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ABSTRACT. — The first aim of this paper is to find asymptotic profiles for the Kirchhoff equation. More
precisely, it will be shown that there exists a small amplitude solution which is not asymptotically free. The
second aim is to prove the existence of scattering states for small amplitude solutions with data belonging to
HOW:P x HOWP)=LP whereo(p) =n(2/p—1) +1,p €[l,2(n — 1)/(n + 1)) andn > 4.
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1. INTRODUCTION

We consider the following Cauchy problem for the Kirchhoff equation:

K) 92u — (1+/” |Vu|2dx)Au =0, (rx,1)eR!xR,

u(x,0 =uolx), dulx,0 =ui(x), xeR},

whered, = 9/dt, V = (3/0x1,...,3/dx,) and A is the Laplacian inR" defined by
A= Z}’zl 82/3sz. The aim of this paper is to find asymptotic profiles of solutions for the
Kirchhoff equation. In[[16] Yamazaki introduced a 3&t k > 1 (see 82.1), of initial data
to obtain a global-in-time existence theorem with small data of low regularity, and then
the scattering operator was constructed in the case Wwher2. This generalized [8] (see
also [9] forn = 1). A motivation for this paper arises from the problem whether or not
the scattering states exist in the case whea k < 2. Roughly speaking, it depends on
the decay rate of data: if the data behave [ikg(x), u1(x)} = {§(x)~¢, 8| D|(x)~¢} with
0 <d « land¢ > (n+ 1)/2, then they belong t&, for somek > 2 (see Theorem 2),
hence, the solutions are asymptotically free. On the other hand, fokeadli, 2], if we
choose the datag(x) = §|D|1(x)~"+k=D/2 andy,(x) = 0 with 0 < § « 1, then the
corresponding solution of (K) is hot asymptotically free. To derive these asymptotics, we
need a delicate analysis of an oscillatory integral associated with the Kirchhoff equation,
which was introduced by Greenberg and Hu [9] in the one-dimensional case (se€ also [4,
5,[16]). We will develop an asymptotic expansion of this oscillatory integral.

Let us introduce some notation. Fore R and 1 < p < oo, let H*?(R") and
H*P(R") be the Riesz and Bessel potential spaces which are the completiogs(&f*)
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with the seminorm or norm

letll gys.p ey = IFEFAE] NI Loy = D Full Lo @y,
letll 5.y = IF~HEV AE] N Lony = (D) ull Lo ny.

respectively. Heré denotes the Fourier transfort; Lis its inverse, andg) = /1 + |£]2.
Throughout this paper, we write

Hs,p — I_'Is,p(Rn)' H5P = Hs,p(Rn), I_‘Is — I_'IAY,Z(Rn), HS = HS’Z(RH).
We also put, fos > 1,

X'(R) = C(R: H*) N C*(R: H*~H N C2(R: H*72),
X'(R) = CR; B N CL®: B N C2(R: A7),

Finally, we denote bys the Schwartz space dr'.

2. STATEMENT OF RESULTS

2.1. Global existence theorem

In order to find the asymptotic profiles for the solutions to the Kirchhoff equation, we refer
to a general theorem of Yamazaki (se€! [16]). For this purpose, let us introduce the set

Yei={{¢. ¥} € H¥? x HY?; [{¢, ¥}y, <00}, k> 1,

where

o, ¥y, = sup(L+ |t])*

teR

f e"ff|5|3|¢3(e>|2ds‘
Rn

+ sup(L+ |z
teR

/ o7l g |1/><s>|2ds’
Ru

+ sup(L+ |k
TeR

[ e e ©) ds‘.
Then we have the following:

THEOREMA ([18]). Letn > 1andsg > 3/2. Ifug € H** N H, u1 € H*1, and
(2.1) 81 := || Vuoll72 + luzll?2 + [{uo. us}ly, < 1 for somek > 1,

then the problemK) has a unique solution(x,t) € X*(R) having the following
property. there exists a constant. ., = c+o0(ug, #1) > 0 such that

L+ IVu(0l%, = 2o + 0311 ast — oo
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Furthermore, if (2:3) holds withk > 2, thencioo = c—oo =! ¢ and each solution
u(x,t) € XO(R) is asymptotically free i/ x H° Llforall o € [1,s0] ast — o0,
i.e., there exists a solution. = v+ (x, ) € X° (R) of the equation

(32 —c2, A =0 onR" xR
such that
luC, 1) = veC Ol o + 10:u( 1) — v+, Dllgo-1 = 0 (1 —> £00).
The inclusions among the classgsare as follows:
YoCcYy ifk>¢>1 and ScY, foralke (ln+1].

The latter inclusion can be shown by using the asymptotic expansion of an oscillatory
integralI (9 (¢), 0) which will be defined in §4.

The definition ofY;, is somewhat complicated, hence we give some explicit examples
of spaces contained iry,.

ExampLE 2.1. (i) Letn > 4. Forallp € (1,2(n —1)/(n + 1)) we put

s(p)=max{f<3—1)+1,3}, r(p)=”+1<3_1>+1,
2\p 2 p

—1/2
k(p)=”2 <;—1).

Then it was proved iri [17] that

(HSP) 0 qH PPy x (F5P) -1 grin=-Lry Yip)-

(i) Letn > 1 andk € (1, n+1]. Then it was proved in [5] and [16&kee alsd[4.16.19, 12,
18)) that the space

Xi = {(¢, V) € H?> x HY; [()¥pll g2 + 1 (x) | 1 < 00}

is contained inty.
(i) It will be proved in 87 that

{x)™, IDIx) ™"} € Yug2,  {x)75 IDI(x) ) € Yogs VE>n.

2.2. Main results

Keeping in mind Theorem A, we can find the asymptotic profiles for the solutions to (K).
Namely, each solutiom can be decomposed intofeee wave a nonfree waveand a
remainder term. Let us present the definitions of free and nonfree waves.

DEFINITION. (i) We say thab+ = vi(x,1) = {vy(x,1), v_(x,1)} is afree waveif it
satisfies the equation

(32— 2 Av: =0 onR" xR.
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(i) Leto > 1. We say that = v(x,7) is asymptotically freen H° x H° Y ifitis
asymptotic to some free wave in H° x H° 1, i.e.,

Iv(, 1) — v Dl go + 180, 1) = v+, Dl o1 > 0 (& — £00).

(i) Leto > 1. We say thaw = w(x, ) is anonfree wavén H° x H° 1 if it is not
asymptotically free.

Theorem A states that each solutierof (K) with initial data satisfying[(2Z]1) with
k > 2 is asymptotically free. On the other hand, the first theorem of the present paper
states that the bound> 2 is sharp. More precisely, we shall prove the following:

THEOREM 1. Assume that
either n>2andl<k<2, or n=1andl <k < 2.

Then there exists a solution(x, 1) € [ ;> X*(R) of (K) with data satisfying2.1), which
is a nonfree wave i’ x H° Lforall o > 1.

In order to improve Example 2.1(i), we introduce the spak&”-? x HW-Lp,

where ) ) "
a(p)zn(——l)—l—l, pe[l,b), n > 4.
p n+1

Note that forp € (1, 2(n — 1)/(n + 1)) we have

o(p)+1
5
by the Sobolev imbedding theorem, while far= 1 the above inclusion holds only for
m< (o(p)+1)/2=m+2)/2. Alsonotethatif2/(n+4) < p <2n—21/(n+1),
then(o (p) + 1)/2 < 3, thus, for suclp, the spaced?P)-? x H°P)~Lr pbecomes wider
than that of Example 2,.1(i).
With the above notation, we have the following:

HOP-P 5 goP=Lr « gm o g1 withm =

PROPOSITION2.2. Letn > 4. Then, forallp € [1,2(n — 1)/(n + 1)), we have the
inclusion
HeWP:P o go»=Llp ~ Yi(p)»

0(p)=n<g—l)+1, k(p) = n—l(z_]_).
p 2 \p

where

As a consequence of Propositjon]2.2 and Theorem A, we conclude that, for |
the problem (K) has a unique solutiaiix, 1) € X*(R) provided thaf{ug, u1} belongs to
(H* N HOPPy x (Bt 0 HOWP=1P) and|luoll gow.p + luall gow-1p < 1.

REMARK. In the special case = 4 andp = 1, hences (p) = 5, we conclude that for
each{ug, u1} € H>1 x H*1, the solution:(x, t) belongs tax3—¢(R) for all ¢ > 0. Indeed
the Sobolev imbedding theorem ensures the incluglét x H*1 c H3¢ x H? ¢,
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Foralln > 4andp < 2(n —1)/(n + 1), one hagk(p) > 1. In view of the existence of
scattering states, we are interested in the case when> 2. In this regard, we note that
. 2n—-1)
k <2 iff > — .

(p) = Pz— "3

Hence fom =4 and 1< p < 6/5,n = 5and 1< p < 4/3, or more generally; > 6 and
2m—1)/(n+3) < p <2n-—121/(n+1), Theorem A does not ensure the existence of
scattering states for all solutions of (K) with initial data as in Proposjtioh 2.2.

Our next main result states that in any case there exist some scattering states. More
precisely, we shall prove

THEOREM2. Letn > 4. Then, for allp € [1,2(n — 1)/(n + 1)) there is some number
£ = £(p) > 2such that

{(HS N H"P) x (H*"*n H 1P n Y, # {0}

for all s, > 1. In particular, if we takes = 1 andr = o (p) as in Propositiof2.7 (e.g.,
p = landr = n+ 1), we obtain the existence of nontrivial scattering states for some data
in the classH? (PP x HoW-1r (c H32 x H/2) even in the cask(p) < 2.

3. LINEAR THEORY

The Kirchhoff equation inherits various properties from linear equations, hence the
structure of solutions for the Kirchhoff equation can be determined by the linear theory. In
this section we introduce the linear theory established through the asymptotic integrations
of ordinary differential equations (see Ascali [3] and Wintneri [15]). For more details, see
[10,/11]. Consider the following strictly hyperbolic Cauchy problem:

(82 — c(1)?>Au(x, 1) =0, (x,1) e R* x R,

(L)
u(x,0 =uog(x), ou(x,0 =ui(x), xeR"

We make the following assumption oi¥):

AssSUMPTIONB. The functiorc(z) is of classLip,,.(R) and
infc(r) >0, () e LYR),
teR

c(t) = c+o0 +0(1) for some constant.,, > 0asr — *oc.

In the following we shall use the notation:

+o0
/ I’ ()] dt
t

First we develop an asymptotic integration of ordinary differential equations. We let

vo(§, 1) v, 1)
vo6. 1) v16. 1)

t
(1) = /0 cmdr, ye() =

W(S,t)=<
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be the fundamental matrix of the following ODE:

(3.1) V' + c()?|E]%v = 0.

This means thato(&, ¢) is the solution of[(3]1) withyo(£,0) = 1, vy(&,0) = 0, while
v1(£, 1) is the solution of{(3]1) withi1 (£, 0) = 0, v} (£, 0) = 1. Hence the solution(¢, 1)

of (3.3) can be written
v(§, 1) v(§,0)
=W, .
(v’@, r)) ®0 <v/<s, o>>

Now we define

) in(¥
cos ()& %ﬁj?f”
Y1) =
- i 9
c(H)|&]sin(d (1) |&]) w

to be the fundamental matrix of the perturbed ODE

- Z((:)) v+ e3Py = 0.
Hence,
Y(E,0 =1, detY(é,t):%,
L[ cosvwieD —%
T copersinomey Q0L e £

Then by using hyperbolic energy estimates, we have the following:
LEMMA 3.1 (see Ascoli[3] and Wintner [15])The limit
lim {Y(E D7WE D) = La(®)
t—=+00

exists, and i€ in &. Moreover, putting
a ) o)
I _ (% 1 ’
=) (ﬁét(é) BE®)

we have
@IS IETE IBFEISENY =01
Furthermore, putting
(] @
(32)  ReG.0=YE O WE D - La@) = (8&@’ X Sii)*(g’t)> ,
ey (E.1)  e5a(E.0)

we have .
e0E 01 S YOIl =01 j=12
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Now writing
cog (1)|&]) = coc+olélt) + @c (1€, 1),
sin(@ (1)|£]) = sin(cxoolé11) + @5 (1], 1)
with 9 s
. col§|t + V(1 . ol§|t — U
ellEl. 1) = 23|n<ci &1 . ( )IEI) Sm(% €] . ( )I$|>’
_ Croolélt +DDIENN . [creolélt — T ()IE]
ps(1€], 1) = -2 COS< > )sm< > )

we split the matrixy (¢, ¢) as
Y& 1) = Yino(€. 1) + Y (&, 1),

where .
COScLoolE1) —S'n(czwlw)
Vo) . O]
—CiolE|SINCEalEl) X COSciolE])
c(0)
and (&) 1)
oc(lel.n & 05’
P c(O)[¢]
@ (E]. 1)

o151, 1) O]

Thus by [3.2) we can write
W(E, 1) = Yioo(5, DL(§) + Y (&, )L4(§) + Ro+(&, 1)

with
Ro+(§.0) =Y. )Rx(§,1).
Summarizing the above argument, we conclude that the solutian) = (/")) of

(1) with datav(§) = (:j,(é%)) splits as

V(1) = Yaoo (5, D L+(E)00(§) + Y (&, )L (E)vo(§) + Ro.+ (&, Nvo(&).

Since the solutiom (x, t) of our problem (L) is represented by

u(x, 1) = F o, Do) + v, Ha1E)] (),
du(x, 1) = Fup(€, Dio(€) + vy, D1 )] (x),

we arrive at the following:
PROPOSITION3.2. Letn > 1andsg > 1. Suppose that(z) satisfies Assumption B. Then
each solution:(x, r) € X1(R) N X*(R) of (L) admits the following decomposition:

u(x,t) =ve(x, 1) + we(x, 1) +re(x, 1) forr 20,
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wherev. (x, 1) € X1(R) N X*°(R) is a free wavew. (x, 1) € X1(R) N X*0(R) satisfies

C(t)z_cioo /
——— 0 f1x(x, D)+ (@) frx(x, 1)
c(t)

(92 — 2 Aws(x, 1) =

with
fra(x, ) = FYHIE{—ax (@) sin@ (1) |E]) + ba (€) oo (1) [ (x),
as(§) = af (£)io(E) + af )1 (&),

bi(€) = #w*(s)ﬁo(s) + BE®)an(8)),
c(0)|g] 0 1

while the remainder termy. (x, t) € X1(R) N X*(R) satisfies
lr=C. Ol go S v=@Uuoll go + luallgo-1)  forall o € [1, so].

More precisely, we have

g (x, 1) = FHar(§) coScrool€]t) + b4 (§) SiN(caool€]1)] (x),
wa (x, 1) = F Haw ®)gc (&l 1) + b (E)es (€], D](x),

while the remainder termy. (x, ¢) has the following form

re(x, 1) = F Hec(§, 1) cOB (1) [E]) + e5 (€, 1) sin(® (1) [ED] (x),

where
eclt. 1) = £y (6. Dito(€) + e (€, Ni1(&),

e €.1) = —— (69 (&, Do) + e &, i (©)).
T () gAY 2

The crucial tool in our proof of Theorem 1 is the following:

LEMMA 3.3. Letn > 1. Suppose that(r) satisfies Assumption B. Assume further that
Yi(t) = [o(c(t) — cioo) dt satisfies

(3.3) M [y (1)) = oo

Then, for the data
uo(x) = [DI7Hx) 7Y u1(x) =0

with¢ € (n/2, (n + 1)/2], the solutioru(x, t) € ﬂszl X5 (R) of (L) is a nonfree wave in
HS x H Yforall s > 1.

PrRoOOF See[[10]. A more general result concerning the initial-boundary value problem
on bounded domains is due to Arodio [2].
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4, SOME LEMMAS

In this section we prepare some lemmas which will be used in the next section to prove
Theorem 1. Givem > 1, K > 0 andk > 1, we say that(z) belongs taC(A, K, k) if it
belongs to Lig,.(R) and satisfies

1<c@) <A,
I < KA+ t)~*  ae.inR.

Fixing data satisfying the assumptions of Theorem A, we consider the solution) of
the linear problem (L) in 83, and define

&) = /14 IVut, |2,

This defines a mappin@ : ¢ — ¢. By using the Schauder—Tychonoff fixed point theorem
as in [4,5] we can show tha& has a fixed point irkC(A, K, k) for suitableA, K andk,
i.e.,c(t) = c(t), and hence, (K) has a unique solutiofx, ¢) as in Theorem A. Thus, by
using the method of [5], we obtain

LEMMA 4.1. Letu(x,t) € X*(R) be the solution ofK) given by Theorem A. Then, for
some constan¥ independent aof, we have

- M5y
1<c@® <1+ |Vuol2+ —1
(4.1) 1&(0)] < MS1(L+ |t 7*,

whered1 = 81(uo, u1) is the size of the initial datésee(2.1).

In the proof of Theorem 1 we also use three more lemmas. In order to state them we
introduce several functions as follows:

oD

VE()

t
5(t)=/() c)ds, vi(, 1) = {0iu(, 1) Fic@)|Dlu(-, 1)},

where the operatar*/P! is defined by
P ) = F T F©10),  TeR
Define

I(r,t) = (ID|e®Plo_(-, 1), vy (. 1)) 2,
J(r. 1) = (D Ploy (-, 1), v (1) 2 + (D] Plo_ (- 1), v_(-, 1) 2

for r,t € R, where(f, g);2 denotes the.2(R") inner product. We recall the following
equations.
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LEMMA 4.2 ([B/17]). Letu(x, ) € X*(R) be the solution ofK) given by Theorem A.
Then, withS denoting imaginary part,

4.2) ()¢ (1) = I (), 1),

and further,I (r, t) satisfies the integral equation

J(r —9(s),0)ds

t =
43) 1) =100 — }/ c(s)

2 0 E(S)
1 (1) (5 (0) ~ ~ = =
E/o 26 Jo 7o) (I(r —z?(s)+z?(cr),o)—|—I(—r+l9(s)+z9(o),a)) do ds.

The next lemma can be found [n[17] (see also [5]).

LEMMA 4.3. Letu(x,t) € X*(R) be the solution ofK) given by Theorem A. Then, for
some constan/ independent of,

(4.4) A+ 1rDE AT D+ 1T 0)]) < M8y
forall r, t € R, wheres; is defined by2.1)).

We conclude this section by stating the following lemma which will be used in order
to develop an asymptotic expansionl@t (), 0).

LEMMA 4.4 (Aronszajn and Smith[1], cl.[13, Ch. V, 8§3]et ¢ > 0. Then the Fourier
transform of(x)~¢ is of the formF[(x) ¢](£) = G¢(&), where

Ge(§) = Ku—gy2(|E])|E) /2,

2(n+(72)/2n-n/21"(€/2)

and K, (z) is the modified Bessel function of the third kind with ordedn particular,
G¢(§) has the following asymptotics

I'((n—0)/2)

l—n
—2K7r”/21"(£/2) €] for ¢ € (0, n),
1
r'€—mn)/2
—ZZn”/ZF(Z/Z) for ¢ > n,
(4.6) Go(&) ~ ! |g| D276l fore >0 (€] = o0).

2(n+€—2)/27r(n—l)/ZF(Z/Z)
Moreover,
(A7) Gu(E) = Cuyle|"" +00(&) fore e (0,n), with
o (&) ~ Cop €I, j=0,1,2, asft| O,
4.8) GY(&) ~ Cpy gl V2l fore>0andj=1,2,..., as|é| — oo,

with certain constants’, ¢, C,¢.; andC ¢, ;.
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PROOF Putz = |§| andv = (n — ¢)/2. Then the asymptoticg (4.5)—(%.6) follow from
Ky(z) ~27'r ()™ asz — 0forv >0,

1
Ko(z) ~ log - asz — 0,
Z

1/2
Ko(2) ~ (;) e? asz— ooforallveR,
Z
On the other hand, we have

<}i> [Z7"Kv(@] = (=D"z7""Kpym(z), m=12 ...
z7dz

(see Watsori [14], cf.[1, Ch. 1]). Hence

d —v —v
d—[z Ky (2)] = —z2"Ky11(2),
Z

d 2
<E) [ZiUKv(Z)] = Ziva+2(Z) - ZiV*lKu+1(Z)-

Combining these formulas with (4.5)—(%.6), we get|4[7)3(4.8yfer 0. ]

5. PROOF OFTHEOREM 1

For anyk € (1, 2), or evenk = 2 if n > 2, we write

k+n-1 n n+1
k n+1 whence > 6(2, 5 ]

and we take the same initial data of Lemimd 3.3, i.e.,

uo(x) =807 Hx)7 m) =0 (0<s< D).
By Lemmg 4.4, we have
(5.1) fio§) =8I€17'Ge(®), @) =0 (0<s<1),

where G, (&) is the kernel of Bessel potentials. These data satisfy the assumptions of
Theorem A. Indeed, we have the following:

PROPOSITIONS.1. For the data{ug, u1} satisfying(5.J), we have
{ug,u1) € (H* x H*Hny, foralls>1withk=2¢—n+1>1

Hence, by Theorem A, for these data the prob(éhhas a unique solutiom(x,?) €
X% (R) forall s > 1 provided that) < § « 1. Moreover, the function

&) = /14 [Vu(. D2,

satisfiesfd.T)in Lemmad4. 1l
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Propositiory 5.]1 follows from Propositi¢n $.2 below, and hence we postpone its proof.

Now, by resorting to the linear theory and in particular to Lenimé 3.3, we prove that
the solution given by Propositign 5.1 is not asymptotically free.

Indeedu(x, t) is also a solution of the linear equation (L) with the coefficient given by

&) = 1+ [IVu(, DI,

and by Lemma 4]1 we know tha&(r) satisfies Assumption B. Thus in order to apply
Lemm it remains to prove that the functign (¢) = fé(&'(r) — C400) dT Satisfies

(3.3). Recalling equatiofi (4.3) in Lemrpa}4.2, we have
(5.2) 1@ (1), 1) = 1D (1), 0) + A1(t) + Ax(1),

where we set

t =
Arr) = —Ef )Gy - Bis). 0)ds.
2Jo c(s)
1 LE(s) (o)
AZ(’)_Efo &) Jo o)
x (1(5@) — () + D(0), o) + I(=D (1) + D (s) + 5(0),0)) do ds.

The crucial point is the following asymptotic expansion:
(5.3) SI@ (1), 0) = Fenk82¢O0) )t F +0(2|™%)  ast — +oo,

wherek = 2¢ —n+ 1 (so that 1< k < 2) andc, x is some constant depending @andk.
We postpone the proof df (§.3) to Propositjon|5.2 below. Heraft€resp.c, x) stands for
various constants depending biiandn). Notice thats; of (2.1) in Lemma 43 is the size
of data. Hence, thanks tp (.1), there exists a consignsuch thas; = cn k82. Then,
combining [[4:1) with[(4.4), we can conclude that
(5.4) |Ax(t) + Az(1)| < C(M81 + M2 M1 (1 + 1))~

= k(M52 + M2 YM5%(1 + |1]) 7.

Now, we go back to equatiop (4.2) of Lemina]4.2. Then, uging (5.2}~(5.4), and integrating
equation[(4R), we see that, for largg

+o0o +o00
(55) én?-c2, = —/ I (P (z),0)dt —/ (A1(1) + Az(1)) dr
t t

> y(k, n, 8)|t|FHL,

where we set
y(k,n,8) = cnk8%E(0) — ¢}, ((M8? + M?s*) M8,

Here we note that (k, n, §) > 0, sincec(0) = /1 + ¢, x82 ands is small. Thus, dividing
(5:8) byé(t) + cx0 (< Co), we get, for larger|,

&t) — cxoo = y(k, n, )Cq L1 7FHL,
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which implies thaty. ()| — 400 ast — +oo on account of our assumptiond k < 2.
This proves[(3]3) and concludes the proof of Theorem 1.

ProoF OF(5.3). Letus prove(5]3) and Proposit{on]5.1. Note that we have fiu) =0
in (57). It follows from the definition of/ (,7) and v (-, ), and from Plancherel's
theorem, thai (¢ (¢), 0) for data satisfying (5]1) can be rewritten as

1(3 (1), 0) = —&(0) f A2 310082 d.
Rn

Then we prove the following:

PROPOSITION5.2. Let{uo(x), u1(x)} be as in(G.4). Thenl (¥ (), 0) has the asymptotic
expansior(5.3). Moreover

(5.6) RID (1), 0) = £, 18260t F +0(t1™F) (¢t — Fo0).

PROOF. Passing to polar coordinateés= pw, p = |£], w € §"~1, we derive from Lemma

[4:4 and[(5.11) that

(5.7) €1R1a0(®)1P1E1" Y = cuad®p* "t + 1k (p),  with

r (o) ~ i jp I j=0,1,2 asp — 0,

(5.8) €210 218"t = cp i 82p " HHD/2e20 4 fi(p),  with
;7]5./) (n+k+1)/2672,0’

() ~ Cuk,jp j=0,12, ..., asp — oo.

Now we introduce twaC> cut-off functionsy1(p) and x3(p) on [0, co) such that 0<
x1(p), x3(p) < Lforp > 0, x1(p) = 1for0 < p < 1/2 and= O for p > 1, and
x3(p) = 1forp > L and= 0O for p < L — 1 with sufficiently largeL. We setx2(p) =
1— x1(p) — x3(p). Then we can write, by using (5.7)—(b.8),

(5.9) [ (1), 0) = —&(0)cy k8°(J1(1) + J2(t) + J3(1)) + R(t),

where ~
J1(t) =/0 2000y (p)pk L dp,

o0 ~

Ja(t) = fo 20 2(0) " 2(G k1, 2(0) 2 dp,
o 2i 9 1/2 -2

Ja(t) = f V0P x3(p)p "D 272 dp,
0

e8] - 0oL
R(t) = /0 2000 1 (p)r(p) dp + /0 2000 ya3(p)Fe(p) dp.

Let us develop asymptotic expansionsgf(z) (m = 1, 2, 3) and R(¢). Having in mind
that 1< k < 2 and integrating by parts, we see that

(5.10) J1(1) = —@2id () Hk - 1) / h V0P pk=21 (p) dp
0

o ~
—@iday /0 2000 =1y (p) dp.
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Let us rewrite the first member of the right hand side as
(5.11)
—(2i9@)~" /

00 . 5 o L~
0

0

We need the following lemma.

LEMMA 5.3. If 0 < « < 1, then, for some complex constapt
0 .
(5.12) / e P gy = cux™%, Vx> 0.
0
Moreover, ifx1(p) is the cut-off function defined above, we have

00 ) 1
/ e "Pyi(p)ydp = —i ct ox™h)  (x = +00).
0

PrROOF To get the first equality it is sufficient to effect the change of varialle= o'.
To prove the second one, integrate by parts and observg thathas compact support in
(0, 00). a

Asymptotic expansion afJ1(¢). Taking the imaginary part of the first term n (5}11) and
using [5.1P), we see that ford k < 2,

(5.13) S(dst term of [G.A1) = cx (20 (1) 1129 (1) %Y = +¢r |20 (1) 7.

Taking into account that(p) := p*~2(1— x1(p)) is of classC> andv’ (0) = v/ (c0) =
0,j=0,1,..., we have, byV-fold integration by parts forevery =1, 2, ...,

(5.14) 2nd term of (5413 o(¥ (1)) ast — oc.
Hence we conclude frorh (5111)), (5]13) apd (5.14) that

o0 ~
(5.15) 3<—(2i5(t)>1 f e”‘””f’p“m(p)dp) = £k [20 ()7 + o(1B ()7
0
ast — +oo. In a similar way, we have, by -fold integration by parts,
o0 ~
(5.16) —(2i9 @)~ /O 0P =yl () dp = 0B (1))

for everyN > 2 ast — oo. Summarizing[(5.10)[(5.15) and (5]16), we arrive at

(5.17) IJ1(1) = £k 20O F + 019 ()| 7F)  ast > +oo.

In the case when > 2 andk = 2, we integrate[(5.30) by parts once more to ob{ain {5.17).

Asymptotic expansion oftJ1(). We go back to[(5.71). Then, proceeding in the same
way as for the imaginary part, we arrive at

(5.18) RIL(1) = —ck DO F + 01D @0)7F)  ast — +oo.
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Asymptotic expansions @$(t), J3(¢t) andR(t). Setv(p) := )(2(,0),0"|G(n+k_1)/2(,0)|2.
Sincev(p) is of classCg® with support in{p;1/2 < p < L}, we have, byN-fold
integration by parts,

(5.19) Jot) =o@@)~N) foreveryN > 2 ast — +oo.

It remains to obtain asymptotic expansions Lf(1) and R(). Notice thatv(p) =
x3(p) pH*=3/2¢=20 is of classC*> and satisfies)(0) = v (c0) =0, =0,1,....
Then we obtain, byv-fold integration by parts,

(5.20) J3(t) = o(@@)™N) foreveryN > 2 ast — +oo.
In a similar way, we conclude that
(5.21) R(t) =o(13(®)|% ast — +oo.

Finally, noting|® ()| = |¢|, and summarizing (5.17)=(521), we arrive at

3
(5.22) 3 Z In (@) = it + 0t ast — +oo,

m=1

(5.23) R(@®) = o(jt]|™%) ast — 4oo.

Completion of proof of Propositign §.2.We combine equation (5.9) with (5]22)—(5.23)

to deduce[(5]3). In a similar way, by (5]18) apd (5.19)—(5.21) we[gett (5.6). The proof of
Propositiof 5.R is now finished. O

Thanks to Proposition 5.2, we are now in a position to prove Propo§itipn 5.1:
ProoF oFPropPOSITIONS.]. By Propositioh 5]2 we have

(@D (1),0] < |7|% forallr e R.

Therefore, the datéuo, u1} satisfying [5.11) belongs td;. On the other hand, we can
conclude from Lemm@A thdto, u1} € H® x H* 1 for all s > 1. Thus these data
satisfy the assumptions of Theorem A. Hence (K) has a unique solution) € X*(R)
provided the sizé of ug(x) is sufficiently small. Furthermore, for this solutiaix, 1),

the functioné(r) satisfies[(4]1) in Lemnfa 4.1. The proof of Proposifior} 5.1, hence also of
Theorem 1, is complete. O

CONCLUDING REMARK. We go back to the choicg (5.1), i.e4(x) = 0. We may take
ur(x) = 8(x)~+tk=D/2 For such a choice we need to obtain an asymptotic expansion of
MJ1(r). Actually, we can derivét J1(r) ~ |t| 7% (r — Zo0) by minor modifications of the
former computations. In this way, we get Proposifior] 5.2.

6. PROOF OoFPROPOSITIONZ.Z
Our argument follows [17]. Recall the definition bfr, 7) in 84:

I(r,1) = (IDIZ"Ply_(-, 1), v, 1)) 2, 1t €R.
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Let {ug, u1} € H*P-? x H°P)=LP whereo (p) = n(2/p — 1) + 1. Notice thak(p) > 1
ifandonlyifl1< p < 2(n —1)/(n + 1), where

—1/2 ~1/1 1 1 1
k(p) =2 (-—1):” (-——) with =+ = =1.
2 \p 2 \p ¢ P q

Then the classical Strichartz estimates imply thatpfor 4,

sup(L+ [r¥P (1 (r, 0)| = sup(L + [2r)KP (| D@ Ply_ (-, 0), v4.(-, 0)) 2|

reR reR

< sup(+ [2r kP2 1Py (-, 0)|| 4 || |DJv (-, O) | 1o
reR

S =G Ol grawp-va.p | Do (-, O) [ 2r
S Uluoll grasp-var+1p + luall geasr-o.0) Uluoll gz + luall zip)

2 2
S Uluoll grap-var+1.o + luall grav-va..)* = (luoll gow.r + 2l gowm-1.)
sinceH? PP = grd/p=YO+lr - g2r Hence we get

sup(L+ [r)* P11 (r, 0)| < C1(lluoll gowrp + luall gorm-10)2
reR

On the other hand, sindg®(?)~%r ¢ H"/»=D < H1 by the Sobolevimbedding theorem,
we can writel (r, 0) as an oscillatory integral by using Plancherel’s theorem,

(6.1) I(r,0) = /

R»

161 & Blio(e) P + /R e g s (6) 2 d

+ /R eI PaN0() A1) dE = (7, 0) + D201, 0) + I5(r, O)

A similar computation to that made above shows thét, 0), I2(r, 0) and I3(r, 0) satisfy
the same estimate as that proved abovd {er0), thus we conclude thatig, u1} € Yi(p)-
The proof of Propositiop 2|2 is now complete. O

7. PROOF OFTHEOREM 2

We go back to[(6]1). We divide the proof into two cases: 1 andp = 1.

Casel: pe (1,2(n — 1)/(n + 1)). Inthis case, for anyg € (n/p, n), take the data so
that

(7.1) fo(€) = 8lgl0 e 812 j1(8) = s|g|fo e 2 0< 5 « L
Then

(7.2) uo(x) € H*NH"P, ui(x) e H *nH 1P
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for all s, » > 0. Hence it follows from Propositign 3.2 that (K) has a solutian, ) €
X*(R) (for all s > 3/2) with data satisfying[(7]1). We can derive, passing to the polar
coordinateg = pw, p = ||, w € S" 71,

€13 a0(E) 1?1817 = |g] a1(&)PIE]" T = R(E12ao(E)ar(E))|E|" L

— 82p2807n+267p
hence,
oo .
10,0 = 715" Y60+ 2@ 2) [ 22 ap,
0
The next lemma is convenient for deriving asymptotic expansions of oscillatory integrals.

LEMMA 7.1 (Ercelyi [7]). Letw(p) be of classC™ on[a, B] (—0o < @ < B < 00). Then

B N-1 p=p
/ e'"Pw(p)dp = Z i (p)pm—Leire +or™) asr— +o00
o o

m=0

provided thatw™)(p) is integrable oveKa, B). For the remainder ternk y () we obtain

B
Ry(r) = (=ir)™" / ¢ w™ (p)dp.

o

Sincev(p) = p2o"t2.r is at least of clas€?%0—"+2] and satisfies /) (0) =
v (00) =0forj =0,1,...,[2¢0 — n + 1], it follows from Lemmd 7.11 that

1(r, 0) = o(|r| [B0—+2ly  ag|r| — oo.

Therefore, it follows from the definition of; that the data[(7]1) belong tf2y—n+2]-
Notice that

2n 2 .
2@0—n+2>——n+2>4+—1, e, 4<[2o—n+2]<n+1
P n—

becausép € (n/p,n)and 1< p < 2(n — 1)/n + 1.
In the limiting case/g = n, take the data so that

(7.3) ﬁo(é):élog%e—é/z’ i) =5|§||09E1|e—|5|/2

for 0 < § « 1. These data also satisfy ([7.2), and we can derive

1E131a0(®) 171611 = 1&] 1a1(E) 21E1" ™ = R(E1Pao(E)ar(E))IE" T
= 82p""2(log p)%e ™",

hence,v(p) = 8%p""2(logp)?e~* is at least of class"t! and satisfiess’)(0) =
v (c0) =0forj =1,...,n + 1. Thus we conclude from Lemrha J.1 that

1(r,0) = o(jr|~"*2) as|r| — oco.

Therefore the data satisfying (¥.3) belongita.».
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Casell: p =1. Inthis case, take the data so that
(7.4) o) =8¢ 612 fy&) =51Ele 1?2, 0<s« 1
Clearly, these data satisfy (¥.2) and

& Plao®)PE1" ™t = €] a1 (&) P€1" ™ = R(I€|%ao&)arE)) €N

— 82pn+26_’0.

Sincev(p) = §2p" 27 satisfiesn™ 2 (0) = ¢, (n + 2)! andv 2 (c0) = v (0) =
v (00) =0, =1,...,n+1,it follows from Lemma 7.J1 that

1(r,0) = (n + 2lculr| =" £ o(Ir]="+¥)  as|r| — oo,
hence, the dat@ (1.4) belongXp, 3. The proof of Theorem 2 is now complete. O

FINAL REMARK. (i) In view of Lemmd 4.4, the data satisfyirig (7.1), {7.3) gnd]|(7.4) have
a similar behaviour t¢s (x) ¢, 8| D|(x)~*}with £ € (n/p,n) andp € (1, 2(n—1)/(n+1)),
¢ =n, L > n, respectively.

(i) By the argument of the proof of Theorem 2 we can prove that the Schwartz space
S is contained it for all k € (1, n + 1].
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