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Optimal control theory. — On exponential observability estimates for the heat semigroup
with explicit rates, by LUC M ILLER, communicated on 12 May 2006.

ABSTRACT. — This note concerns the final time observability inequality from an interior region for the heat
semigroup, which is equivalent to the null-controllability of the heat equation by a square integrable source
supported in this region. It focuses on exponential estimates in short times of the observability cost, also known
as the control cost and the minimum energy function. It proves that this final time observability inequality
implies four variants with roughly the same exponential rate everywhere (an integrated inequality with singular
weights, an integrated inequality in infinite times, a sharper inequality and a Sobolev inequality) and some control
cost estimates with explicit exponential rates concerning null-controllability, null-reachability and approximate
controllability. A conjecture and open problems about the optimal rate are stated. This note also contains a brief
review of recent or to be published papers related to exponential observability estimates: boundary observability,
Schr̈odinger group, anomalous diffusion, thermoelastic plates, plates with square root damping and other elastic
systems with structural damping.
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1. INTRODUCTION

The natural setting for the problem to be discussed is on manifolds, but all the statements
can be understood, and are already interesting, when the domainM is a smooth bounded
open set inRd with the flat metric so that the distance is dist(x, y)2

= |y1 − x1|
2
+ · · · +

|yd − xd |
2 and the Laplacian is∆ = ∂2/∂x2

1 + · · · + ∂2/∂x2
d , always considered with the

Dirichlet condition on∂M. We shall refer to this setting asthe Euclidean case.
Although it can be skipped, for completeness we now describe the general setting. Let

(M, g) be a smooth connected compactd-dimensional Riemannian manifold with metric
g and smooth boundary∂M. When∂M 6= ∅, M denotes the interior andM = M ∪ ∂M.

Let dist : M
2

→ R+ denote the distance function. Let∆ denote the Dirichlet Laplacian
onL2(M) with domainH 1

0 (M) ∩ H 2(M).
The observation regionΩ is a nonempty open subset ofM such thatΩ 6= M.

Unless mentioned otherwise, the range of the timeT is (0, ∞) and the range of the initial
stateu0 is L2(M). The corresponding solution of the Cauchy problem for the (forward)
heat equation is denoted byu(T , x) = (eT ∆u0)(x), briefly u = eT ∆u0 is the (relative)
temperature onR+ × M.

In this note, we make some remarks about the following observability inequality from
Ω of the final state at timeT : for anyT ,

∀u0,

∫
M

|eT ∆u0|
2 dx ≤ K

∫ T

0

∫
Ω

|et∆u0|
2 dx dt with K = CeA/T .(1)
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Even whenK is an unspecified constant, this inequality is interesting from various
points of view. Ifu is always zero onΩ then it implies thatu is zero everywhere onM at
the final timeT , which implies by backward uniqueness thatu is always zero everywhere.
Thus (1) is a unique continuation estimate. Moreover, by the duality in [DR77], the
existence of a constantK such that (1) holds is equivalent to the ability of steering the
heat flux from anyu0 to zero in timeT by a square integrable source supported inΩ at
a costK (hence the optimalK does not increase withT ). This property is callednull-
controllability or exact controllability to zero. Its validity in this context was proved a
decade ago in [LR95,̀Ema95].

Indeed (1) specifies how the costK = CeA/T depends onT . The first suchexponential
cost estimateis due to Seidman (cf. [Sei84] and the survey [Sei05]). As far as I know, the
best results about the validity of this estimate are threefold and use different methods. In
the Euclidean case, (1) was proved in [FCZ00] by global Carleman estimates with singular
weights as in [̀Ema95]. Under the geometrical optics condition onΩ (i.e. LΩ < ∞ with
the notation of Theorem 4), (1) was deduced in [Mil04b] by the control transmutation
method (for short CTM, cf. Section 2.2) from the observability of the wave group in
[BLR92]. In the general setting, (1) is not proved, but a slightly weaker exponential cost
estimate was proved in [Mil05b] by the control strategy of [LR95] as implemented in
[LZ98]: for all β > 1, there are positive constantsAβ andCβ such that (1) holds with

K = CβeAβ/T β
(Carleman estimates should allow reachingβ = 1 as in (1)).

This note reviews the known bounds on the optimal rateA in (1) (Section 2) and
other similar cost estimates (Section 3), and relates (1) to several of the following variants
considered in [FCZ00, Zua01] in the Euclidean case (Theorem 1). The method of global
Carleman estimates leads more naturally to the following integrated inequality with
singular weight:

∀u0,

∫ T

0

∫
M

e−Ã/t
|et∆u0|

2 dx dt ≤ C̃

∫ T

0

∫
Ω

|et∆u0|
2 dx dt.(2)

This is proved in Proposition 6.1 of [FCZ00]. Among open problems, the following variant
for infinite time is stated in [Zua01] (equation 4.3):

∀u0,

∫
∞

0

∫
M

e−A/t
|et∆u0|

2 dx dt ≤ C∞

∫
∞

0

∫
Ω

|et∆u0|
2 dx dt.(3)

Remark 6.1 of [FCZ00] extracts from the proof of Theorem 6.1 the following inequality
for fixedT , which is sharper than (1), at least whenT ≥ B:

∀u0,

∫
M

|e−B
√

−∆u0|
2 dx ≤ K ′

∫ T

0

∫
Ω

|et∆u0|
2 dx dt with K ′

= C′eA′/T .(4)

Replacing theL2 norm of the final state in (1) by its norm in a Sobolev space of real order
s yields the following inequality, better for positives:

∀u0 ∈ H s(M), ‖eT ∆u0‖
2
H s ≤ Ks

∫ T

0

∫
Ω

|et∆u0|
2 dx dt with Ks = Cse

As/T .(5)
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We prove in this note that (1) for small times implies its four variants (2), (3), (4) and
(5), with ratesA, Ã, A′ andAs which are roughly the same everywhere. More precisely, in
Section 4 we prove

THEOREM 1. LetA′ > A andB >
√

2A(1+(A′/A−1)−1/2)/2 (B >
√

2A if A′ > 2A).
Let s ∈ R andAs > A (As = A if s ≤ 0). If the final time observability inequality(1)
holds for allT ≤ T0, then

(i) the integrated inequality(2) holds for allT ≤ T0 with Ã = A andC̃ = CT ,
(ii) the infinite time inequality(3) holds withC∞ = CT0(1 + eA/T0),

(iii) the sharp inequality(4) holds for allT ,
(iv) the Sobolev inequality(5) holds for allT .

Conversely, forA > Ã, if the integrated inequality(2) holds for allT ≤ T0, then the final
time inequality(1) holds for allT .

Even in the Euclidean case and for fixedT , Theorem 1 simplifies the proof of (4)
(Proposition 6.1 in [FCZ00] already uses (1) but also goes back to the global Carleman
inequality). The fast cost estimate in (4) seems to be new:

COROLLARY 2. Under the geometrical optics condition onΩ or in the Euclidean case,
there are positive constantsB, A′ andC′ such that

∀T , ∀u0,

∫
M

|e−B
√

−∆u0|
2 dx ≤ C′eA′/T

∫ T

0

∫
Ω

|et∆u0|
2 dx dt.

Besides null-controllability, the exponential observability estimate (1) implies various
reachability results which were known in the Euclidean case (cf. [FCZ00, Phu04] where a
time and space dependent potential is emphasized as a preliminary step towards a nonlinear
term). The appendix gives simple proofs of these results keeping track of the rateA in (1)
explicitly.

The controllability cost (e.g. the optimalK in (1), or sometimes
√

K) is also called the
minimum energy function (for normalized initial states). It is connected to the minimum
time function (cf. [Ĉar93, GL99]), also known as the Bellman function of the system. An
exponential fast control cost estimate yields a logarithmic modulus of continuity for the
minimum time function (cf. Remark 3.6 in [Mil04a]).

The cost of fast controls is also related to the regularity properties of the stochastic
diffusion process obtained from the control system by substituting a white noise for the
controlled source (more generally, for the input function of the system). The regularity of
the generalized solution of Ornstein–Uhlenbeck equations (e.g. the Kolmogorov equation
corresponding to this stochastic P.D.E.) and the strong Feller property for the transition
semigroup depend on the behaviour of the cost of fast controls (cf. Theorem 8.3.3 in
[DP01], Theorem 6.2.2 and Appendix B in [DPZ02]). The introduction of [AL03b]
elaborates on this motivation.
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2. BOUNDS ON THE OPTIMAL RATEA IN (1)

2.1. Lower bounds

It is proved in [Mil04b] that (1) for all smallT implies

A ≥ sup
y∈M

dist(y, Ω)2/2.(6)

The proof relies on Varadhan’s formula for the heat kernel in small time (cf. [Var67]),
which requires very low smoothness assumptions as proved in [Nor97]. This improves
on the former lower bound in the Euclidean case stated in Section 4.1 of [Zua01]
which was based on a construction made in the proof of Theorem 6.2 in [FCZ00]:
A ≥ supBρ⊂M\Ω ρ2/4, where the supremum is taken over ballsBρ of radiusρ.

For finite timesT , the lack of observability at a better cost is only due to the finite linear
combinations of the eigenmodes corresponding to frequencies lower than a threshold of
order 1/T . To state this result from [Mil04b] more precisely,1 we introduce the spectral
data:(ωk)k∈N∗ is a nondecreasing sequence of nonnegative real numbers and(ek)k∈N∗ is
an orthonormal basis ofL2(M) such thatek is an eigenvector of−∆ with eigenvalueω2

k ,
i.e.

−∆ek = ω2
kek and ek = 0 on∂M.(7)

THEOREM 3 ([Mil04b]). Letd ∈ (0, supy∈M dist(y, Ω)). If (1) holds for all smallT and

for anyu0 in the linear span of{ek}ωk≤d/T , thenA ≥ d2/2.

2.2. Upper bounds

In view of Theorem 1, upper bounds on the optimal rateA in (1) imply upper bounds on
the optimal rates in (2)–(5).

THEOREM 4 ([Mil04b]). Let LΩ be the length of the longest generalized geodesic2 in M

which does not intersectΩ. For all A > (2(36/37)LΩ)2 there is a positive constantC
such that(1) holds for allT .

The same bound is immediately deduced, by Theorem 1.6 in [Mil05c], for the
heat semigroup on the product manifoldM × M̃ observed fromΩ × M̃, where M̃

denotes another smooth completeñ-dimensional Riemannian manifold (e.g. an infinite

1 Theorem 3 is not explicitly stated in [Mil04b], but it is roughly explained after Theorem 2.1 there. Moreover,
Theorem 3 for the Schrödinger group instead of the heat semigroup is proved by the same method and explicitly
stated in [Mil04c].

2 In this context, the generalized geodesics are continuous trajectoriest 7→ x(t) in M which follow geodesic
curves at unit speed inM (so that on these intervalst 7→ ẋ(t) is continuous); if they hit∂M transversely at time
t0, then they reflect as light rays or billiard balls (andt 7→ ẋ(t) is discontinuous att0); if they hit ∂M tangentially
then either there exists a geodesic inM which continuest 7→ (x(t), ẋ(t)) continuously and they branch onto it, or
there is no such geodesic curve inM and then they glide at unit speed along the geodesic of∂M which continues
t 7→ (x(t), ẋ(t)) continuously until they may branch onto a geodesic inM. The meaning of the geometrical
optics conditionLΩ < ∞, due to Bardos–Lebeau–Rauch in [BLR92], is discussed at length in [Mil02].



EXPONENTIAL OBSERVABILITY ESTIMATES 355

strip observed from any infinite strip in the interior). To the best of my knowledge, there is
no better upper bound of the optimal rate in the literature.

When comparing Theorem 4 to the lower bound in (6), one should bear in mind thatLΩ

is always greater than 2 supy∈M dist(y, Ω) (as the length of a generalized geodesic through

y which does not intersectΩ is always greater than 2 dist(y, Ω)) and can be infinitely so.
But, for some simple geometries,3 Theorem 4 implies an upper bound on the optimal rate
in terms of supy∈M dist(y, Ω) as well, e.g.:

COROLLARY 5. In the Euclidean case, ifM is a ball and Ω is a small enough
neighborhood of its boundary then for allA > 16 supy∈M dist(y, Ω)2 there is aC > 0
such that(1) holds for allT .

Theorem 4 is deduced from the observability of the wave group (cf. [BLR92]) by the
Control Transmutation Method, for short CTM. This method applies to control problems
the guiding principle of the kernel estimates method of [CGT82]: systems with finite
propagation speed yield geometrical information in small times about systems with similar
generators but without propagation speed. Here, it consists in constructing a time kernelk,
dubbed “the fundamental controlled solution”, which transforms the input function for the
wave group in timeL into an input function for the heat semigroup in timeT ; some norms
of k must be estimated explicitly in terms ofL andT only. Unlike Russell’s harmonic
analysis method in [Rus73], it does not use information on the spectrum and it extends to
the most general abstract setting (cf. [Mil04a]).4

3. A CONJECTURE AND RELATED RESULTS

3.1. Conjecture and open problems

Combining the upper and lower bounds for the optimal rateA in (1) in the simple example
of Corollary 5 (M is a Euclidean ball andΩ is a small enough neighbourhood of its
boundary) yields

α := A(sup
y∈M

dist(y, Ω))−2
∈ [1/2, 16).

Since we believe that there is no solution of the heat equation which is more singular than
the heat kernel, it is natural to conjecture that the lower bound (6) is also an upper bound:
the optimal rateA such that (1) holds for smallT is supy∈M dist(y, Ω)2/2 for any(M, g)

andΩ 6= M (i.e.α = 1/2).
If K(T ) denotes the optimal cost in (1) for fixedT , then the functionK :

(0, ∞) → (0, ∞) does not increase (as a result of the semigroup property or the
duality with null-controllability), but this is not enough to ensure that limT →0 T ln K(T )

exists. The existence of this limit is part of the conjecture but could possibly be

3 In the Euclidean case, ifΩ is a neighbourhood of∂M thenLΩ is the length of the longest segment inM

which does not intersectΩ.
4 E.g. the abstract presentation of Russell’s method in Section 2 of [FCZ02] assumes that the eigenvalues

grow quadratically.
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established independently. Until then, the optimal rate can only be defined as5 A∗
=

lim supT →0 T ln K(T ).
Theorem 1 roughly says that the “optimal rates”A andA′ in (1) and (2) are equal.6 It

does not say wether the “optimal rates”A in (1) and (3) are also equal (it roughly says that
the “optimal rate” is not greater in (3) than in (1)).

Other related open problems will appear in [Zua06].

3.2. Boundary observability and window problems

For steering the temperature to zero with the temperature onΓ ⊂ ∂M as input, the
corresponding observability inequality of the final state fromΓ is similar to (1):

∀u0,

∫
M

|eT ∆u0|
2 dx ≤ Kν

∫ T

0

∫
Γ

|∂νu|
2 dx dt with Kν = Cνe

Aν/T ,(8)

where∂ν denotes the Neumann derivative at the boundary.
WhenM is a Euclidean segment andΓ is one endpoint, (8) is an inequality on sums of

exponentials called a “window problem” in [SAI00]. A well trodden path in the harmonic
analysis of this problem is to construct a Riesz basis of bi-orthogonal functions. This
reduces by the Paley–Wiener theorem to the construction of entire functions with zero
and growth conditions. Proving exponential cost estimates in this setting is a nonclassical
aspect of this problem deeply studied in [SAI00]. We refer to [SAI00, Sei05, Mil04b] for
more details and references.

In this context,L = supy∈M dist(y, Γ ) is the length of the segmentM. The best
upper bound obtained so far by this method is (cf. [Mil04b]): forAν > 2α∗L

2, (8) holds
for all T , whereα∗ = 2(36/37)2 < 2. Any improvement on the value ofα∗ in this
result, and in the analogous result where the Neumann derivative is removed in (8), will
improve Theorem 4 toA > 2α∗L

2
Ω . N.b. in the CTM which deduces this theorem from the

boundary observability estimate on the segment there is a loss of a factor 4 sinceLΓ = 2L

on the segment.
The CTM has been extended in [Mil04a] to the observability (by unbounded operators)

of holomorphic semigroups generated by the generator of a cosine operator function.
Since [BLR92] proved the boundary observability for (the real part of) the wave group
cos(t

√
−∆), which is the model of all cosine operator evolutions, Theorem 4 still holds

when (1) andΩ are replaced by (8) andΓ (this is Theorem 6.1 in [Mil04a]).
By Theorem 1.5 in [Mil05c], these two estimates of the cost in (8) for problems in

dimension one and greater extend to the problems that can be deduced from them by a
tensor product, e.g. the better one-dimensional result extends to an infinite strip observed
from one of the boundary lines.

3.3. Other evolution systems

The heat kernel method used to prove the lower bound in Theorem 3 and the control
transmutation method (CTM) used to prove the upper bound in Theorem 4 were adapted to

5 If A > A∗ then (1) holds for smallT , and conversely, if (1) holds for smallT thenA ≥ A∗. Whether (1)
holds for smallT whenA = A∗ is an open problem.

6 Theorem 1 proves:̃A > A∗ implies “(2) holds for smallT ” implies Ã ≥ A∗.
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the interior observability of the Schrödinger group in [Mil04c] (n.b. this is the observation-
control system to which a transmutation method was first applied in [Phu01]). Thanks
to a new necessary and sufficient condition for the observability of unitary groups by
unbounded operators, called a “resolvent observability estimate” (this Theorem 5.1 in
[Mil05a] is the analogue of the Hautus test for finite-dimensional control systems, cf.
[RW94]), the CTM has been extended to this abstract setting. Thus it allows one to deduce
from [BLR92] exponential observability estimates from the boundary for the Schrödinger
group (Theorem 10.2 in [Mil05a]).

The slightly weaker exponential cost estimates mentioned in the introduction, i.e.K =

CβeAβ/T β
for anyβ > 1 and someAβ > 0 andCβ > 0, were generalized by the same

method to the system of thermoelastic plates without rotatory inertia (in the Euclidean case,
with hinged mechanical boundary conditions and Dirichlet thermal boundary condition)
observed fromΩ by either the mechanical or thermal component (cf. [Mil05d]), and to
the plate equation with square root damping observed fromΩ (in the Euclidean case, with
hinged boundary conditions, cf. [Mil06] where the CTM was also adapted to this system
and yieldsβ = 1 under the geometrical optics condition onΩ). The same method was
applied to more general abstract linear elastic systems with structural damping in [Mil06]
and yields various ranges forβ depending on the strength of the damping. It also applies to
anomalous diffusions generated by the fractional Laplacian−(−∆)p for p > 1/2, where
it yieldsβ > 1/(2p − 1) (cf. [Mil05b]).

The exponential cost estimates in [Mil06, Mil05d] use earlierpolynomial cost estimates
proved in [Tri03, AL03b, AL03a] in the caseΩ = M which we have excluded at the very
beginning of this note because (1) holds withK = C/T whenΩ = M. Triggiani, Lasiecka
and Avalos proved cost estimates of the formK = C/T p, p ≥ 1, wherep is related to
the strength of the damping. These estimates are similar to the optimal cost estimates for
finite-dimensional control systems proved in [Sei88] which we now describe. LetA be an
n×n matrix defining a system of linear differential equations inRn, and letB be them×n

matrix which prescribes them observed coordinates inRn. The observability inequality is

∀x0 ∈ Rn, ‖x0‖
2

≤ K

∫ T

0
‖BetAx0‖

2dt.(9)

Kalman proved that (9) holds if and only if there is an integerp < n such that then × nm

block matrix{B∗, A∗B∗, . . . , A∗pB∗
} is of rankn (the star denotes transposed matrices).

Seidman proved that, asT tends to zero, the optimal cost in (9) satisfiesK ∼ C/T 1+2p

wherep is the smallest integer satisfying Kalman’s rank condition.
We are still longing for such a complete result regarding infinite-dimensional control

systems, at least for distributed systems with infinite propagation speed such as the heat
semigroup.

4. PROOF OFTHEOREM 1

(i) For T ≤ T ′
≤ T0, multiplying (1) bye−A/T , bounding

∫ T

0 from above by
∫ T ′

0 , then
integratingT over(0, T ′) yields (2) withT = T ′, C̃ = CT ′, A = Ã.

(ii) This point results from the previous one and the following lemma.
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LEMMA 6. If (1) and (2) hold, then(3) holds withC∞ = C̃ + CT eA/T .

PROOF. Sincee−A/t
≤ 1 andt 7→ ‖et∆u0‖L2(M) does not increase, for alln ∈ N∗ we

have ∫ (n+1)T

nT

∫
M

e−A/t
|et∆u0|

2 dx dt ≤ T

∫
M

|enT ∆u0|
2 dx

≤ CT eA/T

∫ nT

(n−1)T

∫
Ω

|et∆u0|
2 dx dt,

where (1) withu0 replaced bye(n−1)T u0 is used in the last step. Summing up overn ≥ 1
yields ∫

∞

T

∫
M

e−A/t
|et∆u0|

2 dx dt ≤ CT eA/T

∫
∞

0

∫
Ω

|et∆u0|
2 dx dt.

Adding this inequality to (2) yields (3) withC∞ = C̃ + CT eA/T . 2

(iii) This point results from the first point and the following lemma.

LEMMA 7. For anyA′ > A andB >
√

2A b(A′), whereb(A′) = 1 for A′ > 2A and
otherwiseb(A′) = (1+ (A′/A−1)−1/2)/2 (n.b.limA′→A b(A′) = +∞), there is aC′ > 0
such that for allT ,

∀u0,

∫
M

|e−B
√

−∆u0|
2 dx ≤ C′eA′/T

∫ T

0

∫
M

e−A/t
|et∆u0|

2 dx dt.

PROOF. Writing u0 =
∑

k ckek with
∑

k|ck|
2 < ∞ in the eigenbasis (7) yields∫

M

|e−B
√

−∆u0|
2 dx =

∑
k

e−2Bωk |ck|
2

=

∑
k

e
−B

√
2·2ω2

k |ck|
2,(10)

∫ T

0

∫
M

e−A/t
|et∆u0|

2 dx dt =

∑
k

IA(T , 2ω2
k)|ck|

2,(11)

with

IA(T , λ) =

∫ T

0
e−λt−A/tdt =

√
A/λ

∫ T
√

λ/A

0
e−

√
Aλ(s+1/s) ds.

Henceforth, we keep the same notationε andCε meaning “for all smallε > 0, there is
Cε > 0 independent ofλ andT such that. . . ” although their value may change. Setting
a = min{1, (A′/A − 1)1/2

}, we haveA′ > (1 + a2)A andB >
√

2A b(A′) with b(A′) =

max{1, (1 + (A′/A − 1)−1/2)/2} = (1 + 1/a)/2 ≥ (a + 1/a)/2.
ForT

√
λ/A > a, we may bound the last integral from below by

∫ a

(1−ε)a
· · · ds and use

the fact thatf : s 7→ s + 1/s decreases on(0, 1] ⊃ (0, a], hence

IA(T , λ) ≥ ε
√

A/λ e−
√

Aλf ((1−ε)a)
≥ Cεe

−
√

Aλ (1+ε)(a+1/a)
≥ Cεe

−(1+ε)
√

2A b(A′)
√

2λ.



EXPONENTIAL OBSERVABILITY ESTIMATES 359

ForT
√

λ/A ≤ a, i.e.λ ≤ a2A/T 2, we have

IA(T , λ) ≥ e−λT

∫ T

(1−ε)T

e−A/t dt ≥ e−a2A/T εT e−A/((1−ε)T )
≥ Cεe

−(1+ε)(a2
+1)A/T .

Multiplying the lower bounds obtained in the two cases yields

∀λ > 0, ∀T > 0, e−(1+ε)
√

2A b(A′)
√

2λ
≤ Cεe

(1+ε)(1+a2)A/T IA(T , λ).(12)

Choosingε > 0 small enough yieldsA′
≥ (1 + ε)(1 + a2)A andB ≥ (1 + ε)

√
2A b(A′).

Hence (12), (10) and (11) complete the proof of the lemma.2

(iv) For negatives, sinceL2(M) is continuously embedded inH s(M), (1) implies (5)
with As = A by density. Lets > 0 from now on. Sinceet∆ is an analytic semigroup,
it satisfies the smoothing property:Ss := supt>0‖t

set∆
‖L(L2;H s ) < ∞. Let K(T ) and

Ks(T ) denote the optimal costsK andKs in (1) and (5). For allε ∈ (0, 1) andT , Ks(T ) ≤

Ss(εT )−sK((1 − ε)T ). Sinceε is arbitrarily small, for allAs > A, there is aC′
s such that

for any T0, if K(T ) ≤ CeA/T for all T ≤ T0 thenKs(T ) ≤ C′
se

As/T for all T ≤ T0.
Therefore, withCs = C′

se
As/T0, if (1) holds for allT ≤ T0, then (5) holds for allT .

Converse. The last statement of Theorem 1 results from the following lemma.

LEMMA 8. For all A > Ã, there is aC > 0 such that

∀T , ∀u0,

∫
M

|eT ∆u0|
2 dx ≤ CeA/T

∫ T

0

∫
M

e−Ã/t
|et∆u0|

2 dx dt.

PROOF. Let ε ∈ (0, 1). Bounding
∫ T

0 from below by
∫ T

(1−ε)T
yields

∀u0,

∫ T

0

∫
M

e−Ã/t
|et∆u0|

2 dx dt ≥ (1 − ε)T e−Ã/((1−ε)T )

∫
M

|eT ∆u0|
2 dx,

sincet 7→ e−A/t does not decrease andt 7→ ‖et∆u0‖L2(M) does not increase. Sinceε is
arbitrarily small, this completes the proof of the lemma. 2

APPENDIX A. REACHABILITY RESULTS RELATED TO THE RATEA IN (1)

A.1. Reachability set

The control system corresponding to the observability inequality (1) is

∂tu − ∆u = f onR+ × M, u(0) = u0 ∈ L2(M), f ∈ L2
loc(R+; L2

Ω(M)),

whereL2
Ω(M) denotes the functions inL2(M) which are zero outsideΩ (hence the heat

sourcef is located in the observation-control regionΩ). Each input functionf defines a
unique continuous trajectoryt 7→ u(t) in the state spaceL2(M) from the initial stateu0.
As f varies,u(T ) spans the set of states which are reachable fromu0 in time T , denoted
RT ,u0(Ω).
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As recalled in the introduction, null-controllability in timeT holds for this system, i.e.
for anyu0, there is an inputf steeringu0 to u(T ) = 0. By linearity, the final stateeT ∆u0 is
reached fromu(0) = 0 when−f is applied. The simple argument7 in [Sei79] proves that
null-controllability in timeT impliesRT ,0(Ω) = Rt,u0(Ω) for all u0 and t ≥ T . Since
null-controllability in timeT holds for allT ,RT ,u0(Ω) does not depend onT andu0. It is
therefore natural to define the reachability set as follows:

DEFINITION 1. The statẽu in L2(M) is in thereachability setR(Ω) if there is a timeT
and an inputf in L2(0, T ; L2

Ω(M)) such that:ũ =
∫ T

0 et∆f (T − t) dt .
Thenull-reachability costin timeT of a nonzerõu in R(Ω) is inf‖f ‖

2/‖ũ‖
2 over all

suchf .

The fact that exact controllability does not hold, i.e.L2(M) * R(Ω), is often deduced
from the hypoellipticity of the heat operator∂t −∆: outside(0, T )×Ω, the smoothness of
the null source implies the smoothness ofu, hence all states inR(Ω) are smooth outsideΩ.
We further remark that:

LEMMA 9. (i) R(M) = H 1
0 (M).

(ii) For any openΩ ′ such thatΩ ′ ⊂ Ω and anyu′
∈ H 1(Ω ′), there is aũ inR(Ω) such

that ũ − u′ is smooth onΩ ′. (WhenΩ ′ is smooth, the same holds withΩ ′
= Ω and

u′
∈ H 1

0 (Ω).)
(iii) If Ω 6= Ω ′, thenR(Ω) 6= R(Ω ′).

PROOF. (i) We use expansions in the eigenbasis (7):f (t) =
∑

k fk(t)ek andu(T ) =∑
k uk(T )ek. Settinggk(t) = e−tω2

k , u(T ) =
∫ T

0 et∆f (T − t) dt is equivalent touk(T ) =∫ T

0 gk(t)fk(T − t)dt for all k. The norm ofgk in L2(0, T ) satisfies

ω0

ωk

‖g0‖ ≤ ‖gk‖ =
(1 − e−2T ω2

k )1/2

√
2T ωk

≤
1

√
2T ωk

.(A1)

The upper bound in (A1) implies

‖∇u(T )‖2
= ‖

√
−∆ u(T )‖2

=

∑
k

|ωkuk(T )|2 ≤
1

2T

∑
k

‖fk‖
2

=
1

2T
‖f ‖

2 < ∞.

HenceR(M) ⊂ H 1
0 (M). Conversely, let̃u =

∑
k ũkek be in H 1

0 (M) and setfk(t) =

gk(T − t)‖gk‖
−2ũkek. The lower bound in (A1) implies

‖f ‖
2

=

∑
k

‖fk‖
2

≤
1

ω2
0‖g0‖

2

∑
k

|ωkũk|
2

=
‖∇ũ‖

ω2
0‖g0‖

2
< ∞.

Sinceu(T ) = ũ, this provesR(M) ⊃ H 1
0 (M).

7 Let u0 ∈ L2(M) and t ≥ T . Since null-controllability in timeT holds, there is an inputf0 equal to 0
on [0, (t − T )] which steersu0 to 0 between 0 andt . If ũ ∈ RT ,0(Ω), then there is an inputf equal to 0 on
[0, (t − T )] which steers 0 tõu between 0 andt , hencef + f0 steersu0 to ũ between 0 andt , which proves
ũ ∈ Rt,u0(Ω). Conversely, iff steersu0 to ũ between 0 andt , then, since null-controllability in timeT holds,
there is anf0 equal tof on [0, (t − T )] steeringu0 to 0 between 0 andt , hencef − f0 steers 0 tõu between 0
andt , which proves̃u ∈ RT ,0(Ω).
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(ii) Let M ′ be a smooth open set such thatΩ ′ ⊂ M ′ andM ′ ⊂ Ω, and letu ∈ H 1
0 (M ′).

The previous point implies that there is an inputf ∈ L2(0, T ; L2(M ′)) which steers 0 tou
on the manifoldM ′. The extensionf̃ of f to M by zero outsideM ′ steers 0 to some final
stateũ ∈ R(M ′) ⊂ R(Ω) on the manifoldM. Since(∂t − ∆)(ũ − u) = f̃ − f = 0 on
M ′, ũ − u is smooth onM ′

⊃ Ω by hypoellipticity.

(iii) This last point results from the previous point and the already mentioned fact that
functions ofR(Ω) are smooth outsideΩ. 2

We already mentioned that the final time observability estimate implies null-
controllability by the duality argument in [DR77], yielding in turn some information on
the reachability set:

⋃
t>0 et∆(L2(M)) ⊂ R(Ω). The sharp observability estimate (4)

improves this toeB
√

−∆(L2(M)) ⊂ R(Ω) by the same argument (cf. (3.22) in [DR77]).
Thus, Theorem 4 and the third point in Theorem 1 prove:

COROLLARY 10. If (1) holds for allT ≤ T0, then
⋃

B>
√

2A
eB

√
−∆(L2(M)) ⊂ R(Ω).

LetLΩ be the length of the longest generalized geodesic inM which does not intersectΩ.
For all B > 2

√
2(36/37)LΩ , eB

√
−∆(L2(M)) ⊂ R(Ω).

When M is a segment of lengthL controlled from one endpoint (cf. Section 3.2),
[FR71]8 proves that the reachability set includeseB

√
−∆(L2(M)) for all B > L (this

improves Corollary 10, since the analogue ofLΩ is 2L here). This result raises the question
whether “the optimal” rateB such thateB

√
−∆(L2(M)) ⊂ R(Ω) can be expressed

geometrically (e.g. is it supy∈M dist(y, Ω)?). More generally, although Lemma 9 proves
thatR(Ω) does depend onΩ, this dependence has not been investigated yet, to my best
knowledge.

A.2. Null-reachability cost

We already mentioned that anỹu = eT ∆u0 is in R(Ω) (cf. Definition 1). Indeed, the
duality in [DR77] proves more: the bestK such that (1) holds is also the bestK such that
for all u0, there is an inputf in L2(0, T ; L2

Ω(M)) with eT ∆u0 =
∫ T

0 et∆f (T − t) dt and
‖f ‖

2
≤ K‖u0‖

2. But this is not enough to estimate the null-reachability cost uniformly
overeT ∆(L2(M)).

For any positive frequency thresholdµ, the linear span of{ek}ωk≤µ defined by (7),
denotedS√

−∆≤µ, is a finite-dimensional subspace ofeT ∆(L2(M)). In the following
proposition, a uniform estimate of the null-reachability cost overS√

−∆≤µ is deduced from
the exponential observability estimate (1). This estimate is exponential with respect toµ

with an explicit rate (essentially 2
√

A).

LEMMA 11. If (1) holds for anyT , then there is aC′ > 0 such that, for allµ > 0 andT ,
the null-reachability cost of anỹu in S√

−∆≤µ in timeT (cf. Definition1) is not greater

thanC′eA′(µ,T ) with A′(µ, T ) ≤ (A +
√

A µ)(2 + 1/T ).

8 In [FR71], we refer to (3.19) rather than Theorem 3.3 where the analogous (3.23) contains a misprint (L

should be replaced byπ ). N.b. (3.20) in [FR71] proves thateB
√

−∆(L2(M)) ⊂ R(Ω) cannot be proved by the
same method forB < L. This is an indication thatL is “the optimal” rateB for which it holds.
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In particular, A′(µ, T ) ≤ A∗(2 + 1/T )µ, whereA∗
=

√
A(1 +

√
A/ω0).

More precisely, for allε > 0, A′(µ, T ) ≤
√

A max{µ,
√

A}(ε + 1/min{T , ε}).

N.b. the second bound, which is linear inµ for all µ, is easily deduced from the previous
one.9 The proof also shows thatA′(µ, 1) ≤ 2

√
A µ for µ ≥

√
A andT = 1.

PROOF. Since the cost does not increase withT , it is enough to prove that the cost is not
greater thanC′eA′(µ,T ) with A′(µ, T ) ≤

√
A max{µ,

√
A}(T + 1/T ) for anyT (applying

this with T = ε yields the precise estimate in the lemma). Sinceũ ∈ S√
−∆≤µ, the

backward estimate‖e−T ∆ũ‖ ≤ eT µ2
‖ũ‖ holds. The remark beginning Section A.2 and (1)

imply that the null-reachability cost of̃u in time T is not greater thanK‖e−T ∆ũ‖/‖ũ‖ ≤

Ceµ2T +A/T . Thus

∀ũ ∈ S√
−∆≤µ \ {0}, ∀T , A′(µ, T ) ≤ µ2T + A/T .(A2)

If µ ≤
√

A, then this yieldsA′(µ, T ) ≤ µ2T + A/T ≤
√

A µT + A/T . If µ ≥
√

A, then
T ≥ T ′ := T

√
A/µ and we may use an input function which is zero on(0, T − T ′) and

estimate it on(T −T ′, T ) with (A2) so thatA′(µ, T ) ≤ µ2T ′
+A/T ′

=
√

Aµ(T +1/T ).
In both casesA′(µ, T ) ≤

√
A max{µ,

√
A}(T + 1/T ). 2

In the following lemma, a nonlinear initial state observability estimate with explicit
rate is also deduced from the final state exponential observability estimate (1). Such
“logarithmic observability estimates” have been proved in [Phu04] in the Euclidean case
with a bounded potential depending on time and space (with explicit dependence on the
norm of the potential but nonexplicit rates).

LEMMA 12. If (1) holds for anyT , then there is aC′ > 0 such that

∀T , ∀u0 ∈ H 1
0 (Ω) \ {0},

∫
M

|u0|
2 dx ≤ C′eA′(

√
2F(u0),T )

∫ T

0

∫
Ω

|et∆u0|
2 dx dt,

whereF(u0) = ‖∇u0‖/‖u0‖ andA′ is as in Lemma11.10

PROOF. As in Lemma 11, the proof reduces to a backward uniqueness estimate

∀T , ∀u0 ∈ H 1
0 (Ω) \ {0}, ‖u0‖ ≤ eT F(u0)

2
‖eT ∆u0‖.(A3)

This follows from the well-known log-convexity method (cf. [AN67]). Letu(t) =

et∆u0 and e(t) =
∫
M

|u(t)|2 dx. Integrating by parts yieldse′(t) = −2
∫
M

|∇u(t)|2 dx

and e′′(t) = 4
∫
M

|∆u(t)|2 dx. Hence(e′(t))2
= (2

∫
M

u(t)∆u(t) dx)2
≤ e(t)e′′(t).

Introducing the functionf defined byf (t) = ln e(t), this readsf ′′(t) ≥ 0. Sincef is
convex, it satisfiesf (T ) ≥ f (0) + Tf ′(0). Sincef ′(0) = −2F(u0), exponentiating this
inequality yields (A3), which completes the proof of the lemma. 2

9 N.b.λ∗
= ω2

0 is the smallest eigenvalue of−∆ often called the fundamental tone ofM.
10 F is often called the frequency function sinceF(ek) = ωk with the notations in (7).
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A.3. Approximate controllability cost

Null-controllability implies approximate controllability, i.e.R(Ω) is dense inL2(M),
sinceeT ∆(L2(M)) is dense inL2(M).

DEFINITION 2. For any ε > 0 and ũ ∈ L2(M) such that‖ũ‖ = 1, the approximate
null-reachability costis the smallest constantKT ,ε(ũ) such that there is an input function
f in L2(0, T ; L2

Ω(M)) satisfying‖f ‖
2

≤ KT ,ε(ũ) and‖u(T ) − ũ‖ ≤ ε whereu(T ) =∫ T

0 et∆f (T − t) dt is the final state reached withf from the null initial state.

N.b. replacing the inequalities in this definition by‖f ‖
2

≤ KT ,ε(ũ)‖ũ‖
2 and‖u(T ) − ũ‖

≤ ε‖ũ‖, the normalization‖ũ‖ = 1 can be dispensed with, thanks to linearity. By a weak
compactness argument asε tends to zero,KT ,ε(ũ) is not bounded for fixedT since exact
controllability does not hold. Indeed, the following stronger statement holds.

LEMMA 13. For anyT andε ∈ (0, 1), the approximate null-reachability costKT ,ε(ũ) in
Definition2 is not bounded with respect tõu.

PROOF. By integration by parts and a density argument, for allv0 ∈ L2(M),∫ T

0

∫
Ω

f et∆v0 dx dt =

∫
M

u(T )v0 dx =

∫
M

ũv0 dx +

∫
M

(u(T ) − ũ)v0 dx.

By the Cauchy–Schwarz inequality and the inequalities satisfied byf , this implies(∫
M

ũv0 dx − ε‖v0‖

)2

≤ KT ,ε(ũ)

∫ T

0

∫
Ω

|et∆v0|
2 dx dt.

Forv0 = ũ, the left hand side equals(1 − ε)2. Hence, by linearity, forε ∈ (0, 1),

∀ũ 6= 0,

∫
M

|ũ|
2 dx ≤

KT ,ε(ũ/‖ũ‖)

(1 − ε)2

∫ T

0

∫
Ω

|et∆ũ| dx dt.

If KT ,ε(ũ) did not depend oñu, this would be an initial time observability inequality
equivalent, by the duality in [DR77], to exact controllability. This proves the lemma, since
exact controllability does not hold for anyT (cf. Lemma 9). 2

The next theorem generalizes the estimate of the approximate null-reachability cost
proved in Theorem 6.1 of [FCZ00] in the Euclidean case, withp = 1, without explicit
rate. For fixed‖(−∆)pũ‖

2
=

∫
M

|(−∆)pũ(x)|2 dx, the dependence onε of this estimate
is optimal according to Theorem 6.2 in [FCZ00].11

THEOREM 14. If (1) holds for anyT , then there is aC′ > 0 such that, for allp > 0 and
ũ in D((−∆)p), for all T andε > 0, the cost in Definition2 satisfies

KT ,ε(ũ) ≤ C′ expA′((‖(−∆)pũ‖/ε)1/(2p), T ) ≤ C′eA∗(2+1/T )(‖(−∆)p ũ‖/ε)1/2p

,

where the functionA′(µ, T ) and the rateA∗ are as in Lemma11.

11 N.b. for p ∈ (1/4, 1], D((−∆)p) = H2p(M) ∩ H1
0 (M) andu 7→ ‖(−∆)pu‖ defines a norm which is

equivalent to the norm inH2p(M).
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PROOF. Defineg : R+ → R+ by g(λ) = 1 − λ for λ ≤ 1 andg(λ) = 0 elsewhere. For
any µ > 0, sinceg(λp/µ2p) = 0 for

√
λ ≥ µ, we haveg((−∆)p/µ2p)ũ ∈ S√

−∆≤µ.

According to Lemma 11, there is an inputf in L2(0, T ; L2
Ω(M)) steering 0 tou(T ) =

g((−∆)p/µ2p)ũ at cost‖f ‖
2

≤ C′eA′(µ,T )
‖u(T )‖2. Since 0≤ 1 − g(λ) ≤ λ, it follows

that‖ũ − g((−∆)p/µ2p)ũ‖ ≤ ‖(−∆)pũ/µ2p
‖. By choosingµ = (‖(−∆)pũ‖/ε)1/(2p),

this inequality becomes‖ũ−u(T )‖ ≤ ε, which completes the proof of the theorem. 2
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École Polytechnique
91128 Palaiseau Cedex, France

E-mail: Luc.Miller@math.polytechnique.fr


	Introduction
	Bounds on the optimal rate A in (??)
	Lower bounds
	Upper bounds

	A conjecture and related results
	Conjecture and open problems
	Boundary observability and window problems
	Other evolution systems

	Proof of Theorem ??
	Reachability results related to the rate A in (??)
	Reachability set
	Null-reachability cost
	Approximate controllability cost


