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ABSTRACT. — We introduce two conditions related to tmews functionsof Bondi's radiating vacuum
spacetimes. We provide a complete proof of the positivity of the Bondi mass by using Schoen-Yau's method
under one condition and by using Witten’s method under the other condition.
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1. INTRODUCTION

Gravitational waves are predicted by Einstein’s general relativity. They are time dependent
solutions of the Einstein field equations which radiate or transport energy. Although they
have not been detected yet, the existence of gravitational waves has been proved indirectly
from observations of the pulsar PSR 1913+16. This rapidly rotating binary system should
emit gravitational radiation, hence lose energy and rotate faster. The observed relative
change in period agrees remarkably with the theoretical value.

A fundamental conjecture is that gravitational waves cannot carry away more energy
than they have initially in an isolated gravitational system. It is usually referred as the
positive mass conjecture at null infinity. In Bondi's radiating vacuum spacetime, this
conjecture is equivalent to the positivity of the Bondi mass. In the pioneering work of
Bondi, van der Burg, Metzner and Sachs on the gravitational waves in vacuum spacetimes,
the Bondi mass associated to each null cone is defined and their main result asserts that
this Bondi mass is always nonincreasing with respect to the retarded(timel[2,115, 18].
Therefore, the Bondi mass can be interpreted as the total mass of the isolated physical
system measured after the loss due to the gravitational radiation up to that time. The proof
of the positivity of the Bondi mass was outlined by Schoen—Yau modifying their arguments
in the proof of the positivity of the ADM mas$ [117]. It was also outlined by physicists
applying Witten's spinor method (see, e.@. /[11, S, 1,[13] 14, 10]). The main goal of this
paper is to find a complete proof of the positivity. Indeed, we find certain conditions related
to thenews functionsf the system. The Bondi mass is nonnegative under these conditions.

It is an open problem whether vacuum Einstein field equations always develop loga-
rithmic singularities at null infinity. In[[7], the authors studied polyhomogeneous Bondi
expansions. Tha-evolution equations actually indicate that logarithmic singularities at
null infinity can be removed in the axisymmetric case (Appendix DLof [7]) if the free
functionyz(u, x*) is chosen to be zero and 1(uo, x*) is chosen to be zero for some. It
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is quite possible that Bondi's radiating vacuum spacetime does not develop any logarithmic
singularity at null infinity after suitable “gauge fixing”. Therefore we do not consider
polyhomogeneous Bondi expansions [3] in the present paper.

The paper is organized as follows. In Section 2, we state some well-known formulas
and results of Bondi, van der Burg, Metzner and Sachs. We employ two fundamental
assumptionsCondition Aand Condition B We also derive a generalized Bondi mass
loss formula under these two conditions. In Section 3, we study some basic geometry
of asymptotically null spacelike hypersurfaces. We compute the asymptotic behaviors of
the induced metric and the second fundamental form of an asymptotically null spacelike
hypersurface given by a certain graph. In Section 4, we use Schoen-Yau’s method to prove
that, under Conditions A and B, if there is a retarded timeuch thatM (uq, 9, ) defined
in Section 2 is constant, then the Bondi mass is nonnegative in the régien uo},
and the Bondi mass is zero ate (—oo, ug] if and only if the spacetime is flat in a
neighborhood of a spacelike hypersurfdge= ug + +/1+ r2 — r}. In Section 5, we use
Witten’s method to prove that, under Conditions A and B, if there is a retardedugme
such that(ug, 6, ¥) = d(ug, 0, ¥) = 0, then the Bondi mass is nonnegative in the region
{u < uo}, and the Bondi mass is zero mte (—oo, ug] if and only if the spacetime is
flat in a neighborhood of a spacelike hypersurface= ug 4+ +/1 + r2 — r}. In Section 6,
we modify the definition of the Bondi energy-momentum and prove its positivity without
Condition B.

2. BONDI’S RADIATING SPACETIMES

We assume thatL®1, ) is a vacuum spacetime (possibly with black holes) arisl the
following Bondi’s radiating metric:

|4
(1) = (—ezﬁ + r2¢? U2 cosh 3 + r?¢~% W? cosh 3
r

+2r2UW sinh %)duz — 2% dudr

—2r%(¢? U cosh 3 + W sinh 2)dud6
—2r%(e% W cosh 3 + U sinh &) sinfdudy
+r2(e? cosh 3d6? + =% cosh 3 sir? 6dy? + 2 sinh B sin6dod )

in coordinatesu, r, 0, ¥) (u is retarded time) where
—co<u<oo, r>0 0<O6<m, O0<vy <2m.

Write

We suppose thas, y, 8, U, V. andW are smooth functions of, r, 6, . We write f, =
af/ox" forv =0, 1, 2, 3 throughout the paper. The metiic (2.1) was studied by Bondi, van
der Burg, Metzner and Sachs in the theory of gravitational waves in general relativity [2,
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15,[18]. They proved that the following asymptotic behavior holds-feufficiently large
if the spacetime satisfies the outgoing radiation condifion [18]:

0, C(u,0,v¥) — 1c3— 3cd? 1

r r3

du, 0, Hu,0,vy)+ 3c2d — 1d3 1
5= dw6.¥) (.6.9) + 3¢ 6 +0<—4),
r

r r3
2 2
cc+d 1
=——" +o(=),
p 4y2 + <r4>
[(u, 0 6
(2 Z,W)+p<u,3,w)+0( )
r r

)
)

1
r_4
o9 | pwod) 0(%4)

}"2 r

e v+ MY (1)

where

I =c2+ 2ccotd +d zcsch,

I =dp+ 2dcotd — c3csch,

p = 2N + 3(cc.2 +dd o) + 4(c? + d®) cotd — 2(c 3d — cd 3) CSCh,
D = 2P + 2(c,2d — cd ) + 3(cc,3 + dd 3) csch,

c? + d?

M = N+ cotf + P3cScH — —[(c.2)? 4 (d2)] — 4(cc 2 + dd 2) coth

—4(c? 4+ d?) cotf —[(c.3)® + (d3)% csP o
+4(c,3d — cd 3) csco cotd + 2(c 3d 2 — ¢ 2d 3) CSCH.

Here M is referred to as thenass aspecindc o, d g are called thenews functionsThe
u-derivatives of certain functions are

2 2
c“co cod cM d,x No— Ncotd — P3cschd
Co= : ddog— = —_—t+ — - = : ,
,0 5 +cdd o 5 + > + 2 2
2 2
c“dg dod dM cA Pp— Pcotf 4+ N zcschd
Hog=——= d . —_—— == : ,
0 5 teeedt Ty 4
1 -
Mo = —[(c0)?+ (do)?] + 5(2+1cotd +130500) o,
A 3Csch
3No=—-Mp— .3 — (c.oc,2+d od2) — 3(cc.02 + dd g2) — 4(cc,0 + dd p) coto

2
+ (c,0d,3 — ¢,3d 0 + 3c,03d — 3cd 03) CSCH,

A
3Pg=—M3cscod + 72 + (¢c.2d0 — c,0d 2) + 3(cd 02 — c.02d) + 4(cd o — c.od) cotd
—(c,0c,3+ d,0d 3 + 3cc 03 + 3dd 03) CcSCH
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where
A =1,41cotd —I3csch.
Define
(2.2) M@, 6,9) = Mu,0,¥) — 32 +1cotd +1 3csc0)

=M, 0, %) — 3[—2c(u, 0, %) + ¢ 20(u, 0, %)
— ¢csC0c.33(u, 0, V) + 2¢SHd.23(u, 6, V)
+3cotfc 2(u, 0, ¥) + 2 cotd cschd 3(u, 0, ¥r)].
Its u-derivative is
(2.3) Mo = —[(c.00* + (d0)?].

There are some physical conditions[[2] 15, 18] ensuring the regularity ¢f (2.1). In this
paper, however, we assume

CoNDITION A. Each of the six functiong, y, 8, U, V, W together with its derivatives
up to the second order has equal valueg at 0 and 2r.

CoNDITION B.  For allu,

21 2m
f c(u907 '(//)dw :O’ / C(u,f[, I//)dw :O'
0 0

LetN,, be anull hypersurface which is given by= ug. The Bondi energy-momentum
of N, is defined by (see[2]5])

(2.4) my(ug) = i/ M (ug, 9, ¥)n’dS
47'[ S2

wherev = 0, 1,2, 3,n% = 1, andn’ is the restriction of the natural coordinatéto the
unit sphere, i.e.,

n°=1 nl=sinfcosy, n?=sindsiny, n°=cosh.

Under Conditions A and B, we have (seél[2}[15, 22])
d
du
forv=0,1, 2, 3. Whenv = 0, this is the famous Bondi mass loss formula.

The following proposition can be viewed as a generalized Bondi mass loss formula. It
does not seem to appear in the literature.

(2.5) my = —— / [0+ (do)n" dS
47T S2

PrOPOSITION2.1. Let(L®1, ) be a vacuum Bondi’s radiating spacetime with megric
given by(2.1)). Suppose that Conditions A and Condition B hold. Then

(2.6) dd—u<m0 -y m§> <0.
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PROOF Define|m| = /m3 +m3+ m%. We assumem| # 0, as otherwise the proof
reduces to the Bondi mass loss formula. We have

dmg 1 dm;
o — ml) = =0 — = 3 S,
du du |m| 15723 du

1
=0 { / [(c0)® + (d0)°]dS
T S2

1 i
“ml Z mi /;2[(6,0)2+(d,o)2]n dS}_

1<i<3

Thus AL (mo — |m|) < 0 is equivalent to

3 m [S (€0 + @ o)?]n’ dS < |m| fs [co®+do)?]ds.

1<i<3

Using n1)2 + (%2 + (n%)2 = 1, we obtain

2
@7n > { f [(c,o)2+<d,o)2]nfd5}
1<i<3 52

<> { / [(c.0)® + (d0)7] dSH / [(c,o>2+<d,o>2](n">2d5}
52 52

1<i<3

2

= { / [(c.0)? + (d0)?] ds} :
S2

Then by the Cauchy—Schwarz inequality,

2
> mi [ J€o? + ot as < |m|J 3 { [ fco? + @oan ds}
SZ SZ

1<i<3 1<i<3

< |m| /Sz[(c'O)2+ (d )2 ds.

Therefore[(2B) holds. O

3. ASYMPTOTICALLY NULL SPACELIKE HYPERSURFACES

The hypersurface = /1 + r2 — r in the Minkowski spacetime is a hyperbola equipped
with the standard hyperbolic 3-metic Let {¢;} be the frame

3 . 1a . 1 9
rsing gy’

1 = 1 2—, = ——, =
a Ty 2T 0 @

Let {¢'} be the coframe. Writ&; = V;,, etc., whereV is the Levi-Civita connection of.
The connection 1-formgs;;} are given bylé' = —@;; A &/ or Vé; = —@;; ® é;. They
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are
o v1~|—r2v2 o V1+r2v3 o COths
wp=——"—" "€, WI3=—— €, wa3=——¢€.
r r r

Let X be a spacelike hypersurface in a vacuum Bondi’s radiating spacétifrie )
with metric [2.1), which is given by the inclusion

D S A L e T )
for r sufficiently large, where
O =uph 23, at=ylor x2=y2=0, B=3=y.

Letg = i* be the induced metric &f andi be the second fundamental form%fLet V
be the Levi-Civita connection dt31. For any tangent vectois, Y, € TX,i.Y;,i,Y; are
tangent vectors alony, and

g(Yi, Y)) = g(i,Y;, 1.Y)).
Let e, be the downward unit normal &. The second fundamental form is defined as
h(Yi, Y)) = §(Vi,yinY), en).
Now it is a straightforward computation that
3 d ax* 9 % 9

P — =

ayl  9x® 9yt 9x0 9yt oxi

Sete; = i.e;. Then

o uz2 o us3
(31 e1=vV1+r2uidpo+é1, e2= r—’ao +eé2, e3= rS{nQ

do + é3.

DEFINITION 3.1. A spacelike hypersurfad&, g, ) in an asymptotically flat spacetime
is asymptotically null of orderr > 0 if, for » sufficiently largeg(¢é;, é;) = &; + aij,
h(e;, é]) = 8,']' + bija Whereaij, bij satisfy

(3.2) {aij, Vaij, ViViaij, bij, Vibij} = O(1/r7).
Let (X, g, h) be an asymptotically null spacelike hypersurface with the induced metric

g and the second fundamental fofnin a vacuum Bondi’s radiating spacetirie®?, g),
which is given by

2 2
+d?),— 0,
(3.3) u=vitri—r+& 12r3)" °+a3(r4w)+a4

whereay(r, 6, ¥) is a smooth function such that in the Euclidean coordinate systéms
Izl =r,

as=o1/rY),  as=o01/r>, Kdas=o(1/r®

asr — oo. We will compute asymptotic behaviors of the induced metric and the second
fundamental form oK. The induced metric can be obtained by substitutingnto (2.7).
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Let X,, be the downward normal vector
Xn = —i - Qii..

9x0 dxi
Lete; be given by[(3]1). Sinc&, is orthogonal ta;, we obtain

g(ei, X») =0.
This implies thap’ satisfies the following equations:

(,ig00 + &oi) + o’ (uioj + &ij) = O

fori = 1,2, 3. Thereforep’ can be found by solving linear algebraic equations and the
unit normal vector is

— Xn

by = —— .
Vv _g(Xl’ls Xn)

The second fundamental form is then given by
h(éi, &) = §(Veej, en)

for1 <i, j < 3. Now we define: ~ b if and only ifa = b + 0(1/r3). Forr sufficiently
large, we expand, d andM atu = O in Taylor series:

¢,0000,60,9) ,
—_—u-,

(3.4) c(u,0,v) ~c(0,0,%) +co0,0,y)u+ 5
(35) d(u,@,l/f) %d(o’e,w)_i_d’o(o,e’ w)u_i_MngI/f)uZ,
(3.6) M(u,8,9) ~ M©,0,%) + Mo(0,0, y)u + wuz

With the help of Mathematica 5.0, we obtain the asymptotic behaviors of the ngetric
16a3+ M —cco—ddo

g(e1,é) =1+

2r3 ’
(81, 2) ! +12N_3l,0+4(cc,2+dd,2)
é1,09) X ———= ’
g(é1, e 52 3
(1. 23) ] +12P—3l_,0+4CSO9(cc’3—|—dd’3)
é1,03) RN ———= 7
gL es 2r2 12,3
5 ¢ 2  22+d?) +co B+ cd?+2C +2ce o+ ddo) + ¢ 00/
ge2,e2) ¥ 1+ — + ( ) 04 (cc0 0) ,00/’
r r2 r3

. ... 2 do c?d+d®+2H +dgo/4
glez,e3) ¥ — + — + . ; /,

r r r
by, 6 2c 2 +d%) —co | —3—cd® —2C + 2(cc o+ dd,o) — c.00/4
MCASES T r2) 0, =-c r<3c,o 0~ con/d

24+d?> 16a3—M
_l’_

h(er,e1) ~ 1 ,
(e e) ~ 14+ —3 3

r
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- l 1701
h(e1, er) ~ ﬁ + F[?O — 2(6‘2 + dz) cotd — 4N

13
+ (—cd 3+ c3d) cschd — g(cqz + dd,z)i|,

1

. I 1 [lo 13

h(e1, e3) ~ 2,2 + 23| 2 +cdo—cod—4P — E(chg + dd 3)csch |,
,0

2 473

Wi ~ 1+ S+ 0 4 |:3M—16a3—4C—21,2
r r

3
- 20(02 + dz) + 5(cco+ddo) + EC’OO:|’

. d d 1
h(ep. &)~ + r—;’ + m[—w(cz +d?) + 2d cot 0

3
+2d cs@ 6 — 4c 3coth csch — d.33CSEH — d 2 Coth — d oo — 4H + Ed,oo},

. c ¢ 1
hEsd) ~ 1=~ =3+

2+ 23 [BM — 1603+ 4C

3 -
+2¢(c? + d?) + 5(cc.0 + dd o) — 5c.00— 2l cotd) — 2 csce].

Here all functions on the right hand sides are evaluated at 0 and all derivatives
with respect tox? and x3 are taken after substituting = 0. Therefore(X, g, 1) is
asymptotically null of order 1.

4. POSITIVITY: SCHOEN-YAU'S METHOD

In this section, we will complete the argument in_[[17]. Denote ©%, ¢, h) the
asymptotically null spacelike hypersurface which is givenby] (3.3) feufficiently large.
In [17], Schoen-Yau solved the following Jang’s equatioriXon

ij ff fij )
4.1 J - —hij )] =0
@ (g 1+|Vf|2)<er|2 :

under the suitable boundary condition

4.2) f—fo
asr — oo such that the metric
(4.3) §=8¢+VfQVf

is asymptotically flat. Denote by (f) the left hand side of Jang’s equati¢n {4.1). Note
that in the standard hyperbolic 3-spa(4.1) has a solytien/1 + 2. Therefore it is

reasonable to set
fo=V1+r2+o(r).
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Let f be a function orX which has asymptotic expansion

(4.4) fF=V1i+r24+p@,v)Inr+q@, 6, ¥),

for r sufficiently large, wherep(6, ¥) is a smooth function or$? and¢ is a smooth
function onR3 which satisfies the following asymptotic conditions: In the Euclidean
coordinate systemg‘}, |z| = r,

g=o0Q), &q=o0l/r), &dq=o01/r?), &ddiqg=o0(l/r>

asr — 00.
Let the standard metric of? be d62 + sir? 6dvy-2. The Laplacian operator for this
metric is
Ago = o + cotf 9 +csé 6 o
27 %62 26 e

Thespherical harmonicsy; are the eigenfunctions af g2, i.e., Agw; = j(j — Dw; for
j=12,....

ProPOsITION4.1. If Jang’s equationfd.]]) has a solutionf which has the asymptotic
expansior{d.4)for r sufficiently large, thep (6, y) and M (0, 6, ¥) must be constant.

PROOFE A lengthy computation with the help of Mathematica 5.0 shows that

In — 2M(0, 9,
J(f)%’r—;A52P+pr—gw)

for r sufficiently large. That/ (f) = 0 implies
Agp=0, p—-2M=0.
As there is no nonconstant harmonic functionS3nthe proposition follows. O
The existence fof (4]1) under the boundary conditjon| (4.2) with
(4.5) for) =vV1+r24 pinr

for a certain constanp can be established as follows: We extefado the wholeX and
denote asfp also. Denote byBy the ball of radiusk in R3. If X has no apparent horizon,

the existence theorem for the Dirichlet problémi[20] indicates that there exists a (smooth)
solution fx of (4.1) onBg such that

frlogy =0

for sufficiently largeR. By the translation invariance df (4.1) in the vertical direction, we
find that

fr = fr+ fo(R)
is a solution of[(4.]1) which igo(R) ond Bg. Now the estimates in [16] show that
fR—=>f
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on any compact subset &f, where f is a (smooth) solution of (4.1). Writ¢ = fo + f1
where lim_. f1 = 0. Substitute it into Jang’s equatign (4.1) and obtain an equation
for f1. Then using a similar argument to the proof of Proposition 3_in [16], we can show
that for anye € (0, 1), there is a constart (¢) depending only o and the geometry of

X such that

|AGI+ 2 10AG] + 271903 + 12%000A1(2)] < C(o) 2.

Thereforef has asymptotic behaviois (#.4), (4.5) fosufficiently large.

By adding one-point compactification, the existence [for|(4.1) can be extend&d to
with apparent horizons. See [16] for details.

The following lemma was proved in [22].

LEMMA 4.1. Let(L®1, 2) be a vacuum Bondi’s radiating spacetime with mefrigiven
by (2.7). Suppose that Conditions A and B hold. Then

/ (L2 +1coth +13cscH)n” dS = 0
S2

forv=0,1,2,3.

THEOREM4.1. Let (L%1, 3) be a vacuum Bondi's radiating spacetime with megic
given by(2.7)). Suppose that Conditions A and B hold. If there exists a constaatich
that M (ug, 0, ¥) is constant, then

mo(u) > [ Y m2(u)

1<i<3

for all u < up. If equality holds for some e (—oo, ug], thenlL31 is flat in the region
foliated by all spacelike hypersurfaces which are given by

u=uo+vV1i+r2—r+o(l/r

for r sufficiently large. In particular, if equality holds for all < uq, thenLL31 is flat in the
region{u < uo}.

PROOFE SupposeM (ug, 8, ) = p/2. By the translation invariance of Jang’s equation,
we can assume thapy = 0. The assumption of the theorem ensures that there exists a
smooth solutionf of Jang’s equatior{ (4.1) under the boundary conditjon| (4.2) viith
given by [4.5). It is obvious that the metricgiven by [4.3) is asymptotic flat. Now we
show its ADM total energy ip. Denote bygg the flat metric ofR2 in polar coordinates.

Let {¢%} be the frame ofo,

0

1 3
0 0
—_, e = — — 2

r oo’

1 9
rsing ay’

0_
61—

Let {ep} be the coframe ofo. Definew;; = g(e?, ) — 5;;. Now we use the ADM energy
expression in polar coordinates

1 . .
E@) = Er'Lmoo/S (VO a1; — (V)1 tre(a)]ed A ed
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whereV? is the Levi-Civita connection ofo. Since
j Inr 4p 1
(Vo)lalj — (Vo)ltrgo(a) = WASZP + pol + O(r—z),

we obtain

E(g) = p.
Since it satisfies vacuum Einstein field equations, the Bondi’s radiating metric satisfies the
dominant energy condition automatically. Therefore the scalar curvatofe; satisfies

R>2|Y[2-2divg Y

for a certain vector field in X. Therefore a standard positive mass argunient([16, 12]
shows that

E@) =p=0.

And p = 0if and only if the metric is flat, which implies thatX, g, #) can be embedded
into the Minkowski spacetime as a spacelike hypersurface with the mgetratuced from
the Minkowski metric and the second fundamental férm

IntegratingM (0, 6, /) = p/2 over units? and using Lemm@.l, we obtain the Bondi
energy-momentum of slice = 0,

mo(0) = p/2, m1(0) = m2(0) = m3(0) = 0.
Thus the theorem follows from Propositjopn2.1. O

5. PosITIvITY: WITTEN'S METHOD

In this section, we will use Witten's [19] method and the positive mass theorem near null
infinity proved by the third authol [21, 23] to study the positivity of the Bondi mass. Let
(X, g, h) be an asymptotically null spacelike hypersurface. Define

1 1
E,,(X):E lim /S&z"réz/\é3, PU(X)=8— lim | Pn'ré® A és,

1 r—00
where
&= 6-"(11]' - Vi trg(a) — [a11 — d11trz(a)], P = b11— d11trz(b).

Theorem 4.1 in[[21] indicates (&, g, k) is an asymptotically null spacelike hypersurface
of orderr > 3/2 in a vacuum Bondi’s radiating spacetime {2.1), then

(5.1) Eo(X) = Po(X) = | > [Ei(X) = Pi(X)]?

1<i<3

and equality implies the spacetime is flat ovér(Theorem 4.1 in[[21] was proved for

t = 3. However, the argument goes through|jf-o = d|,—o0 = O for the aboveX, g, h)

in the Bondi's radiating spacetimes. See also Theorem 3.1 and Remark 8.1 in [23]. The
sharp orderr > 3/2 together with certain integrable conditions was also givenlihl[8, 6]
to ensure the argument to work.) In general, the hyperbolic mass of an asymptotically null
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spacelike hypersurface is different from the Bondi mass of the null cone. For instance, if
¢lu=0 Ord|,—o is nonzero Eo(X) — Pp(X) may not be finite.

LEMMA 5.1. Let(L®1, 3) be a vacuum Bondi’s radiating spacetime with mefrigiven
by 2.3). Let(X, g, h) be a spacelike hypersurfasavhich is given by3.3)for r sufficiently
large. DefineL(¢, ¥) = 1(0, ¢, V), L(¢, ¥) = 1(0, ¢, ¥). Then

12 1
&~ r—z(c2 +d%)u=0 + 3 (M + 16a3 + 15cco + 15ddo)u=o
1 _
- ﬁ(L,z + L cotf + L 3csch),

1 1 _
P~ ——5(38M — 16a3 + Scco + 5ddo)y=0 + —5(L 2 + L cotd + L 3csch).
2r3 2r3° ’
PrOOF Note that
4 4
azz +asz ~ ﬁ(c2 +d?)y=0 + r—3(CC,o + dd 0)u=o0,
1 1 -
boo + b3z = ﬁ@M — 16a3 + 5cc,0 + 5dd 0)u=0 — ﬁ(ld,z + L cotf + L 3csch).
Using the formula
Viaij = &(aij) — ajiani (&) — aidy; (&),
we obtain
& = &j(ar)) — audn(é;) — auay;(é;) — Vatrg(a) + azz + ass
1 - 1
~ _F(L‘Z + L cotf + L 3cscd) + _S(M + 16a3 — cc,0 — dd 0)u=0
r r
12J/1+r2

.
(c® +d®u=o + =5 (cc.o+dd 0)u=o

8v1+r2
+ 3
+ r—3(c +d)u=0+ r—4(CC,0 +dd 0)u=0
1 - 1
~ —ﬁ(L‘g + L cotf + L 3cscd) + r_S(M + 16a3 + 15¢c0 + 15dd o) =0
12 , o 1
+ (" +d%u=0+0( )
r r
P = —bzz — b33
1 1 _
~ —F(?:M — 16a3 + 5cc,0 + 5dd o) =0 + F(L’Z + L cotd + L 3csch). O

THEOREMS5.1. Let (L31, 3) be a vacuum Bondi’s radiating spacetime with mefic
given by(2.1). Suppose that Conditions A and B hold afig—,, = dlu=y, = O for
someug. Then

mou) = | Y m2(u)

1<i<3
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for all u < up. If equality holds for some e (—oo, ug], thenlL31 is flat in the region
foliated by all spacelike hypersurfaces which are given by

u=uo+vV1+r2—r+o(l/r

for r sufficiently large. In particular, if equality holds for all < ug, thenLL31 is flat in the
region{u < uo}.

PROOFE By translation, we can assume thaf = 0. Choose an asymptotically null
spacelike hypersurfacE which is given by[(3.B) withuz = 0 for r sufficiently large.
By Lemmg5.1, we obtain

SM (0,6, v¥)

1 -
E—P~——=(L2+ Lcotd + L zcscd) + 3
r 2r

Then Lemma 4]1 implies that
5
Ey(X) - P(X) = émv(o)-
Therefore the first part of the theorem follows from {5.1) and Proposifion 2.1. For the

second part, if equality holds for some € (—oo, ug), then it holds foru = ug by
Propositiod 2.1. Thug31 is flat overX and the assertion follows. O

6. MODIFIED BONDI ENERGY-MOMENTUM

We can modify the definition of the Bondi energy-momentum to remove Condition B.
Define the modified Bondi energy-momentum as

1
(6.1) m, (1) = —/ M(ug, 0, y)n* dS
4 S2
forv =0, 1, 2, 3. Then we can prove that
d 1
6.2) o, == [ (o + dodn'as
du A Js2

forv=0,1,2, 3, and

(6.3) %(mo— > m?) <0

1<i<3

under Condition A only.
Now choose the spacelike asymptotically null hypersurfagiven by [3.8) withuz =
—M(0,0,v)/16. If ¢|,=0 = 0,d|,—0 = O, then

2M(0, 6, ¥)

E—-—P~
P ~

Therefore the following theorem is a direct consequence.
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THEOREMG6.1. Let (L31, 2) be a vacuum Bondi’s radiating spacetime with mefic
given by(Z.7)). Suppose that Condition A holds. If eith@ M (uo, 6, ) is constant, or
(i) clu=ug = dlu=u, = 0for someug, then

mo) = | > mZ(u)

1<i<3

for all u < uo. If equality holds for some € (—oo, ug), thenL31 is flat in the region
foliated by all spacelike hypersurfaces which are given by

M (uo, 0, 1
u:uo—i—\/l—i—rz—r—(blo—w)—i—o(j)

16-4 r

for r sufficiently large. In particular, if the equality holds for all< uo, thenL®1 is flat in
the region{u < ug — M (uo, 0, ¥)/16r%}.
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