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Optimal control theory. — On exponential observability estimates for the heat semigroup
with explicit ratesby Luc MILLER, communicated on 12 May 2006.

ABSTRACT. — This note concerns the final time observability inequality from an interior region for the heat
semigroup, which is equivalent to the null-controllability of the heat equation by a square integrable source
supported in this region. It focuses on exponential estimates in short times of the observability cost, also known
as the control cost and the minimum energy function. It proves that this final time observability inequality
implies four variants with roughly the same exponential rate everywhere (an integrated inequality with singular
weights, an integrated inequality in infinite times, a sharper inequality and a Sobolev inequality) and some control
cost estimates with explicit exponential rates concerning null-controllability, null-reachability and approximate
controllability. A conjecture and open problems about the optimal rate are stated. This note also contains a brief
review of recent or to be published papers related to exponential observability estimates: boundary observability,
Schiddinger group, anomalous diffusion, thermoelastic plates, plates with square root damping and other elastic
systems with structural damping.
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1. INTRODUCTION

The natural setting for the problem to be discussed is on manifolds, but all the statements
can be understood, and are already interesting, when the ddhara smooth bounded
open set iR? with the flat metric so that the distance is disty)? = |y; — x1/2+ - - +
lya — x4|? and the Laplacian ig = 32/dx2 + - - - + 32/3x3, always considered with the
Dirichlet condition ond M. We shall refer to this setting déise Euclidean case

Although it can be skipped, for completeness we now describe the general setting. Let
(M, g) be a smooth connected compdetimensional Riemannian manifold with metric
g and smooth boundayM. WhendM +# ¢, M denotes the interior antl = M U dM.

Let dist : M> — R, denote the distance function. Latdenote the Dirichlet Laplacian
on L2(M) with domainH} (M) N H3(M).

The observation region2 is a nonempty open subset & such that2 # M.
Unless mentioned otherwise, the range of the tifrie (0, co) and the range of the initial
stateug is L?(M). The corresponding solution of the Cauchy problem for the (forward)
heat equation is denoted T, x) = (e’ 2ug)(x), briefly u = eT?uq is the (relative)
temperature ofR; x M.

In this note, we make some remarks about the following observability inequality from
£2 of the final state at tim&': for any T,

T
(1) Yuo, / leTAupl?dx < Kf /|emuo|2dxdt with K = Ce?/T.
M 0 2
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Even whenK is an unspecified constant, this inequality is interesting from various
points of view. Ifu is always zero o2 then it implies that: is zero everywhere oM at
the final timeT', which implies by backward uniqueness thas always zero everywhere.
Thus [1) is a unique continuation estimate. Moreover, by the duality in [DR77], the
existence of a constark such that[(lL) holds is equivalent to the ability of steering the
heat flux from anyug to zero in timeT by a square integrable source supportedirat
acostK (hence the optimaK does not increase witl). This property is calledhull-
controllability or exact controllability to zero. Its validity in this context was proved a
decade ago in [LROEMa9s].

Indeed[(1) specifies how the cdst= Ce?/” depends off. The first suclexponential
cost estimatés due to Seidman (cf._[SeiB4] and the sunjey [SEi05]). As far as | know, the
best results about the validity of this estimate are threefold and use different methods. In
the Euclidean casé,](1) was proved.in [FCZ00] by global Carleman estimates with singular
weights as infEma95]. Under the geometrical optics condition®@r(i.e. Lo < oo with
the notation of Theorern| 4)[](1) was deduced(in_[Mil04b] by the control transmutation
method (for short CTM, cf. Sectign 2.2) from the observability of the wave group in
[BLR92Z]. In the general setting,|(1) is not proved, but a slightly weaker exponential cost
estimate was proved in_[Mil0%5b] by the control strategy [of [LR95] as implemented in
[LZ98]: for all p > 1, there are positive constamts; and Cg such that[(]L) holds with

K = Cge?#/T’ (Carleman estimates should allow reachihg: 1 as in [1)).

This note reviews the known bounds on the optimal raten () (Sectior[ R) and
other similar cost estimates (Sect[dn 3), and relétes (1) to several of the following variants
considered in[FCZ00, Zua0D1] in the Euclidean case (Thepfem 1). The method of global
Carleman estimates leads more naturally to the following integrated inequality with
singular weight:

T . T
2) Yuo, / /e—A/’|efAuo|2dxdt5C/ /Ie'Auo|2dxdt.
0 M 0 2

This is proved in Proposition 6.1 of [FCZ00]. Among open problems, the following variant
for infinite time is stated in [Zua01] (equation 4.3):

o o0
©) Yuo, / /e—A/'|efAuo|2dxdtgcoo/ /le'Auo|2dxdt.
0 M 0 2

Remark 6.1 of[[ECZ00] extracts from the proof of Theorem 6.1 the following inequality
for fixed 7', which is sharper thafi(1), at least whEn> B:

T
(4)  Vuo, /Ie*BV*AqudxsK// /Iemuolzdxdt with K’ = C'e?'/7.
M 0 2

Replacing the.? norm of the final state if {1) by its norm in a Sobolev space of real order
s yields the following inequality, better for positive

T
(5) Vuoe H'(M), |le"upl?;s < KS/ / le"Pugl?dx dt  with Ky = Cye™/T.
0 2
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We prove in this note thaf (1) for small times implies its four variapks [2), [(3), (4) and
(®), with ratesA, A, A’ andA; which are roughly the same everywhere. More precisely, in
Sectior] 4 we prove

THEOREM1. LetA’ > AandB > v2A(1+(A'/JA—1)"Y2)/2(B > V2Aif A’ > 24).
Lets € RandA; > A (A, = A if s < 0). If the final time observability inequalitff)
holds for allT < Tp, then

(i) the integrated inequalitfZ) holds for allT < Towith A = A andC = CT,
(i) the infinite time inequalitf3) holds withCo, = CTo(1 + e4/70),
(iii) the sharp inequalit§4) holds for all T,
(iv) the Sobolev inequalitff]) holds for all T.

Conversely, ford > A, if the integrated inequalit{@) holds for allT < Ty, then the final
time inequality(I) holds for all 7.

Even in the Euclidean case and for fix&d Theoren{ ]l simplifies the proof df](4)
(Proposition 6.1 in[[FCZ00] already usgs (1) but also goes back to the global Carleman
inequality). The fast cost estimate |rj (4) seems to be new:

COROLLARY 2. Under the geometrical optics condition &b or in the Euclidean case,
there are positive constanfs, A’ andC’ such that

T
VYT, Yuo, / le BY=44u012dx < C'e? /T/ / le"2uo|? dx dt.
M 0 Jo

Besides null-controllability, the exponential observability estimajte (1) implies various
reachability results which were known in the Euclidean case (cf. [FCZ00, Phu04] where a
time and space dependent potential is emphasized as a preliminary step towards a nonlinear
term). The appendix gives simple proofs of these results keeping track of th¢ ira(@)
explicitly.

The controllability cost (e.g. the optimal in (), or sometimes/K) is also called the
minimum energy function (for normalized initial states). It is connected to the minimum
time function (cf. [Gr93[GL99]), also known as the Bellman function of the system. An
exponential fast control cost estimate yields a logarithmic modulus of continuity for the
minimum time function (cf. Remark 3.6 ih [Mil04a]).

The cost of fast controls is also related to the regularity properties of the stochastic
diffusion process obtained from the control system by substituting a white noise for the
controlled source (more generally, for the input function of the system). The regularity of
the generalized solution of Ornstein—Uhlenbeck equations (e.g. the Kolmogorov equation
corresponding to this stochastic P.D.E.) and the strong Feller property for the transition
semigroup depend on the behaviour of the cost of fast controls (cf. Theorem 8.3.3 in
[DPO1], Theorem 6.2.2 and Appendix B in [DPZ02]). The introduction [of [ALO3b]
elaborates on this motivation.
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2. BOUNDS ON THE OPTIMAL RATEA IN (I

2.1. Lower bounds

It is proved in [Mil04b] that[(1) for all smalf” implies

(6) A > supdist(y, 2)%/2.
yeM

The proof relies on Varadhan’s formula for the heat kernel in small time[(cf. [Var67]),
which requires very low smoothness assumptions as proved_in [Nor97]. This improves
on the former lower bound in the Euclidean case stated in Section 4.1 of [ZuaO1]
which was based on a construction made in the proof of Theorem 6.2_in _[FFCZOQ]:
A = Supz e p?/4, where the supremum is taken over bajsof radiusp.

For finite timesT', the lack of observability at a better cost is only due to the finite linear
combinations of the eigenmodes corresponding to frequencies lower than a threshold of
order I/ T. To state this result from [Mil04b] more precisE]we introduce the spectral
data: (wi)ren+ IS @ nondecreasing sequence of nonnegative real numbergapdy- is
an orthonormal basis df2(M) such thak is an eigenvector of A with eigenvalu&o,f,
ie.

(7) —Aey =wPer and e, =0 onoM.

THEOREM 3 ([Mil04b]). Letd € (O, sup,cy dist(y, £2)). If (@) holds for all smallT and
for anyug in the linear span ofey }o, <4/, thenA > d2/2.

2.2. Upper bounds

In view of Theorenj [L, upper bounds on the optimal rata (I) imply upper bounds on
the optimal rates i {2)H5).

THEOREM4 ([MilO4Db]). Let Ly, be the length of the longest generalized geo@eim_/l
which does not intersea®. For all A > (2(36/37)L)? there is a positive constar
such that()) holds for allT.

The same bound is immediately deduced, by Theorem 1.6 in_[Mil05c], for the
heat semigroup on the product manifald x M observed from2 x M, where M
denotes another smooth complételimensional Riemannian manifold (e.g. an infinite

1 TheorenﬂB is not explicitly stated in [Mil04b], but it is roughly explained after Theorem 2.1 there. Moreover,
Theorenf B for the Schdinger group instead of the heat semigroup is proved by the same method and explicitly
stated in[[MilO4¢].

2 In this context, the generalized geodesics are continuous trajecteres () in M which follow geodesic
curves at unit speed i (so that on these intervais— x () is continuous); if they hid M transversely at time
to, then they reflect as light rays or billiard balls (ang> X (¢) is discontinuous ab); if they hit 9 M tangentially
then either there exists a geodesiddrwhich continues — (x(¢), x(¢)) continuously and they branch onto it, or
there is no such geodesic curvelihand then they glide at unit speed along the geodesidbfvhich continues
t — (x(¢), x(t)) continuously until they may branch onto a geodesid4n The meaning of the geometrical
optics conditionL;; < oo, due to Bardos—Lebeau—Rauch[in [BLR92], is discussed at lendth in [Mil02].
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strip observed from any infinite strip in the interior). To the best of my knowledge, there is
no better upper bound of the optimal rate in the literature.

When comparing Theorelm 4 to the lower bound’in (6), one should bear in minbghat
is always greater than 2 syp, dist(y, 2) (as the length of a generalized geodesic through
y which does not intersea? is always greater than 2 dist £2)) and can be infinitely so.
But, for some simple geometriE]sTheorenﬂl implies an upper bound on the optimal rate
in terms of sup., dist(y, 2) aswell, e.g.:

COROLLARY 5. In the Euclidean case, i is a ball and §2 is a small enough
neighborhood of its boundary then for al > 16 sup.,, dist(y, 2)2 thereisaC > 0
such that() holds for all 7.

Theoren{ # is deduced from the observability of the wave group((cf. [BLR92]) by the
Control Transmutation Methgdor short CTM. This method applies to control problems
the guiding principle of the kernel estimates method[of [CGT82]: systems with finite
propagation speed yield geometrical information in small times about systems with similar
generators but without propagation speed. Here, it consists in constructing a timekkernel
dubbed “the fundamental controlled solution”, which transforms the input function for the
wave group in timd. into an input function for the heat semigroup in tifiesome norms
of k must be estimated explicitly in terms &f and T only. Unlike Russell’'s harmonic
analysis method ir [Rus¥3], it does not use information on the spectrum and it extends to
the most general abstract setting (cf. [Mill)@]).

3. A CONJECTURE AND RELATED RESULTS

3.1. Conjecture and open problems

Combining the upper and lower bounds for the optimal rate (T in the simple example
of Corollary[§ ( is a Euclidean ball and?2 is a small enough neighbourhood of its
boundary) yields

a = A(supdist(y, 2)) 72 € [1/2, 16).
yeM

Since we believe that there is no solution of the heat equation which is more singular than
the heat kernel, it is natural to conjecture that the lower bouhd (6) is also an upper bound:
the optimal rated such that[([L) holds for small is sup,c,, dist(y, 2)2/2 forany(M, g)
and # M (i.e.a = 1/2). )

If K(T) denotes the optimal cost i](1) for fixed, then the functionk
(0,0) — (0,00) does not increase (as a result of the semigroup property or the
duality with null-controllability), but this is not enough to ensure that/ioy 7' In K (T')
exists. The existence of this limit is part of the conjecture but could possibly be

3 In the Euclidean case, i2 is a neighbourhood aiM thenLg, is the length of the longest segmentif
which does not intersec?.

4 E.g. the abstract presentation of Russell's method in Section [2 of [HCZ02] assumes that the eigenvalues
grow quadratically.
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established independently. Until then, the optimal rate can only be defiﬁ}eﬂ*a&
limsupy_o T InK(T).

TheorenﬂL roughly says that the “optimal ratesand A’ in (1) and [2) are eunt
does not say wether the “optimal rates'in (T) and [[B) are also equal (it roughly says that
the “optimal rate” is not greater ift](3) than [ (1)).

Other related open problems will appeariin [Zua06].

3.2. Boundary observability and window problems

For steering the temperature to zero with the temperaturé’oa oM as input, the
corresponding observability inequality of the final state frbnis similar to [3):

T
(8)  Vuo, /|eTAuo|2dx§Kv/ /|8vu|2dxdt with K, = C,e/T,
M 0 r

whered, denotes the Neumann derivative at the boundary.

WhenM is a Euclidean segment adidis one endpoint[ {8) is an inequality on sums of
exponentials called a “window problem” in [SAIOOQ]. A well trodden path in the harmonic
analysis of this problem is to construct a Riesz basis of bi-orthogonal functions. This
reduces by the Paley—Wiener theorem to the construction of entire functions with zero
and growth conditions. Proving exponential cost estimates in this setting is a nonclassical
aspect of this problem deeply studied(in [SAI00]. We refei to [SAIO0, $€i05, Mil04b] for
more details and references.

In this context,L = sup,cy dist(y, I') is the length of the segmemt. The best

upper bound obtained so far by this method is (cf. [Mil04b]): Aqr > 2, L2, (8) holds

for all T, wherea, = 2(36/37)2 < 2. Any improvement on the value of, in this
result, and in the analogous result where the Neumann derivative is remoyeéd in (8), will
improve Theorerﬁ|4 te > 20, L2 N.b. in the CTM which deduces this theorem from the
boundary observability estimate on the segment there is a loss of a factor 4.gine@L

on the segment.

The CTM has been extended in [Mil04a] to the observability (by unbounded operators)
of holomorphic semigroups generated by the generator of a cosine operator function.
Since [BLR92] proved the boundary observability for (the real part of) the wave group
cogt+/—A), which is the model of all cosine operator evolutions, Them 4 still holds
when [1) and2 are replaced by {8) and (this is Theorem 6.1 iri [Mil04a]).

By Theorem 1.5 in[[Mil05c], these two estimates of the cos{n (8) for problems in
dimension one and greater extend to the problems that can be deduced from them by a
tensor product, e.g. the better one-dimensional result extends to an infinite strip observed
from one of the boundary lines.

3.3. Other evolution systems

The heat kernel method used to prove the lower bound in Thepfem 3 and the control
transmutation method (CTM) used to prove the upper bound in Thg¢drem 4 were adapted to

51f A > A* then [3) holds for smalr’, and conversely, i{{1) holds for small thenA > A*. Whether[(1)
holds for smalll whenA = A* is an open problem.
6 Theorenﬂl provesA > A* implies “(2) holds for small’” implies A > A*.
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the interior observability of the Sabdinger group in[[Mil04t] (n.b. this is the observation-
control system to which a transmutation method was first applied_in [Phu01]). Thanks
to a new necessary and sufficient condition for the observability of unitary groups by
unbounded operators, called a “resolvent observability estimate” (this Theorem 5.1 in
[MilO54a] is the analogue of the Hautus test for finite-dimensional control systems, cf.
[RW94]), the CTM has been extended to this abstract setting. Thus it allows one to deduce
from [BLR92] exponential observability estimates from the boundary for thed8atger

group (Theorem 10.2 in [Mil05a]).

The slightly weaker exponential cost estimates mentioned in the introductioK, +€.
CﬂeAﬂ/Tﬂ foranyg > 1 and somedg > 0 andCg > 0, were generalized by the same
method to the system of thermoelastic plates without rotatory inertia (in the Euclidean case,
with hinged mechanical boundary conditions and Dirichlet thermal boundary condition)
observed from2 by either the mechanical or thermal component (cf. [Mil05d]), and to
the plate equation with square root damping observed fio(m the Euclidean case, with
hinged boundary conditions, cf. [MilD6] where the CTM was also adapted to this system
and yieldsg = 1 under the geometrical optics condition &). The same method was
applied to more general abstract linear elastic systems with structural damging inl[Mil06]
and yields various ranges fgrdepending on the strength of the damping. It also applies to
anomalous diffusions generated by the fractional Laplaeigh A)? for p > 1/2, where
ityields 8 > 1/(2p — 1) (cf. [MilO5h]).

The exponential cost estimateslin [Mil06, Mil05d] use eagielynomial cost estimates
proved in [Tri03/ ALO3bl ALO3a] in the cas® = M which we have excluded at the very
beginning of this note becau$é (1) holds with= C/T whens$2 = M. Triggiani, Lasiecka
and Avalos proved cost estimates of the fokm= C/T”, p > 1, wherep is related to
the strength of the damping. These estimates are similar to the optimal cost estimates for
finite-dimensional control systems proved|in [S&i88] which we now described betan
n x n matrix defining a system of linear differential equation®ih and letB be them x n
matrix which prescribes tha observed coordinates IR*. The observability inequality is

T
©) Vxo € R', ol < K /0 | BeAxo|2d1.

Kalman proved thaf {9) holds if and only if there is an integet n such that the x nm
block matrix{B*, A*B*, ..., A*P B*} is of rankn (the star denotes transposed matrices).
Seidman proved that, & tends to zero, the optimal cost [l (9) satisfies~ C/T1+2P
wherep is the smallest integer satisfying Kalman'’s rank condition.

We are still longing for such a complete result regarding infinite-dimensional control
systems, at least for distributed systems with infinite propagation speed such as the heat
semigroup.

4. PROOF OFTHEOREM[

() For T < T’ < To, multiplying (@) bye=4/T, boundinngT from above bnyT/, then
integratingT over (0, T’) yields [2) withT = T’, C = CT’, A = A.

(i) This point results from the previous one and the following lemma.
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LEMMA 6. If (@) and (@) hold, then(@) holds withCs, = C 4 CTeA/T.

PROOF. Sincee™*/! < 1 ands > [le'“uol| 2y, does not increase, for all € N* we
have

(n+1)T
/ / e M e uglPdx dt < Tf le"T A uo|? dx
nT M M

nT
SCTeA/Tf( ) /Q|e’Auo|2dxd;,
n—1T

where [[1) withuo replaced by ~Y7 uq is used in the last step. Summing up oxer 1

yields
o0 o0
/ / e_A/’Ie’Auo|2dxdt < CTeA/T/ f|e’Auo|2dxdt.
T M 0 2

Adding this inequality to[(R) yield$[3) witlis, = C + CTeA/T. ]
(i) This point results from the first point and the following lemma.

LEMMA 7. ForanyA’ > A andB > +/2Ab(A’), whereb(A’) = 1for A’ > 2A and
otherwiseh(A’) = (1+(A’/A—1)"Y2)/2 (n.b.lim g1, 4 b(A") = +00), thereisaC’ > 0
such that for allT,

T
Vo, / le™BY=4ug|2dx < C’eA/T/ f Al A yo2 dx dt.
M 0 M
PROOF Writing up = ) crex With Zk|ck|2 < oo in the eigenbasi$ [7) yields

2
(10) / e BV Augdx = 3 e 2Bk g2 = 3 T PVERR g 2,
M k

k

T

(11) //e‘A/’|e’Auo|2dxdr=ZIA(T,2w,§)|ck|2,
0 M %

with

T TV/A/A
IA(T, \) = / e M—A/t gy — \/TM/ E—M(s+1/s) ds.
0 0

Henceforth, we keep the same notatioand C. meaning “for all smalk > O, there is
C. > 0 independent of andT such that...” although their value may change. Setting
a =min{l, (A’/A — 1)1/2}, we haved’ > (1+ a?)A andB > +/2A b(A') with b(A') =
max(1, (1+ (A'//A —1)"Y2)/2) = (1+ 1/a)/2 > (a + 1/a)/2.

ForT/A/A > a, we may bound the last integral from belowﬁﬁ_{fe)a ---ds and use
the fact thatf : s — s + 1/s decreases oD, 1] O (0, a], hence

IA(T. ) > Sme—Mf((l—s)a) - Cge—M(1+s)(a+1/a) - Cse—(lﬁ—a)\/ﬂb(A’)@.
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ForTA/A <a,i.e.x <a?A/T?, we have
T
IA(T, ) > e—AT/ Al gt > e_azA/TgTe—A/((l—e)T) - Cse—(l+g)(a2+1)A/T'
- 1-&)T - -
Multiplying the lower bounds obtained in the two cases yields

(12) VA >0, VT >0, e WoOV2AbAW2 o ¢ (Ate)W+a)A/T 1 (T 3y,

Choosings > 0 small enough yieldd’ > (1+ ¢)(1+ a®)A andB > (1+ ¢)v/2A b(A").
Hence[(IR),[(T0) and (11) complete the proof of the lemma.O

(iv) For negatives, since L2(M) is continuously embedded if* (M), (@) implies [5)
with A; = A by density. Lets > 0 from now on. Since’4 is an analytic semigroup,
it satisfies the smoothing property§; := sug>0||tse’A||£(L2;HS) < 00. Let K(T) and
K(T) denote the optimal costé andK in (@) and[}). For alt € (0, 1) andT, K(T) <
Ss(eT)™*K((1— &)T). Sincee is arbitrarily small, for allA; > A, there is aC} such that
for any To, if K(T) < Ce?/T forall T < TothenK(T) < Cle*/T forall T < To.
Therefore, withC; = Cle?s/T0, if () holds for allT < To, then [$) holds for alf.

Converse. The last statement of Theorér 1 results from the following lemma.

LEMMA 8. Forall A > A, there is aC > 0 such that
T y
VYT, Vuo, / |eTAuo|2dx < CeA/T/ / efA/t|etAu0|2dx dt.
M o Ju
PROOFR Lete € (0, 1). BoundinngT from below byf(i_s)T yields

T e ~
Vuo, / / e M Aupl?dx dr > (1— S)Te_A/((l_g)T)/ leT Aug|2 dx,
0 M M

sincet > ¢~4/! does not decrease and—> ||e’Auo||L2(M) does not increase. Sineds
arbitrarily small, this completes the proof of the lemma. O

APPENDIXA. REACHABILITY RESULTS RELATED TO THE RATEA IN (D)

A.1. Reachability set

The control system corresponding to the observability inequljty (1) is
du—Au=f onRyxM, u) =ugelLl?M), felL.(Ry;LS(M)),

whereL_ZQ(M) denotes the functions ih?(M) which are zero outsid® (hence the heat
sourcef is located in the observation-control regi®). Each input functionf defines a
unique continuous trajectory— () in the state spac&?(M) from the initial stateso.
As f varies,u(T) spans the set of states which are reachable frgin time 7', denoted
R .uo(82)-
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As recalled in the introduction, null-controllability in tinie holds for this system, i.e.
for anyuo, there is an inpuf steeringug tou(T) = 0. By linearity, the final state’ 4ug is
reached from(0) = 0 when— f is applied. The simple argumgh'n [Sei79] proves that
null-controllability in time T impliesRr,0(£2) = Ry,4,($2) for all ug andr > T. Since
null-controllability in timeT holds for allT', Rr,,,(£2) does not depend ¢h andug. It is
therefore natural to define the reachability set as follows:

DEFINITION 1. The statei in L2(M) is in thereachability seR(£2) if there is a timeT’
and an inputf in L2(0, T; L% (M)) such thati = fOT A f(T —t)dt.

Thenull-reachability cosin time 7' of a nonzerai in R($2) is inf|| £|12/]li |2 over all
suchf.

The fact that exact controllability does not hold, iL&(M) ¢ R($2), is often deduced
from the hypoellipticity of the heat operatéy— A: outside(0, T') x §2, the smoothness of
the null source implies the smoothnesg pfience all states iR (§2) are smooth outside.
We further remark that:

LEMMA 9. () R(M) = H}(M).

(i) For any open2’ such that2’ ¢ £ and anyu’ € HX(£2'), there is aii in R(£2) such
thatz — u’ is smooth orf2’. (Wheng2’ is smooth, the same holds wi€f = 2 and
u' € H}(R2).)

(iii) If 2 # 2/, thenR(£2) # R(2)).

PROOF (i) We use expansions in the eigenbafis (7)t) = >, fi(t)ex andu(T) =

Y uk(T)ek. Settinggy (1) = e*"”ff, u(T) = fOT e'A f(T —t)dt is equivalent tai (T) =

fOT g1 (1) fi(T — t)dt for all k. The norm ofg in L2(0, T) satisfies
(1— e—sz,f)l/z 1

< .
V2T wi T V2T wy

o
(A1) —llgoll < llgkll =
Wi

The upper bound i (A1) implies

1

IVu(T)|1? = |V —Au(T)|* = Xk]wkuk(T)F < or

1
ijnfkn2 = ﬁnfn2 < 0.

HenceR(M) C H(M). Conversely, leti = Y, iixex be in H}(M) and setfi(r) =
gk (T — 1)l gk |l ~2dixex. The lower bound i (AL) implies

1 _ i
12 =D I fell? < ——— D leniixl* =
& CU()”gO” A

 willgoll?
Sinceu(T) = i, this provesR (M) D HX(M).

7 Let ug € L%(M) and: > T. Since null-controllability in timeT" holds, there is an inpufp equal to O
on [0, (¢t — T)] which steersug to 0 between 0 and If & € R o(£2), then there is an inpuf equal to 0 on
[0, (r — T)] which steers O tai between 0 and, hencef + fy steersug to i between 0 and, which proves
it € Rt ug(82). Conversely, iff steersug to i between 0 and, then, since null-controllability in tim@& holds,
there is anfg equal tof on [0, (+ — T')] steeringug to O between 0 and hencef — fq steers 0 ta: between 0
andt, which provesi € Rr o(£2).
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(ii) Let M’ be a smooth open set such ti2t C M’ andM’ C £2, and letu € H}(M').
The previous point implies that there is an ingut L2(0, T; L>(M’)) which steers 0 ta
on the manifoldM’. The extensiory of f to M by zero outsidé/’ steers 0 to some final
stateii € R(M') C R(£2) on the manifoldM. Since(d;, — A)(@ —u) = f — f = 0on
M', i — u is smooth oM’ O £2 by hypoellipticity.

(iii) This last point results from the previous point and the already mentioned fact that
functions of R(£2) are smooth outside. O

We already mentioned that the final time observability estimate implies null-
controllability by the duality argument in_[DR77], yielding in turn some information on
the reachability sett J,. e (L2(M)) c R(£). The sharp observability estimafg (4)
improves this taeBY-A(L2(M)) C R(R2) by the same argument (cf. (3.22) in [DR77]).
Thus, Theorerp]4 and the third point in Theorfgm 1 prove:

COROLLARY 10. If (@) holds for allT < T, thenUB>meBM(L2(M)) C R(£2).
Let L be the length of the longest generalized geodeshM iwhich does not intersee®.
Forall B > 2J/2(36/37)Lg, e3V=4(LA(M)) C R(R2).

When M is a segment of lengti controlled from one endpoint (cf. Sectipn 3.2),
[FR?].ﬁ proves that the reachability set include%m(Lz(M)) for all B > L (this
improves Corollary 10, since the analogud.ef is 2L here). This result raises the question
whether “the optimal” rateB such thateBH(LZ(M)) C R(£) can be expressed
geometrically (e.g. is it syp,, dist(y, £2)?). More generally, although Lemrﬂi 9 proves
thatR(£2) does depend of, this dependence has not been investigated yet, to my best
knowledge.

A.2. Null-reachability cost

We already mentioned that ady = ¢”4ug is in R(£2) (cf. Definition[1). Indeed, the
duality in [DR77] proves more: the bekt such that[([L) holds is also the bestsuch that

for all ug, there is an inpuf in L2(0, T; L% (M)) with e 4ug = [ ' f(T —1)dt and

I £1%2 < K|uoll But this is not enough to estimate the null-reachability cost uniformly
overel A(L2(M)).

For any positive frequency threshold the linear span ofex}., <, defined by [(7),
denotedS ., is a finite-dimensional subspace of A(L2(M)). In the following
proposition, a uniform estimate of the null-reachability cost derz_, is deduced from
the exponential observability estimafé (1). This estimate is exponential with respect to
with an explicit rate (essentially\ZA).

LemmA 11. If (@) holds for anyr’, then there is &’ > 0 such that, for allx > 0and7,
the null-reachability cost of any in S /=A<u in time T (cf. Definition@ is not greater

thanC’e?"=-T) with A’ (u, T) < (A + VA )2+ 1/T).

8 In [ER71], we refer to (3.19) rather than Theorem 3.3 where the analogous (3.23) contains a misprint (

should be replaced hy). N.b. (3.20) in[[FR71] proves thaffv—4(L2(M)) c R(£2) cannot be proved by the
same method foB < L. This is an indication that is “the optimal” rateB for which it holds.
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In particular, A'(i, T) < A*(2 + 1/T)u, whereA* = A1+ VA /wo).
More precisely, for ale > 0, A’(u, T) < vAmaxXu, vA}(e + 1/min{T, }).

N.b. the second bound, which is linearinfor all 1, is easily deduced from the previous
onef The proof also shows that' (11, 1) < 24/A  for 1 > +/A andT = 1.

PROOFE Since the cost does not increase wiithit is enough to prove that the cost is not
greater tharC’e?’ (- T) with A’(u, T) < v/Amax{u, VANT +1/T) forany T (applying
this with T = ¢ yields the precise estimate in the lemma). Sidce S /=A< the
backward estimatge 72| < e#*|jii|| holds. The remark beginning Sect.2 (1)
imply that the null-reachability cost @f in time 7 is not greater thak ||e= 72| /i <
Cet*T+A/T Thus

(A2) Vi € S =5, \ {0}, ¥T,  A'(u.T) < u°T + A/T.

If & < +/A, then this yieldsA’(u, T) < u2T + A/T < VAuT +A/T.If o > /A, then
T>T = Tﬂ/u and we may use an input function which is zero(6nT — T’) and
estimate it o7 — 77, T) with (A2) so thatA’ (u, T) < u?T' + A/ T’ = Au(T +1/T).
In both cases\’ (i, T) < vVAmaX{u, VANT +1/T). O

In the following lemma, a nonlinear initial state observability estimate with explicit
rate is also deduced from the final state exponential observability estifjate (1). Such
“logarithmic observability estimates” have been proved_in [Phu04] in the Euclidean case
with a bounded potential depending on time and space (with explicit dependence on the
norm of the potential but nonexplicit rates).

LEmMA 12. If () holds for anyT, then there is &’ > 0 such that
, T
VT, Yug € H3(£2) \ {0}, / luol®dx < C'e? W?F(“Om/ f|e’Auo|2dxdt,
M o Je

whereF (ug) = || Vuoll/|luoll and A’ is as in Lemm{.1[[9

PROOF Asin Lemmd 1], the proof reduces to a backward uniqueness estimate
(A3) VT, Yo € HE()\ (0}, lluoll < " 0" " ).

This follows from the well-known log-convexity method (cf._[AN67]). Letr) =
e'Yug ande(t) = [,,lu(1)|?dx. Integrating by parts yieldg'(t) = —2 [,,|Vu(t)[?dx
ande”(t) = 4[,,|Au(®)|?dx. Hence(e'(t)? = (2, u®)Au(t)dx)? < e(t)e” ().
Introducing the functionf defined by f(t) = Ine(?), this readsf”(r) > 0. Sincef is
convex, it satisfieg (T) > f(0) + Tf’(0). Since f'(0) = —2F (up), exponentiating this
inequality yields[(AB), which completes the proof of the lemma. O

9 Nb.a*= w% is the smallest eigenvalue efA often called the fundamental tone Aff.
10 F is often called the frequency function sinEgey) = wy with the notations in{7).
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A.3. Approximate controllability cost
Null-controllability implies approximate controllability, i.6R(£2) is dense inL2(M),
sincee’4(L2(M)) is dense inL2(M).

DEFINITION 2. Foranye > Oandi € L2(M) such that||i|| = 1, the approximate
null-reachability costs the smallest constakr . (zz) such that there is an input function
fin L2(0, T; L% (M)) satisfying|l fI? < Kr..(@) and |u(T) — ii|| < e whereu(T) =

fOT e'A f(T — 1) dt is the final state reached witfi from the null initial state.

N.b. replacing the inequalities in this definition By (1% < Kr..(@)||i||® and|lu(T) — |

< ¢|lu|l, the normalizatiorji|| = 1 can be dispensed with, thanks to linearity. By a weak

compactness argument asends to zeroKr . () is not bounded for fixed" since exact
controllability does not hold. Indeed, the following stronger statement holds.

LEMMA 13. ForanyT ande € (0, 1), the approximate null-reachability co&tr . (&) in
Definition[Zis not bounded with respect o

PROOF. By integration by parts and a density argument, fovgle L2(M),

T
/ /fe'Avodxdt:/ M(T)vodxzf L?vodx—i—/ u(T) — a)vodx.
o Je M M M

By the Cauchy—Schwarz inequality and the inequalities satisfief, lilyis implies

2 T
(f ftvodx—8||vo||) SKT,S(a)f f|ef4vo|2dxdz.
M 0 2

Forvg = &, the left hand side equaig — ¢)2. Hence, by linearity, foe € (0, 1),
K
Vii #0, / a2 dx < ”(”/””2‘”) / / le' | dx dt.
M &)

If Kr.(a) did not depend om, this would be an initial time observability inequality
equivalent, by the duality in [DR77], to exact controllability. This proves the lemma, since
exact controllability does not hold for arfy (cf. Lemmd9). O

The next theorem generalizes the estimate of the approximate null-reachability cost
proved in Theorem 6.1 of [FCZ00] in the Euclidean case, with= 1, without explicit
rate. For fixed|(—A)?il|? = [,,|(—A)Pi(x)|?dx, the dependence anof this estimate
is optimal according to Theorem 6.2 [n [FCZ.

THEOREM 14. If (I) holds for anyT', then there is &’ > 0 such that, for allp > 0 and
#in D((—A)?), forall T ande > 0, the cost in Definitiofg satisfies

Kr.o(@) = C'expA'(([(-A) il /&)@, T) < C'eA" @Y DA,
where the functiom’(u, T) and the rated* are as in Lemm@

1 Nb.forp € (1/4,1], D(—2)P) = H?P (M) N H}(M) andu + |(—A)Pu] defines a norm which is
equivalent to the norm & 2” (M).
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Defineg : Ry — R4y by g(A) = 1— A for A < 1 andg(r) = O elsewhere. For

anyu > 0, sinceg(h?/u?) = 0 for VA > u, we haveg((—2A)?/u?)i € S =5,
According to Lemm@l, there is an inpyitin L2(0, T’; Lé(M)) steering O tau(T) =
g((—A)?/u?Pyii at cost]| £ |2 < C'e ™D ||lu(T)||2. Since 0< 1 — g(A) < A, it follows
that(|i — g((—4)?/u?P)il| < |(=A)Pii/u?|. By choosingu = (|(=A)Pill/e)t/@P),
this inequality becomeli —u(T)|| < &, which completes the proof of the theorem. O
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