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ABSTRACT. — We introduce two conditions related to thenews functionsof Bondi’s radiating vacuum
spacetimes. We provide a complete proof of the positivity of the Bondi mass by using Schoen–Yau’s method
under one condition and by using Witten’s method under the other condition.
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1. INTRODUCTION

Gravitational waves are predicted by Einstein’s general relativity. They are time dependent
solutions of the Einstein field equations which radiate or transport energy. Although they
have not been detected yet, the existence of gravitational waves has been proved indirectly
from observations of the pulsar PSR 1913+16. This rapidly rotating binary system should
emit gravitational radiation, hence lose energy and rotate faster. The observed relative
change in period agrees remarkably with the theoretical value.

A fundamental conjecture is that gravitational waves cannot carry away more energy
than they have initially in an isolated gravitational system. It is usually referred as the
positive mass conjecture at null infinity. In Bondi’s radiating vacuum spacetime, this
conjecture is equivalent to the positivity of the Bondi mass. In the pioneering work of
Bondi, van der Burg, Metzner and Sachs on the gravitational waves in vacuum spacetimes,
the Bondi mass associated to each null cone is defined and their main result asserts that
this Bondi mass is always nonincreasing with respect to the retarded time [2, 15, 18].
Therefore, the Bondi mass can be interpreted as the total mass of the isolated physical
system measured after the loss due to the gravitational radiation up to that time. The proof
of the positivity of the Bondi mass was outlined by Schoen–Yau modifying their arguments
in the proof of the positivity of the ADM mass [17]. It was also outlined by physicists
applying Witten’s spinor method (see, e.g., [11, 9, 1, 13, 14, 10]). The main goal of this
paper is to find a complete proof of the positivity. Indeed, we find certain conditions related
to thenews functionsof the system. The Bondi mass is nonnegative under these conditions.

It is an open problem whether vacuum Einstein field equations always develop loga-
rithmic singularities at null infinity. In [7], the authors studied polyhomogeneous Bondi
expansions. Theu-evolution equations actually indicate that logarithmic singularities at
null infinity can be removed in the axisymmetric case (Appendix D of [7]) if the free
functionγ2(u, x

α) is chosen to be zero andγ3,1(u0, x
α) is chosen to be zero for someu0. It
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is quite possible that Bondi’s radiating vacuum spacetime does not develop any logarithmic
singularity at null infinity after suitable “gauge fixing”. Therefore we do not consider
polyhomogeneous Bondi expansions [3] in the present paper.

The paper is organized as follows. In Section 2, we state some well-known formulas
and results of Bondi, van der Burg, Metzner and Sachs. We employ two fundamental
assumptions:Condition Aand Condition B. We also derive a generalized Bondi mass
loss formula under these two conditions. In Section 3, we study some basic geometry
of asymptotically null spacelike hypersurfaces. We compute the asymptotic behaviors of
the induced metric and the second fundamental form of an asymptotically null spacelike
hypersurface given by a certain graph. In Section 4, we use Schoen–Yau’s method to prove
that, under Conditions A and B, if there is a retarded timeu0 such thatM(u0, θ, ψ) defined
in Section 2 is constant, then the Bondi mass is nonnegative in the region{u ≤ u0},
and the Bondi mass is zero atu ∈ (−∞, u0] if and only if the spacetime is flat in a
neighborhood of a spacelike hypersurface{u = u0 +

√
1 + r2 − r}. In Section 5, we use

Witten’s method to prove that, under Conditions A and B, if there is a retarded timeu0
such thatc(u0, θ, ψ) = d(u0, θ, ψ) = 0, then the Bondi mass is nonnegative in the region
{u ≤ u0}, and the Bondi mass is zero atu ∈ (−∞, u0] if and only if the spacetime is
flat in a neighborhood of a spacelike hypersurface{u = u0 +

√
1 + r2 − r}. In Section 6,

we modify the definition of the Bondi energy-momentum and prove its positivity without
Condition B.

2. BONDI’ S RADIATING SPACETIMES

We assume that(L3,1, g̃) is a vacuum spacetime (possibly with black holes) andg̃ is the
following Bondi’s radiating metric:

g̃ =

(
V

r
e2β

+ r2e2γU2 cosh 2δ + r2e−2γW2 cosh 2δ(2.1)

+ 2r2UW sinh 2δ

)
du2

− 2e2βdudr

− 2r2(e2γU cosh 2δ +W sinh 2δ)dudθ

− 2r2(e−2γW cosh 2δ + U sinh 2δ) sinθdudψ

+ r2(e2γ cosh 2δdθ2
+ e−2γ cosh 2δ sin2 θdψ2

+ 2 sinh 2δ sinθdθdψ)

in coordinates(u, r, θ, ψ) (u is retarded time) where

−∞ < u < ∞, r > 0, 0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π.

Write

x0
= u, x1

= r, x2
= θ, x3

= ψ.

We suppose thatβ, γ , δ, U , V andW are smooth functions ofu, r, θ, ψ . We writef,ν =

∂f/∂xν for ν = 0,1,2,3 throughout the paper. The metric (2.1) was studied by Bondi, van
der Burg, Metzner and Sachs in the theory of gravitational waves in general relativity [2,
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15, 18]. They proved that the following asymptotic behavior holds forr sufficiently large
if the spacetime satisfies the outgoing radiation condition [18]:

γ =
c(u, θ, ψ)

r
+
C(u, θ, ψ)−

1
6c

3
−

3
2cd

2

r3
+O

(
1

r4

)
,

δ =
d(u, θ, ψ)

r
+
H(u, θ, ψ)+

1
2c

2d −
1
6d

3

r3
+O

(
1

r4

)
,

β = −
c2

+ d2

4r2
+O

(
1

r4

)
,

U = −
l(u, θ, ψ)

r2
+
p(u, θ, ψ)

r3
+O

(
1

r4

)
,

W = −
l̄(u, θ, ψ)

r2
+
p̄(u, θ, ψ)

r3
+O

(
1

r4

)
,

V = −r + 2M(u, θ, ψ)+
M̄(u, θ, ψ)

r
+O

(
1

r2

)
,

where

l = c,2 + 2c cotθ + d,3 cscθ,

l̄ = d,2 + 2d cotθ − c,3 cscθ,

p = 2N + 3(cc,2 + dd,2)+ 4(c2
+ d2) cotθ − 2(c,3d − cd,3) cscθ,

p̄ = 2P + 2(c,2d − cd,2)+ 3(cc,3 + dd,3) cscθ,

M̄ = N,2 + cotθ + P,3 cscθ −
c2

+ d2

2
− [(c,2)

2
+ (d,2)

2] − 4(cc,2 + dd,2) cotθ

− 4(c2
+ d2) cot2 θ − [(c,3)

2
+ (d,3)

2] csc2 θ

+ 4(c,3d − cd,3) cscθ cotθ + 2(c,3d,2 − c,2d,3) cscθ.

HereM is referred to as themass aspectandc,0, d,0 are called thenews functions. The
u-derivatives of certain functions are

C,0 =
c2c,0

2
+ cdd,0 −

c,0d
2

2
+
cM

2
+
dλ

4
−
N,2 −N cotθ − P,3 cscθ

4
,

H,0 = −
c2d,0

2
+ cc,0d +

d,0d
2

2
+
dM

2
−
cλ

4
−
P,2 − P cotθ +N,3 cscθ

4
,

M,0 = −[(c,0)
2
+ (d,0)

2] +
1

2
(l,2 + l cotθ + l̄,3 cscθ),0,

3N,0 = −M,2 −
λ,3 cscθ

2
− (c,0c,2 + d,0d,2)− 3(cc,02 + dd,02)− 4(cc,0 + dd,0) cotθ

+ (c,0d,3 − c,3d,0 + 3c,03d − 3cd,03) cscθ,

3P,0 = −M,3 cscθ +
λ,2

2
+ (c,2d,0 − c,0d,2)+ 3(cd,02 − c,02d)+ 4(cd,0 − c,0d) cotθ

− (c,0c,3 + d,0d,3 + 3cc,03 + 3dd,03) cscθ
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where

λ = l̄,2 + l̄ cotθ − l,3 cscθ.

Define

M(u, θ, ψ) = M(u, θ, ψ)−
1
2(l,2 + l cotθ + l̄,3 cscθ)(2.2)

= M(u, θ, ψ)−
1
2[−2c(u, θ, ψ)+ c,22(u, θ, ψ)

− csc2 θc,33(u, θ, ψ)+ 2 cscθd,23(u, θ, ψ)

+ 3 cotθc,2(u, θ, ψ)+ 2 cotθ cscθd,3(u, θ, ψ)].

Its u-derivative is

M,0 = −[(c,0)
2
+ (d,0)

2].(2.3)

There are some physical conditions [2, 15, 18] ensuring the regularity of (2.1). In this
paper, however, we assume

CONDITION A. Each of the six functionsβ, γ , δ, U , V ,W together with its derivatives
up to the second order has equal values atψ = 0 and 2π .

CONDITION B. For allu,∫ 2π

0
c(u,0, ψ) dψ = 0,

∫ 2π

0
c(u, π,ψ) dψ = 0.

LetNu0 be a null hypersurface which is given byu = u0. The Bondi energy-momentum
of Nu0 is defined by (see [2, 5])

mν(u0) =
1

4π

∫
S2
M(u0, θ, ψ)n

ν dS(2.4)

whereν = 0,1,2,3, n0
= 1, andni is the restriction of the natural coordinatexi to the

unit sphere, i.e.,

n0
= 1, n1

= sinθ cosψ, n2
= sinθ sinψ, n3

= cosθ.

Under Conditions A and B, we have (see [2, 15, 22])

d

du
mν = −

1

4π

∫
S2

[(c,0)
2
+ (d,0)

2]nν dS(2.5)

for ν = 0,1,2,3. Whenν = 0, this is the famous Bondi mass loss formula.
The following proposition can be viewed as a generalized Bondi mass loss formula. It

does not seem to appear in the literature.

PROPOSITION2.1. Let (L3,1, g̃) be a vacuum Bondi’s radiating spacetime with metricg̃
given by(2.1). Suppose that Conditions A and Condition B hold. Then

d

du

(
m0 −

√ ∑
1≤i≤3

m2
i

)
≤ 0.(2.6)
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PROOF. Define |m| =

√
m2

1 +m2
2 +m2

3. We assume|m| 6= 0, as otherwise the proof
reduces to the Bondi mass loss formula. We have

d

du
(m0 − |m|) =

dm0

du
−

1

|m|

∑
1≤i≤3

dmi

du
mi

= −
1

4π

{∫
S2

[(c,0)
2
+ (d,0)

2] dS

−
1

|m|

∑
1≤i≤3

mi

∫
S2

[(c,0)
2
+ (d,0)

2]ni dS

}
.

Thus d
du
(m0 − |m|) ≤ 0 is equivalent to∑

1≤i≤3

mi

∫
S2

[(c,0)
2
+ (d,0)

2]ni dS ≤ |m|

∫
S2

[(c,0)
2
+ (d,0)

2] dS.

Using(n1)2 + (n2)2 + (n3)2 = 1, we obtain

(2.7)
∑

1≤i≤3

{ ∫
S2

[(c,0)
2
+ (d,0)

2]ni dS

}2

≤

∑
1≤i≤3

{ ∫
S2

[(c,0)
2
+ (d,0)

2] dS

}{ ∫
S2

[(c,0)
2
+ (d,0)

2](ni)2 dS

}

=

{ ∫
S2

[(c,0)
2
+ (d,0)

2] dS

}2

.

Then by the Cauchy–Schwarz inequality,

∑
1≤i≤3

mi

∫
S2

[(c,0)
2
+ (d,0)

2]ni dS ≤ |m|

√√√√ ∑
1≤i≤3

{ ∫
S2

[(c,0)2 + (d,0)2]ni dS

}2

≤ |m|

∫
S2

[(c,0)
2
+ (d,0)

2] dS.

Therefore (2.6) holds. 2

3. ASYMPTOTICALLY NULL SPACELIKE HYPERSURFACES

The hypersurfaceu =
√

1 + r2 − r in the Minkowski spacetime is a hyperbola equipped
with the standard hyperbolic 3-metricğ. Let {ĕi} be the frame

ĕ1 =

√
1 + r2 ∂

∂r
, ĕ2 =

1

r

∂

∂θ
, ĕ3 =

1

r sinθ

∂

∂ψ
.

Let {ĕi} be the coframe. Writĕ∇i = ∇̆ĕi , etc., where∇̆ is the Levi-Civita connection of̆g.
The connection 1-forms{ω̆ij } are given bydĕi = −ω̆ij ∧ ĕj or ∇̆ ĕi = −ω̆ij ⊗ ĕj . They
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are

ω̆12 = −

√
1 + r2

r
ĕ2, ω̆13 = −

√
1 + r2

r
ĕ3, ω̆23 = −

cotθ

r
ĕ3.

Let X be a spacelike hypersurface in a vacuum Bondi’s radiating spacetime(L3,1, g̃)

with metric (2.1), which is given by the inclusion

i : X3
→ L3,1, (y1, y2, y3) 7→ (x0, x1, x2, x3),

for r sufficiently large, where

x0
= u(y1, y2, y3), x1

= y1
= r, x2

= y2
= θ, x3

= y3
= ψ.

Let g = i∗g̃ be the induced metric ofX andh be the second fundamental form ofX. Let ∇̃
be the Levi-Civita connection ofL3,1. For any tangent vectorsYi, Yj ∈ TX, i∗Yi , i∗Yj are
tangent vectors alongX, and

g(Yi, Yj ) = g̃(i∗Yi, i∗Yj ).

Let en be the downward unit normal ofX. The second fundamental form is defined as

h(Yi, Yj ) = g̃(∇̃i∗Yi i∗Yj , en).

Now it is a straightforward computation that

i∗
∂

∂yi
=

∂

∂xα

∂xα

∂yi
=

∂

∂x0

∂x0

∂yi
+

∂

∂xi
.

Setei = i∗ĕi . Then

e1 =

√
1 + r2u,1∂0 + ĕ1, e2 =

u,2

r
∂0 + ĕ2, e3 =

u,3

r sinθ
∂0 + ĕ3.(3.1)

DEFINITION 3.1. A spacelike hypersurface(X, g, h) in an asymptotically flat spacetime
is asymptotically null of orderτ > 0 if, for r sufficiently large,g(ĕi, ĕj ) = δij + aij ,
h(ĕi, ĕj ) = δij + bij , whereaij , bij satisfy

{aij , ∇̆kaij , ∇̆l∇̆kaij , bij , ∇̆kbij } = O(1/rτ ).(3.2)

Let (X, g, h) be an asymptotically null spacelike hypersurface with the induced metric
g and the second fundamental formh in a vacuum Bondi’s radiating spacetime(L3,1, g̃),
which is given by

u =

√
1 + r2 − r +

(c2
+ d2)u=0

12r3
+
a3(θ, ψ)

r4
+ a4(3.3)

wherea4(r, θ, ψ) is a smooth function such that in the Euclidean coordinate systems{z̆i},
|z̆| = r,

a4 = o(1/r4), ∂ka4 = o(1/r5), ∂k∂la4 = o(1/r6)

asr → ∞. We will compute asymptotic behaviors of the induced metric and the second
fundamental form ofX. The induced metric can be obtained by substitutingdu into (2.1).
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LetXn be the downward normal vector

Xn = −
∂

∂x0
− %i

∂

∂xi
.

Let ei be given by (3.1). SinceXn is orthogonal toei , we obtain

g̃(ei, Xn) = 0.

This implies that%i satisfies the following equations:

(u,i g̃00 + g̃0i)+ %j (u,i g̃0j + g̃ij ) = 0

for i = 1,2,3. Therefore%i can be found by solving linear algebraic equations and the
unit normal vector is

en =
Xn√

−g̃(Xn, Xn)
.

The second fundamental form is then given by

h(ĕi, ĕj ) = g̃(∇̃ei ej , en)

for 1 ≤ i, j ≤ 3. Now we definea ≈ b if and only if a = b + o(1/r3). For r sufficiently
large, we expandc, d andM atu = 0 in Taylor series:

c(u, θ, ψ) ≈ c(0, θ, ψ)+ c,0(0, θ, ψ)u+
c,00(0, θ, ψ)

2
u2,(3.4)

d(u, θ, ψ) ≈ d(0, θ, ψ)+ d,0(0, θ, ψ)u+
d,00(0, θ, ψ)

2
u2,(3.5)

M(u, θ, ψ) ≈ M(0, θ, ψ)+M,0(0, θ, ψ)u+
M,00(0, θ, ψ)

2
u2.(3.6)

With the help of Mathematica 5.0, we obtain the asymptotic behaviors of the metricg:

g(ĕ1, ĕ1) ≈ 1 +
16a3 +M − cc,0 − dd,0

2r3
,

g(ĕ1, ĕ2) ≈ −
l

2r2
+

12N − 3l,0 + 4(cc,2 + dd,2)

12r3
,

g(ĕ1, ĕ3) ≈ −
l̄

2r2
+

12P − 3l̄,0 + 4 cscθ(cc,3 + dd,3)

12r3
,

g(ĕ2, ĕ2) ≈ 1 +
2c

r
+

2(c2
+ d2)+ c,0

r2
+
c3

+ cd2
+ 2C + 2(cc,0 + dd,0)+ c,00/4

r3
,

g(ĕ2, ĕ3) ≈
2d

r
+
d,0

r2
+
c2d + d3

+ 2H + d,00/4

r3
,

g(ĕ3, ĕ3) ≈ 1 −
2c

r
+

2(c2
+ d2)− c,0

r2
+

−c3
− cd2

− 2C + 2(cc,0 + dd,0)− c,00/4

r3
,

h(ĕ1, ĕ1) ≈ 1 +
c2

+ d2

r2
+

16a3 −M

r3
,



342 W.-L . HUANG - S. T. YAU - X . ZHANG

h(ĕ1, ĕ2) ≈
l

2r2
+

1

2r3

[
l,0

2
− 2(c2

+ d2) cotθ − 4N

+ (−cd,3 + c,3d) cscθ −
13

3
(cc,2 + dd,2)

]
,

h(ĕ1, ĕ3) ≈
l̄

2r2
+

1

2r3

[
l̄,0

2
+ cd,2 − c,2d − 4P −

13

3
(cc,3 + dd,3) cscθ

]
,

h(ĕ2, ĕ2) ≈ 1 +
c

r
+
c,0

r2
+

1

4r3

[
3M − 16a3 − 4C − 2l,2

− 2c(c2
+ d2)+ 5(cc,0 + dd,0)+

3

2
c,00

]
,

h(ĕ2, ĕ3) ≈
d

r
+
d,0

r2
+

1

4r3

[
−2d(c2

+ d2)+ 2d cot2 θ

+ 2d csc2 θ − 4c,3 cotθ cscθ − d,33 csc2 θ − d,2 cotθ − d,22 − 4H +
3

2
d,00

]
,

h(ĕ3, ĕ3) ≈ 1 −
c

r
−
c,0

r2
+

1

4r3

[
3M − 16a3 + 4C

+ 2c(c2
+ d2)+ 5(cc,0 + dd,0)−

3

2
c,00 − 2l cotθ − 2l̄,3 cscθ

]
.

Here all functions on the right hand sides are evaluated atu = 0 and all derivatives
with respect tox2 and x3 are taken after substitutingu = 0. Therefore(X, g, h) is
asymptotically null of order 1.

4. POSITIVITY: SCHOEN–YAU ’ S METHOD

In this section, we will complete the argument in [17]. Denote by(X, g, h) the
asymptotically null spacelike hypersurface which is given by (3.3) forr sufficiently large.
In [17], Schoen–Yau solved the following Jang’s equation onX:(

gij −
f if j

1 + |∇f |2

)(
f,ij√

1 + |∇f |2
− hij

)
= 0(4.1)

under the suitable boundary condition

f → f0(4.2)

asr → ∞ such that the metric

ḡ = g + ∇f ⊗ ∇f(4.3)

is asymptotically flat. Denote byJ (f ) the left hand side of Jang’s equation (4.1). Note
that in the standard hyperbolic 3-space, (4.1) has a solutionf =

√
1 + r2. Therefore it is

reasonable to set

f0 =

√
1 + r2 + o(r).



POSITIVITY OF THE BONDI MASS 343

Let f be a function onX which has asymptotic expansion

f =

√
1 + r2 + p(θ, ψ) ln r + q(r, θ, ψ),(4.4)

for r sufficiently large, wherep(θ, ψ) is a smooth function onS2 and q is a smooth
function on R3 which satisfies the following asymptotic conditions: In the Euclidean
coordinate systems{z̆i}, |z̆| = r,

q = o(1), ∂kq = o(1/r), ∂k∂lq = o(1/r2), ∂k∂l∂jq = o(1/r3)

asr → ∞.
Let the standard metric ofS2 be dθ2

+ sin2 θdψ2. The Laplacian operator for this
metric is

4S2 =
∂2

∂θ2
+ cotθ

∂

∂θ
+ csc2 θ

∂2

∂ψ2
.

Thespherical harmonicswj are the eigenfunctions of4S2, i.e.,4S2wj = j (j − 1)wj for
j = 1,2, . . . .

PROPOSITION4.1. If Jang’s equation(4.1) has a solutionf which has the asymptotic
expansion(4.4) for r sufficiently large, thenp(θ, ψ) andM(0, θ, ψ) must be constant.

PROOF. A lengthy computation with the help of Mathematica 5.0 shows that

J (f ) ≈
ln r

r3
4S2p +

p − 2M(0, θ, ψ)

r3

for r sufficiently large. ThatJ (f ) = 0 implies

4S2p = 0, p − 2M = 0.

As there is no nonconstant harmonic function onS2, the proposition follows. 2

The existence for (4.1) under the boundary condition (4.2) with

f0(r) =

√
1 + r2 + p ln r(4.5)

for a certain constantp can be established as follows: We extendf0 to the wholeX and
denote asf0 also. Denote byBR the ball of radiusR in R3. If X has no apparent horizon,
the existence theorem for the Dirichlet problem [20] indicates that there exists a (smooth)
solutionf̄R of (4.1) onBR such that

f̄R|∂BR = 0

for sufficiently largeR. By the translation invariance of (4.1) in the vertical direction, we
find that

fR = f̄R + f0(R)

is a solution of (4.1) which isf0(R) on ∂BR. Now the estimates in [16] show that

fR → f
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on any compact subset ofX, wheref is a (smooth) solution of (4.1). Writef = f0 + f1
where limr→∞ f1 = 0. Substitute it into Jang’s equation (4.1) and obtain an equation
for f1. Then using a similar argument to the proof of Proposition 3 in [16], we can show
that for anyε ∈ (0,1), there is a constantC(ε) depending only onε and the geometry of
X such that

|f1(z̆)| + |z̆| |∂f1(z̆)| + |z̆|2|∂∂f1(z̆)| + |z̆|3|∂∂∂f1(z̆)| ≤ C(ε)|z̆|ε.

Thereforef has asymptotic behaviors (4.4), (4.5) forr sufficiently large.
By adding one-point compactification, the existence for (4.1) can be extended toX

with apparent horizons. See [16] for details.
The following lemma was proved in [22].

LEMMA 4.1. Let (L3,1, g̃) be a vacuum Bondi’s radiating spacetime with metricg̃ given
by (2.1). Suppose that Conditions A and B hold. Then∫

S2
(l,2 + l cotθ + l̄,3 cscθ)nν dS = 0

for ν = 0,1,2,3.

THEOREM 4.1. Let (L3,1, g̃) be a vacuum Bondi’s radiating spacetime with metricg̃
given by(2.1). Suppose that Conditions A and B hold. If there exists a constantu0 such
thatM(u0, θ, ψ) is constant, then

m0(u) ≥

√ ∑
1≤i≤3

m2
i (u)

for all u ≤ u0. If equality holds for someu ∈ (−∞, u0], thenL3,1 is flat in the region
foliated by all spacelike hypersurfaces which are given by

u = u0 +

√
1 + r2 − r + o(1/r4)

for r sufficiently large. In particular, if equality holds for allu ≤ u0, thenL3,1 is flat in the
region{u ≤ u0}.

PROOF. SupposeM(u0, θ, ψ) = p/2. By the translation invariance of Jang’s equation,
we can assume thatu0 = 0. The assumption of the theorem ensures that there exists a
smooth solutionf of Jang’s equation (4.1) under the boundary condition (4.2) withf0
given by (4.5). It is obvious that the metric̄g given by (4.3) is asymptotic flat. Now we
show its ADM total energy isp. Denote byg0 the flat metric ofR3 in polar coordinates.
Let {e0

i } be the frame ofg0,

e0
1 =

∂

∂r
, e0

2 =
1

r

∂

∂θ
, e0

3 =
1

r sinθ

∂

∂ψ
.

Let {ei0} be the coframe ofg0. Defineαij = ḡ(e0
i , e

0
j )− δij . Now we use the ADM energy

expression in polar coordinates

E(ḡ) =
1

16π
lim
r→∞

∫
Sr

[(∇0)
j
α1j − (∇0)1 trg0(α)]e

2
0 ∧ e3

0
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where∇
0 is the Levi-Civita connection ofg0. Since

(∇0)
j
α1j − (∇0)1 trg0(α) =

ln r

r2
4S2p +

4p

r2
+ o

(
1

r2

)
,

we obtain
E(ḡ) = p.

Since it satisfies vacuum Einstein field equations, the Bondi’s radiating metric satisfies the
dominant energy condition automatically. Therefore the scalar curvatureR̄ of ḡ satisfies

R̄ ≥ 2|Y |
2
ḡ − 2 divḡ Y

for a certain vector fieldY in X̄. Therefore a standard positive mass argument [16, 12]
shows that

E(ḡ) = p ≥ 0.

Andp = 0 if and only if the metricḡ is flat, which implies that(X, g, h) can be embedded
into the Minkowski spacetime as a spacelike hypersurface with the metricg induced from
the Minkowski metric and the second fundamental formh.

IntegratingM(0, θ, ψ) = p/2 over unitS2 and using Lemma 4.1, we obtain the Bondi
energy-momentum of sliceu = 0,

m0(0) = p/2, m1(0) = m2(0) = m3(0) = 0.

Thus the theorem follows from Proposition 2.1. 2

5. POSITIVITY: WITTEN’ S METHOD

In this section, we will use Witten’s [19] method and the positive mass theorem near null
infinity proved by the third author [21, 23] to study the positivity of the Bondi mass. Let
(X, g, h) be an asymptotically null spacelike hypersurface. Define

Eν(X) =
1

16π
lim
r→∞

∫
Sr

Enνr ĕ2
∧ ĕ3, Pν(X) =

1

8π
lim
r→∞

∫
Sr

Pnνr ĕ2
∧ ĕ3,

where

E = ∇̆
ja1j − ∇̆1 trğ(a)− [a11 − δ11 trğ(a)], P = b11 − δ11 trğ(b).

Theorem 4.1 in [21] indicates if(X, g, h) is an asymptotically null spacelike hypersurface
of orderτ > 3/2 in a vacuum Bondi’s radiating spacetime (2.1), then

E0(X)− P0(X) ≥

√ ∑
1≤i≤3

[Ei(X)− Pi(X)]2(5.1)

and equality implies the spacetime is flat overX. (Theorem 4.1 in [21] was proved for
τ = 3. However, the argument goes through ifc|u=0 = d|u=0 = 0 for the above(X, g, h)
in the Bondi’s radiating spacetimes. See also Theorem 3.1 and Remark 3.1 in [23]. The
sharp orderτ > 3/2 together with certain integrable conditions was also given in [8, 6]
to ensure the argument to work.) In general, the hyperbolic mass of an asymptotically null
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spacelike hypersurface is different from the Bondi mass of the null cone. For instance, if
c|u=0 or d|u=0 is nonzero,E0(X)− P0(X) may not be finite.

LEMMA 5.1. Let (L3,1, g̃) be a vacuum Bondi’s radiating spacetime with metricg̃ given
by(2.1). Let(X, g, h) be a spacelike hypersurfaceuwhich is given by(3.3)for r sufficiently
large. DefineL(φ,ψ) = l(0, φ, ψ), L̄(φ, ψ) = l̄(0, φ, ψ). Then

E ≈
12

r2
(c2

+ d2)u=0 +
1

r3
(M + 16a3 + 15cc0 + 15dd0)u=0

−
1

2r3
(L,2 + L cotθ + L̄,3 cscθ),

P ≈ −
1

2r3
(3M − 16a3 + 5cc0 + 5dd0)u=0 +

1

2r3
(L,2 + L cotθ + L̄,3 cscθ).

PROOF. Note that

a22 + a33 ≈
4

r2
(c2

+ d2)u=0 +
4

r3
(cc,0 + dd,0)u=0,

b22 + b33 ≈
1

2r3
(3M − 16a3 + 5cc,0 + 5dd,0)u=0 −

1

2r3
(L,2 + L cotθ + L̄,3 cscθ).

Using the formula

∇̆kaij = ĕk(aij )− aj lω̆li(ĕk)− ailω̆lj (ĕk),

we obtain

E = ĕj (a1j )− aj lω̆l1(ĕj )− a1lω̆lj (ĕj )− ∇̆1 trğ(a)+ a22 + a33

≈ −
1

2r3
(L,2 + L cotθ + L̄,3 cscθ)+

1

r3
(M + 16a3 − cc,0 − dd,0)u=0

+
8
√

1 + r2

r3
(c2

+ d2)u=0 +
12

√
1 + r2

r4
(cc,0 + dd,0)u=0

+
4

r3
(c2

+ d2)u=0 +
4

r4
(cc,0 + dd,0)u=0

≈ −
1

2r3
(L,2 + L cotθ + L̄,3 cscθ)+

1

r3
(M + 16a3 + 15cc,0 + 15dd,0)u=0

+
12

r2
(c2

+ d2)u=0 +O

(
1

r4

)
,

P = −b22 − b33

≈ −
1

2r3
(3M − 16a3 + 5cc,0 + 5dd,0)u=0 +

1

2r3
(L,2 + L cotθ + L̄,3 cscθ). 2

THEOREM 5.1. Let (L3,1, g̃) be a vacuum Bondi’s radiating spacetime with metricg̃
given by(2.1). Suppose that Conditions A and B hold andc|u=u0 = d|u=u0 = 0 for
someu0. Then

m0(u) ≥

√ ∑
1≤i≤3

m2
i (u)
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for all u ≤ u0. If equality holds for someu ∈ (−∞, u0], thenL3,1 is flat in the region
foliated by all spacelike hypersurfaces which are given by

u = u0 +

√
1 + r2 − r + o(1/r4)

for r sufficiently large. In particular, if equality holds for allu ≤ u0, thenL3,1 is flat in the
region{u ≤ u0}.

PROOF. By translation, we can assume thatu0 = 0. Choose an asymptotically null
spacelike hypersurfaceX which is given by (3.3) witha3 = 0 for r sufficiently large.
By Lemma 5.1, we obtain

E − P ≈ −
1

r3
(L,2 + L cotθ + L̄,3 cscθ)+

5M(0, θ, ψ)

2r3
.

Then Lemma 4.1 implies that

Eν(X)− Pν(X) =
5

8
mν(0).

Therefore the first part of the theorem follows from (5.1) and Proposition 2.1. For the
second part, if equality holds for someu ∈ (−∞, u0], then it holds foru = u0 by
Proposition 2.1. ThusL3,1 is flat overX and the assertion follows. 2

6. MODIFIED BONDI ENERGY-MOMENTUM

We can modify the definition of the Bondi energy-momentum to remove Condition B.
Define the modified Bondi energy-momentum as

mν(u0) =
1

4π

∫
S2
M(u0, θ, ψ)n

ν dS(6.1)

for ν = 0,1,2,3. Then we can prove that

d

du
mν = −

1

4π

∫
S2
((c,0)

2
+ (d,0)

2)nν dS(6.2)

for ν = 0,1,2,3, and

d

du

(
m0 −

√ ∑
1≤i≤3

m2
i

)
≤ 0(6.3)

under Condition A only.
Now choose the spacelike asymptotically null hypersurfaceX given by (3.3) witha3 =

−M(0, θ, ψ)/16. If c|u=0 = 0, d|u=0 = 0, then

E − P ≈
2M(0, θ, ψ)

r3
.

Therefore the following theorem is a direct consequence.
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THEOREM 6.1. Let (L3,1, g̃) be a vacuum Bondi’s radiating spacetime with metricg̃
given by(2.1). Suppose that Condition A holds. If either(i) M(u0, θ, ψ) is constant, or
(ii) c|u=u0 = d|u=u0 = 0 for someu0, then

m0(u) ≥

√ ∑
1≤i≤3

m2
i (u)

for all u ≤ u0. If equality holds for someu ∈ (−∞, u0], thenL3,1 is flat in the region
foliated by all spacelike hypersurfaces which are given by

u = u0 +

√
1 + r2 − r −

M(u0, θ, ψ)

16r4
+ o

(
1

r4

)
for r sufficiently large. In particular, if the equality holds for allu ≤ u0, thenL3,1 is flat in
the region{u ≤ u0 −M(u0, θ, ψ)/16r4

}.
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[5] P. CHRUŚCIEL - J. JEZIERSKI - M. M ACCALLUM , Uniqueness of the Trautman–Bondi mass.
Phys. Rev. D 58 (1998), 084001.
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