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Partial differential equations. — Bifurcation points of a degenerate elliptic boundary-
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ABSTRACT. — We consider the nonlinear elliptic eigenvalue problem

-V A{A®)Vu(x)} = Af (u(x)) forx e £2,
u(x)=0 forx € 9£2,

where 2 is a bounded open subset®f¥ and f € cl(R) with f(0) = 0 and f/(0) = 1. The ellipticity is
degenerate in the sense thae2 and A(x) > 0 forx # O but lim,_, o A(x)/|x|2 = 1. We show that there

is vertical bifurcation at all points in the interval(N2/4, co). Bifurcation also occurs at any eigenvalues of
the linearized problem that are bekN\?/4. Our treatment is based on recent results concerning the bifurcation
points of equations with nonlinearities that are Hadamard differentiable, but @chétrdifferentiable.
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1. INTRODUCTION

For N > 3, let 22 be a bounded open subset®Y with a Lipschitz boundary and let
0 € £2. We consider the nonlinear degenerate elliptic boundary-value problem

(1.1) —V {A@)Vu@x)} = Af(u(x)) forx e 2.
1.2) ux)=0 forx € 942,
where

(D1) A € C(£2) with A(x) > Oforallx € 2\ {0} and lim, |0 A(x)/|x|? = 1,
(D2) f e CY(R) with £(0) =0, f/(0) = 1, sud|f'(s)| : s e R} = M < oo.

Of course, by rescaling we can accommodate the more general assumptions

lIi‘mOA(x)/lxlz =a>0 and f(0)=8>0.

X |—

Furthermore, in Section 5.1, we show how the assumption (D2) can be replaced by the
condition

(F) Forsomd > 0, f € C1([—T, T]) is an odd function that is strictly concave on [0
with £(0) = f(T) = 0andf’(0) = 1.
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The condition (F) does not requir€ to be bounded on the whole real line and it enables
us to deal with nonlinearities such ggs) = s — s5.
It follows from (D1) and the boundedness®fthat

(1.3) 011|)c|2 < Ax) < a2|x|2 forallx € 2 where O< ay <1< ap < 00.

We are interested in solutions §f (IL.1), (1.2) that have finite energy

E,(u) = %/;A(X)IVu(x)Izdx —)\/;2 Fu(x))dx < oowhereF(s) = /OS f@®) dt.

Since
[ A |Vu@x)|?dx < 0o & / Ix|?|Vul?dx < 0o
2 2

by ), and F(s)| < Ms?/2 by (D2), we seek solutions in the space
H= {u € L%(£2) : u admits generalized derivatives
diuons2 \ {0} andfg [x|?|Vul?dx < oo}.
Clearly H, with the scalar product
(1.4) (u,v) = / uvdx +/ |x|2Vu -Vvdx,
Q Q

is a Hilbert space and (by a slight abuse of notatiti) W12(2\B,) wheree > Ois
small enough so that the closed bBll = {x e R : |x| < ¢} C 2. Let
(1.5) Ho={ue H:T'u=0}

whereI" : W12(2\B;) — L2%(%) is the usual trace operator (séé [2, A 5.7] for
example). The continuity of" ensures tha{Ho, (-, -)) is a Hilbert space. We use |,

to denote the usual norm di’ (£2). We show in Appendix 1 thatif € Hp, thenu admits
generalized derivatives o2 and, in fact,Hy ¢ W11(£).

DEFINITION 1.1. Under the hypothesg®1) and(D2) a solutionof (L.1), (1.2) s a pair
(M, u) € R x Hp such that

(1.6) / AX)Vu(x) - Vo(x)dx = A/ fwx)ex)dx forall ¢ € Hp.
2 2

A pointA € R is abifurcation pointfor (I.1)), (1.7) if there is a sequencfr,, u,)} C
R x [Ho \ {0}] of solutions such that, — A and|u,|> — O.

We show in Appendix 1 thafg°($2) is dense inHo, so our definition is equivalent to
requiring that(A, ) € R x Hg be such that

/ A(X)Vu(x) - Vo(x)dx = k/ fux)px)dx forallg € Cy°(£2).
2 2
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It follows from Propositiof 4]1 in Section 4 that our definition of solution of|(1[1),|(1.2) is
equivalent to requiring to be a stationary point of the energ@y in Hy.

Our main results are Theorefs]5.1 5.2. They show that, under some additional
assumptions on the nonlinearify but without further assumptions about the dom&in
and the coefficient, the set of bifurcation points fof (1.1), (1.2) contains the interval
[N?/4, 00). Whether or not there are other bifurcation points depends on additional
properties ofA.

If the degeneracy o.1) is subquadratic, in the sense thatlimA(x)/|x|" = 1
for somer € [0, 2), rather than quadratic as in (D1), then the set of bifurcation points
for (1.1), [1.2) is a discrete set and, as we show in Thegrein 7.3 in Appendix 2, this can
be deduced rather easily from standard results concerning comggatiefdifferentiable
operators. Other recent work on subquadratic, degenerate elliptic nonlinear boundary value
problems can be found ib [110], [11] arid [21]. A one-dimensional boundary value problem
involving quadratic degeneracy is treated in [6], but the nonlinearity is superlinear so there
is bifurcation to the left at 24 which is the infimum of the spectrum of the linearized
problem. Some nonexistence results are given_in [13]. The existence and interesting
behaviour of branches of positive solutions for problem&/idimensions with quadratic
degeneracy and various types of nonlinearity are studied In [12].

To present our approach {o (IL.1), (1.2), which is based on our recent work on problems
that are differentiable in the sense of Hadamard, but not in the senseciiefr we
begin with following result, which will be proved in Appendix 1, providing some basic
information for our treatment of the problem.

LeEmmA 1.2. (i) Forall u € Hp \ {0}, we have

4
1.7) /Quzdx < W/Q Ix|?|Vul? dx
and in fact,
f_Q u?dx
e Hp\ {0} = —.
p{fg xl2vazdy € VO =52
Hence
(1.8) (u,v):/ |x|?°Vu - Vodx foru,v e Hp
2
defines a scalar product oHg with a norm|| - || = (-, -)%/2 which is equivalent to
(. Y2

(i) For afunctionA that satisfie§D1), we can define another scalar product &g by

(1.9 (u,v)q = / A(x)Vu -Vvdx foru,v € Hy.
fos

Then| - |4 = (-, )1/2 is a norm that is also equivalent tg, -)/2 on Ho and

2
lulo < —||u|| < llull4 forall u e Ho.

=N \/_
Suppose that the conditiof®1) and (D2) are satisfied.
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(i) If {(Ay, un)} is a sequence of solutions @.J)), (I.7)andx, — A, then
lupl2 = 0 & |uylla — Oand |u,l2 — 0 = E(u,) — 0.

(iv) If (1, u) is solution of(L.1), (I.Z)andu # O, then

N2y
[A] > .
aM

From now on we uséHy, (-, -)4) to denote the Hilbert spacky equipped with the
scalar product-, -) 4. Using part (i) of the lemma and the fact thatu) € L?($2) for all
u € Hop by (D2), we can defin& (1), G(u) € Ho by the relations

(1.10) (K(u),v)Az/ uvdx and (G(u),v)A:/ fwvdx forallu,v € Hp.
Q2 2

Note that(x, u) € R x Hp satisfies[(1)6) if and only if
(1.11) u = rGu).

It follows from the lemma thak € B(H4, Hyx) and we shall show thak : Hy — Hy is
Hadamard differentiable at= 0 with G’(0) = K.

In the next section we recall some general results, which we have established recently,
about bifurcation for equations lik¢ (1]11) involving a functiGnthat is differentiable
in the sense of Hadamard, but not necessarily in the senseeohér Our conclusions
concerning the bifurcation points ¢f (1.1]), ([1.2) are deduced from these abstract results in
Section 5. Sections 3 and 4 are devoted to proving the requisite properties of the operators
K and G. The fact that every point in the intervaNf/4, oo) is a bifurcation point for
the problem1)2) is related to the facts thaW4 is the supremum of the essential
spectrum of the self-adjoint operat&r € B(H4, H4) andG is Hadamard differentiable,
but not FEchet differentiable, at = 0 with G’(0) = 0.

Our abstract results apply directly fo ([L.1), {1.2) under the hypotheses (D1) and (D2).
When (D2) is replaced by (F), we show thatan be extended beyond T, T] in such a
way that the extension satisfies (D2) and all solutions:) of (1.1), [I.2) for this extension
have|u|e < T.

In [16], we have made a more detailed study of the radially symmetric versipn pf (1.1),
(1.2) under the hypotheses (D1) and (F). We find that at every bifurcation poarid
hence at every > N?/4, there is a sequend&\,,, u,,)} of nontrivial radially symmetric
solutions of [(1.11),[(1]2) such that, —  and|u,|, — 0 asn — oo forall p € [1, c0).
However, it is not the case that, | — 0 asn — oo. Indeed|u, | = T for all n and the
solutionsu,, concentrate to a spike at the origin in the sense:thatonverges uniformly
to zero on all compact subsets@fthat do not contain the origin.

The Bernoulli-Euler model for the buckling of a heavy tapered rod under its own
weight leads to a one-dimensional problem with the same structure as the radially
symmetric caseg (1}1)] (1.2) withi(s) = sins which satisfies (F) withil’ = =. It has
been treated in [23]=[26] where the quadratic degeneracy required in (D1) corresponds to
what is called the critical case for the tapering of the column. In this critical case, we again
encounter a nonlinearity which is Hadamard, but n&cket, differentiable.
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The existence of an interval of bifurcation points for a nonlinear eigenvalue problem
was first established by Benci and Fortunato [4] for the problem

(1.12) —Au~+q@)|ux)|u(x) = ru(x) withu € Wl’Z(RN)

wheres > 0 andg € C(RY) with ¢(x) > C|x|’ for all x € RN for some constant§ > 0

andt > No/2. In [5], they gave a more abstract formulation of their approach which is
based on Lyusternik—Schnirelman theory and Clark’s use of the genus. Further progress in
understanding the bifurcation theory pf (1.12) was madglin [7]and [19]. In [15], we show
how our approach using Hadamard differentiability can be used to dea[with (1.12) as well
as problems of the form

(1.13) —Au(x) + p()ux) = Ag 7 x) flgux)) foru e WH2RY)
and
(1.14)  —Au(x) + pux) — ¢ 1x) fgux)) = ru(x) foru e WH2@®RY)

where f satisfies (D2)p € L>*(R") andq is a positive measurable function such that

/ g(x)"2dx < oo for somer > 0.
[x|=R

2. HADAMARD DIFFERENTIABILITY AND BIFURCATION

In this section we recall the relevant parts of a general study of bifurcation in the context
of Hadamard differentiable functions.
Throughout this section(H, (-, -), || - ||) denotes any real Hilbert space.

DEFINITION 2.1. AfunctionF : H — H is Hadamard differentiablat u € H if there
existsT € B(H, H) such that

lim F(u+ thvy) — F(u) _

n— 00 tn

Tv forallve H

forall {t,} c R\ {0} withz, — Oand all{v,} Cc H withv, — v.

Replacing strong convergence by weak convergence, we arrive at the final notion
of differentiability that we shall use. These definitions are examined in detail in our
paper[14].

DEFINITION 2.2. A functionF : H — H is w-Hadamard differentiablat u € H if
there exist¥" € B(H, H) such that

lim <F(u+tnvn) - F(M)7

; (p> =(Tv,9) forallve Handallp € H
n

n—oo

forall {¢t,} c R\ {0} with#, — Oand all{v,} c H withv, — v weakly inH.
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Now consider an equation of the form
(2.1) Gu)=puu forpeRandu € H,

whereG : H — H with G(0) = 0. We shall use the following terminology.

A real numbery is called abifurcation pointfor (2.1) if there exists a sequence
{(n, un)} C R x H of solutions of [(2.]l) such that, # O, |u,|| — 0 andu, — pu.
The set of all bifurcation points fof (3.1) is denoted By. We say that there igertical
bifurcationat u if the sequencé(u,, u,)} can be chosen with the additional property that
w, = uforalln € N. We say that there igifurcation to the righf(left) at . if the sequence
{(un, uy)} can be chosen with the additional property that> (<)u for alln € N.

For a bounded linear operatdr: H — H we denote its spectrum ky(T) and its
essential spectrum by

0.(T)={reR:T — ) : H— H isnota Fredholm operatpr

The first result, which is part of Corollary 4.3 in_[15], gives necessary conditions for
bifurcation atu.

PROPOSITION2.3. LetG : H — H be a function such that(0) = 0 and G is w-
Hadamard differentiable at = 0 with G'(0) = G’ (0)*. If u € Bg N (A¢, 00) where
A¢ = supo,.(G'(0)) and

im SUIO(G(M) — G'Ou, u)

lu—0 |2 <d(p,o(G'(0))),

thenu € o (G'(0)).

In formulating some sufficient conditions far to be a bifurcation point we suppose
thatG is a gradient map with the following properties.
(H1) There exists an even potentiale C1(H, R) with v (0) = 0 such that

lim v (u)/||ul* =0

lul]—o00

and
v (u < 2y w) forallu e H\ {0}.

We useG to denote the gradient gf defined by
(Gw),v) =y (wv forallu,ve H

and make the following additional assumptions:

(H2) G : H — H is compact.
(H3) G : H — H is either Hadamard or w-Hadamard differentiable:at 0 with a
derivativeG’(0) € B(H, H) that is self-adjoint.

We set
A, =info,(G'(0)) and A€ = supo.(G'(0)).
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PROPOSITION2.4. Suppose that the conditiold1){(H3) are satisfied.

(A) If A¢ > 0, then[0, A°] C Bg, and there is vertical bifurcation at eveyy € (0, A°).

(B) Also (AS, 00) No(G'(0)) C Bg whereA$ = max0, A°} and there is bifurcation
to the left at everyu € (A%, 00) N o(G'(0)), If in addition G is w-Hadamard
differentiable at: = 0, then(A%_, co) N o (G'(0)) = (A%, o0) N Bg.

This is part of Corollary 5.2 in [15].

3. PROPERTIES OF THE OPERATOK

We expose the main features of the spectrum of the linear opekatar B(H4, Hy)

defined by[(1.10).

PrROPOSITION3.1. Underthe hypothesi®1), K € B(Ha, Hy) is a positive self-adjoint
operator with

(i) supo(K) = [IK| = supl(Ku, u)a/llull3 : u € Ha\ {0} < 4/N2a; andinfo (K)
=0,
(i) supo.(K) = 4/N?,
(i) u € (4/N?, 00) No(K) if and only if there exists € Hy \ {0} such that

1
/AVu-Vvdx:—/ uvdx forallve Hy.
2 nJe

PROOF (i) For anyu,v € Ha,

lullallvlia

[{(Ku, v)s| = '/ uvdx
2

= |uf2|vj2 =
lulalvlz < S

so|K|| < 4/N2«1. Clearly K is self-adjoint and positive. Henea(K) c [0, ||K|] and
supo (K) = |K|| = sup{Ku, u)/||u||i cu € Hy \ {0}}. To see that &= o(K), consider
any ballB = B(xo, r) such that8 ¢ £ \ {0} and any nonzero functione H(B). For
n € N, set

N/2
Zn(x0+x)={g z(xo +nx) for|x| <r/n,

otherwise
wherexg is the centre o and let
m = minA(x).
xeB
Thenz, € Hy with (Kz,, z,)a = Iznlg = Izlg and
lznll = / A)|Vz, P dx > m/ IV, ()2 dx = ng/ IVz(y)|? dy
2 |xo—x|<r/n [xo—yl=<r

wherem > 0, showing that K z,, z)a/llzall3 — O.
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(ii) We begin by recalling (see Theorem 7.24 [ofl[27], for example) that o, (K)
if and only if there is a singular sequence ®r— A, that is, a sequende, } having the
following properties:

v, =0 inHy, liminfv,]la >0 and |[(K —X)v,lla — O.

We split the proof into two parts. First we construct a singular sequenck ferd/N2,
then we show that fok > 4/N? there are no singular sequences ko A.

Part1. By part (i) of Lemm4 1.p, there exists a sequeficg C Hx such that supp, C
B, C £2 with

5 5 NZ 1
luy,l2=1 and |x||Vu,|“dx < — + - foralln € N.
k7] 4 n
Now definev,, by

n™N'%u, (nx) for|x| <e/n,
vn(¥) = {0 otherwise

Thenv, € Ha with suppv, C B./, C £2 and
lonlZ = / 1Ny (nx)2 dx = / un(y)2dy = 1,
|x|<e/n lyl<e
||vn||2=/ |x|2|an(x>|2dx=f 1x 120%™V |V, (nx)|? dx
2 |x|<e/n
s 5 N2 1
= YPIVun )Py < -+~
[yl<e n
Since 1= v, 12 < 2 v, [I2 by ), it follows that

N2

Foranyu € Hy,

(Up, u) = [ [x|°Vv, - Vudx
[x|<e/n

1/2 172
< {/ |x|2|wn|2dx} {/ |x|2|W|2dx}
|x|<e/n |x|<e/n

1/2
= ||vn||{/ |x|2|W|2dx}
|x|<e/n

N2 1 1/2
< ——i——{/ |x|2|Vu|2dx} — 0 asn— oo,
4 nUpi<e/n
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showing thatv, — 0 weakly inH,4. Sinceljv,|la — N/2, this means thatv,} has no
subsequence converging stronglyAn . Furthermore, for alli € Hy4,

4 4
‘<<K — Nz)vn, u>A /Q(vnu — mA(x)an . Vu) dx
/ 4 X2V, - Vu ) dx| +
i VU N7 x|V, - Vu | dx

whereL, = SURy_,|<¢/n |A(X)/]x|> — 1] - 0 asn — oo. But

4 5 ~ 4
A vnu—ml)d Vv, -Vu |dx = K—m U, U

wherek : Hy — Hy is defined by

<

4L,
wz lvnllllull

(fw,u):/ wu dx forallu, w € Hy
Q

/ — — x|V V dx|< K—
vl X Up - VU X v
n N2 n = N2 n

and so

lJull.

It follows that

4 ~ 4 4L,
K_ﬁ Vg, ) | < K_ﬁ Un +W||Un|| flull
A
~ 4 4L, llull o
< K—-— —
_{H( Nz>”" + 2 ||vn||} L

and hence that

4
K—m Uy

(Kw, u)| =

1 F 4
- Jar N2
/ wu dx
2

showing that| Kw|| < (4/N?)||lw| for allw € H4. Thus

4L,
+FHU"” .

But

4
= [wl2lulz = Tz lwil flull

2

k-2 102 =~ (R o) + 2 a2
— —= v = v — —(Kv,, v —||v,
N2 n n N2 n n N4 n
16 8 16
smuvnnz—ﬁ/ Rdx+ 1 lunl?
_ 3 N2+1 8 32
—“ N4\ 4 g N2~ N%n

and

(e ], = [ e 1)
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Thus |(K — 4/N%v,|l4 — 0 and we have shown théb,} is a singular sequence for
K — 4/N?2. This implies that 4N? € 0,(K).

Part 2. Fix » > 4/NZ2. Consider a sequende,} C H4 such that
v, ~0 InHy and |[(K —MAuv,|la — 0.

It is enough to prove that these two properties imply thatj» — O. _
First we observe that, — 0in W12(2\B,) for all ¢ > 0 such thatB, c 2 where
B: = {x € RN : |x| < ¢}. This implies that

(3.1) [ _ v2dx — 0 foralle > 0 such thaB, C £2.
2\B.:

Sincei > 4/N?, we can choosé > 0 such that.(1 — 8) > 4/N2. Then we can choose
e > OsuchthaB, c 2 andA(x) > (1—8)|x|%forall x € B,. Letgp € C®(RY) be such
that

p(x)=1for|x| <eg/2, O0<g@x)<lfore/2<|x|<e k) =0for|x|>ce.

Thengv, € H4 and
/Q AA)V(oua) 2 — (9un)?) dx
4
> /Q(M(X)IV(wvn) 2_ m|x|2|wvn>|z> dx by (1)
4
= /B (AA(xW(govn)F - ﬁ|x|z|wvn>|2) dx
4
z/ <x<1—a)|x|2|V<<pvn>|2— m|x|2|wvn>|2) dx
Be
= {A(l—(» - i}f X2V (pu) [P dx = {A(1—6> - i}nwv 12
N2 B, n N2 nil -
On the other hand,
/ﬂ (LAX) |V (@ua)]? = (pun)?) dx
_ / A 9V + 1a V) - V(pvy) — ¢202) dx
2
= / (AAX) Vv, - V(pv,) — vapv,) dx +/ p(l— §0)03dx
2 22
+ / A {(@ — DV, + v, Ve} - Vigpu,) dx
2
= ((A — K)vy, pup)a +/ p(1— so)vfdx
2

+f LA — DV, + v, Vo) - Vipv,) dx
2
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and
/ MA@ (@ — DV, + 0V} - Vigu) dx
2
= f MA@ — Dol Va2 + (9 — Vv,V - Vo + v,V - V(pu,)} dx
2
< / JA@(@ — DV, - Vg + v,V - V(pvy)} dx
2
=/ M@ {(@ = Dy Vo, - Vo + v, Ve - V(py,)}dx
‘Q\BS/Z
:/  AMAM{2¢ — Vv, Vv, - Vo + 12|V 2 dx.
Q\BS/Z
Hence
a4 2 _ o
Al —-9) e lov,ll© < (A — K)vy, @up)a + Q‘P(l Qv dx
4 / A — DV, + 0a V) - Vipuy) dx
2

s|<(A—K>vn,<pvn>A|+/ _ v2dx
$2\B¢)2

+/  AM®{2p — D, Vo, - Ve + v,21|Vgo|2}dx.
£2\B¢)2

Settingp = {A(1 — 8) — 4/N?}, we see thap > 0 and
(A = K)vg, gua)al < (K = Vvgllallevalla < Va2l (K = Vv llallovall
< 220K = a2 + Zllgual
~ 2 AT 2
Thus we obtain

o az
Zlovall? < 221K = Mvall? +/ _ vldx
2 2p 2\By2

+f  AMAW{2p — DV, - Vo +12|Ve|?) dx.
$2\B)2

But [\, , va dx — 0 by ), and

2 4 4
/ Vo, dx S/ lzwmzdx < —2/ x[?|Voal?dx < ——luall5.
2\Be2 2\B.j2 (€/2) &% Jo e201

showing that

/ ~ v2dx +/  AMAW{Re — Vv, Vv, - Vo + 12| Ve|?}dx — 0.
Q\BS/Z -Q\Bs/Z
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This proves thaf¢v,| — 0 and consequenth@gs/2 vf dx — 0 because

4
[k < [ uitas < ieul?
Be/2 2

Recalling ), we now deduce thd@ v, v,)4 = fg vf dx — 0. But

Mlvalld = (Kva. va)a — (K = 2)va. va)a
< {Kvn, vp)al + (K = 2 vallallvnlla
where{||lv,lla} is bounded and|(K — M)v,|lla — 0O by hypothesis. This proves that

luplla — O0and so. ¢ o.(K).
(i) This follows from part (ii) and the definition (1.10) of . ]

4. PROPERTIES OF THE OPERATORy

We now turn to the nonlinear operatét : Hy — Hy defined by [(1.10) and the
corresponding potentiat : H4 — R defined by

(4.1) ¥ (u) =/ Fu(x))dx where F(s)= /‘Y f@) dt.
Q 0

PrRoPOSITION4.1. Under the hypothesd®1) and(D2), we have:

(i) G: Hy — Hy is Lipschitz continuous.
(i) G : Hy — Hy is both Hadamard and w-Hadamard differentiableiat= 0 with
G'(0) =K.
(i) vy : Ha — Ris continuously Fechet differentiable an¢’'(u)v = (G (u), v) 4 for all
u,v € Hy.
(iv) If in addition,

(D3) sud|f():s e R} =m < o0,

thenG : Hy — H, is compact ands : H4 — H, is not Fréchet differentiable at
u=20.

PROOF Suppose throughout thafv, w € Ha.
(i) We have

|<G(u>—G<v>,w>A|s/ﬂ|f@)—f(v)||w|dxs/ﬂM|u—v||w|dx

aM
= Mlu —vl2lwl2 = ——Illu —vllallwlla
N<o

and hence

1Gu) —G)lla =< llu —vlla.

NZ2a4
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(i) In view of (i), to establish Hadamard differentiability at= O, it is enough to prove
thatG is Gateaux differentiable at= 0. Forz € R \ {0},

K(v),w> / {f(tv) —v}wdx
A 2 t

1
{——f(stv)—v}wdsdx / (f'(stv) — LJvwds dx
2 J0

’<G(tv) -G

tds

S// [v| Jw| | f/(stv) — 1| ds dx
2 J0
1 1/2 1 1/2
5{// Ivlzlf’(stv)—llzdsdx} {// lezdsdx}
2 J0 2 J0
1 1/2
:|w|z{/f Iv|2|f/(stv)—1|2dsdx}

172
_Nf||w||A{// W2 (stv) — 1] dsdx}

1/2
N\/_{/f [v|?| £/ (stv) — 1] dsdx} .

Butv € L(2) and|f'(stv(x)) — 1 < M+ 1forall |t < 1,5 € [0, 1] and almost all
x € 2. It follows from dominated convergence thatis Gateaux differentiable at= 0.

For the w-Hadamard differentiability, we now consider sequeregs ¢ H4 and
{t,} Cc R\ {0} such that, — v weakly in H4 andz, — 0. Then

so that

HM_
t

<

(K(vp) — K(v), w)a = (vy —v, Kw)a - 0

and

1
5// (ol [w] | (stwvn) — 1] ds dx.
2 J0

‘< G(tyvn) — G(0)
In

— K (vn), w>
A

Since{v,} is bounded inH 4, there is a constartf > 0 such that

[vpl2 < lualla < C foralln € N.

< Nf
Then, for anye > 0 such thaB, c £ andn € N,

1 172
f/|vn||w||f’<srnvn)—1|dsdxs(M+1>|vn|z{f wzdx}
B, JO Be

1/2
§(M+1)C{/ wzdx} )
B
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We claim that
1
/ / [va| lw] | f/ (styvy) —1ldsdx — O asn — oo.
2\B, JO

Indeed, if this were false, there would exis& (0, 1), § > 0 and a subsequen¢e,} such
that

1
(4.2) / / o | W] | f/ (sty,vn,) — L dsdx > & forall ng.
2\B. Jo

But the fact thaw,, — v_weakly in Hy implies thatv, — v weakly in HY(£2\B,) and
hence strongly il 2(2\ B,). Therefore, passing to a further subsequence, we may suppose
(see Theorem V.6 iri 8], for example) that there exists L2(£2\ B,) such that

lun,| <z ae.on2\B. and v, — z a.e.onR\B,.

Hence
1 —
/0|vnk||w||f/(stnkvnk>—1|dss<M+1>|vnk||w|s<M+1>|z||w| a.e. on2\B,

where|z| lw| € L1(£2\B,). Recalling thatf’(0) = 1, dominated convergence now shows
that

1
/7</ |vnk||w||f/(stnkvnk)—1|dsdx—>0,
2\B, Jo

contradicting[(4.p). Thus we find that, for amy- 0 such tha. C £2,

1
Iimsup// [val lw] | f/ (styvp) — 1 ds dx
22 J0

n—oo

1
glimsup/ / [val lw] | f/ (styvp) — 1] ds dx
B, JO

n—oo
1/2
S(M+1)C{/ wzdx} .

Butw € L1(2) so{ [, w?dx}Y/2 - 0 ase — 0+ and we have proved that

1
/ f [l lwl | f(stavn) — 1| ds dx — 0.
2Jo
Finally,

’<G(0) — G(tnvn)
In

— K(®), w>
A

‘<G(O) — G(tyvn)
In

<

— K (vpn), w> + (K (vn) — K(v), w)al

A
1
5/9/0 [val lw] | f (styvp) — 1 ds dx + |(K (vy) — K (v), w) Al

and it follows thatG is w-Hadamard differentiable at= 0.
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(iii) By part (i), it is enough to prove thaty is Gateaux differentiable at with
¥ (u)v = (G(u),v)a forallu,v € Hy. Foranyr € R\ {0},

_ 1
V(u+tv) — ¢ (u) / (1/ iF(u + stv)ds — f(u)v> dx
e\t Jo ds

t
1
:‘f / {fu+stv) — f(w)}lvdsdx
£2J0

—(G(u),v)a

1
M|t
5// M|stv| |v|ds dx < J|v|§
2Jo 2
and the result follows.

(iv) ansider a sequende,} C Hx such thaty, — v weakly in Hy. For anye > 0
such thatB, C 2 and anyw € Hy, we have

(G (vn) — G(v), w)al

sf (o) — f )] [w]dx
2

< om |w|dx+f 1 () — £ [w] dx
B £2\B;

1/2 1/2
§2m[/ dx} |w|z+[/ If(vn)—f(v)lzdx} lwl2
Be 2\B;

12 1/2
s{znz[/ dx} +_/\B£If(vn)—f(v)|2dx} }Nm||w||A
and hence
||G<vn>—G<v)||As{2:n[/ dx_1/2+[/ If(vn)—f(v)lzdxr/z} 2
B | 2\B. N Jo1
2

1/2 , 1/2
<1{2m / dx:| +M|:/ v, — v dx] } .
{ |: B, Q\Bs N /o1

Sincev, — v strongly inL?(2\ B,), it follows that

4dm 2
limsup||G(v,) — G(v < / dx:|
’HOOPII (vn) W) la Nﬁ[ 5

for anye > 0 such thatB, c £2. Thus||G(v,) — G(v)||a — 0 asn — oo, establishing
the compactness @ : H4 — Hju. Since sup,.(K) > 0, K = G'(0) : Hy — Hisnota
compact linear operator and ébcannot be Fechet differentiable at = 0. O

5. BIFURCATION FOR (T.1), (1.2)

As we have shown in Section U, u) € R x Hp is a solution of [(T.]1),[(T]2) if and
only if (1, u) satisfies[(1.1]1). Furthermore, @, «) is a solution and: # O, then|A| >
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N2a1/4M and so is a bifurcation point for[(1]1)[ (1}2) if and only jf = 1/ € Bg in
the terminology of Section 2 wity : Hy — H, defined by[(1.10).
Similarly 4 € o (K) N (4/N2, o) if and only if the linear boundary value problem

—V - {AX)Vu(x)} = au(x) forx e £2,
u=~0 forx € 042,

has a nontrivial solution € Hy for A = 1/u. Let
={1/u: p € o (K) N (4/N?, o0))
be the set of all such eigenvalues of this linearizatiof of (1.1)} (1.2).

Under the assumption (D1), the sEtmay be empty. For example, #(x) > |x|? for
all x € 2, it follows from Propositiot 3]1(i) that

T ] o |

K| —Sup{ llull? ‘u e HA\{O}} = su T AValdx u € Hy\ {0}
f u?dx 4
Sup{fg |x!|22|Vu|2d ”GHA\{O}} =

and soo (K) N (4/N?, 00) = . HenceX = @ if A(x) > |x|?forall x € 2.

On the other hand, there are coefficiedtssatisfying (D1) for whichX contains
many points. LetA;1 denote the first eigenvalue of the Laplacian with Dirichlet boundary
condition on$2. Then

fo IVul?dx

Aq =inf
! { fguzdx

e WrA@)\ {0}}

and so, smceW0 2(2) C Ha,

u?dx
IK| = sup{f{z XIVIHZd tu € Hy\ {0}}

u?dx
S“p{ngWuPd ue Wy (Q)\{O}}

ol 2dx
> su
maxQA f9|Vu|2d

If A satisfies (D1) and

GWO (9)\{0}} Aimag A

N2
5.1 maxA < —,
1) Q = 474

we see thaf K || > 4/N2 = supo.(K), and consequentlyK || € o (K) N (4/N?2, 0o) by
the self-adjointness df in H,. This shows that 4| K| € ¥ when [5.]) is satisfied.
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THEOREMb5.1. Suppose that the conditiofB1) and(D2) are satisfied and leB denote
the set of all bifurcation points for the problef®.q), (1.2).

(i) f 0< f(s)/s <1forall s #0, thenB C ¥ U[N2/4, 00).

(i) If fis odd with

sup|f(s)] <oco and sf(s) < Z/Sf(t)dt forall s > 0,
seR 0

then ¥ U [N?/4, 00) C B. More precisely, there is bifurcation to the right at every
A € X, vertical bifurcation at every. € (N2/4, oo) and BN(0, 0co) = YU[N?/4, o).

PrRoOOF Under our hypotheses; : H4y — H, is both Hadamard differentiable and
w-Hadamard differentiable at = 0 with G’(0) = K = K*. We also haver (K) C
[0, 4/ N?x1] and sups.(K) = 4/N?.

(i) By the assumptions abouft

o§f fudx < / u?dx forallu e Hy c L3(R).
2 2
If (A, u) € R x Hy is a solution of[(1.]1)[(1]2), then bly (1.6),
/ A | Vu(x)|?dx z,\f Fudx
2 2

and soi. > 0. Using Lemma 1(iv), we then deduce tHatc [N2/4a1, 00) C (0, 00).
ThusifA € B, thenu = 1/A € Bg N (0, 00).

Suppose that € B N[N?/4a1, N?/4). Thenu = 1/A > 4/N? = supo,(K) and
u € Bg. Furthermore,

(Gu) = G'OQu.ua _ [olfw) —ujudx _
el luel3

)

and it follows from Proposition 2]3 that ¢ o (G’(0)) = o (K) and consequently, € X.
(ii) Here we use Propositiqn 2.4 with : H4 — R defined by[(4.]1). By Proposition
[4.1, we know thaty € C1(Ha, R) with

v = (Gu),v)s = / fwvdx forallu,v e Hy.
2

Also, forallu, v € Hy,
| |l/2
N. /a1

wherem = sup.g | f(s)| and|£2]| is the N-dimensional volume of2. Hence||G (u)||4 <
2m|2|1Y2/N Jay forallu € Hy, and

(G @), v)al < m|2|Y? ]2 < vl

L 2er®
— U .
= "Num A

1
Y(u) = Vo (G(tu), u)adt
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Thus we see that
lim ¥ @)/lul} = 0.

lull4—00

Furthermore, for € Hu \ {0},

u(x)
2y (u) — ' (Wu = / {2/ f@)dt — f(u(x))u(x)} dx > 0.
2 0

Referring to Propositiof 4,1, we have now shown that the hypotheses (H1) to (H3) of
Propositio are satisfied and = supo,(K) = 4/N? by Propositiol. It follows
that> U[N</4, c0) C B.

Finally, we observe that, sinag’(u)u < 2y (u) for allu € H \ {0}, we have

d y(tu)
i <0 forallu e H\{0}ands > 0O
and hence (G'(O)u, u) (G(tu), u) Y (tu)
u,u . tu), u . tu
Tz M TimE e
Hence

(GO, u)a > 29 () > ¥ (wu = (Gw),u)s forallu e H\{0}

and so

_ /
im SUIIO(G(u) G go)u, u)A
lluf s—0 fleell%

Using Proposition) 2|3, it follows that4/N?, 00) N B C o(K) and hence thaB N
(O,N?/4) cx. O

EXAMPLES. Consider an odd functiofi € C1(R) that is positive, strictly concave and
bounded on [Doo) with f/(0) = 1. Then lim_~ f'(s) = 0 and f satisfies all the
hypotheses of Theore@.l. For such functioBs= X U [N?/4, co). The functions
f(s) = tanhs and f (s) = arctans have these properties.

On the other hand, for any > 2, one finds that the functiofi(s) = s(1+ s2)~® also
satisfies all of the hypotheses of Theo@ 5.1, but it is not concave, en)[dn fact, f”
changes sign exactly once in, [&).

5.1. More general nonlinearities

As we have shown in Theorgm b.1, the abstract results in Section 2 can be applied directly
to some problems of the typg (1.1), (1.2) but the nonlinear tgris required to be
bounded on the whole real line. However, it is possible to deduce from these results similar
conclusions for equations with unbounded nonlinearities. In fact, it is sufficient to assume
that f satisfies the following condition.

(F) Forsomd > 0, f € C1([—T, T]) is an odd function that is strictly concave on [0
with £(0) = f(T) =0andf’(0) = 1.
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Given such a function, we set

F(s) =/X f(tydt fors e [=T,T]
0

and then extend to R as an even function having the following properties:

F e C?*R), F'(s)<0 foralls>T,

lim F(s) = lim F'(s) = lim F’(s) =0.

§—>00 §—>00 §—>00
It follows that F(s) > 0 fors # 0 and the functionf = F’ satisfies the condition
(D2) and also the conditions of Theorém[5.1(ii). Howeven 8atisfies (D1) andh, u) €
(0, 00) x Hp is a solution of[(1.]1)[(1]2) foy = F’, it turns out thatu(x)| < T a.e. onf2
and so we obtain the following result.

THEOREMS5.2. Suppose that the conditior{B1) and (F) are satisfied. Then all points
in the setX U [N2/4, co) are bifurcation points fo), ) in the sense that, for any
A € X U[N?/4, c0), there exists a sequen¢é.,, u,)} C (0, 00) x [Ho \ {0}] having the
following properties: for alln € N, |u,(x)| < T a.e. on$2 and (1.§) holds withu = u,,
An = Aand|uy,|2 — 0asn — oo.

REMARK. Since

uly < 121Y2uly and |ul, < |uly "l Y7 forall p e [1, 00),

it follows that |u,|, < |52|1/2P|un|;/2T1*1/1’ and solu,|, — 0 asn — oo forall p €

[1, 00). However, as we have shown [n[16] for the radially symmetric cade df ([.I), (1.2),
we do not havdu, | — 0 asn — oo. In fact, in that caselu, | = T for all n and

the bifurcating solutions concentratexat= 0 in the sense that the sequerieg} tends
uniformly to zero on all compact subsetss@fthat do not contain = 0.

PrROOF We consider an extensiofi = F’ of the type described above. By Theorem
(ii), there is bifurcation at every point i U [N?/4, co) for ), ) with this
function f : R — R. Itis therefore enough to show that(i, u) € (0, o0) x Hp satisfies
) for f = F’, then|u(x)| < T a.e. ons2. Given such a pai(x, u), letv = (u — T)*
andw = {x € 2 : u(x) > T}. Sinceu € W-(2) by Lemmd 6.]L(ii) below, it follows
from Lemma 7.6 of [18] thab € W11(£2) with Vv = Vu if u > T andVv =0if u < T.
Hence|Vu| < |Vu| a.e. ons2 and it follows thatv € H. Finally, using Proposition 5.3 of
[20], we easily deduce thate Hp. Puttingy = v in (1.6), we obtain

/ A(x)Vu(x).Vo(x)dx =A/ fux)v(x)dx
Q Q

where the left hand side eququA(x)Wu(x)Fdx > 0, while the right hand side equals
kfw F'(u(x))v(x)dx < 0 sinceF’(s) < Oforalls > T. But, if v has positive measure,
then

k/ F'(u(x))v(x)dx < 0,
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and we have a contradiction. Henpanust have measure zero am¢c) < T a.e. ons2.
Using the oddness df’, we can replace by —u and obtain the same conclusion, showing
that|u(x)| < T a.e. on2 as required. O

EXAMPLES. For anys > 0, the functionf(s) = s — |s|?s satisfies the condition (F)
with T = 1. The functionf (s) = sins satisfies the condition (F) with = 7.
6. APPENDIX 1: PROPERTIES OFHy

First we prove the lemma stated in the introduction.
ProoOF oFLEMMA[1.]. (i) Letu € Hp \ {0} and set(x) = ru(x) wherer = |x|. Then

v =Ty rdu and |Vol? = u?+ [x|2|Vul® + x - V().
r

For anye > 0 such thatB, c £2, we have

/ x~V(u2)dx=—8/ uzdy—N uzde—N/ u?dx
2\B; |x|=¢ 2\B; 2\B,

sincel'u = 0, and so

f [Vv]?dx < / (1x|%|Vul®> = (N — Du®) dx
2\B, 2\B,

from which it follows that
(6.1) / |Vu|?dx + (N — 1)/ u?dx < / 1x12|Vu|?dx < oo.
2 2 2

By Lemma 6.1(i) belowy and hencer admits a generalized derivative ¢h Also |v| <
Clu| whereC = max.cq |x| andu € LX(£2). Thus [6.1) implies that € W32(22) \ (0}
and Hardy’s inequality (se€l[9] arl[1]) then yields

N—2\2 [ 2 N —2\?
volldx > [ —= /—dx:(—) fuzdx.
/.Ql | < 2 > o x? 2 Q

Combined with[(6.]1), this yields

N2 2d 4
—/ uldx < / Ix|?|Vu|?dx and su fgu—x ‘u€ Ho\ {0} < —.
4 Jo Q fo 1x121Vul?dx N2

Settingu, (x) = |x|* — ¢ for x € B, andu, (x) = 0 forx € £2\B,, we find thatu, € Ho
foralla > —N/2 and a little calculation shows that

2
. us dx 4
lim ./:Q—ot = —,
a—>=N/2+ [ |x1?|Vug|?dx  N?

completing the proof of part (i).
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(ii) By part (i), [, |x|?|Vu|?dx is a norm onH equivalent to(-, -)*/2, and using|[(1]3)
we obtain

a1/ Ix|?|Vul? dx 5/ A(X)|Vul?dx §a2/ Ix|?|Vu|? dx.
2 2 2
(iii) & (iv) Since (,, u,) satisfies[(1]6) we have
a2 = /Q AV () 2dx =An/9f<un(x>)un<x>dx < il M lun 3

and

4 4
2 2 2 2
IMIS—/IXIIVMIdXE lunly. O
ni2 NZ o n Nzal nilA

Now we provide some additional properties of the spHgeadefined by [(1.5). Recall
that in our definitionVu = (d1u, ..., dyu) whered;u denotes the generalized derivative
of u on the open se® \ {0}. We use the norm oflp defined by[(1.B).

LEMMA 6.1. (i) Ifu € Ho, thenVu e LY(£2) andd;u is also the generalized derivative
ofuonffori=1,...,N.

(i) Ho is continuously embedded Wit 1(02).

(iii) C3°(£2) is dense inHp.

PROOF. Letu € Ho. As usual, forB; = {x € R : |x| < &} with ¢ > 0, but small
enough so thaB, C £2, we have

1/2 1/2
f |Vuldx < {/ |x|2|W|2dx} {/ |x|2dx} < C|lu|
2\B; 2\B; 2\Be

whereC = {/, |x|~2dx}¥2 < oo sinceN > 3. HenceVu € L1(£2) and|Vul1 < C|lu].
Now consider any € Cg°(£2). Then, sincer, d;u € L1(£2),

/ udjp + @oju) dx = I|m / 0i(up)dx = — I|m / —u(x)(p(x) dx.
£2\B; 0B, | |

But Hy C L?(£2) and so there must exist a sequefisg c (0, oo) such thak, — 0 and

1
/ uzdy < —.
Iy‘:‘gn &n

But then

12 12 —1/2 1/2 2)/2
f uldy < {f uzdy} {/ dy} < e P (wy el Y2 = 2N
9B, [y|=¢én [yl=¢én

and
12, (N /2

’/B —M(X)w(X)dx =< |€0|oo/a luldy < |plocwy

n
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Hence
lim / ﬁu(x)w(x) dx =0
n—o0 Jop, x|
and it follows that
/Q(uai(p + @oju)dx = 0.

Sinceu, 9;u € L1(£2), this proves that admits a generalized derivative éhand indeed
thatu € wi1(£2) with

luly+ |Vuly < [2Y2ulz + Cllull < (22Y%/N + C}|lull.
This proves parts (i) and (ii).
Let& € C®(RN) with £(x) = 1 for |x| > 2 and&(x) = O for |x| < 1. Consider

n > 2/e wheree > 0 is such thaB, c 2 and set, (x) = £(nx). Note that| V&, (x)| <
n|Vé|s. Then for anyu € Hop, &,u € W&’Z(Q) and

||u—snu||2=/9|x|2|V[<1—sn>u]|2dx s2/9|x|2{|vsn|2u2+(1—sn>2|W|2}dx.

But
2 2
/ 1x|?|VE, [Pu® dx = / x|2|VE, [Pu? dx < [ (—) IVE|2u? dx
2 1/n<|x|<2/n 1/n<|x|<2/n \ 1
< 4vel, / u? dx
1/n<|x|<2/n

where liMy—os f1 x| <2/n u?dx = 0 sinceu € Hy C L%(£2), and

f |x|2<1—sn)2|w|2dx=/ |x|2<1—sn>2|w|2dxsf X% Vu|? dx
2 |x|<2/n |x|<2/n

where lim,— oo [ <o/n Ix[2|Vu|?dx = 0since [, |x|?|Vul|?dx < oo. Thus|u — &u]
— 0, showing thatW&*z(.Q) is dense inHy,
But C3°(£2) is dense ian}’z(Q) with its Dirichlet norm

1/2
||M||W01=2(Q) = {/ |Vu|2dx}
2

and, since? is bounded, there exists a constant such that
f Ix2IVul2dx < DA/ IVul?dx  forallu e Wy?(£2).
2 Q

This proves thaC;°(£2) is dense inf for the norm|| - ||. O
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7. APPENDIX2: WEAKER DEGENERACY

To place our results concernirfg ([L.1), {1.2) in better perspective, we make some remarks
about what happens when the assumption (D1) is replaced by

(D1), A € C(2) with A(x) > Oforallx € £\ {0} and lim,|—.0 A(x)/|x|" = 1 for some
t €[0,2].

We can still define a Hilbert spacéi,, (-, -)4) by
(7.1) Hy = {u € L%(2): f A(X)|Vux)|?dx < ocoandlu = 0},
2

(7.2) (U, v)g = / Ax)Vu(x) - Vu(x) dx,
fos

but fort < 2, this space has much better properties than in the case2 and the
boundary-value problem behaves like the uniformly elliptic caseO for all ¢ € [0, 2).
In particular, the set of bifurcation points is an increasing sequgnce € N} C (0, co)
with lim; o0 A; = 00.

DEFINITION 7.1. Under the hypothesé€B1), and(D2) a solutionof (1.1), (1.9)is a pair
(A, u) € R x Hy such that

(7.3) / A(x)Vu(x) - Vo(x)dx = )L/ fux)ex)dx forall g € Hy.
2 2

A pointA € R is abifurcation pointfor (L.1), (1.2) if there is a sequencfr,, u,)} C
R x [Hy \ {0}] of solutions such that, — A and|u,|2 — O.

Here are some basic properties of the spdge

LEMMA 7.2. Letthe functiom satisfy(D1), for somer € [0, 2]. Then

(i) (Ha, (-, -)a) is continuously embedded in the spaé#, (-, -)) defined by(1.5), and
hence also inL.2(£2). LetJ : Hy — L?(£2) denote this embedding ar@) its norm
so that

lulp < Callulla forall u e Hy.

(i) (Ha, (-, -)4) is continuously embedded W17 (2) for 1 < p < 2N/(N +1).
(i) (Hy, (-, -)a) is compactly embedded it (2) for 1 < g < t* =2N/(N +t — 2).

REMARK. Note that* > 2ifand only ifr < 2. Fort = 2, we have seen th&@t,, (-, -))
is continuously embedded it?(£2), but the embedding is not compact.

ProOF (i) By (D1), and the boundedness &f, there exist constani$ > « > 0 such
that

(7.4) alx|" < A(x) < Blx|" forallx € 2.

The conclusion now follows easily.
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(i) Let u € Hu. By part (i) and Lemmf 6|1, admits generalized derivatives éhand
u € WhL(£2). Furthermore, for i p < 2N/(N +1),

p/2 (2-p)/2
/ [Vul? dx < {/ |x|’|Vu|2dx} {/ x| 1P/ @=P) dx}
22 Q o

p/2
= cp{/ |x|’|W|2dx}
2

whereC,, < oo sincetp/(2— p) < N. The conclusion now follows fronj (7.4).
(i) This follows from (ii) and the Sobolev embedding &7 (£2) in LI(£2) (see
part 3) of 8.7 in[[2], for example). O

Using this lemma, for any € [0, 2], we can define a bounded linear operakor.
L2(2) — Hy by

(Lu, v)a =/ uvdx forallu € L2(£2) andv € Hy
2

and we setk = LJ. It follows thatK € B(H4, Hy) andK : H4 — Hj, is compact if
t < 2. Henceo.(K) = {0} if r < 2, whereas for = 2, we have shown that sup(K) =
4/N? and consequentli is not compact.

For a functionf that satisfies (D1)f () € L?(£2) for all u € L?(£2) and we define
an operatof : L2(£2) — L?(£2) by

Fu) = f) forallue L?%).

Clearly F : L%(£2) — L?(£2) is Lipschitz continuous and as is well known (see Theorem
2.7 in [3], for example), it is also Gateaux differentiable at every L2(52). It follows
that F : L2(£2) — L2(2) is also Hadamard differentiable at everye L2(£2). Setting
G = LFJ, weinferthatG : H4 — Hj, is continuous and Gateaux differentiable with

(G(u),v)a = /Q fwvdx forallu,v € Hy, and
(G'(w)w, v)4 = /Q fwywvdx forallw e Hy,
forallr € [0, 2]. Fort € [0, 2) andqg € (2,t*), there is a constard, such that
([G'(w) — G'(@)]w, v)al < /Q |f' ) = '@l wl vldx < |f' () = ' @plwlglvlg
<1/ @) = f'@IpDZlwlallv]la
wherep = g /(g — 2). It follows that
IG" ) = G' @By 10) < DI W) = f'(2)], forallu,z e Ha.

Since| f'(s)| < M for all s € R, the mapping: — f'(x) is continuous fron.2(£2) into
L?(£2) (see Theorem 2.2 in[3], for example) and so a fortiori frékxn into L7 (§2). This



BIFURCATION POINTS OF A DEGENERATE ELLIPTIC PROBLEM 333

proves thaiG’ : Hy — B(Hy, Hy,) is continuous and it follows tha® : Hy — Hj is
continuously differentiable in the sense o&Ehet fort € [0, 2).
By Propositiof 411y : Hyo — R is continuously differentiable and

¥ (v = / fwvdx forallu,v e Hg,
2

But for 0 < r < 2, H, is continuously embedded iHig and soy € C1(Hy, R) with
V(v = (Gu),v)a forallu,ve Hy.

Thus, in facty € C2(Hy, R) whent € [0, 2).

From the compactness of the injectidrn Hy — L2(£2) whent < 2, it follows that
G =LFJ: Hy — Hy is also compact whene [0, 2).

Recalling from Section 2 thaBs; denotes the set of all bifurcation points for the
equation[(ZJ1), standard results from abstract bifurcation theory (for example, Theorems
4.1 and 7.1 in([22]) show that fare [0, 2), B¢ = o(G'(0)) whereG’'(0) = K : Hy —

H, is a compact, self-adjoint operator witku, u)4 > O forallu € Hx \ {0}. Thus for

t €]0,2),0(G'(0)) = {u; : i € N}U {0} wherey; is an eigenvalue of finite multiplicity
of K,0 < puijy1 < p; foralli and lim_ . n; = 0. Settingx; = 1/u;, we obtain the
following result.

THEOREM7.3. Suppose that the conditioiipl), and (D2) are satisfied for some €
[0, 2) and let B denote the set of all bifurcation points for the probléhi]), (1.7). Then
B ={X; :i e N} where0 < A; < A;j+1 withlim;_, oo A; = co.
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