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ABSTRACT. — We investigate the problem of(κ, τ )-loops, that is, closed curves in the three-dimensional
Euclidean space with prescribed curvatureκ and torsionτ . In particular we focus on some perturbative cases,
takingκ = κε(p) 291- andτ = τε(p) with κε andτε converging to the constants 1 and 0, respectively, asε → 0.
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1. STATEMENT OF THE MAIN RESULTS

In this paper we study the existence of closed curves in the three-dimensional Euclidean
space with prescribed curvature and torsion. The problem can be stated as follows: given
smooth functionsκ : R3

→ (0,+∞) andτ : R3
→ R, find closed curvesΓ in R3 such

that at every pointp ∈ Γ the curvature ofΓ equalsκ(p) and the torsion isτ(p). We shall
call such curves(κ, τ )-loops.

In particular we will focus on some perturbative cases, taking

(1.1)

{
κ(p) ≡ κε(p) := 1 +K(ε, p),

τ (p) ≡ τε(p) := T (ε, p),

whereK, T : R × R3
→ R are smooth functions such that

(1.2) K(0, ·) ≡ 0 and T (0, ·) ≡ 0 .

Let us observe thatκε is admissible as a prescribed curvature, sinceκε > 0 on compact
sets ofR3 for |ε| small enough.

As already noted in the first part [7] of our study, a key role for the existence and
nonexistence of(κε, τε)-loops is played by a mappingM : T2

× R3
→ R5 (see (3.22)

for its definition) which can be viewed as the Poincaré–Melnikov vector associated to the
problem (see [12]). HereT2 is the two-dimensional torus.

We point out thatT2
× R3 parametrizes the manifoldZ of loops corresponding to the

“unperturbed” problem, i.e. the problem withε = 0. Indeed, forε = 0 one hasκ0 ≡ 1 and
τ0 ≡ 0. Moreover closed curves with constant curvature 1 and constant torsion 0 are unit
circles placed anywhere inR3 and one can write

Z = {Rφz(R)+ p | (φ, p) ∈ T2
× R3

}
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where

(1.3) Rφ :=

 cosφ2 − sinφ2 cosφ1 sinφ1 sinφ2
sinφ2 cosφ2 cosφ1 − sinφ1 cosφ2

0 sinφ1 cosφ1

 ∈ SO(3)

for everyφ = (φ1, φ2) ∈ T2 and

(1.4) z(t) :=

 cos(2πt)
sin(2πt)

0

 for everyt ∈ R.

In [7] we proved that the fact that the mappingM vanishes somewhere is a necessary
condition for the existence of a bounded sequence of(κε, τε)-loops asε → 0.

In this paper we show that the presence of “stable” zeroes forM is a sufficient condition
for the existence of a branch of(κε, τε)-loops with small|ε|.

Before stating our main results, let us introduce the following definitions: let{Γδ}δ∈I
be a family of closed curves depending on a parameterδ varying in an open intervalI of R;
for δ0 ∈ I fixed, we say thatΓδ → Γδ0 in Ck asδ → δ0 if for every δ ∈ I the curveΓδ
admits a 1-periodic, uniform parametrizationuδ ∈ C3

∩Ck(R,R3) and‖uδ−uδ0‖Ck → 0
asδ → δ0. Moreover we say that the mappingδ 7→ Γδ is of classC1(I, Ck) if the mapping
δ 7→ uδ belongs toC1(I, Ck([0,1],R3)).

In a first result, we consider the case of “topologically stable” zeroes forM, where the
notion of “stable” zero is expressed by means of the topological degree, as follows.

THEOREM 1.1. LetK, T ∈ C1(R × R3) satisfy(1.2), let κε andτε be as in(1.1), andM
as in(3.22). If there is a nonempty bounded open setO in R5 such thatdeg(M,O,0) 6= 0
then for|ε| small enough there exists a simple(κε, τε)-loopΓε. Moreover every sequence
εn → 0 admits a subsequence, still denoted(εn), such thatΓεn → Γ0 in C2 asn → +∞,
whereΓ0 = Rφz(R)+ p for some(φ, p) ∈ O such thatM(φ, p) = 0.

In the presence of nondegenerate zeroes ofM we gain regularity on the branchε 7→ Γε
of (κε, τε)-loops, and the following result holds.

THEOREM 1.2. LetK, T ∈ C2(R × R3) satisfy(1.2), let κε and τε be as in(1.1), and
M as in (3.22). If (φ, p) ∈ R2

× R3 is a nondegenerate zero ofM (i.e.M(φ, p) = 0
andDM(φ, p) is invertible), then there is̄ε > 0 and, for |ε| < ε̄, a simple(κε, τε)-
loop Γε of classC4. Moreover the mappingε 7→ Γε is of classC1((−ε̄, ε̄), C2) and
Γ0 = Rφz(R)+ p.

Hence, if the functionM admits only nondegenerate zeroes, as soon as one switches
on the perturbation(K, T ), for small|ε|, C1 branches of(κε, τε)-loops come out from the
manifoldZ , emanating exactly from those circles inZ corresponding to zeroes ofM.

Let us sketch the argument used to prove Theorems 1.1 and 1.2. As a first step we
introduce the analytical statement of the problem, by identifying curves with corresponding
uniform parametrizations. In this way looking for closed curves with prescribed curvature
and torsion turns out to be equivalent to the study of the existence of nonconstant periodic
solutions of the Frenet system (see Section 2).
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Then we introduce a functional setting in such a way that periodic solutions of the
Frenet system can be found as zeroes of a pair of suitable nonlinear operators(Fε, J ).
More precisely, the operatorFε acts between spaces of periodic functions and it is naturally
defined through the Frenet equations; the operatorJ takes account of the orthonormality
conditions for the Frenet trihedron.

The operatorFε can be written as the sum of the “unperturbed” operatorF0, which
corresponds to the problem with constant curvature 1 and constant torsion 0, and the
perturbation operatorG(ε, ·), which exhibits a dependence onK(ε, ·) andT (ε, ·).

We point out thatF0 vanishes on a manifoldZ formed by injective, uniform
parametrizations of the circles inZ . Moreover, as proved in [7], the differential ofF0
at any point ofZ is a Fredholm operator of index zero. With this information we tackle
the perturbed problem making a finite-dimensional reduction according to the Lyapunov-
Schmidt method (see [15], [16], [19]), based on the Implicit Function Theorem. In this
way we construct a functionfε : T2

× R3
→ R5 whose zeroes correspond, according to

a suitable procedure, to zeroes of the pair(Fε, J ) and thus to parametrizations of(κε, τε)-
loops. This is developed in Section 3.

The final step consists in showing that the mappingfε admits zeroes. This is obtained
by studying the asymptotic behaviour offε at ε = 0. The Poincaŕe–Melnikov function
M defined in (3.22) is essentially the first order term in the Taylor expansion offε with
respect to the smallness parameterε. Thus the existence of zeroes forfε is related to the
presence of stable zeroes ofM. This part is discussed in Section 4 where we also provide
a couple of examples to which our general results apply.

We conclude by observing that the techniques used for this problem, as well as the
kind of results stated in the above theorems are common to a wide class of perturbative
problems in different contexts, like Hamiltonian systems (see, e.g., [1], [14], [6]), nonlinear
Schr̈odinger type equations (see [5] and the references therein), Yamabe’s problem ([3],
[18]), H -bubbles [9], and other problems in conformal geometry (see, e.g., [2] and
[11], for the scalar curvature problem for the standard sphere). See also the recent
monograph [4].

However, as a technically relevant difference with respect to the above listed problems,
here we deal with a nonvariational problem, even in the unperturbed case. Moreover, as
a consequence of the nonvariational character of our problem, in general, the Poincaré–
Melnikov functionM cannot be expressed as a potential. In fact this holds true for the
problem of closed curves in the plane, with prescribed curvature; for this case we refer
to [8].

The study presented here and in [7] constitutes a part of the PhD thesis of the second
author ([13]).

2. NOTATION AND PRELIMINARIES

In this section we introduce some notation and we recall some preliminary results already
discussed and proved in [7].

Let κε andτε be as in (1.1). Looking for(κε, τε)-loops is equivalent to finding periodic
solutions of a system of nonlinear ode’s (see [10]). More precisely, we can state the
problem as follows.
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Let Ckper denote the space ofCk functions fromR into R3 which are periodic with
period 1, let

X := C2
per × C1

per, Y := C0
per × C0

per

be the Banach spaces endowed with their own standard norms, and let

Ω := {(u1, u2) ∈ C2
per × C1

per | u1 nonconstant, u2 6= 0}.

We look for pairs(u1, u2) ∈ Ω solving the system

(P )ε

 u′′

1 =
N(u′

1)

N(u2)
(1 +K(ε, u1))u2 ∧ u′

1,

u′

2 = T (ε, u1)u2 ∧ u′

1,

whereK, T ∈ C1(R × R3) satisfy (1.2) and

N(u) :=

√∫ 1

0
|u|2 for everyu ∈ C0

per.

It turns out that a solution(u1, u2) ∈ Ω of (P )ε which also satisfies the conditionu′

1 · u2
≡ 0 determines a(κε, τε)-loop, and vice versa. In fact, thanks to(P )ε, the orthogonality
conditionu′

1 · u2 ≡ 0 is equivalent to

(2.1) u′

1(0) · u2(0) = 0.

We remark that(P )ε and (2.1) are homogeneous with respect tou2 and are invariant
with respect to translation int . Notice also that ifK andT are of classCk and(u1, u2) ∈ Ω

solves(P )ε, thenu1 ∈ Ck+2
per andu2 ∈ Ck+1

per .
Now let us introduce the following operators:

• F0 : Ω ⊂ X → Y , defined as follows:

F0(u1, u2) :=

(
−u′′

1 +
N(u′

1)

N(u2)
u2 ∧ u′

1,−u
′

2

)
for every(u1, u2) ∈ Ω,

• G : R ×Ω → Y , given by

G(ε; u1, u2) =

(
N(u′

1)

N(u2)
K(ε, u1)u2 ∧ u′

1, T (ε, u1)u2 ∧ u′

1

)
for ε ∈ R and(u1, u2) ∈ Ω,

• Fε : Ω ⊂ X → Y , defined by

Fε(u1, u2) := F0(u1, u2)+G(ε; u1, u2) for every(u1, u2) ∈ Ω.

We point out that(u1, u2) ∈ Ω solves(P )ε if and only if

(2.2) Fε(u1, u2) = 0.
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Let us also introduce the following notation:

θ := (φ, p) ∈ T2
× R3 and ωθ := (Rφz+ p,Rφe3).

Observe thatF0(ωθ ) = 0 for everyθ ∈ T2
× R3 and the mappingθ 7→ ωθ is of classC∞

from T2
× R3 intoX.

In [7] we proved thatF ′

0(ωθ ) is a Fredholm operator of index zero fromX into Y and
the following decompositions hold:

X = kerF ′

0(ωθ )⊕ (kerF ′

0(ωθ ))
⊥,(2.3)

Y = imF ′

0(ωθ )⊕ (imF ′

0(ωθ ))
⊥,(2.4)

where all the subspaces are closed and dim kerF ′

0(ωθ ) = dim(imF ′

0(ωθ ))
⊥

= 7. The
orthogonality in (2.3) and (2.4) is meant with respect to the inner product

〈(u1, u2), (v1, v2)〉 = 〈u1, v1〉 + 〈u2, v2〉 =

∫ 1

0
(u1 · v1 + u2 · v2).

As orthonormal bases for kerF ′

0(ωθ ) and (imF ′

0(ωθ ))
⊥ one can take{ζ1(θ), . . . , ζ7(θ)}

⊂ X and{ξ1(θ), . . . , ξ7(θ)} ⊂ Y , respectively, defined as follows:

ζi(θ) = Rφ ζ̄i and ξi(θ) = Rφ ξ̄i for i = 1, . . . ,7 andθ = (φ, p),

where

ζ̄1 = (0, e3), ξ̄1 = (e3 ∧ z,0),
ζ̄1+i = (ei,0), ξ̄1+i = (0, ei) for i = 1,2,3,

ζ̄4+i =

√
2

3
(ei ∧ z, ei ∧ e3), ξ̄4+i =

1
√

1 + 2π2
(ei,2πei ∧ z) for i = 1,2,

ζ̄7 = (e3 ∧ z,0), ξ̄7 =
1

√
1 + 4π2

(e3,2πe3 ∧ z).

Here and in the following for every pair(p1, p2) ∈ R3
× R3 and for everyR ∈ SO(3) we

setR(p1, p2) = (Rp1, Rp2).

3. LYAPUNOV–SCHMIDT REDUCTION FOR THE PERTURBED PROBLEM

Our goal is to find a regular mapping(ε, θ) 7→ ηε(θ) ∈ X, defined for|ε| small andθ in a
compact set, such thatFε(ωθ + ηε(θ)) ∈ (imF ′

0(ωθ ))
⊥. As a consequence, the problem of

searching for solutions of(P )ε is essentially reduced to the finite-dimensional problem of
looking for zeroes of the mapping(ε, θ) 7→ Fε(ωθ + ηε(θ)), i.e. to the study of a system
of seven equations in five unknowns, having fixed a basis in(imF ′

0(ωθ ))
⊥. This goal will

be achieved through a reduction procedure in the spirit of the Lyapunov–Schmidt method
(see [15], [16], [19]).

The following lemma, which gives the finite-dimensional reduction of the problem,
constitutes the main result of this section and the first key step for the proof of Theorems
1.1 and 1.2.
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LEMMA 3.1. LetK, T ∈ C1(R × R3) satisfy(1.2). For everyr > 0 there exist a value
εr > 0 and unique mappingsε 7→ ηε ∈ C0(T2

×Br , X) andε 7→ µε ∈ C0(T2
×Br ,R7)

of classC1 from (−εr , εr) into their target spaces, such that for everyε ∈ (−εr , εr) and
for everyθ ∈ T2

× Br one has:

‖ηε(θ)‖X < 2π,(3.1)

η0(θ) = 0 and µ0(θ) = 0,(3.2)

Fε(ωθ + ηε(θ)) =

7∑
i=1

µεi (θ)ξi(θ),(3.3)

〈ηε(θ), ζi(θ)〉 = 0 for i = 1, . . . ,7.(3.4)

Moreover for everyθ ∈ T2
× Br ,

dηε

dε

∣∣∣∣
ε=0
(θ) = F ′

0(ωθ )
−1

( 7∑
i=1

〈∂εG(0;ωθ ), ξi(θ)〉ξi(θ)− ∂εG(0;ωθ )
)
,(3.5)

dµεi

dε

∣∣∣∣
ε=0
(θ) = 〈∂εG(0;ωθ ), ξi(θ)〉 for i = 1, . . . ,7.(3.6)

In addition, if µε(θ) = 0 for someε ∈ (−εr , εr) and θ ∈ T2
× Br then (uε1, u

ε
2) :=

ωθ + ηε(θ) belongs toΩ and it solves problem(P )ε. If, furthermore, we assume
K, T ∈ C2(R × R3), then the mappingsε 7→ ηε and ε 7→ µε belong toC2((−εr , εr),

C0(T2
×Br , X))∩C

1((−εr , εr), C
1(T2

×Br , X)) and toC2((−εr , εr), C
0(T2

×Br ,R7))

∩ C1((−εr , εr), C
1(T2

× Br ,R7)), respectively.

REMARK 3.2. (i) For everyθ ∈ T2
× R3 the operatorF ′

0(ωθ ) is bijective from
(kerF ′

0(ωθ ))
⊥ onto imF ′

0(ωθ ) and F ′

0(ωθ )
−1 : imF ′

0(ωθ ) → X denotes the inverse
operator. Hence the right hand side in (3.5) is well defined because, according to (2.4),∑7
i=1〈(y1, y2), ξi(θ)〉ξi(θ)− (y1, y2) belongs to imF ′

0(ωθ ) for any(y1, y2) ∈ Y .
(ii) For every θ = (φ, p) ∈ T2

× R3 and for everyζ ∈ X one hasF ′

0(ωθ )[Rφζ ] =

Rφ(F
′

0(ω)[ζ ]), whereω = (z, e3) (see formula (4.9) in [7]). Hence, by the above remark,
one also has

(3.7) F ′

0(ωθ )
−1

= RφF
′

0(ω)
−1R−1

φ .

(iii) The mappingµε can be expressed in terms ofηε since by (3.3) one hasµεi (θ) =

〈Fε(ωθ + ηε(θ)), ξi(θ)〉 for all i = 1, . . . ,7 andθ ∈ T2
× Br .

PROOF. For fixedr > 0, setUr := T2
× Br and introduce the Banach spaces

X 0
r := C0(U r , X), Y 0

r := C0(U r , Y ), R0
r := C0(U r ,R7)

endowed with their standard norms. Clearly the mapsθ 7→ ωθ andζ1, . . . , ζ7 belong to
X 0
r whereasξ1, . . . , ξ7 ∈ Y 0

r . Moreover, introduce the open subset ofX 0
r given by

B := {η ∈ X 0
r | ‖η‖X 0

r
< 2π}
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and the functionF : R × B × R0
r → Y 0

r × R0
r defined as follows:

F (ε, η, µ)(θ) :=
(
Fε(ωθ + η(θ))−

7∑
i=1

µi(θ)ξi(θ), 〈η(θ), ζ1(θ)〉, . . . , 〈η(θ), ζ7(θ)〉
)

for all θ ∈ U r and for every(ε, η, µ) ∈ R × B × R0
r . Observe thatωθ + η(θ) ∈ Ω for

everyθ ∈ U r sinceη ∈ B. HenceF is well defined onR × B × R0
r . Our goal is to

apply the Implicit Function Theorem toF at the point(0,0,0) in order to find mappings
ε 7→ ηε andε 7→ µε such thatF (ε, ηε, µε) = (0,0), that is, (3.3) and (3.4) hold.

Regularity ofF . One hasF (ε, η, µ) = F (0, η, µ)+ G (ε, η) where

(3.8) G (ε, η)(θ) := (G(ε;ωθ + η(θ)),0, . . . ,0).

One can easily check that the mapping(η, µ) 7→ F (0, η, µ) is of classC∞ becauseF0
is. As concerns the regularity ofG , by the definition ofG, it follows from the regularity of
the Nemytskĭı operators associated toK andT . More precisely, asK, T are of classC1,
the mappingsK ,T : R × C0(U r , C

2
per) → C0(U r , C

0
per) defined by

(3.9) K (ε, χ)(θ) := K(ε, χ(θ)) and T (ε, χ)(θ) := T (ε, χ(θ))

are of classC1 (see [13] for the details). As a consequence, alsoG turns out to be of class
C1 from R × B ⊂ R × X 0

r into Y 0
r .

Now let us study the linearized problem forF at (0,0,0). Clearly F (0,0,0) =

(F0(ωθ ),0) = (0,0) becauseG(0; ·) = 0. Moreover, considering the bounded linear
operator

L :=
∂F (0,0,0)

∂(η, µ)
: X 0

r × R0
r → Y 0

r × R0
r ,

for every(ϕ, ν) ∈ X 0
r × R0

r we have

L (ϕ, ν)(θ) =

(
F ′

0(ωθ )[ϕ(θ)] −

7∑
i=1

νi(θ)ξi(θ), 〈ϕ(θ), ζ1(θ)〉, . . . , 〈ϕ(θ), ζ7(θ)〉
)
.

We will show thatL is bijective fromX 0
r × R0

r ontoY 0
r × R0

r .

Injectivity. Let (ϕ, ν) ∈ X 0
r × R0

r be such thatL (ϕ, ν) = 0, that is,F ′

0(ωθ )[ϕ(θ)] =

7∑
i=1

νi(θ)ξi(θ),

〈ϕ(θ), ζi(θ)〉 = 0, i = 1, . . . ,7.

Sinceξi(θ) ∈ (imF ′

0(ωθ ))
⊥, the first equation impliesνi(θ) = 0 for everyi = 1, . . . ,7

and thusϕ(θ) ∈ kerF ′

0(ωθ ). On the other hand, the second equation means thatϕ(θ) ∈

(kerF ′

0(ωθ ))
⊥. Henceϕ(θ) = 0. Asθ is arbitrary, we have injectivity.
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Surjectivity. Given (ψ, ρ) ∈ Y 0
r × R0

r we have to find(ϕ, ν) ∈ X 0
r × R0

r such that
L (ϕ, ν) = (ψ, ρ), that is, for everyθ ∈ U r ,

F ′

0(ωθ )[ϕ(θ)] −

7∑
i=1

νi(θ)ξi(θ) = ψ(θ),(3.10)

〈ϕ(θ), ζi(θ)〉 = ρi(θ), i = 1, . . . ,7.(3.11)

Fix θ ∈ U r . According to the decomposition (2.3)–(2.4) and thanks to the orthonormality
of the sets{ζi(θ)}7

i=1 and{ξi(θ)}
7
i=1 we can write

ϕ(θ) =

7∑
i=1

〈ϕ(θ), ζi(θ)〉ζi(θ)+ ϕ̄(θ),

ψ(θ) =

7∑
i=1

〈ψ(θ), ξi(θ)〉ξi(θ)+ ψ̄(θ),

with ϕ̄(θ) ∈ (kerF ′

0(ωθ ))
⊥ andψ̄(θ) ∈ imF ′

0(ωθ ). Then (3.11) gives

(3.12) ϕ(θ) =

7∑
i=1

ρi(θ)ζi(θ)+ ϕ̄(θ).

Moreover, by (3.10) and sinceξi(θ) ∈ (imF ′

0(ωθ ))
⊥ we see that

(3.13) νi(θ) = −〈ψ(θ), ξi(θ)〉, i = 1, . . . ,7.

In addition
F ′

0(ωθ )[ϕ̄(θ)] = ψ̄(θ)

becauseζi(θ) ∈ kerF ′

0(ωθ ). According to Remark 3.2(i), we can take

(3.14) ϕ̄(θ) = F ′

0(ωθ )
−1[ψ̄(θ)].

As θ varies, the expression (3.13) defines a continuous mapping fromU r into R7, that is,
ν ∈ R0

r . As concerns the regularity of the functionθ 7→ ϕ(θ) defined by (3.12) and (3.14),
we observe that by (3.7),

ϕ̄(θ) = RφF
′

0(z, e3)
−1R−1

φ [ψ̄(θ)].

This shows that̄ϕ ∈ X 0
r and then, by (3.12), alsoϕ ∈ X 0

r . Thus the surjectivity is proved.

Hence we can apply the Implicit Function Theorem, and sinceF (0,0,0) = (0,0),
(3.2)–(3.4) follow.

As regards (3.5) and (3.6), we recall that

(3.15)

(
dηε

dε

∣∣∣∣
ε=0
,
dµε

dε

∣∣∣∣
ε=0

)
= −L −1∂F (0,0,0)

∂ε
.
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Moreover, according to the proof of the surjectivity, we have

(3.16) L −1(ψ, ρ)(θ)

=

( 7∑
i=1

ρi(θ)ζi(θ)+ F ′

0(ωθ )
−1

(
ψ(θ)−

7∑
i=1

〈ψ(θ), ξi(θ)〉ξi(θ)
)
,−〈ψ(θ), ξi(θ)〉

)
for every(ψ, ρ) ∈ Y 0

r × R0
r . In addition

(3.17)
∂F (0,0,0)

∂ε
(θ) = (∂εG(0;ωθ ),0).

In conclusion, (3.5) and (3.6) follow from (3.15)–(3.17).
The fact that ifµε(θ) = 0 thenωθ + ηε(θ) provides a solution of(P )ε immediately

follows from (3.3) and from the definition ofFε.
Finally, let us discuss the last part of the lemma, concerning the regularity of the

mappingsε 7→ ηε and ε 7→ µε whenK, T ∈ C2(R × R3). We just give a sketch,
referring again to [13] for a more detailed proof. SinceK, T are of classC2, the operator
G : R × B → Y 0

r defined in (3.8) turns out to be of classC2 and then one readily finds
that the mappingsε 7→ ηε andε 7→ µε are of classC2 from (−εr , εr) intoC0(U r , X) and
C0(U r ,R7), respectively. The further regularity is accomplished by repeating the same
argument of theC1 regularity, but making a different choice of spaces. More precisely,
instead ofX 0

r , Y 0
r andR0

r we take

X 1
r := C1(U r , X), Y 1

r := C1(U r , Y ), R1
r := C1(U r ,R7),

endowed with their standard norms. Clearly, in this case, the setB is given by{η ∈ X 1
r |

‖η‖X 1
r
< 2π}. The proof goes exactly as before without substantial differences. The

only remark concerns the proof of the regularity of the mappingF and, in particular, the
regularity ofG . Although the Nemytskiı̆ operatorsK andT defined by (3.9) are of class
C2 from R × C0(U r , C

2
per) into C0(U r , C

0
per), the operatorG defined in (3.8) is justC1

(as needed in order to apply the Implicit Function Theorem) because the existence of the
differentialdG (ε, η) as a bounded linear operator fromR × X 1

r into Y 1
r , as well as its

continuous dependence on(ε, η), involves the second order partial derivatives ofK andT .
Hence we can findC1 functionsε 7→ ηε ∈ C1(U r , X) and ε 7→ µε ∈ C1(U r ,R7)

satisfyingF (ε, ηε, µε) = 0 and the conclusion follows. 2

In fact we are interested in solutions(u1, u2) ∈ Ω of (2.2) satisfying the additional
conditionu′

1 · u2 ≡ 0 or equivalently (2.1) which guarantees that(u1, u2) determines a
(κε, τε)-loop (see Section 2).

For this purpose let us introduce the functionalJ : X → R defined as follows:

(3.18) J (u1, u2) := u′

1(0) · u2(0) for every(u1, u2) ∈ X.

Hence, a pair(u1, u2) ∈ Ω determines a(κε, τε)-loop if and only if

(3.19)

{
Fε(u1, u2) = 0,
J (u1, u2) = 0.
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Observe thatJ ∈ C∞(X) and in particular

(3.20) J ′(u1, u2)[x1, x2] = u′

1(0) · x2(0)+ u2(0) · x′

1(0)

for every(u1, u2), (x1, x2) ∈ X.
Now, fixing r > 0 let εr > 0, ηε andµε be given according to Lemma 3.1. For every

ε ∈ (−εr , εr) let us introduce the mappinḡfε : T2
× Br → R7

× R given by

(3.21) f̄ε(θ) := (µε(θ), J (ωθ + ηε(θ))).

Our goal is to look for zeroes of̄fε since, by the last part of Lemma 3.1 and by the above
discussion, iff̄ε(θ) = 0 (for someε andθ ) thenωθ + ηε(θ) is a nonconstant periodic
solution of(P )ε and satisfies (2.1), so it corresponds to a(κε, τε)-loop.

Notice that, according to Lemma 3.1,f̄ε ∈ C0(T2
× Br ,R8) for everyε ∈ (−εr , εr),

f̄0 ≡ 0 and the mappingε 7→ f̄ε is of classC1 from (−εr , εr) into C0(T2
× Br ,R8). If

K, T ∈ C2(R × R3) (and not just of classC1) then the mappingε 7→ f̄ε belongs to both
C2((−εr , εr), C

0(T2
× Br ,R8)) andC1((−εr , εr), C

1(T2
× Br ,R8)).

Now let us consider the mappingM : T2
× R3

→ R5, already introduced in [7] and
defined as follows:

(3.22) M(φ, p) :=



∫ 1
0 ∂εK(0, Rφz(t)+ p) cos(2πt) dt∫ 1
0 ∂εK(0, Rφz(t)+ p) sin(2πt) dt∫ 1
0 ∂εT (0, Rφz(t)+ p) cos(2πt) dt∫ 1
0 ∂εT (0, Rφz(t)+ p) sin(2πt) dt∫ 1

0 ∂εT (0, Rφz(t)+ p) dt


for (φ, p) ∈ T2

× R3.

By natural periodic extension, we shall also considerM : R2
× R3

→ R5.
The next result makes clear the relationship between the functionM and the first order

term in the expansion of̄fε with respect toε.

LEMMA 3.3. There existΦ ∈ GL(8,R) andΨ ∈ GL(5,R) such that, settingΦf̄ε =:
(fε, f̃ε) : T2

× Br → R5
× R3, asε → 0 one has:

fε = εΨM + o(ε) in C0(T2
× Br ,R5),

f̃ε = o(ε) in C0(T2
× Br ,R3),

whereM is defined in(3.22). The convergences hold inC1(T2
× Br ,R5) and inC1(T2

×

Br ,R3) respectively, ifK, T ∈ C2(R×R3). Moreover iffε(θ) = 0 for someε ∈ (−εr , εr)

andθ ∈ T2
× Br , thenf̄ε(θ) = 0.

PROOF. By (3.2), (3.5) and (3.6), the first order Taylor expansion of the mapε 7→ f̄ε ∈

C0(T2
× Br ,R8) at ε = 0 is

f̄ε(θ) = ε
(
〈∂εG(0;ωθ ), ξi(θ)〉,

J ′(ωθ )F
′

0(ωθ )
−1

( 7∑
i=1

〈∂εG(0;ωθ ), ξi(θ)〉ξi(θ)− ∂εG(0;ωθ )
))

+ o(ε)
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whereo(ε)/ε → 0 in C0(T2
× Br ,R8). According to the last part of Lemma 3.1, if

K, T ∈ C2(R × R3) one can takeC1(T2
× Br ,R8) instead ofC0(T2

× Br ,R8). Since

∂εG(0;ωθ ) = −2π(2π∂εK(0, Rφz+ p)Rφz, ∂εT (0, Rφz+ p)Rφz)

for anyθ = (φ, p) ∈ T2
× Br , we readily get

〈∂εG(0;ωθ ), ξi(θ)〉 = 0 for i = 1,4,7,(3.23)

〈∂εG(0;ωθ ), ξ2(θ)〉 = −2π
∫ 1

0
∂εT (0, Rφz+ p)z · e1(3.24)

= −2πM3(θ),

〈∂εG(0;ωθ ), ξ3(θ)〉 = −2π
∫ 1

0
∂εT (0, Rφz+ p)z · e2(3.25)

= −2πM4(θ),

〈∂εG(0;ωθ ), ξ5(θ)〉 = −
4π2

√
1 + 2π2

∫ 1

0
∂εK(0, Rφz+ p)z · e1(3.26)

= −
4π2

√
1 + 2π2

M1(θ),

〈∂εG(0;ωθ ), ξ6(θ)〉 = −
4π2

√
1 + 2π2

∫ 1

0
∂εK(0, Rφz+ p)z · e2(3.27)

= −
4π2

√
1 + 2π2

M2(θ).

Set

(x1(θ), x2(θ)) := F ′

0(ωθ )
−1

( 7∑
i=1

〈∂εG(0;ωθ ), ξi(θ)〉ξi(θ)− ∂εG(0;ωθ )
)
,

(y1(θ), y2(θ)) := F ′

0(ωθ )[x1(θ), x2(θ)],

and note that, by (3.4),
(x1(θ), x2(θ)) ∈ (kerF ′

0(ωθ ))
⊥.

Moreover, using (3.23)–(3.27), one can compute

y1(θ) = −
4π2

1 + 2π2
M1(θ)Rφe1 −

4π2

1 + 2π2
M2(θ)Rφe2

+ 4π2∂εK(0, Rφz+ p)Rφz,

y2(θ) = −2πM3(θ)Rφe1 − 2πM4(θ)Rφe2 −
8π3

1 + 2π2
M1(θ)Rφ(e1 ∧ z)

−
8π3

1 + 2π2
M2(θ)Rφ(e2 ∧ z)+ 2π∂εT (0, Rφz+ p)Rφz,
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so that, by (3.20) and the formula in Remark 4.4 of [7],

J ′(ωθ )[x1(θ), x2(θ)] = (Rφz+ p)′(0) · x2(θ)(0)+ Rφe3 · x1(θ)
′(0)

= 2πRφe2 · x2(θ)(0)+ Rφe3 · x1(θ)
′(0)

=

∫ 1

0
(1 − t)e3 · R−1

φ y1(θ)(t) dt

+

∫ 1

0
((1 − t)z′(t)+ z(t)− e1) · R−1

φ y2(θ)(t) dt

= 4πM3(θ)+ 2π
∫ 1

0
(1 − z(t) · e1)∂εT (0, Rφz(t)+ p) dt

= 2π(M5(θ)+M3(θ)).

Hence, settingΦq := (q5, q6, q2, q3, q8, q1, q4, q7) for all q = (q1, . . . , q8) ∈ R8, we
have

Φf̄ε(θ) = −2πε

(
2π

√
1 + 2π2

M1(θ),
2π

√
1 + 2π2

M2(θ),M3(θ),M4(θ),

−M5(θ)−M3(θ),0,0,0

)
+ o(ε)

asε → 0 and we conclude by obvious definition ofΨ , fε andf̃ε.
Now assume thatfε(θ) = 0 for some fixedε ∈ (−εr , εr) andθ = (φ, p) ∈ T2

× Br .
In particular we have

µεi (θ) = 0 for i = 2,3,5,6.

Setting(u1, u2) = ωθ + ηε(θ), from (3.3) we deduce that

Fε(u1, u2) =
1

2π
µε1(θ)(Rφz

′,0)+ µε4(θ)(0, Rφe3)+
1

√
1 + 4π2

µε7(θ)(Rφe3, Rφz
′),

that is,

−u′′

1 +
N(u′

1)

N(u2)
(1 +K(ε, u1))u2 ∧ u′

1 = µ̄1Rφz
′
+ µ̄7Rφe3,(3.28)

−u′

2 + T (ε, u1)u2 ∧ u′

1 = µ̄4Rφe3 + µ̄7Rφz
′,(3.29)

where

µ̄1 :=
1

2π
µε1(θ),

µ̄4 := µε4(θ),

µ̄7 :=
1

√
1 + 4π2

µε7(θ).

Letting nowηε(θ) =: (η1, η2), we multiply both (3.28) and (3.29) byu′

1 = Rφz
′
+ η′

1 and
u2 = Rφe3 + η2 to get

−u′′

1 · u′

1 = 4π2µ̄1 + µ̄1Rφz
′
· η′

1 + µ̄7Rφe3 · η′

1,(3.30)

−u′′

1 · u2 = µ̄1Rφz
′
· η2 + µ̄7 + µ̄7Rφe3 · η2,(3.31)
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−u′

2 · u′

1 = µ̄4Rφe3 · η′

1 + 4π2µ̄7 + µ̄7Rφz
′
· η′

1,(3.32)

−u′

2 · u2 = µ̄4 + µ̄4Rφe3 · η2 + µ̄7Rφz
′
· η2.(3.33)

By the periodicity ofη1, u′

1 andu2 and since〈η2, Rφe3〉 = 〈ηε(θ), ξ4(θ)〉 = 0, by (3.4),
upon integrating (3.30), (3.33) and the sum of (3.31) and (3.32), we respectively obtain

µ̄1

(
4π2

+

∫ 1

0
Rφz

′
· η′

1

)
= 0,(3.34)

µ̄4 + µ̄7

∫ 1

0
Rφz

′
· η2 = 0,(3.35)

µ̄1

∫ 1

0
Rφz

′
· η2 + µ̄7

(
1 + 4π2

+

∫ 1

0
Rφz

′
· η′

1

)
= 0.(3.36)

Since (3.1) yields∣∣∣∣∫ 1

0
Rφz

′
· η′

1

∣∣∣∣ ≤ 2π max
t∈[0,1]

|η′

1(t)| ≤ 2π‖ηε(θ)‖X < 4π2,

(3.34) impliesµ̄1 = 0. Then, in turn, (3.36) implies̄µ7 = 0 and finally (3.35) gives
µ̄4 = 0. Thereforeµεi (θ) = 0 also fori = 1,4,7 and hencef̄ε(θ) = 0. 2

REMARK 3.4. Notice that the implicationfε(θ) = 0 ⇒ f̄ε(θ) = 0 in the previous
lemma has been proved without using the vanishing ofJ (ωθ + ηε(θ)); only the fact that
µεi (θ) = 0 for i = 2,3,5,6 was needed.

4. PROOF OFTHEOREMS1.1 AND 1.2 AND EXAMPLES

For the proof of Theorem 1.1 the following lemma will be useful.

LEMMA 4.1. If there exists a nonempty, bounded open setO in R5 such that
deg(M,O,0) 6= 0 then for|ε| small enough there isθε ∈ O such thatf̄ε(θε) = 0.

PROOF. Let Ψ ∈ GL(5,R) be given by Lemma 3.3. Since detΨ 6= 0, one has 06∈
ΨM(∂O) and| deg(ΨM,O,0)| = | deg(M,O,0)|. As O is bounded, there existsr > 0
such thatO ⊂ R2

× Br andd := infθ∈∂O |ΨM(θ)| > 0. Letεr be given by Lemma 3.1.
For ε ∈ (−εr , εr) define the homotopyHε : O × [0,1] → R5 by setting

Hε(θ, s) := sfε(θ)+ (1 − s)εΨM(θ) for (θ, s) ∈ O × [0,1]

wherefε is defined in Lemma 3.3. We claim that the homotopyHε is admissible for|ε|
small enough. Indeed, since∂O ⊂ R2

× Br , using Lemma 3.3, we find thatfε(θ) −

εΨM(θ) = o(ε) asε → 0, uniformly in θ ∈ ∂O. Hence, for every(θ, s) ∈ ∂O × [0,1]
andε 6= 0,

|Hε(θ, s)|

|ε|
=

1

|ε|
|εΨM(θ)+ s(fε(θ)− εΨM(θ))| ≥

1

|ε|

∣∣|ε| |ΨM(θ)| − s|o(ε)|
∣∣

≥ d −

∣∣∣∣o(ε)ε
∣∣∣∣ > 0
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provided that|ε| is small enough. Thus the claim is proved. Finally, the homotopy
invariance property of Brouwer’s degree gives

deg(fε,O,0) = deg(εΨM,O,0) = deg(ΨM,O,0) 6= 0

and the conclusion follows, by using again Lemma 3.3.2

Proof of Theorem 1.1. As noted in Section 2, our first goal is to find solutions(u1, u2) ∈

Ω of problem (3.19) for small|ε|. By Lemma 3.1 and by the definition (3.21),(uε1, u
ε
2) =

ωθ + ηε(θ) solves (3.19) iff̄ε(θ) = 0. Lemma 4.1 ensures that there exists a mapping
ε 7→ θε ∈ O, defined for|ε| small, such thatf̄ε(θε) = 0. Hence, for|ε| small, the function
uε := Rφεz+pε + ηε1(θε) is a parametrization of a(κε, τε)-loop, where(φε, pε) = θε and
ηε1(θ) ∈ C2

per is the first component ofηε(θ). Moreover, sinceθε ∈ O andO is compact,

every sequenceεn → 0 has a subsequence, again denoted(εn), such thatθεn → θ̄ for
someθ̄ = (φ̄, p̄) ∈ O. By Lemma 3.1,‖ηεn(θεn)‖X → 0 and thenuεn → Rφ̄z + p̄

in C2
per. In particular, since the parametrizationRφ̄z+ p̄ is injective onR/Z, for |ε| small,

Γε is a simple curve. Finally, by Theorem 1.1 in [7],M(φ̄, p̄) = 0. 2

Before the proof of Theorem 1.2, we state the following lemma.

LEMMA 4.2. AssumingK andT are of classC2, if M admits a nondegenerate zero at
someθ̄ = (φ̄, p̄) ∈ T2

× R3, then there exists aC1 mappingε 7→ θε ∈ T2
× R3, defined

on some interval(−ε̄, ε̄), such thatf̄ε(θε) = 0 for |ε| < ε̄ andθ0 = θ̄ .

PROOF. Fix r > 0 such that̄θ ∈ Ur := R2
× Br , let εr be given by Lemma 3.1, and, for

|ε| < εr , letfε be given by Lemma 3.3. Let us introduce the mappingf̂ : (−εr , εr)×Ur →

R5 defined by

f̂ (ε, θ) :=


1

ε
fε(θ) if ε 6= 0,

ΨM(θ) if ε = 0,

whereΨ ∈ GL(5,R) is given by Lemma 3.3. Our goal is to find the mappingε 7→ θε
satisfying the statement of the lemma, by applying the Implicit Function Theorem with
respect to the equation̂f (ε, θ) = 0 in a neighbourhood of(0, θ̄ ). By hypothesis,
f̂ (0, θ̄ ) = 0 and∂θ f̂ (0, θ̄ ) = ΨDM(θ̄) is invertible. We claim thatf̂ is of classC1 on its
domain. Clearly∂εf̂ and∂θ f̂ are well defined and continuous in((−εr , εr) \ {0}) × Ur ,
since they are continuous with respect toθ and with respect toε uniformly in θ ∈ Ur .
SinceK andT are of classC2, according to Lemma 3.1 the mappingε 7→ fε is of class
C2 from (−εr , εr) intoC0(U r ,R5) and thus, using also Lemma 3.3, we can write

(4.1) fε(θ) = εΨM(θ)+
ε2

2
g(θ)+ h(ε, θ) for every(ε, θ) ∈ (−εr , εr)× U r

where

g :=
d2fε

dε2

∣∣∣∣
ε=0

∈ C0(U r ,R5),

andh(ε, ·) ∈ C0(U r ,R5) is such that

(4.2) h(ε, θ) = o(ε2) asε → 0 uniformly in θ ∈ U r .
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On the other hand, by Lemma 3.3, we also have

(4.3) fε(θ) = εΨM(θ)+ h̃(ε, θ) for every(ε, θ) ∈ (−εr , εr)× U r

whereh̃(ε, ·) ∈ C1(U r ,R5) is such that

(4.4) ∂θ h̃(ε, θ) = o(ε) asε → 0 uniformly in θ ∈ U r .

Then (4.3) and the definition of̂f yield

∂θ f̂ (ε, θ) =

{
ΨDM(θ)+

1

ε
∂θ h̃(ε, θ) if ε 6= 0,

ΨDM(θ) if ε = 0.

Hence, thanks to (4.4),∂θ f̂ is also continuous at every point(0, θ) with θ ∈ Ur . Moreover,
using again the definition of̂f and (4.1), we deduce that

∂εf̂ (ε, θ) =
1

2
g(θ)+

1

ε
∂εh(ε, θ)−

1

ε2
h(ε, θ) for ε 6= 0,

∂εf̂ (0, θ) = lim
ε→0

f̂ (ε, θ)− f̂ (0, θ)

ε
= lim
ε→0

(
1

2
g(θ)+

h(ε, θ)

ε2

)
=

1

2
g(θ),

where the last equality follows from (4.2). In addition, by the definition ofg, we have

∂εh(ε, θ)

ε
=

1

ε

(
dfε

dε
(θ)− ΨM(θ)− εg(θ)

)
=

1

ε

(
dfε

dε
(θ)−

dfε

dε

∣∣∣∣
ε=0
(θ)

)
− g(θ) → 0

asε → 0, uniformly with respect toθ ∈ Ur . Therefore, using (4.2), also∂εf̂ is continuous
at every point(0, θ) with θ ∈ Ur . In conclusionf̂ is of classC1 and the assertion of the
lemma can be obtained as an application of the Implicit Function Theorem.2

Proof of Theorem 1.2. One argues as in the proof of Theorem 1.1, by exploiting Lemma
4.2 instead of Lemma 4.1. 2

We conclude this section with a couple of examples, focusing on the case

κε(p) = 1 + εK(p) and τε(p) = εT (p).

Hence the mappingM is

M(φ, p) =



∫ 1
0 K(Rφz(t)+ p) cos(2πt) dt∫ 1
0 K(Rφz(t)+ p) sin(2πt) dt∫ 1
0 T (Rφz(t)+ p) cos(2πt) dt∫ 1
0 T (Rφz(t)+ p) sin(2πt) dt∫ 1

0 T (Rφz(t)+ p) dt


.
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EXAMPLE 1. LetK, T ∈ C2(R3) be such that

K(p) = p2p3 and T (p) = p1 for p = (p1, p2, p3) ∈ R3 with |p| < r,

for somer > 1. One can check that for|p| < r − 1,

(4.5) M(φ, p) =
1

2


p3 sinφ2

p3 cosφ2 cosφ1 + p2 sinφ1
cosφ2

− sinφ2 cosφ1
2p1

 .

If we set φ̄ = (π/2, π/2) and p̄ = (0,0,0), the point (φ̄, p̄) turns out to be a
nondegenerate zero ofM. Thus Theorem 1.2 applies.

EXAMPLE 2. LetK, T ∈ C1(R3) be such that

K(p) = p2p3 and T (p) = p1 for p = (p1, p2, p3) ∈ R3 with |p| ≥ r,

for somer > 0. LetO be the set of pairs(φ, p) ∈ R2
× R3 such that:

π/4< φi < 3π/4 (i = 1,2),

−ρ < pi < ρ (i = 1,3),

−ρ2 < p2 < ρ2,

with ρ ≥ r + 1 large enough. Then, for(φ, p) ∈ ∂O the vectorM(φ, p) is given by (4.5)
and, denoting byMi thei-th component ofM, one can check that, forρ sufficiently large:

M1(φ, p) =

{
1
2ρ sinφ2 > 0 for (φ, p) ∈ ∂O with p3 = ρ,

−
1
2ρ sinφ2 < 0 for (φ, p) ∈ ∂O with p3 = −ρ,

M2(φ, p) =

{
1
2(p3 cosφ2 cosφ1 + ρ2 sinφ1) > 0 for (φ, p) ∈ ∂O with p2 = ρ2,
1
2(p3 cosφ2 cosφ1 − ρ2 sinφ1) < 0 for (φ, p) ∈ ∂O with p2 = −ρ2,

M3(φ, p) =


√

2
4 for (φ, p) ∈ ∂O with φ2 =

π
4 ,

−

√
2

4 for (φ, p) ∈ ∂O with φ2 =
3π
4 ,

M4(φ, p) =

 −

√
2

4 sinφ2 < 0 for (φ, p) ∈ ∂O with φ1 =
π
4 ,

√
2

4 sinφ2 > 0 for (φ, p) ∈ ∂O with φ1 =
3π
4 ,

M5(φ, p) =

{
ρ for (φ, p) ∈ ∂O with p1 = ρ,

−ρ for (φ, p) ∈ ∂O with p1 = −ρ.

Hence, by the Miranda theorem [17], deg(M,O,0) 6= 0 and Theorem 1.1 applies.

The first author is supported by MIUR-PRIN project “Metodi variazionali ed equazioni differenziali nonlineari”.
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[5] M. BADIALE - A. DUCI, Concentrated solutions for a non variational semilinear elliptic

equation. Houston J. Math. 27 (2001), 649–682
[6] M. B ERTI - C. CARMINATI , Chaotic dynamics for perturbations of infinite dimensional

Hamiltonian systems. Nonlinear Anal. 48 (2002), 481–504.
[7] P. CALDIROLI - M. GUIDA , Closed curves inR3 with prescribed curvature and torsion in

perturbative cases—Part 1: Necessary condition and study of the unperturbed problem. Rend.
Lincei Mat. Appl. 17 (2006), 227–242.

[8] P. CALDIROLI - M. GUIDA , Helicoidal trajectories of a charge in a nonconstant magnetic field.
Preprint, 2006.

[9] P. CALDIROLI - R. MUSINA, H -bubbles in a perturbative setting: the finite-dimensional
reduction method. Duke Math. J. 122 (2004), 457–484.

[10] M. DO CARMO, Differential Geometry of Curves and Surfaces. Prentice-Hall, 1976.
[11] A. CHANG - P. YANG, A perturbation result in prescribing scalar curvature onSn. Duke Math.

J. 64 (1991), 473–496.
[12] J. GUCKENHEIMER - P. HOLMES, Nonlinear Oscillations, Dynamical Systems, and

Bifurcations of Vector Fields. Appl. Math. Sci. 42, Springer, 1983.
[13] M. GUIDA , Perturbative-type results for some problems of geometric analysis in low

dimension. Tesi di Dottorato, Dipartimento di Matematica, Univ. di Torino, 2005.
[14] M. HENRARD, Homoclinics and multibump solutions for perturbed second order systems using

topological degree. Discrete Contin. Dynam. Systems 5 (1999), 765–782.
[15] A. M. LYAPUNOV, Sur les figures d’́equilibre peu diff́erents des ellipsoı̈des d’une masse liquide
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