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Differential geometry. — Closed curves ifR3 with prescribed curvature and torsion in
perturbative cases—~Part 2: Sufficient conditiphg PnoLo CALDIROLI and MICHELA
GUIDA.

ABSTRACT. — We investigate the problem ak, 7)-loops, that is, closed curves in the three-dimensional
Euclidean space with prescribed curvaturand torsione. In particular we focus on some perturbative cases,
takingk = x¢(p) 291- andr = 7 (p) with x; andz, converging to the constants 1 and 0, respectively,as 0.

We prove existence of branches @t, = )-loops (for small|s|) emanating from circles which correspond to
stable zeroes of a suitable vector figid: T x R3 — R5.
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1. STATEMENT OF THE MAIN RESULTS

In this paper we study the existence of closed curves in the three-dimensional Euclidean
space with prescribed curvature and torsion. The problem can be stated as follows: given
smooth functiong : R3 — (0, +00) andt : R® — R, find closed curveg in R3 such
that at every poinp € I" the curvature of” equalsc(p) and the torsion is (p). We shall
call such curvesk, t)-loops

In particular we will focus on some perturbative cases, taking

k(p) =ke(p) =14+ K(e, p),
(1) {r(p) = w(p) = T(e. p),

whereK, T : R x R® — R are smooth functions such that
1.2) K@©O,)=0 and 7(,-)=0.

Let us observe that, is admissible as a prescribed curvature, since- 0 on compact
sets ofR3 for |¢| small enough.

As already noted in the first paitl[7] of our study, a key role for the existence and
nonexistence ofk., 7.)-loops is played by a mappint/ : T2 x R® — R (see[(3.2R)
for its definition) which can be viewed as the Poirgedvlelnikov vector associated to the
problem (se€[12]). Her&? is the two-dimensional torus.

We point out thafl? x R2 parametrizes the manifol@ of loops corresponding to the
“unperturbed” problem, i.e. the problem with= 0. Indeed, foe = 0 one hago = 1 and
70 = 0. Moreover closed curves with constant curvature 1 and constant torsion O are unit
circles placed anywhere [®® and one can write

Z ={Rpz(R)+ p | (¢, p) € T? x R3}
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where

COS¢o — SiNg COSP1  Sing1 Sing?
(1.3) Ry = | singo cOSpoCOSp1 —SingCosp2 | € SO(I)
0 sings COS¢p1

for every¢ = (¢1, ¢2) € T? and

cog2rt)
(1.4) z(t) ;== | sin(2rt) for everyt € R.
0

In [7] we proved that the fact that the mappihfvanishes somewhere is a hecessary
condition for the existence of a bounded sequende oft.)-loops ax — 0.

In this paper we show that the presence of “stable” zeroe¥ fizra sufficient condition
for the existence of a branch 6f;, 7.)-loops with smalle|.

Before stating our main results, let us introduce the following definitiong7lgk<;
be a family of closed curves depending on a parandetarying in an open intervdl of R;
for 6o € I fixed, we say thals — Ij, in Ck ass — &g if for every s € I the curverj
admits a 1-periodic, uniform parametrizatione €3N C*(R, R3) and||us — us, || cx — O
ass — 8o. Moreover we say that the mappifig— I’s is of classC1(1, C¥) if the mapping
8 — us belongs toC1(1, C¥([0, 1], R®)).

In a first result, we consider the case of “topologically stable” zeroeaffovhere the
notion of “stable” zero is expressed by means of the topological degree, as follows.

THEOREM1.1. LetK,T e C1(R x R3) satisfy(L.d), letx, andz, be as in(L.1), and M
asin ) If there is a nonempty bounded open &an R° such thaideg M, ¢, 0) # 0
then for|e| small enough there exists a simgke, t.)-loop I'.. Moreover every sequence
e, — 0admits a subsequence, still denotegl), such thatl;, — Ipin C?asn — +00,
wherelp = Ryz(R) + p for some(¢, p) € & such thatM (¢, p) = 0.

In the presence of nondegenerate zerodd @fe gain regularity on the braneh— I,
of (k., 7¢)-loops, and the following result holds.

THEOREM1.2. LetK,T € C%(R x R) satisfy(L.2), letx. andz. be as in(1.1), and
M as in(3.23) If (¢, p) € R? x R3 is a nondegenerate zero o (i.e. M(¢, p) = O
and DM (¢, p) is invertible), then there i$ > 0 and, for|s| < &, a simple(x,, ;)-
loop I', of classC*. Moreover the mapping — I} is of classC1((—z, &), C?) and
I'o = Rypz(R) + p.

Hence, if the functionM admits only nondegenerate zeroes, as soon as one switches
on the perturbatiotk, T), for small|¢|, C* branches of«,, 7.)-loops come out from the
manifold 2, emanating exactly from those circles#i corresponding to zeroes #f.

Let us sketch the argument used to prove Theofenjs 1.1 ahd 1.2. As a first step we
introduce the analytical statement of the problem, by identifying curves with corresponding
uniform parametrizations. In this way looking for closed curves with prescribed curvature
and torsion turns out to be equivalent to the study of the existence of nonconstant periodic
solutions of the Frenet system (see Sedftion 2).
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Then we introduce a functional setting in such a way that periodic solutions of the
Frenet system can be found as zeroes of a pair of suitable nonlinear opératafs.

More precisely, the operatdi, acts between spaces of periodic functions and it is naturally
defined through the Frenet equations; the operattakes account of the orthonormality
conditions for the Frenet trihedron.

The operatorF, can be written as the sum of the “unperturbed” operdgrwhich
corresponds to the problem with constant curvature 1 and constant torsion 0, and the
perturbation operataf (¢, -), which exhibits a dependence @&, -) andT (e, -).

We point out thatFp vanishes on a manifoldZ formed by injective, uniform
parametrizations of the circles i¥. Moreover, as proved i [7], the differential @b
at any point ofZ is a Fredholm operator of index zero. With this information we tackle
the perturbed problem making a finite-dimensional reduction according to the Lyapunov-
Schmidt method (seé [15], [16], [19]), based on the Implicit Function Theorem. In this
way we construct a functioyi, : T? x R® — R® whose zeroes correspond, according to
a suitable procedure, to zeroes of the géir, J) and thus to parametrizations @f;, 7. )-
loops. This is developed in Sectiph 3.

The final step consists in showing that the mappfh@dmits zeroes. This is obtained
by studying the asymptotic behaviour ¢f ate = 0. The Poinca&—Melnikov function
M defined in[(3.2R) is essentially the first order term in the Taylor expansigh wifith
respect to the smallness parametefhus the existence of zeroes ffiris related to the
presence of stable zeroesMf This part is discussed in Sectioh 4 where we also provide
a couple of examples to which our general results apply.

We conclude by observing that the techniques used for this problem, as well as the
kind of results stated in the above theorems are common to a wide class of perturbative
problems in different contexts, like Hamiltonian systems (see, elg . [1], [14], [6]), nonlinear
Schibdinger type equations (se€ [5] and the references therein), Yamabe’s prdblem ([3],
[18]), H-bubbles [[9], and other problems in conformal geometry (see, élg., [2] and
[11], for the scalar curvature problem for the standard sphere). See also the recent
monograph([4].

However, as a technically relevant difference with respect to the above listed problems,
here we deal with a nonvariational problem, even in the unperturbed case. Moreover, as
a consequence of the nonvariational character of our problem, in general, the &sincar
Melnikov function M cannot be expressed as a potential. In fact this holds true for the
problem of closed curves in the plane, with prescribed curvature; for this case we refer
to [8].

The study presented here andl[ih [7] constitutes a part of the PhD thesis of the second
author ([13)).

2. NOTATION AND PRELIMINARIES

In this section we introduce some notation and we recall some preliminary results already
discussed and proved inl[7].

Letk, andt, be as in[(1.]L). Looking fof«., t.)-loops is equivalent to finding periodic
solutions of a system of nonlinear ode’s (seel [10]). More precisely, we can state the
problem as follows.
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Let Che, denote the space af* functions fromR into R® which are periodic with
period 1, let

X :=C2 xClk

. 0 0
per per ¥ 1= Cper X Cpey

be the Banach spaces endowed with their own standard norms, and let
£2 := {(u1, u2) € Cler x Cper | u1 NONCONStaNtuy # O}
We look for pairs(u1, uz) € £2 solving the system

N (u7)

N (u2)
=T (e, un)uz A uj,

(1+ K (&, u1))uz Auj,

!

(P): “1
!
us

wherek, T € CL(R x R®) satisfy [1.2) and

1
N(@u) = ‘// u|2 for everyu € Cpe,.
0

It turns out that a solutiofu1, uz) € §2 of (P), which also satisfies the conditior) - u»
= 0 determines &, t.)-loop, and vice versa. In fact, thanks(®8)., the orthogonality
conditionu - uz = 0 is equivalent to

(2.1) uy(0) - u2(0) = 0.

We remark that P), and [2.1) are homogeneous with respeait@nd are invariant
with respect to translation in Notice also that ik and7 are of clas€k and(uz, uo) € 2
solves(P),, thenuy e cggrz andus € cggrl.

Now let us introduce the following operators:

e Fp: 2 C X — Y, defined as follows:

N(u})
N (u2)

uz Auq, —u’2> for every(uy, up) € £2,

Fo(u1, up) := (—u/l/ +

e G:Rx £ — Y,given by

N (u))
N (u2)

G(e;u1, up) = (

K(e,ur)us N u&, T (e, ur)us A ”/1)

fore € R and(u1, u2) € £2,
o F.: 2 C X — Y, defined by

Fe(u1, up) := Fo(ui, u2) + G(g; uz, up) forevery(ui, up) € £2.
We point out thatu1, up) € £2 solves(P), if and only if

(2.2) Fe(uy,u2) =0.
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Let us also introduce the following notation:
0:=(p,p) € T>xR® and wy = (Ryz + p, Ryes).

Observe thaFy(wy) = 0 for everyd € T2 x R3 and the mapping — wy is of classC>®
from T2 x R3 into X.

In [[7] we proved thatFj(wy) is a Fredholm operator of index zero frakhinto ¥ and
the following decompositions hold:

(2.3) X = ker Fj(ws) @ (ker Fj(wg))*,

(2.4) Y =im Fj(we) & (im Fy(wp))*,

where all the subspaces are closed and dinfkeng) = dim(im Fé(a)g))J‘ = 7. The
orthogonality in[(2.B) and (214) is meant with respect to the inner product

1
((u1, u2), (v1, v2)) = (u1, v1) + (u2, v2) =/0 (w1 -v1+uz-v2).

As orthonormal bases for keéf(wp) and (im Fc’,(a)@))l one can takdg¢1(0), ..., ¢7(0)}
C X and{&1(9), ..., &7(0)} C Y, respectively, defined as follows:

Gi(0) = Rgg; and &(0) = Ry& fori=1,...,7andd = (¢, p),

where
t1= (0, e3), &1 =(e3Nnz,0),
S14i = (€, 0), £141i=(0,¢;) fori=123,

- 2 - 1 .
{ayi = \/;(ez- Nz, e Ne3), Eapi= ﬁ(@, 2me; Nz) fori=1,2,

¢7=(e3nz,0), £7 = 2(63, 2me3 N 7).

1
V1+4n
Here and in the following for every paip1, p2) € R® x R3 and for everyR € SO(3) we
setR(p1, p2) = (Rp1, Rp2).

3. LYAPUNOV—SCHMIDT REDUCTION FOR THE PERTURBED PROBLEM

Our goal is to find a regular mappirtg, 0) — n.(0) € X, defined forie| small and in a
compact set, such that (wy + n.(0)) € (im Fé(a)g))l. As a consequence, the problem of
searching for solutions dafP), is essentially reduced to the finite-dimensional problem of
looking for zeroes of the mapping, 0) — F.(wg + n:(0)), i.e. to the study of a system
of seven equations in five unknowns, having fixed a bas(inirFé(a)g))L. This goal will
be achieved through a reduction procedure in the spirit of the Lyapunov—Schmidt method
(seell15],[16],119]).

The following lemma, which gives the finite-dimensional reduction of the problem,
constitutes the main result of this section and the first key step for the proof of Theorems
L1 andT.P.
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LEMMA 3.1. LetK,T € CY(R x R3) satlsfy.) For everyr > O there exist a value
&, > 0and unique mappings+— n° € C%(T? x B,, X) ande — uf € CO%(T2 x B,,R")
of classC? from (— &, &) into their target spaces, such that for everg (—¢,, ¢,) and
for everyd € T? x B, one has:

(3.1) In*@lx < 2m,

(3.2) @) =0 and u%®) =0,
7

(3.3) Fe(wp +n°(0) = ) 1§ (0)&6),
i=1

(3.4) n), ) =0 fori=1,...,7.

Moreover for every € T2 x B,,

7

dns _ -1 . . . R
@5)  Zr| = Fo@n) (;@G(o,we),sz(e»a(e)—asG(o,we)),
du; .
(3.6) Ll @) = (0.G(0; wp), &(0)) fori=1,...,7.
e=0

In addition, if x¢(#) = O for somees € (—¢,,¢,) andé € T2 x B, then (ui, u3) =
wg + n°(0) belongs to2 and it solves problen(P)s If, furthermore, we assume
K, T € C3(R x R®), then the mappings — 1 ande — u® belong toC?%((—¢,, ¢,),
CO('JerB,,X))mcl(( er. &), CH(T?x B,, X)) and toC?((—¢,, &), CO(T? x B,, R"))
N Cl((—¢,, &), CHT? x B,, R")), respectively.

REMARK 3.2. (i) For everyd e T? x R3 the operatorFj(ws) is bijective from
(kerF} (wp))+ onto imF o(wg) and Fy (a)g)_l . im Fj(wp) — X denotes the inverse
operator Hence the rlght hand S|de n{3.5) is weII defined because, accordjng|to (2.4),
Z 1{(v1, ¥2), £ (0))& (6) — (y1, y2) belongs to imFy(wy) for any (y1, y2) € Y.

(i) For every® = (¢, p) € T? x R® and for every; € X one hasFj(wy)[Ry¢] =

Ry (Fy(w)[¢]), wherew = (z, e3) (see formula (4.9) i [7]). Hence, by the above remark,
one also has

(3.7) Fi(wg) ™ = Ry Fy(w) 'R, ™.

(i) The mappingu® can be expressed in terms gf since by [(3.B) one hag{ (6) =
(Fe(wg +nf(0)),&(0)) foralli =1,...,7andd € T? x B,.

PROOF For fixedr > 0, setU, := T2 x B, and introduce the Banach spaces
2°0:=C%U,.x), #°:=c’U,.v), %°:=cC°U,R"

endowed with their standard norms. Clearly the maps wy and¢y, ..., ¢7 belong to
29 whereag, ..., & € #9. Moreover, introduce the open subset@ given by

={ne 2| lnllgo < 27}
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and the functionZ : R x & x %#° — %9 x %9 defined as follows:
7
F(e,n, W) = (Fs(wa +10) = > i 0)8©), (10). 2(0)), ... (n(®), §7(9)))
i=1

forall6 e U, and for every(s, n, u) € R x % x %9. Observe thatyy + n(0) € $2 for
everyd e U, sincen € 4. Hence.Z is well defined orR x % x %ro. Our goal is to
apply the Implicit Function Theorem t& at the point(0, 0, 0) in order to find mappings
e — n® ande — u° such thatZ (e, n°, uf) = (0, 0), that is, [3.8) and (3]4) hold.

Regularity of#. One has% (e, n, u) = %0, n, n) + Y (e, n) where
(3.8) G(e,n)O) = (G(e; wg +1(0)),0,..., 0).

One can easily check that the mappiagu) — % (0, n, u) is of classC* becausery
is. As concerns the regularity &f, by the definition ofG, it follows from the regularity of
the Nemytski operators associated # and 7. More precisely, ak , T are of clas<?,
the mappings?’, 7 : R x CO(U,, Che) — CO(U,, Clep defined by

(3.9) H (e, x)(0) = K(e, x(©) and T (e, x)(0) =T, x(0))

are of clasg"? (see[[13] for the details). As a consequence, @dgarns out to be of class
ClfromR x Z c R x 2,%into %0,

Now let us study the linearized problem fof at (0, 0, 0). Clearly .#(0,0,0) =
(Fo(wg), 0) = (0,0) becauseG(0; ) = 0. Moreover, considering the bounded linear
operator

= 97000 . po 0, 50, 40
a(n, 1)

for every(p, v) € 2.° x %° we have
7
24, 0)®) = (Fwnle@®] = Y @& ®), 0©), 0@, ... 9(®), :26))).
i1

We will show that¥ is bijective from.2.% x %9 onto#,° x %?.

Injectivity. Let (¢, v) € 2.0 x Z° be such that? (¢, v) = 0, that is,

7

Fo(wp)[o@®)] =Y vi(0)& 6),
i=1

(@), ¢(@)=0, i=1..., 7.

Sinceé; (#) € (im Fé(a)g))J‘, the first equation implies; (8) = O for everyi =1, ..., 7
and thusp(9) € ker Fy(wg). On the other hand, the second equation meansyiftat €
(kerFé(a)g))l. Hencep () = 0. Asé is arbitrary, we have injectivity.
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Surjectivity. Given (¥, p) € #° x 2% we have to findp, v) € 2,° x %2 such that
ZL(p,v) = (¥, p), thatis, for every € U,,

7
(3.10) Fyan)lp®)] — Y vi©)&(©) = ¢ (©),
i=1
(3.11) (@®).5®) = pi®), i=1...7.

Fix 6 € U,. According to the decompositio..4) and thanks to the orthonormality

of the setq¢;(0)}/_, and{&;()}/_, we can write

7
9(O) = > (9(®). £:(0))4(0) + §(0),
i=1
7 -
YO) =Y (W), &©0)&©) + ¥ (6),

i=1

with ¢(0) € (ker F(wy))* andy(9) € im F{(wp). Then [3.11) gives
7
(3.12) 0®) =Y pi(0)5©) + §(0).
i=1

Moreover, by) and sinégg(9) € (im Fé(wg))J‘ we see that
(3.13) vi(0) = —(¥(®),&@©), i=1...,T7.

In addition _
Fo(wg)[@(0)] = ¥ (0)
because; () € ker Fj(wp). According to Remar2(i), we can take

(3.14) $(0) = F(wo) ¥ (0)].

As 0 varies, the expressiolS) defines a continuous mapping@rointo R, that is,
v € 2. As concerns the regularity of the functién- ¢ (9) defined by|(3.12) andl (3.1.4),
we observe that by (3.7),

#(0) = Ry Fy(z. e3) "Ry MY (0)].

This shows thap € .2.° and then, b2), alsp e 2.°. Thus the surjectivity is proved.

Hence we can apply the Implicit Function Theorem, and siga®, 0, 0) = (0, 0),

(B:2)-[3:%) follow.
As regards|(3]5) andl (3.6), we recall that
dn® dp® 9.#(0,0,0
(3.15) ( L e ): _ 197000
de |,—q de |,—p ae
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Moreover, according to the proof of the surjectivity, we have

(3.16) 27w, p)(®)
7

7
= (X pi @60 + Fown ™ (¥©®) = Y (w(©). &©)5©)). —(¥(©). &:(0)))
i=1

i=1
for every(r, p) € 9 x %°. In addition

0.%(0,0,0
%(9) = (0:G(0; wp), 0).

In conclusion,[(355) and (3.6) follow frorh (315)—(3]17).

The fact that ifu® (@) = 0 thenwy + n°(0) provides a solution of P), immediately
follows from (3:3) and from the definition of.

Finally, let us discuss the last part of the lemma, concerning the regularity of the
mappingse — n° ande — uf whenK, T e C?R x R3). We just give a sketch,
referring again to/[13] for a more detailed proof. SiriceT are of clas<"?2, the operator
4 Rx B — @,0 defined in ) turns out to be of claé¥ and then one readily finds
that the mappings — n° ande — ¢ are of clas<C? from (—&,, ¢,) into C°(U,, X) and
Cc%U,, R7), respectively. The further regularity is accomplished by repeating the same
argument of theC? regularity, but making a different choice of spaces. More precisely,
instead 0f2.°, % and%° we take

(3.17)

2t =clU,.x), #':=c'@,.v), % =c'U.,R",

endowed with their standard norms. Clearly, in this case, thegdetgiven by{n < 3{,1 |

Inll 91 < 2m}. The proof goes exactly as before without substantial differences. The
only remark concerns the proof of the regularity of the mappand, in particular, the
regularity of¢. Although the Nemytskioperators#” and.7 defined by[(3.D) are of class
C?fromR x CO(U,, CZ, into CO(T,. CJ, the operatot defined i) is just?

(as needed in order to apply the Implicit Function Theorem) because the existence of the
differential 4% (¢, n) as a bounded linear operator frdnx 2% into %1, as well as its
continuous dependence @ ), involves the second order partial derivativesko&ndT .

Hence we can find’! functionse — n¢ € CY(U,, X) ande — u® € CLU,,R")
satisfying.7 (e, n°, u*) = 0 and the conclusion follows. O

In fact we are interested in solutionig:, up) € $2 of (2.7) satisfying the additional
conditionuy - uz = 0 or equivalentlyl) which guarantees ttiai, up) determines a
(ke, To)-loop (see Sectidn| 2).

For this purpose let us introduce the functiodial X — R defined as follows:

(3.18) J(u1, u2) :=uy(0) -up(0) forevery(us, uz) € X.

Hence, a paifui, u2) € £2 determines d«., t.)-loop if and only if

Fe(u, u2) =0,
(3.19) { J(u1,up) =0.
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Observe thatl € C*°(X) and in particular
(3.20) J'(u1, uz)[x1, x2] = u(0) - x2(0) + u2(0) - x1(0)

for every(uy, u), (x1, x2) € X.
Now, fixing » > 0 lete, > 0,7° andu® be given according to Lemnja 3.1. For every
¢ € (—&,, &) letus introduce the mapping : T2 x B, — R’ x R given by

(3.21) fe(0) := (UE©), I (wg + n°(9))).

Our goal is to look for zeroes of; since, by the last part of Lemr@.l and by the above
discussion, iff;(0) = 0 (for somes andd) thenwy + 1°(9) is a nonconstant periodic
solution of(P), and satisfie§ (2]1), so it corresponds t@a t.)-loop.

Notice that, according to Lemrﬁiaﬁ_e e C%T? x B,,R®) for everye € (—&,, &),
fo = 0 and the mapping — f; is of classC! from (—¢,, ¢,) into C%(T? x B,, R®). If
K, T € C*(R x R®) (and not just of clas€'!) then the mapping — f. belongs to both
C2((—¢y, &), CUT? x B,,R®)) andCl((-¢,, &), CH(T? x B,, R®)).

Now let us consider the mapping : T2 x R3 — RS, already introduced iri 7] and
defined as follows:

3 8:K (0, Ryz(1) + p) cos2t) dt
Jo 3K (0, Ryz(t) + p) sin(2r1) d
(8.22) M(¢.p):=| [y 3 T(O, Ryz(t) + p)cos2nr)dr | for(p.p) e T? x R>.
[ 8eT (0, Rz (1) + p) sin(2nt) dt
[ 0:T (O, Ryz(t) + p) di
By natural periodic extension, we shall also consitler R? x R® — RS,

The next result makes clear the relationship between the funktiand the first order
term in the expansion of, with respect te.

LEMMA 3.3. T_here existb € GL(8,R) and¥ e GL(5, R) such that, settingp f, =:
(fe. fo) 1 T2 x B, — R® x R%, ase — Oone has:

fo=€e¥M +o(e) inC%T? x B,, R,
fo = o(e) in CO(T? x B,, R3),

whereM is defined in3.24) The convergences hold @(T? x B,, R®) and inC(T? x
B, R3) respectively, i, T € CZ(RXR3) Moreover if f; (9) = Ofor somee € (—&,, &)
andd € T2 x B,, thenf,(0) =

PROOF By -) (3.5) and[(3]6), the first order Taylor expansion of the map /. €
Cc%T? x B,,R® ate =0'is

J®) = e((2:G(0; w0), &©)),
7

T @0) F(@o) (D (0:G(0; 09). §:(0))E(0) = 3:G(0: @0)) ) + 0(e)

i=1
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whereo(e)/e — 0 in C%(T? x B,,R®). According to the last part of Lemnja B.1, if
K,T € C%R x R3) one can tak«S?l(?l‘2 x B,,R8) instead ofc°(T? x B,, R®). Since

9:G(0; wg) = —27(279:K (0, Ryz + p)Ryz, 8. T (0, Ryz + p)Ry2)
for any6 = (¢, p) € T2 x B,, we readily get

(3.23) (0:G(0; wp), §i(0)) =0 fori =1,4,7,

1
324)  (3.G(0; wp), E2(0)) = —2r f 0.T(0. Ryz + p)z - e1
0

1
(3.25) (0:G(0; wp), £3(0)) = —277/ 3T (0, Ryz+ p)z - e2
0
= —271M4(9)

(3.26) (0:G(0; wp), &5(0)) = / 3:K (O, Rgz+ p)z - e1

vl 272
. 472 M0
G o

(3.27) (0:G(0; wp), £6(0)) = / 9:K(0, Ryz+ p)z-e2

vl 212

_ 472 Mo(@
__——1—1—2712 2(0).

Set

7
(x1(6), 32(0)) = F(0) (D2 (0: G0 09), &(©))E(©) — 9.G(C; ) ),

i=1
(y1(0), y2(0)) := Fy(wp)[x1(6), x2(0)],

and note that, by (34),
(x1(0), x2(9)) € (ker F(wp))™*.

Moreover, using[(3.23)F(3.27), one can compute
2 A2

4 Mi(O)R 4
S — e —_——
142721 Pl T 1 on2

+ 4729, K (0, Ryz + p)Ryz,

y1(0) = — M>(0)Rype2
3

y2(0) = —27TM3(9)R¢61 - 277M4(9)R¢>€2 - m

3
_1+2712

M1(0)Rg(e1 N 2)

M2(0)Rp(e2 A 2) + 270: T (0, Ryz + p)Ryz.
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so that, by[(3.20) and the formula in Remark 4.4[0f [7],
J (@9)[x1(80), x2(0)] = (Rpz + ) (0) - x2(6)(0) 4 Ryes - x1(6)'(0)
= 2m Ryez - x2(0)(0) + Rypes - x1(8)’(0)

1
= fo (1= ez Ry @) (1) dt
1
+ /O (A= D2(0) +2) — e1) - Ry Ly2(0) (1)

1

= 4w M3(0) + 2 f (A —2z()-e1)9:T(0, Ryz(t) + p)dt
0

= 2n(Ms(0) + M3(0)).

Hence, settingbq = (gs, g6, 92, 43, g8, 91, 94, q7) for all ¢ = (q1,...,qs) € RE, we
have

& 7.(60) = _2m< Ma(6), M3(6), Ma®),

2 2
—M 9 , —
N RS TR

—Ms(9) — M3(9), 0,0, 0) +o(e)

ase — 0 and we conclude by obvious definitionwt f, and f,.
Now assume thaf, (8) = 0 for some fixed: € (—¢,, ¢,) andd = (¢, p) € T? x B,.
In particular we have
ui(@) =0 fori =2,356.

Setting(u1, u2) = wp + n°(9), from (3.3) we deduce that

1 1
Fe(uy, up) = ——pi(0)(Rgz', 0) + u5(6)(0, Rges) + ——=u5(6)(Rges, Ryz'),
£ o 1 ] 4 ¢ m 7 ¢ ¢
that is,
N (u/ _ _
(3.28) —uj + il (1+ K (g, u1)uz Auy = l1Ryz’ + i7Rye3,
N (u2)
(3.29) —u/z + T (e, ur)uns A Ma_ = 4Rpe3 + /17R¢Z/,
where
- . 1 &
M1 .= Zﬂl(e),
4 = puy(6),

1 &
n7 = ————=n7(0).
Vitan? '

Letting nown*® (6) =: (1, 72), we multiply both (3.2B) and (3.29) by, = Ryz' + n} and
u2 = Ryes + n2 1o get

(3.30) —uf - uy = A% + paRyZ - ny + A7Rgpes - 1Y,
(3.31) —uf -up = l1Ryz" - m2 + fi7 + L7 Rge3 - M2,
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(3.32) —uy - uy = jlaRpes - 1y + 4727 + i7ReZ - 11},
(3.33) —1/2 “up = ji4 + [LaRypes - n2 + ﬁ7R¢Z/ - 12.

By the periodicity ofys, u} anduz and since(nz, Ryes) = (n°(6), £4(9)) = O, by (3.4),
upon integrating (3.30)] (3.83) and the sum[of (8.31) &nd[3.32), we respectively obtain

(3.34) ,11(4712 + /1 Ry7 - ,7/1) =0,
lo
(3.35) Ha + ﬁ?/ Rpz' -m2=0,
1 ° 1
(3.36) /11/; Ryz' -m2+ /17(1-1— 4% + /0 Ry7 - T}/1> =0.
Since 3.1) yields

1
[
0

(3-34) impliesjzy = 0. Then, in turn,[(3.36) implieg; = 0 and finally [3.3p) gives
ita = 0. Thereforeu; (9) = 0 also fori = 1, 4, 7 and hencef, (0) = 0. O

< 27 max [ny(1)] < 27 |n°@)|x < 4r?,
t€[0,1]

REMARK 3.4. Notice that the implicatiorf,() = 0 = f.(8) = 0 in the previous
lemma has been proved without using the vanishind @f, + n°(0)); only the fact that
ui () =0fori =2,3,5,6was needed.

4. PROOF OFTHEOREMS[I.IAND [I.2 AND EXAMPLES

For the proof of Theorein 1.1 the following lemma will be useful.

LEMMA 4.1. If there exists a nonempty, bounded open getin R® such that
degM, 0, 0) # Othen for|e| small enough there i& € ¢ such thatf,(6;) = 0.

PROOF Let¥ e GL(5 R) be given by Lemma 3]3. Since dit # 0, one has 0¢
YM@0) and|degq¥ M, 0,0)| = |degM, 0, 0)|. As ¢ is bounded, there exists> 0
such thaid ¢ R? x B, andd := infyeys ¥ M(6)| > 0. Lete, be given by Lemmp 3]1.
Fore € (—¢,, &) define the homotopyi, : & x [0, 1] — R® by setting

Hy(0,5) :=sf(0)+ (1 —s)ewM@®) for(9,s) e x[0,1]

where f; is defined in Lemmf 3]3. We claim that the homotdgyis admissible forl|
small enough. Indeed, sind®’ c R? x B,, using Lemm3, we find thaf. (6) —
eWM@®) = o(e) ase — 0, uniformly in6 € a&. Hence, for every#, s) € 40 x [0, 1]
ande # 0,
|He(0,5)] 1 1
Tl = e EY MO +s(f0) — eV M@)| = m}m WM ()] —slo(e)l|
o(e)

&

>d— >0
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provided that|e| is small enough. Thus the claim is proved. Finally, the homotopy
invariance property of Brouwer’s degree gives

deq f., 0,0) = dege¥ M, 0,0) = deq¥ M, 0,0) # 0
and the conclusion follows, by using again Lenjmg 3.3.0

Proof of Theorern 1]1. As noted in Sectiop|2, our first goal is to find solutidiag, u2) €

£2 of problem (3.1p) for smalls|. By Lemmg 3.1 and by the definition (3]21}, u5) =

wg + nt(0) solves ) iff(0) = 0. Lem ensures that there exists a mapping
e — 0, € U, defined forle| small, such thaf, (6.) = 0. Hence, folle| small, the function

ue ‘= Ry, 7+ pe +n7(0¢) is a parametrization of &, t.)-loop, where(¢., p.) = 6, and
ni@) e Cge, is the first component of¢ (9). Moreover, sinc@, € ¢ and ¢ is compact,
every sequence, — 0 has a subsequence, again dendtgg, such tha,, — 6 for
somed = (¢, p) € 0. By Lemm,llng“(ng)HX — 0 and theru,, — Rzz+ p

in Cger. In particular, since the parametrizati®yz + p is injective onR/Z, for || small,

I, is a simple curve. Finally, by Theorem 1.1 [in [#M,(¢, p) = 0. O

Before the proof of Theorem 1.2, we state the following lemma.

LEMMA 4.2, Assumingk andT are of classC?, if M admits a nondegenerate zero at
some) = (¢, p) € T? x R3, then there exists &' mappinge — 6, € T? x R3, defined
on some interval—¢, &), such thatf, (6,) = Ofor |¢| < £ andfy = 6.

PROOF Fixr > Osuchthat € U, := R? x B,, lets, be given by Lemml, and, for
le] < &, let f. be given by Lemmi 3|3. Let us introduce the mappfrtg(—er, & )xU, —
RR® defined by

Lo ifezo

UM®) ife=0,

where¥ e GL(5,R) is given by Lemma 3]3. Our goal is to find the mapping> 6;
satisfying the statement of the lemma, by applying the Implicit Function Theorem with
respect to the equatiopf(s, 0) = 0 in a neighbourhood of0, §). By hypothesis,
£(0,6) = 0andd, £(0,0) = ¥ DM () is invertible. We claim thaf is of classC* on its
domain. Clearlys, / anddy f are well defined and continuous it—e,, &) \ {0}) x Uy,
since they are continuous with respectt@and with respect t@ uniformly in 6 € U,.
Sincek andT are of classC?, according to Lemm.l the mapping— f; is of class
C2 from (—¢,, ¢,) into CO(U,, R®) and thus, using also Lem .3, we can write

2
@1)  £.0) =W M®O) + %g(@) +h(e,6) forevery(s, ) € (—e,e,) x Uy

fe, 0) =

where
_d*f;
£ de? e=0
andh(e, ) € COU,, R®) is such that

(4.2) h(e,0) = o(¢?) ase — O uniformlyind € U,.

e C°(U,, R,
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On the other hand, by Lemrpa B.3, we also have
(4.3) £:(0) = eWM(B) + h(e,0) forevery(e, 8) € (—e,, &) x Uy
whereh (e, -) € CL(U,, R®) is such that
(4.4) doh(e,0) = o(e) ase — 0 uniformlyiné e U,.
Then [4.3) and the definition of yield
9 f (e, 0) = { UDM®) + %agﬁ(s, 0) ife#0,
W DM () if ¢ = 0.

Hence, thanks t@Aagf is also continuous at every poi@, ¢) with & € U,.. Moreover,
using again the definition of and ), we deduce that

A 1 1 1
Oc f (£, 0) = Z8(0) + ~0eh(e, 0) — —5h(e. 0) fore #0,

fe.o)— f0,0) . (1 he,0)\ 1

9:f(0.6) = lim

where the last equality follows frorfi (4.2). In addition, by the definitiogg ofve have

1 (dfs dfe

0 0) _ 14 gy ypo) - eg0)) = 0) -
———<%() ) Eg())—g E() de

& &

(9)> —g@®) —0
=0

&

ase — 0, uniformly with respect té € U,. Therefore, usin2), alsp f is continuous
at every point(0, 6) with 6 € U,. In conclusionf is of classC+ and the assertion of the
lemma can be obtained as an application of the Implicit Function Theorentl

Proof of Theorerpi T|2. One argues as in the proof of Theorem| 1.1, by exploiting Lemma
42 instead of Lemma4.1. O

We conclude this section with a couple of examples, focusing on the case

ke(p) =1+eK(p) and t.(p) =eT(p).

Hence the mapping/ is

[Ol K (Ryz(t) + p) cos2rt) dt
fol K(Rpz(t) + p) sin(2rt) dt
M(p.p) = | [3T(Rpz(t) + p)cos2rr)di
[ T(Ryz(t) + p) sin(2rt) di
J3 T (Ryz(t) + p) dt
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EXAMPLE 1. LetK,T € C?%(R3) be such that

K(p)=p2ps and T(p)=p1 forp = (p1, p2 p3) € R3with |p| <r,

for somer > 1. One can check that fop| < r — 1,

p3sing;
P3COSp COSP1 + p2Singy
(4.5) M@.p) =5 CoSp2
— Singy cosgy
2p1

If we set¢ = (7/2,7/2) and p = (0,0,0), the point (¢, p) turns out to be a
nondegenerate zero 8f. Thus Theorerp 1]2 applies.

EXAMPLE 2. LetK,T e CY(R®3) be such that
K(p)=p2p3 and T(p)=p1 for p=(p1.p2. p3) € R3with |p| > r,
for somer > 0. Let & be the set of pairép, p) € RZ x R3 such that:

/4 < ¢ <3n/4 (i =1, 2),
-p<pi<p @(@=123),
—p? < p2 < p?,

with p > r + 1 large enough. Then, fap, p) € 3¢ the vectorM (¢, p) is given by [4.5)
and, denoting by; thei-th component of, one can check that, far sufficiently large:

(0, p) = %plsin-(pz >0 for(¢,p) €d0 With p3=p,
—5psingz <0 for (¢, p) € 90 with p3 = —p,
Moo, p) — %(pg COS¢ho COSP1 + p? sin¢>1) >0 for(p,p) a0 With p2 = p2,
3(p3cosgycosgr — p?singy) <0 for (¢, p) € 36 with p = —p?,
Mo ) — JT; for (¢, p) € 00 W?th b = :Zj,
-5 for (¢, p) € 90 with ¢ = =,
Ma. ) — ?/;/Tz.simpz <0 for(p.p)eao w?th ¢ = :Z,,
YEsing, >0 for(¢, p) € 90 with ¢1 = 7,
Ms(é. p) = P for (¢, p) € 00 W?th p1=p,
—p for (¢, p) € 00 with p1 = —p.

Hence, by the Miranda theorem [17], dag, &/, 0) # 0 and Theorerh 1] 1 applies.

The first author is supported by MIUR-PRIN project “Metodi variazionali ed equazioni differenziali nonlineari”.
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