ∈ B ∩ [N2/4α1, N
2/4). Thenµ = 1/λ > 4/N2

= supσe(K) and
µ ∈ BG. Furthermore,

〈G(u)−G′(0)u, u〉A
‖u‖2

A

=

∫
Ω

{f (u)− u}u dx

‖u‖2
A

≤ 0,

and it follows from Proposition 2.3 thatµ /∈ σ(G′(0)) = σ(K) and consequently,λ ∈ Σ.

(ii) Here we use Proposition 2.4 withψ : HA → R defined by (4.1). By Proposition
4.1, we know thatψ ∈ C1(HA,R) with

ψ ′(u)v = 〈G(u), v〉A =

∫
Ω

f (u)v dx for all u, v ∈ HA.

Also, for allu, v ∈ HA,

|〈G(u), v〉A| ≤ m|Ω|
1/2

|v|2 ≤
2m|Ω|

1/2

N
√
α1

‖v‖A

wherem = sups∈R |f (s)| and|Ω| is theN -dimensional volume ofΩ. Hence‖G(u)‖A ≤

2m|Ω|
1/2/N

√
α1 for all u ∈ HA, and

ψ(u) =

∣∣∣∣∫ 1

0
〈G(tu), u〉A dt

∣∣∣∣ ≤
2m|Ω|

1/2

N
√
α1

‖u‖A.
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Thus we see that
lim

‖u‖A→∞
ψ(u)/‖u‖2

A = 0.

Furthermore, foru ∈ HA \ {0},

2ψ(u)− ψ ′(u)u =

∫
Ω

{
2

∫ u(x)

0
f (t) dt − f (u(x))u(x)

}
dx > 0.

Referring to Proposition 4.1, we have now shown that the hypotheses (H1) to (H3) of
Proposition 2.4 are satisfied andΛe = supσe(K) = 4/N2 by Proposition 3.1. It follows
thatΣ ∪ [N2/4,∞) ⊂ B.

Finally, we observe that, sinceψ ′(u)u < 2ψ(u) for all u ∈ H \ {0}, we have

d

dt

ψ(tu)

t2
< 0 for all u ∈ H\{0} andt > 0

and hence
〈G′(0)u, u〉

2
= lim
t→0

〈G(tu), u〉

2t
= lim
t→0

ψ(tu)

t2
> ψ(u).

Hence

〈G′(0)u, u〉A > 2ψ(u) > ψ ′(u)u = 〈G(u), u〉A for all u ∈ H\{0}

and so

lim sup
‖u‖A→0

〈G(u)−G′(0)u, u〉A
‖u‖2

A

≤ 0.

Using Proposition 2.3, it follows that(4/N2,∞) ∩ BG ⊂ σ(K) and hence thatB ∩

(0, N2/4) ⊂ Σ. 2

EXAMPLES. Consider an odd functionf ∈ C1(R) that is positive, strictly concave and
bounded on [0,∞) with f ′(0) = 1. Then lims→∞ f ′(s) = 0 andf satisfies all the
hypotheses of Theorem 5.1. For such functions,B = Σ ∪ [N2/4,∞). The functions
f (s) = tanhs andf (s) = arctans have these properties.

On the other hand, for anyα > 2, one finds that the functionf (s) = s(1 + s2)−α also
satisfies all of the hypotheses of Theorem 5.1, but it is not concave on [0,∞). In fact,f ′′

changes sign exactly once in [0,∞).

5.1. More general nonlinearities

As we have shown in Theorem 5.1, the abstract results in Section 2 can be applied directly
to some problems of the type (1.1), (1.2) but the nonlinear termf is required to be
bounded on the whole real line. However, it is possible to deduce from these results similar
conclusions for equations with unbounded nonlinearities. In fact, it is sufficient to assume
thatf satisfies the following condition.

(F) For someT > 0, f ∈ C1([−T , T ]) is an odd function that is strictly concave on [0, T ]
with f (0) = f (T ) = 0 andf ′(0) = 1.
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Given such a function, we set

F(s) =

∫ s

0
f (t) dt for s ∈ [−T , T ]

and then extendF to R as an even function having the following properties:

F ∈ C2(R), F ′(s) < 0 for all s > T ,

lim
s→∞

F(s) = lim
s→∞

F ′(s) = lim
s→∞

F ′′(s) = 0.

It follows that F(s) > 0 for s 6= 0 and the functionf = F ′ satisfies the condition
(D2) and also the conditions of Theorem 5.1(ii). However, ifA satisfies (D1) and(λ, u) ∈

(0,∞)×H0 is a solution of (1.1), (1.2) forf = F ′, it turns out that|u(x)| ≤ T a.e. onΩ
and so we obtain the following result.

THEOREM 5.2. Suppose that the conditions(D1) and (F) are satisfied. Then all points
in the setΣ ∪ [N2/4,∞) are bifurcation points for(1.1), (1.2) in the sense that, for any
λ ∈ Σ ∪ [N2/4,∞), there exists a sequence{(λn, un)} ⊂ (0,∞)× [H0 \ {0}] having the
following properties: for alln ∈ N, |un(x)| ≤ T a.e. onΩ and (1.6) holds withu = un,
λn → λ and|un|2 → 0 asn → ∞.

REMARK . Since

|u|1 ≤ |Ω|
1/2

|u|2 and |u|p ≤ |u|
1/p
1 |u|

1−1/p
∞ for all p ∈ [1,∞),

it follows that |un|p ≤ |Ω|
1/2p

|un|
1/2
2 T 1−1/p and so|un|p → 0 asn → ∞ for all p ∈

[1,∞). However, as we have shown in [16] for the radially symmetric case of (1.1), (1.2),
we do not have|un|∞ → 0 asn → ∞. In fact, in that case,|un|∞ = T for all n and
the bifurcating solutions concentrate atx = 0 in the sense that the sequence{un} tends
uniformly to zero on all compact subsets ofΩ that do not containx = 0.

PROOF. We consider an extensionf = F ′ of the type described above. By Theorem
5.1(ii), there is bifurcation at every point inΣ ∪ [N2/4,∞) for (1.1), (1.2) with this
functionf : R → R. It is therefore enough to show that if(λ, u) ∈ (0,∞)×H0 satisfies
(1.6) forf = F ′, then|u(x)| ≤ T a.e. onΩ. Given such a pair(λ, u), let v = (u − T )+

andω = {x ∈ Ω : u(x) > T }. Sinceu ∈ W1,1(Ω) by Lemma 6.1(ii) below, it follows
from Lemma 7.6 of [18] thatv ∈ W1,1(Ω) with ∇v = ∇u if u > T and∇v = 0 if u ≤ T .

Hence|∇v| ≤ |∇u| a.e. onΩ and it follows thatv ∈ H. Finally, using Proposition 5.3 of
[20], we easily deduce thatv ∈ H0. Puttingϕ = v in (1.6), we obtain∫

Ω

A(x)∇u(x).∇v(x) dx = λ

∫
Ω

f (u(x))v(x) dx

where the left hand side equals
∫
ω
A(x)|∇u(x)|2 dx ≥ 0, while the right hand side equals

λ
∫
ω
F ′(u(x))v(x) dx ≤ 0 sinceF ′(s) < 0 for all s > T . But, if ω has positive measure,

then

λ

∫
ω

F ′(u(x))v(x) dx < 0,
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and we have a contradiction. Henceω must have measure zero andu(x) ≤ T a.e. onΩ.
Using the oddness ofF ′,we can replaceu by −u and obtain the same conclusion, showing
that|u(x)| ≤ T a.e. onΩ as required. 2

EXAMPLES. For anyσ > 0, the functionf (s) = s − |s|σ s satisfies the condition (F)
with T = 1. The functionf (s) = sins satisfies the condition (F) withT = π.

6. APPENDIX 1: PROPERTIES OFH0

First we prove the lemma stated in the introduction.

PROOF OFLEMMA 1.2. (i) Letu ∈ H0 \ {0} and setv(x) = ru(x) wherer = |x|. Then

∂iv =
xi

r
u+ r∂iu and |∇v|2 = u2

+ |x|2|∇u|2 + x · ∇(u2).

For anyε > 0 such thatBε ⊂ Ω, we have∫
Ω\Bε

x · ∇(u2) dx = −ε

∫
|x|=ε

u2 dy −N

∫
Ω\Bε

u2 dx ≤ −N

∫
Ω\Bε

u2 dx

sinceΓ u = 0, and so∫
Ω\Bε

|∇v|2 dx ≤

∫
Ω\Bε

(|x|2|∇u|2 − (N − 1)u2) dx

from which it follows that

(6.1)
∫
Ω

|∇v|2 dx + (N − 1)
∫
Ω

u2 dx ≤

∫
Ω

|x|2|∇u|2 dx < ∞.

By Lemma 6.1(i) below,u and hencev admits a generalized derivative onΩ. Also |v| ≤

C|u| whereC = maxx∈Ω |x| andu ∈ L2(Ω). Thus (6.1) implies thatv ∈ W
1,2
0 (Ω) \ {0}

and Hardy’s inequality (see [9] or [1]) then yields∫
Ω

|∇v|2 dx >

(
N − 2

2

)2 ∫
Ω

v2

|x|2
dx =

(
N − 2

2

)2 ∫
Ω

u2 dx.

Combined with (6.1), this yields

N2

4

∫
Ω

u2 dx <

∫
Ω

|x|2|∇u|2 dx and sup

{ ∫
Ω
u2 dx∫

Ω
|x|2|∇u|2 dx

: u ∈ H0 \ {0}

}
≤

4

N2
.

Settinguα(x) = |x|α − ε for x ∈ Bε anduα(x) = 0 for x ∈ Ω\Bε, we find thatuα ∈ H0
for all α > −N/2 and a little calculation shows that

lim
α→−N/2+

∫
Ω
u2
α dx∫

Ω
|x|2|∇uα|2 dx

=
4

N2
,

completing the proof of part (i).
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(ii) By part (i),
∫
Ω

|x|2|∇u|2 dx is a norm onH0 equivalent to〈·, ·〉1/2, and using (1.3)
we obtain

α1

∫
Ω

|x|2|∇u|2 dx ≤

∫
Ω

A(x)|∇u|2 dx ≤ α2

∫
Ω

|x|2|∇u|2 dx.

(iii) & (iv) Since (λn, un) satisfies (1.6) we have

‖un‖
2
A =

∫
Ω

A(x)|∇un(x)|
2 dx = λn

∫
Ω

f (un(x))un(x) dx ≤ |λn|M|un|
2
2

and

|un|
2
2 ≤

4

N2

∫
Ω

|x|2|∇un|
2 dx ≤

4

N2α1
‖un‖

2
A. 2

Now we provide some additional properties of the spaceH0 defined by (1.5). Recall
that in our definition,∇u = (∂1u, . . . , ∂Nu) where∂iu denotes the generalized derivative
of u on the open setΩ \ {0}. We use the norm onH0 defined by (1.8).

LEMMA 6.1. (i) If u ∈ H0, then∇u ∈ L1(Ω) and∂iu is also the generalized derivative
of u onΩ for i = 1, . . . , N.

(ii) H0 is continuously embedded inW1,1(Ω).

(iii) C∞

0 (Ω) is dense inH0.

PROOF. Let u ∈ H0. As usual, forBε = {x ∈ RN : |x| < ε} with ε > 0, but small
enough so thatBε ⊂ Ω, we have∫

Ω\Bε

|∇u| dx ≤

{∫
Ω\Bε

|x|2|∇u|2 dx

}1/2{∫
Ω\Bε

|x|−2 dx

}1/2

≤ C‖u‖

whereC = {
∫
Ω

|x|−2 dx}1/2 < ∞ sinceN ≥ 3. Hence∇u ∈ L1(Ω) and|∇u|1 ≤ C‖u‖.

Now consider anyϕ ∈ C∞

0 (Ω). Then, sinceu, ∂iu ∈ L1(Ω),∫
Ω

(u∂iϕ + ϕ∂iu) dx = lim
ε→0

∫
Ω\Bε

∂i(uϕ) dx = − lim
ε→0

∫
∂Bε

xi

|x|
u(x)ϕ(x) dx.

ButH0 ⊂ L2(Ω) and so there must exist a sequence{εn} ⊂ (0,∞) such thatεn → 0 and∫
|y|=εn

u2dy ≤
1

εn
.

But then∫
∂Bεn

|u| dy ≤

{∫
|y|=εn

u2 dy

}1/2{∫
|y|=εn

dy

}1/2

≤ ε
−1/2
n {ωNε

N−1
n }

1/2
= ω

1/2
N ε

(N−2)/2
n

and ∣∣∣∣∫
∂Bεn

xi

|x|
u(x)ϕ(x) dx

∣∣∣∣ ≤ |ϕ|∞

∫
∂Bεn

|u| dy ≤ |ϕ|∞ω
1/2
N ε

(N−2)/2
n .
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Hence

lim
n→∞

∫
∂Bεn

xi

|x|
u(x)ϕ(x) dx = 0

and it follows that ∫
Ω

(u∂iϕ + ϕ∂iu) dx = 0.

Sinceu, ∂iu ∈ L1(Ω), this proves thatu admits a generalized derivative onΩ and indeed
thatu ∈ W1,1(Ω) with

|u|1 + |∇u|1 ≤ |Ω|
1/2

|u|2 + C‖u‖ ≤ {2|Ω|
1/2/N + C}‖u‖.

This proves parts (i) and (ii).
Let ξ ∈ C∞(RN ) with ξ(x) = 1 for |x| ≥ 2 andξ(x) = 0 for |x| ≤ 1. Consider

n ≥ 2/ε whereε > 0 is such thatBε ⊂ Ω and setξn(x) = ξ(nx). Note that|∇ξn(x)| ≤

n|∇ξ |∞. Then for anyu ∈ H0, ξnu ∈ W
1,2
0 (Ω) and

‖u− ξnu‖
2

=

∫
Ω

|x|2|∇[(1 − ξn)u]|2 dx ≤ 2
∫
Ω

|x|2{|∇ξn|
2u2

+ (1 − ξn)
2
|∇u|2} dx.

But∫
Ω

|x|2|∇ξn|
2u2 dx =

∫
1/n<|x|<2/n

|x|2|∇ξn|
2u2 dx ≤

∫
1/n<|x|<2/n

(
2

n

)2

|∇ξn|
2u2 dx

≤ 4|∇ξ |2∞

∫
1/n<|x|<2/n

u2 dx

where limn→∞

∫
1/n<|x|<2/n u

2 dx = 0 sinceu ∈ H0 ⊂ L2(Ω), and∫
Ω

|x|2(1 − ξn)
2
|∇u|2 dx =

∫
|x|≤2/n

|x|2(1 − ξn)
2
|∇u|2 dx ≤

∫
|x|≤2/n

|x|2|∇u|2 dx

where limn→∞

∫
|x|≤2/n |x|2|∇u|2 dx = 0 since

∫
Ω

|x|2|∇u|2 dx < ∞. Thus‖u − ξnu‖

→ 0, showing thatW1,2
0 (Ω) is dense inH0.

ButC∞

0 (Ω) is dense inW1,2
0 (Ω) with its Dirichlet norm

‖u‖
W

1,2
0 (Ω)

=

{∫
Ω

|∇u|2 dx

}1/2

and, sinceΩ is bounded, there exists a constantDA such that∫
Ω

|x|2|∇u|2 dx ≤ DA

∫
Ω

|∇u|2 dx for all u ∈ W
1,2
0 (Ω).

This proves thatC∞

0 (Ω) is dense inH0 for the norm‖ · ‖. 2
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7. APPENDIX 2: WEAKER DEGENERACY

To place our results concerning (1.1), (1.2) in better perspective, we make some remarks
about what happens when the assumption (D1) is replaced by

(D1)t A ∈ C(Ω) with A(x) > 0 for all x ∈ Ω \ {0} and lim|x|→0A(x)/|x|
t
= 1 for some

t ∈ [0,2].

We can still define a Hilbert space(HA, 〈·, ·〉A) by

HA =

{
u ∈ L2(Ω) :

∫
Ω

A(x)|∇u(x)|2 dx < ∞ andΓ u = 0

}
,(7.1)

〈u, v〉A =

∫
Ω

A(x)∇u(x) · ∇v(x) dx,(7.2)

but for t < 2, this space has much better properties than in the caset = 2 and the
boundary-value problem behaves like the uniformly elliptic caset = 0 for all t ∈ [0,2).
In particular, the set of bifurcation points is an increasing sequence{λi : i ∈ N} ⊂ (0,∞)

with limi→∞ λi = ∞.

DEFINITION 7.1. Under the hypotheses(D1)t and(D2) a solutionof (1.1), (1.2) is a pair
(λ, u) ∈ R ×HA such that

(7.3)
∫
Ω

A(x)∇u(x) · ∇ϕ(x) dx = λ

∫
Ω

f (u(x))ϕ(x) dx for all ϕ ∈ HA.

A pointΛ ∈ R is a bifurcation pointfor (1.1), (1.2) if there is a sequence{(λn, un)} ⊂

R × [HA \ {0}] of solutions such thatλn → Λ and|un|2 → 0.

Here are some basic properties of the spaceHA.

LEMMA 7.2. Let the functionA satisfy(D1)t for somet ∈ [0,2]. Then

(i) (HA, 〈·, ·〉A) is continuously embedded in the space(H0, (·, ·)) defined by(1.5), and
hence also inL2(Ω). LetJ : HA → L2(Ω) denote this embedding andCA its norm
so that

|u|2 ≤ CA‖u‖A for all u ∈ HA.

(ii) (HA, 〈·, ·〉A) is continuously embedded inW1,p(Ω) for 1 ≤ p < 2N/(N + t).

(iii) (HA, 〈·, ·〉A) is compactly embedded inLq(Ω) for 1 ≤ q < t∗ = 2N/(N + t − 2).

REMARK . Note thatt∗ > 2 if and only if t < 2. For t = 2, we have seen that(HA, 〈·, ·〉)
is continuously embedded inL2(Ω), but the embedding is not compact.

PROOF. (i) By (D1)t and the boundedness ofΩ, there exist constantsβ ≥ α > 0 such
that

(7.4) α|x|t ≤ A(x) ≤ β|x|t for all x ∈ Ω.

The conclusion now follows easily.
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(ii) Let u ∈ HA. By part (i) and Lemma 6.1,u admits generalized derivatives onΩ and
u ∈ W1,1(Ω). Furthermore, for 1≤ p < 2N/(N + t),∫

Ω

|∇u|p dx ≤

{∫
Ω

|x|t |∇u|2 dx

}p/2{∫
Ω

|x|−tp/(2−p) dx

}(2−p)/2

= Cp

{∫
Ω

|x|t |∇u|2 dx

}p/2
whereCp < ∞ sincetp/(2 − p) < N. The conclusion now follows from (7.4).

(iii) This follows from (ii) and the Sobolev embedding ofW1,p(Ω) in Lq(Ω) (see
part 3) of 8.7 in [2], for example). 2

Using this lemma, for anyt ∈ [0,2], we can define a bounded linear operatorL :
L2(Ω) → HA by

〈Lu, v〉A =

∫
Ω

uv dx for all u ∈ L2(Ω) andv ∈ HA

and we setK = LJ. It follows thatK ∈ B(HA, HA) andK : HA → HA is compact if
t < 2. Henceσe(K) = {0} if t < 2, whereas fort = 2, we have shown that supσe(K) =

4/N2 and consequentlyK is not compact.
For a functionf that satisfies (D1),f (u) ∈ L2(Ω) for all u ∈ L2(Ω) and we define

an operatorF : L2(Ω) → L2(Ω) by

F(u) = f (u) for all u ∈ L2(Ω).

ClearlyF : L2(Ω) → L2(Ω) is Lipschitz continuous and as is well known (see Theorem
2.7 in [3], for example), it is also Gateaux differentiable at everyu ∈ L2(Ω). It follows
thatF : L2(Ω) → L2(Ω) is also Hadamard differentiable at everyu ∈ L2(Ω). Setting
G = LFJ, we infer thatG : HA → HA is continuous and Gateaux differentiable with

〈G(u), v〉A =

∫
Ω

f (u)v dx for all u, v ∈ HA, and

〈G′(u)w, v〉A =

∫
Ω

f ′(u)wv dx for all w ∈ HA,

for all t ∈ [0,2]. For t ∈ [0,2) andq ∈ (2, t∗), there is a constantDq such that

|〈[G′(u)−G′(z)]w, v〉A| ≤

∫
Ω

|f ′(u)− f ′(z)| |w| |v| dx ≤ |f ′(u)− f ′(z)|p|w|q |v|q

≤ |f ′(u)− f ′(z)|pD
2
q‖w‖A‖v‖A

wherep = q/(q − 2). It follows that

‖G′(u)−G′(z)‖B(HA,HA) ≤ D2
q |f

′(u)− f ′(z)|p for all u, z ∈ HA.

Since|f ′(s)| ≤ M for all s ∈ R, the mappingu 7→ f ′(u) is continuous fromL2(Ω) into
Lp(Ω) (see Theorem 2.2 in [3], for example) and so a fortiori fromHA intoLp(Ω). This
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proves thatG′ : HA → B(HA, HA) is continuous and it follows thatG : HA → HA is
continuously differentiable in the sense of Fréchet fort ∈ [0,2).

By Proposition 4.1,ψ : H0 → R is continuously differentiable and

ψ ′(u)v =

∫
Ω

f (u)v dx for all u, v ∈ H0.

But for 0 ≤ t ≤ 2, HA is continuously embedded inH0 and soψ ∈ C1(HA,R) with

ψ ′(u)v = 〈G(u), v〉A for all u, v ∈ HA.

Thus, in fact,ψ ∈ C2(HA,R) whent ∈ [0,2).
From the compactness of the injectionJ : HA → L2(Ω) whent < 2, it follows that

G = LFJ : HA → HA is also compact whent ∈ [0,2).
Recalling from Section 2 thatBG denotes the set of all bifurcation points for the

equation (2.1), standard results from abstract bifurcation theory (for example, Theorems
4.1 and 7.1 in [22]) show that fort ∈ [0,2), BG = σ(G′(0)) whereG′(0) = K : HA →

HA is a compact, self-adjoint operator with〈Ku, u〉A > 0 for all u ∈ HA \ {0}. Thus for
t ∈ [0,2), σ (G′(0)) = {µi : i ∈ N} ∪ {0} whereµi is an eigenvalue of finite multiplicity
of K, 0 < µi+1 < µi for all i and limi→∞ µi = 0. Settingλi = 1/µi , we obtain the
following result.

THEOREM 7.3. Suppose that the conditions(D1)t and (D2) are satisfied for somet ∈

[0,2) and letB denote the set of all bifurcation points for the problem(1.1), (1.2). Then
B = {λi : i ∈ N} where0< λi < λi+1 with limi→∞ λi = ∞.
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