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Partial differential equations. — Some inequalities of Glaeser–Bronštĕın type, by
SERGIO SPAGNOLO and GIOVANNI TAGLIALATELA , communicated on 12 May 2006.

ABSTRACT. — The classical Glaeser estimate is a special case of the Bronštĕın lemma which states the Lipschitz
continuity of the rootsλj (x) of a hyperbolic polynomialP(x,X) with coefficientsaj (x) depending on a real
parameter. Here we prove a pointwise estimate for higher order derivatives of theaj (x)’s in terms of certain
nonnegative functions which are symmetric polynomials of the rootsλj (x) (hence also of the coefficientsaj (x)).
These inequalities are very helpful in the study of the Cauchy problem for homogeneous weakly hyperbolic
equations of higher order.
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INTRODUCTION

The simplest version of the Glaeser inequality ([G], [Di]) states that

(1) |a′(x)| ≤ C(M)
√
a(x), ∀x ∈ R,

for every nonnegative functiona ∈ C2(R) with ‖a′′
‖L∞(R) ≤ M. This inequality holds, in

fact, withC(M) =
√

2M, and follows from the Taylor expansion

0 ≤ a(x + h) = a(x)+ a′(x)h+ a′′(ξ)h2/2 ≤ a(x)+ a′(x)h+Mh2/2,

by noting that the discriminant of the polynomial on the right hand side must be
nonnegative.

We can reformulate (1) by saying that the square root of a nonnegative function
with second derivative bounded is Lipschitz continuous, or, equivalently, the roots of the
polynomialP(x,X) = X2

− a(x) are Lipschitz continuous functions of the parameter
x ∈ R. Hence, (1) can be viewed as a special case of the following general result on
hyperbolic polynomials(i.e., monic polynomials having only real roots) depending on a
real parameter.

BRONŠTĔIN ’ S LEMMA ([B1], [M], [T], [W]). Let

(2) λ1(x) ≤ · · · ≤ λm(x)

be the roots of a hyperbolic polynomial

(3) P(x,X) =

m∑
j=0

aj (x)X
m−j

=

m∏
j=1

(X − λj (x)), a0 ≡ 1.
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Assume that the coefficientsaj (x) belong toCm(R) and satisfy

(4) ‖a
(k)
j ‖L∞(R) ≤ M < ∞, j, k = 0, . . . , m.

Then each rootλj (x) is a Lipschitz continuous function with

(5) ‖λ′

j (x)‖ ≤ C(m,M), a.e. inR, j = 1, . . . , m.

The inequality (1) has been extended in various directions (e.g., [Da], [NS]).
In particular Olĕınik [O1] proved that any symmetricn × n matrix A(x) ≥ 0, with
‖A′′

‖ ≤ M, satisfies the pointwise estimate

(6) |Tr(A′(x)B)| ≤ C(n,M)
√

Tr(B∗A(x)B), ∀n× n matrixB,

which is essentially equivalent to saying that the square root ofA(x) is a Lipschitz
continuous matrix function ofx (cf. [LV]). The estimate (6) is a key point in the proof
of an important result of well-posedness for second order weakly hyperbolic equations in
n space variables ([O2]).

When considering the Cauchy problem for a homogeneous weakly hyperbolic equation
of higher order in one space variable, we need a pointwise estimate (like (1)) of higher
order derivatives of the coefficientsaj (x) of a hyperbolic polynomial of the type (??). In
this regard we make the obvious remark that, ifa(x) ≥ 0 is a smooth function, then an
estimate like|a′′(x)| ≤ Ca(x)δ with δ > 0 is in general false.

However, the higher order derivatives ofaj (x) can be majorized by the nonnegative
functions

(7) ψk(x) =

∑
1≤j1<···<jk≤m

λ2
j1
(x) · · · λ2

jk
(x), 1 ≤ k ≤ m, ψ0 ≡ 1.

More precisely we prove:

THEOREM 1. Given a hyperbolic polynomial(??) with coefficientsaj ∈ Cm(R) satis-
fying (4), we have, for allx ∈ R,

(8) |a
(k)
j (x)| ≤ C(m,M)

√
ψj−k(x), 0 ≤ k ≤ j ≤ m.

The proof will be given in §2, while in §1 we shall write (8) in more explicit forms in
the case of hyperbolic polynomials of orderm ≤ 4.

The estimates (8) provide a useful tool in studying the possible well-posedness for
weakly hyperbolic equations of orderm. For instance, let us consider the model equation,
in Rt × Rx ,

(9) ∂2
t u− a(x)∂2

xu = 0, a(x) ≥ 0,

and define the energy

E(t) =
1

2

∫
R
(u2
t + a(x)u2

x) dx.
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We compute, by differentiating in time and integrating by parts,

E′(t) = −

∫
R
a′(x)uxut dx,

so, if |a′′(x)| is bounded, (1) yields an a priori estimateE′(t) ≤ CE(t) ensuring the
well-posedness of the Cauchy problem for (9).

In a similar way Olĕınik [O2] proved the well-posedness for any second order equation,
in n space variables, of the form

∂2
t u−

n∑
i,j=1

aij (x)∂xi∂xj u = 0,
∑

aij (x)ξiξj ≥ 0.

The energy is now

E(t) =
1

2

∫
Rn

(
u2
t +

∑
aij (x)uxiuxj

)
dx,

hence, in view of an estimateE′(t) ≤ CE(t), we resort to the inequality (6) withA(x) =

[aij (x)] andB ≡ B(x) = [uxi (x)uxj (x)].
Going back to the case of coefficients depending on a single variablex ∈ R, we

consider the Cauchy problem for a hyperbolic, homogeneous equation of general type,
i.e.,

∂mt u+ a1(x)∂
m−1
t ∂xu+ · · · + am(x)∂

m
x u = f (t, x),(10)

∂
j
t u(0, x) = ϕj (x), 0 ≤ j ≤ m− 1.(11)

In this case we are still able to find an energyE(t) explicitly expressed in terms of the
coefficientsaj (x), and we can try to estimateE′(t) in terms ofE(t) by resorting to (8).
But now the presence of mixed time-space derivatives (note that (9) is the unique equation
of type (10) without mixed derivatives) forces us to make some additional assumptions on
the equation, besides the hyperbolicity. Indeed, it is well known that the mere hyperbolicity
is unable to ensure theC∞ well-posedness of (10)–(11); for example we do not have well-
posedness for the equation

∂2
t u+ 2x∂t∂xu+ x2∂2

xu = 0.

Incidentally, we recall that the case of second order equations

(12) ∂2
t u− a(x)∂2

xu+ b(x)∂t∂xu = 0, ∆(x) = b2(x)+ 4a(x) ≥ 0,

is well understood thanks to Nishitani [N]. In particular we know that the assumption

(13) b2(x) ≤ M∆(x)

is a sufficient condition for the well-posedness of (12).
On the other hand, in the study of the equation (10) withm ≥ 3, we run into various

difficulties of algebraic nature, which we can partly overcome by the technique ofquasi-
symmetrizers(see [ST]). As a matter of fact, thanks to Theorem 1, we are able to prove:
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THEOREM 2. Consider the equation(10) with aj ∈ C∞(R). Assume that the equation is
hyperbolic and its characteristic roots satisfy the uniform estimates

(14) λ2
i (x)+ λ2

j (x) ≤ M(λi(x)− λj (x))
2, 1 ≤ i < j ≤ m, x ∈ R.

Then the Cauchy problem isC∞ well-posed in a neighborhood of each point(0, x0).

Moreover, if theaj (x) are uniformly bounded inR, the problem is globally well-posed.

The proof of Theorem 2 will appear in a forthcoming paper ([ST]).

REMARK 1. In the casem = 2, condition (14) reduces to (13). Form ≥ 2, (14) was
introduced by Colombini and Orrù [CO] for equations of type (10) with coefficientsaj =

aj (t) depending only on time. We emphasize that the handling ofx-dependent coefficients
requires a quite different technique from the time dependent case.

1. SOME SPECIAL CASES OFTHEOREM 1

Recalling the well known Vieta’s identities

(15) aj = (−1)j
∑

1≤h1<···<hj≤m

λh1 · · · λhj , 1 ≤ j ≤ m,

and using Schwarz’ inequality, we readily get (8) in the casek = 0. On the other hand, the
casek = 1 is a direct consequence of Bronštĕın’s Lemma. Indeed, we have

|a′

j | =

∣∣∣ m∑
l=1

λ′

l

∑
1≤k1<···<kj−1≤m

ki 6=l

λk1 · · · λkj−1

∣∣∣ ≤

[ m∑
l=1

λ′2
l

]1/2√
ψj−1.

We also note that (8) is an easy consequence of (15) whenever, for some reason, the
rootsλj (x) of (??) are smooth functions of classCk. This lucky circumstance occurs, for
instance, when all the roots are simple, or more generally of constant multiplicity, so that
they have the same regularity as the coefficients. Another favourable case is when the
coefficients of the polynomial are analytic functions ofx ∈ R, since then the roots are also
analytic (see [Re]). Other results on the regularity of the roots of hyperbolic polynomials
can be found in [AKML] or [M] (see also [Ra] for an overview of all these results).

REMARK 2. Each of the functionsψk in (7) can be expressed in terms of the coefficients
a1, . . . , am. Indeed, omitting thex-dependence for simplicity, we have

P(X)P (−X) = (−1)m
m∏
j=0

(X2
− λ2

j ) =

m∑
k=0

(−1)m+kψkX
2(m−k).

On the other hand, settinga0 = 1, we also have

P(X)P (−X) =

2m∑
h=0

chX
2m−h with ch =

∑
i+j=h

0≤i,j≤m

(−1)m−jaiaj .
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By comparing the two expressions, one concludes

(16) ψk =

∑
i+j=2k
0≤i,j≤m

(−1)k+jaiaj .

REMARK 3. By (15) and (16), we can write (8) entirely in terms of theλj ’s, or,
alternatively, in terms of theaj ’s. In particular, for low dimensions we find:

(I) m = 2: For a hyperbolic polynomialP = X2
+ a1(x)X + a2(x), we have

|(λ1λ2)
′
|
2

≤ C(λ2
1 + λ2

2),

i.e.,
|a′

2(x)|
2

≤ C[a2
1(x)− 2a2(x)].

(II) m = 3: For a hyperbolic polynomialP = X3
+ a1(x)X

2
+ a2(x)X+ a3(x), we have

|(λ1λ2 + λ2λ3 + λ3λ1)
′
|
2

≤ C(λ2
1 + λ2

2 + λ2
3),

|(λ1λ2λ3)
′
|
2

≤ C(λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1),

|(λ1λ2λ3)
′′
|
2

≤ C(λ2
1 + λ2

2 + λ2
3),

i.e.,

|a′

2(x)|
2

≤ C[a2
1(x)− 2a2(x)],

|a′

3(x)|
2

≤ C[a2
2(x)− 2a1(x)a

2
3(x)],

|a′′

3(x)|
2

≤ C[a2
1(x)− 2a2(x)].

(III) m = 4: For a hyperbolic polynomialP = X4
+a1(x)X

3
+a2(x)X

2
+a3(x)X+a4(x),

we have

|(λ2λ3λ4 + λ3λ4λ1 + λ4λ3λ1 + λ1λ2λ3)
′′
|
2

≤ C(λ2
1 + λ2

2 + λ2
3 + λ2

4),

|(λ1λ2λ3λ4)
′′
|
2

≤ C[(λ1λ2)
2
+ (λ1λ3)

2
+ (λ1λ4)

2

+ (λ2λ3)
2
+ (λ2λ4)

2
+ (λ3λ4)

2],

|(λ1λ2λ3λ3)
′′′
|
2

≤ C(λ2
1 + λ2

2 + λ2
3 + λ2

4),

i.e.,

|a′′

3(x)|
2

≤ C[a2
1(x)− 2a2(x)],

|a′′

4(x)|
2

≤ C[a2
2(x)− 2a1(x)a

2
3(x)+ 2a4(x)],

|a′′′

4 (x)|
2

≤ C[a2
1(x)− 2a2(x)].

As a consequence, we obtain some nice inequalities:

COROLLARY. Letf, g ∈ C3(R) be two real-valued functions with

‖f ‖C3(R) + ‖g‖C3(R) ≤ M < ∞.

Assume that, for allx ∈ R, g(x) ≥ 0 and

(17) f 2(x) ≤ g3(x).
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Then, for allx ∈ R,

|f ′(x)| ≤ C1(M)g(x),(18)

|f ′′(x)| ≤ C2(M)
√
g(x).(19)

PROOF. To get (18) and (19), it is sufficient to apply to the polynomial

P(x,X) = X3
− 3g(x)X + 2f (x)

the above estimates (II) on|a′

3(x)| and|a′′

3(x)| (with a1 ≡ 0). Indeed, under the assumption
(17), the discriminant∆ = 4(3g)3 − 27(2f )2 is nonnegative for allx, thusP(x,X) is
hyperbolic. 2

REMARK 4. As already noted, the inequality (18) follows directly from the Bronštĕın
Lemma. On the other hand, in order to prove (19) it is not really necessary to appeal to (8)
(with m=j=3, k=2). Indeed, in the special case whena1 = 0, (19) can be easily derived
from (18) by applying (1) to the nonnegative functionsF = f ′

+ C1(M)g andg: putting
C1 = C1(M), C = C(M), we get

|f ′′(x)| ≤ |F ′(x)| + C1|g
′(x)| ≤ C

√
F(x)+ C1C

√
g(x)

≤ C
√

|f ′(x)| + C1g(x)+ C1C
√
g(x) ≤ (C

√
2C1 + C1C)

√
g(x).

2. PROOF OFTHEOREM 1

Our proof is based on the same idea used by Bronštĕın in Proposition 3 of [B2] (see
also [Nu]). Since (8) is trivial whenk = 0, we argue by induction onk: we assume that (8)
holds true for every hyperbolic polynomials of degree≥ k, and we prove it, at the level
k + 1, for a given polynomialP(x,X) (see (??)) of degreem ≥ k + 1.

Writing

Px =
∂P

∂x
, PX =

∂P

∂X
,

we define the auxiliary polynomial (of degreem− 1)

(20) Pδ(x,X) := PX(x,X)+ δPx(x,X) =

m−1∑
j=0

bj (x)X
m−1−j ,

wherebj (x) = (m− j)aj (x)+ δa′

j+1(x), andδ = δ(m,M) is a small positive constant to
be chosen later. Forδ ≤ (m− 1)/M, we haveb0(x) = m+ δa′

1(x) ≥ 1, hence, putting

(21) r(x) :=
1

m+ δa′

1(x)
, ãj (x) := r(x)[(m− j)aj (x)+ δa′

j+1(x)],

we can define themonicpolynomial

P̃ (x,X) := r(x)Pδ(x,X) = Xm−1
+

m−1∑
j=0

ãj (x)X
m−1−j .

Now, by Broňstĕın’s Lemma there existm Lipschitz functionsλj (x), with |λ′

j (x)| ≤

C = C(m,M) a.e. inR, such thatP(x,X) =
∏m
j=1(X − λj (x)). Hence we have
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PX(x,X) =

m∑
k=1

P(k)(x,X), where P(k)(x,X) =

∏
j=1,...,m
j 6=k

(X − λj (x)),

and

|Px(x,X)| =

∣∣∣− m∑
k=1

λ′

j (x)P(k)(x,X)

∣∣∣ ≤ C(m,M)

m∑
k=1

|P(k)(x,X)|.

After simplifying the common factors, we find

lim
X→λj (x)

P(k)(x,X)

PX(x,X)
= δjk, ∀x ∈ R,

so that

lim sup
X→λj (x)

∣∣∣∣ Px(x,X)PX(x,X)

∣∣∣∣ ≤ C.

Hence, recalling (20) and choosingδ ≤ (2C)−1, we obtain

(22) lim inf
X→λj (x)

Pδ(x,X)

PX(x,X)
≥ 1 − δC ≥

1

2
.

By (22), we are in a position to prove that, ifP(x,X) is a hyperbolic polynomial,
then P̃ (x,X) is also hyperbolic. For each fixedx ∈ R, we denote bẙλ1 < · · · < λ̊ν
the distinct roots of P(x,X), and bym1, . . . , mν the corresponding multiplicities. If
mi ≥ 2, then clearlyλ̊j is also a root of the polynomialPδ(x,X), hence ofP̃ (x,X),
with multiplicity mi − 1. Thus, noting that

ν∑
i=1

(mi − 1) = m− ν,

we have to find the remainingν − 1 real roots ofPδ(x, ·). Actually, we prove thatPδ(x, ·)
hasν − 1 roots,µ1, . . . , µν−1, such that

λ̊1 < µ1 < λ̊2 < µ2 < · · · < λ̊ν−1 < µν−1 < λ̊ν .

Indeed, we easily see that

(23) PX(x, λ̊i + ε) · PX(x, λ̊i+1 − ε) < 0, for small ε > 0,

sincet 7→ P(x, t) is a polynomial function not vanishing in the open intervalλ̊i < t <

λ̊i+1. Now, (22) says us thatPδ(x, t) andPX(x, t) have the same sign fort close toλ̊i , and
for t close toλ̊i+1, thus (23) holds withPδ in place ofPX, and consequently the function
t 7→ Pδ(x, t) must have a zeroµi ∈ ]λ̊i, λ̊i+1[.

In conclusion, the polynomial̃P(x,X) has real roots with total multiplicity equal to
m− 1, i.e., it is hyperbolic.

Next, we put̃ψ0 ≡ 1 and we define

(24) ψ̃k(x) :=
∑

1≤j1<···<jk≤m−1

λ̃2
j1
(x) · · · λ̃2

jk
(x), 1 ≤ k ≤ m− 1,
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wherẽλ1(x), . . . , λ̃m−1(x) are the roots of̃P(x,X). Then we have

(25) ψ̃k(x) ≤ ψk(x), 1 ≤ k ≤ m− 1.

Indeed, using the same notation as above, every summand in (24) can be written as

λ̃2
j1

· · · λ̃2
jk

= λ̊
2γ1
1 · · · λ̊2γν

ν · µ
2ε1
1 · · ·µ

2εν−1
ν−1

for some set of integersγ1, . . . , γν, ε1, . . . , εν−1 such that

0 ≤ γj ≤ mj − 1 (1 ≤ j ≤ ν), εj ∈ {0,1} (1 ≤ j ≤ ν − 1),

γ1 + · · · + γν + ε1 + · · · + εν−1 = k.

Moreover, fromλ̊j < µj < λ̊j+1, it follows thatµ2
j < λ̊2

j+1 if µj ≥ 0, whileµ2
j < λ̊2

j

if µj < 0. Thus, each term of the sum in (24) is majorized by some term of the type
λ2
j1

· · · λ2
jk

, and we get (25).
Finally, by differentiating (21) we get the identity

ã
(k)
j (x) =

k∑
h=0

(
k

h

)
r(k−h)(x)[(m− j)a

(h)
j (x)+ δa

(h+1)
j+1 (x)]

for 0 ≤ k ≤ j < m, whence we can solve for the highest derivative:

a
(k+1)
j+1 (x) =

1

δr(x)

[̃
a
(k)
j (x)− (m− j)

k∑
h=0

(
k

h

)
r(k−h)(x)a

(h)
j (x)

− δ

k−1∑
l=0

(
k

l

)
r(k−l)(x)a

(l+1)
j+1 (x)

]
.

Thus, noting that|r(k−h)(x)| ≤ CmM sincek−h < m, and using the inductive hypothesis
on the polynomials̃P(x,X) andP(x,X) to estimate|̃a(k)j |, |a

(h)
j |, |a

(l+1)
j+1 |, we find

|a
(k+1)
j+1 (x)| ≤ C(m+ 1,M)

[
ψ̃j−k(x)+

k∑
h=0

√
ψj−h(x)+

k−1∑
l=0

√
ψj−l(x)

]
.

However, from the definition (7), we see immediately thatψk(x) ≤ Ckψk′(x) for k′
≤ k,

hence by (25) we conclude the proof of Theorem 1. 2
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