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Partial differential equations. — Some inequalities of Glaeser-B&ign type by
SERGIO SPAGNOLO and QOVANNI TAGLIALATELA , communicated on 12 May 2006.

ABSTRACT. — The classical Glaeser estimate is a special case of th&t&miemma which states the Lipschitz
continuity of the roots\; (x) of a hyperbolic polynomialP (x, X) with coefficientsa; (x) depending on a real
parameter. Here we prove a pointwise estimate for higher order derivatives af(thés in terms of certain
nonnegative functions which are symmetric polynomials of the roats) (hence also of the coefficientg(x)).

These inequalities are very helpful in the study of the Cauchy problem for homogeneous weakly hyperbolic
equations of higher order.
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INTRODUCTION

The simplest version of the Glaeser inequalityl ([Gl,/ [Di]) states that

@ la'(x)] < C(M)yax), Vx € R,

for every nonnegative functiom € C2(R) with la” || Loy < M. This inequality holds, in
fact, withC (M) = /2M, and follows from the Taylor expansion

O0<a(x+h)=ax)+d@h+a"Eh?/2 <ax)+d x)h+ Mh?/2,

by noting that the discriminant of the polynomial on the right hand side must be
nonnegative.

We can reformulate (1) by saying that the square root of a nonnegative function
with second derivative bounded is Lipschitz continuous, or, equivalently, the roots of the
polynomial P(x, X) = X2 — a(x) are Lipschitz continuous functions of the parameter
x € R. Hence, (1) can be viewed as a special case of the following general result on
hyperbolic polynomialgi.e., monic polynomials having only real roots) depending on a
real parameter.

BRONSTEIN'S LEMMA ([BI], [M], [T], [WI). Let

2) A(x) < v < An(x)

be the roots of a hyperbolic polynomial

3) P(x,X) =) aj)X" I =[[(X —1j(x)), ao=1
j=0 j=1
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Assume that the coefficients(x) belong toC™ (R) and satisfy

(4) la e <M <00, jk=0,....m.

Then each rook; (x) is a Lipschitz continuous function with

5) I%;()l < Cm, M), ae.inR, j=1,...,m.

The inequality (1) has been extended in various directions (€.g.), [Dal, [NS]).
In particular Olénik [O1] proved that any symmetria x n matrix A(x) > 0, with
|A”|| < M, satisfies the pointwise estimate

(6) ITr(A’(x)B)| < C(n, M)y/Tr(B*A(x)B),  ¥n x n matrix B,

which is essentially equivalent to saying that the square roat@f) is a Lipschitz
continuous matrix function of (cf. [LV]). The estimate (6) is a key point in the proof

of an important result of well-posedness for second order weakly hyperbolic equations in
n space variables[([02]).

When considering the Cauchy problem for a homogeneous weakly hyperbolic equation
of higher order in one space variable, we need a pointwise estimate (like (1)) of higher
order derivatives of the coefficientg(x) of a hyperbolic polynomial of the type?®). In
this regard we make the obvious remark that(f) > 0 is a smooth function, then an
estimate likda” (x)| < Ca(x)? with § > 0 is in general false.

However, the higher order derivatives @f(x) can be majorized by the nonnegative
functions

7) )= Y M@ Ap(). l<ks=m. Yo=1

1<ji<--<jx<m
More precisely we prove:

THEOREM1. Given a hyperbolic polynomigl??) with coefficients:; € C™(R) satis-
fying (4), we have, for alk € R,

(8) a0 < Com, M), ¥ 4(x), O0<k<j<m.

The proof will be given in 82, while in 81 we shall write (8) in more explicit forms in
the case of hyperbolic polynomials of order< 4.

The estimates (8) provide a useful tool in studying the possible well-posedness for
weakly hyperbolic equations of order. For instance, let us consider the model equation,
inR; x Ry,

9) Btzu - a(x)afu =0, akx) >0,

and define the energy
E(t) = }/(u,z + a(x)u?) dx.
2Jr
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We compute, by differentiating in time and integrating by parts,
E'(t) = —/ a’ () uyu; dx,
R

so, if |a”(x)| is bounded, (1) yields an a priori estimaf(r) < CE(t) ensuring the
well-posedness of the Cauchy problem for (9).

In a similar way Olénik [O2] proved the well-posedness for any second order equation,
in n space variables, of the form

Ofu — Y aij(x)dgdyu =0, Y aij(x)&& > 0.

i,j=1
The energy is now
1
E@) = > /Rn (utz + Za,-j(x)uxiuxj) dx,

hence, in view of an estimat€’ (1) < CE(t), we resort to the inequality (6) with(x) =
[a;j()] and B = B(x) = [uy, (X)uy; (x)].

Going back to the case of coefficients depending on a single varialdeR, we
consider the Cauchy problem for a hyperbolic, homogeneous equation of general type,
ie.,

(10) MU+ ar(x)0" 10U + - + a4 ()8™u = £(t, x),

(12) 3 u0x)=¢jx), 0<j<m—1

In this case we are still able to find an enemyr) explicitly expressed in terms of the
coefficientsa; (x), and we can try to estimaté’(¢) in terms of E(¢) by resorting to (8).

But now the presence of mixed time-space derivatives (note that (9) is the unique equation
of type (10) without mixed derivatives) forces us to make some additional assumptions on
the equation, besides the hyperbolicity. Indeed, it is well known that the mere hyperbolicity

is unable to ensure th#&® well-posedness of (10)—(11); for example we do not have well-
posedness for the equation

02u + 2x8,0,u 4 x29%u = 0.
Incidentally, we recall that the case of second order equations
(12) 32u — a(x)d%u + b(x);9,u =0, A(x) = b?(x) + da(x) > 0,
is well understood thanks to Nishitahil[N]. In particular we know that the assumption
(13) b2 (x) < MA(x)

is a sufficient condition for the well-posedness of (12).

On the other hand, in the study of the equation (10) witk- 3, we run into various
difficulties of algebraic nature, which we can partly overcome by the technigqeasi-
symmetrizerg¢see [ST]). As a matter of fact, thanks to Theorem 1, we are able to prove:
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THEOREM 2. Consider the equatiofl0) with a; € C*°(IR). Assume that the equation is
hyperbolic and its characteristic roots satisfy the uniform estimates

(14) M) +25x) < MOi(x) —2(x))?, 1<i<j<m, xeR

Then the Cauchy problem &> well-posed in a neighborhood of each poii® xg).
Moreover, if theg; (x) are uniformly bounded iR, the problem is globally well-posed.

The proof of Theorem 2 will appear in a forthcoming paper {[ST]).

REMARK 1. In the casen = 2, condition (14) reduces to (13). Far > 2, (14) was
introduced by Colombini and Qir{CQ] for equations of type (10) with coefficienig =
a;j(t) depending only on time. We emphasize that the handling@épendent coefficients
requires a quite different technique from the time dependent case.

1. SOME SPECIAL CASES OFTHEOREM 1
Recalling the well known Vieta's identities

(15) aj=-17 Y yehy. 1<j<m,

1<hy<--<hj<m

and using Schwarz’ inequality, we readily get (8) in the dase0. On the other hand, the
casek = 1is a direct consequence of B&idn's Lemma. Indeed, we have

m m 1/2
|a]/| = ‘Z)\,; Z )\‘kl"')\‘kj—l S I:Z)\.;Z:I \/‘[fj_]_.
=1 =1

1<ki<--<kj_1<m

kil

We also note that (8) is an easy consequence of (15) whenever, for some reason, the
rootsi;(x) of (??) are smooth functions of clag¥. This lucky circumstance occurs, for
instance, when all the roots are simple, or more generally of constant multiplicity, so that
they have the same regularity as the coefficients. Another favourable case is when the
coefficients of the polynomial are analytic functionscof R, since then the roots are also
analytic (seel[Re]). Other results on the regularity of the roots of hyperbolic polynomials
can be found iN[AKML] or [V] (see alsd [Ra] for an overview of all these results).

REMARK 2. Each of the functiongy in (7) can be expressed in terms of the coefficients

ai, ..., ay. Indeed, omitting the-dependence for simplicity, we have
PXOP(=X) = (D" [ [(X? =22 = Y (=) Hhy x?mh.
j=0 k=0

On the other hand, setting = 1, we also have

2m
P(X)P(=X) =) epX™" ™" with cp= Y (D" aa;.

h=0 i+j=h
0<i,j<m
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By comparing the two expressions, one concludes

(16) =Y (-D"aaq;.
i+j=2k

0<i,j<m

REMARK 3. By (15) and (16), we can write (8) entirely in terms of thgs, or,
alternatively, in terms of the;’s. In particular, for low dimensions we find:

(I) m = 2: For a hyperbolic polynomiaP = X2 + a1(x)X + as(x), we have
|22 P < COL+A5),
ie.,
laz(0)|? < Claf(x) — 2az(x)].
(1) m = 3: For a hyperbolic polynomial = X3+ a1(x) X2+ as(x)X + az(x), we have
|(MA2 + A2h3 + A3re) [P < CO + A5 +A5).
|(M2223) 2 < C(A5AS + 1505 + A51D).
|(MA2h3)" |7 < CO + A5 +45),

lay(x)|? < Clad(x) — 2az(x)],
lag(x)|? < Cla3(x) — 2a1(x)a3(x)],
lag(x)? < ClaZ(x) — 2az(x)].

() m = 4: For a hyperbolic polynomial = X*+a1(x) X3+a(x) X%+az(x) X +as(x),
we have

|(A2A3ha + Aghars + Aaraht 4+ A1h243)"|? < C(A3 + 254+ A5 +A9),
|(r1A22320)" 12 < C[(MA2)? + (M123) + (A1ha)?
+ (A223)% + (A21a)? + (A3ha)?],
|(A1h2r3r3)" | < C(A2 + 25 + A5+ 19),

laz () < Claf(x) — 2a2(x)],
lag(0)[? < Claj(x) — 2a1(x)a3(x) + 2as(x)],
jag' ()7 < Claf(x) — 2az(x)].
As a consequence, we obtain some nice inequalities:
COROLLARY. Let £, g € C3(R) be two real-valued functions with

1 sy + Igllesmy < M < oo
Assume that, for alt € R, g(x) > 0and

17) f2x) < ).
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Then, for allx € R,

(18) |/ (0)] < CL(M)g(x),
(19) | ()] < Co(M)+/g(x).

PROOFE To get (18) and (19), it is sufficient to apply to the polynomial
P(x,X)=X3—3g(x)X + 2f(x)

the above estimates (I1) a5 (x)| and|a (x)| (with a1 = 0). Indeed, under the assumption
(17), the discriminand = 4(3g)% — 27(2f)? is nonnegative for alk, thus P(x, X) is
hyperbolic. O

REMARK 4. As already noted, the inequality (18) follows directly from the Biteim
Lemma. On the other hand, in order to prove (19) it is not really necessary to appeal to (8)
(with m=j=3, k=2). Indeed, in the special case when= 0, (19) can be easily derived
from (18) by applying (1) to the nonnegative functiafis= f’' + C1(M)g andg: putting

C1 = C1(M), C = C(M), we get

|f"C) < [F' ()] + C1lg’ ()] < CYF(x) + C1C/g(x)
= CVIf/ ()] + C18(x) + C1Cg(x) = (Cy2C1 + C10)/g(x).

2. PROOF OFTHEOREM1

Our proof is based on the same idea used by Bwxim in Proposition 3 of[[BR] (see
also [NU]). Since (8) is trivial whekh = 0, we argue by induction okt we assume that (8)
holds true for every hyperbolic polynomials of degreek, and we prove it, at the level
k + 1, for a given polynomiaP (x, X) (see ©?)) of degreen > k + 1.

Writing
P P
—, Px=_—,
0x 0X
we define the auxiliary polynomial (of degree— 1)

P, =

m—1

(20) Ps(x, X) := Px(x, X) + 8P (x, X) = — bj(x)Xm_l_j’
=0

J

whereb; (x) = (m — j)a;(x) + SaJ’.H(x), ands = §(m, M) is a small positive constant to
be chosen later. Fér< (m — 1)/ M, we havebo(x) = m + 8a}(x) > 1, hence, putting

—1 ~ .
(21) r(x) = s 3a’l(x)’ aj(x) :==rx)[(m— jaj(x) + 6“,;+1(x)]’
we can define thenonicpolynomial
m—1
ﬁ(x, X) = r(x)P(S(X, X) = Xm_l + Z aj(x)xm—l—j.
j=0

Now, by Brorstén’s Lemma there exisi Lipschitz functionsk; (x), with |/\;. x)] <
C =C(@m, M) a.e.inR, such thatP(x, X) = ]_[;”Zl(X — A;(x)). Hence we have
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Px(x,X) =Y Pp(x,X), where Py(x,X)= [] (X—Xj(x)),

j=1,..
Hék
and
m m
P X0 = |= 040 Py (5, X0| = Clom, M) [Py, X0
k=1 k=1
After simplifying the common factors, we find
P, X
M 8//{7 Vx ¢ R’
X—Aj(x) Px(x, X)
so that » ¥
lim sup M <
X | Px(x, X)
Hence, recalling (20) and choosifige (2C)~1, we obtain
1
(22) fiminf 20X g 052
X—>A i) Py (x, X) 2

By (22), we are in a position to prove that, #(x, X) is a hyperbollc polynomlal
then P(x X) is also hyperbolic. For each fixed € R, we denote b)Al < o< k
the distinct roots of P(x, X), and byma, ..., m, the corresponding multiplicities. If
m; > 2, then clearly)v is also a root of the polynomiaks(x, X), hence ofP(x X),
with multiplicity m; — 1. Thus, noting that

Vv
Y omi=h=m—v,
i=1

we have to find the remaining— 1 real roots ofPs(x, -). Actually, we prove thaPs(x, -)
hasv — 1 roots,u1, ..., uy_1, such that

AL <UL <A2 <2 <ot <Ayl < Uy—1 < Ay
Indeed, we easily see that
(23) Px(x, 5»,' + &) - Px(x, )0\,-+1 —¢&) <0, forsmalls >0,

sincet — P(x, 1) is a polynomial function not vanishing in the open interital< t <
Ai+1. Now, (22) says us thats(x, r) and Px (x, t) have the same sign forclose tok,, and
for ¢ close tokl+1, thus (23) holds withPs in place of Px, and consequently the function
t — Ps(x,t) must have a zerg; eJkl, A,H[
In conclusion, the polynomiaP (x, X) has real roots with total multiplicity equal to
m — 1, i.e., itis hyperbolic.
Next, we putjo = 1 and we define

(24) )= Y R@eaik), 1<ks=m-1,

1<ji<-<jx<m-—1
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wherei;(x), ..., Am_1(x) are the roots oP (x, X). Then we have

(25) Vi) < Yr(x), 1<k<m-—1

Indeed, using the same notation as above, every summand in (24) can be written as
T2 72 _32n 2y, 2e,1
)”jl"')‘jk:)‘l )‘V'M Ty

for some set of integeng, ..., », €1, ..., &y—1 such that

O0<yj<mj—1 (1<j<v), ¢€{0l (1=<j<v-1,
n+-+wntet+--+e1==k

Moreover, fromi; < i < A1, it follows thatp? < 32, if u; > 0, while u? < i2
if uj < 0. Thus, each term of the sum in (24) is majorized by some term of the type
)”./21 e Aj?k, and we get (25).

Finally, by differentiating (21) we get the identity

- £ (k ;
a;k)(X) = Z(ix) EWlom — j)a (h)(X)JrSa](ﬁl)( ]

h=0

for 0 < k < j < m, whence we can solve for the highest derivative:

1 [~
a0 =5 )[ 06— om —J)Z< ) “1 (0)a (x)

k—1
S ]
=0

Thus, noting thatr(k"')(x)| < C,M sincek —h < m, and using the inductive hypothesis

on the polynomlaIsP(x X)andP(x, X) to est|matefa(k)| |a(h)| |a](l:ll)|,we find

k k—1
a5 @1 = Con+ L[ T+ Y v + 3 o |
h=0 =0

However, from the definition (7), we see immediately thatx) < Ciy (x) for b’ < k,
hence by (25) we conclude the proof of Theorem 1.0
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