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ABSTRACT. — We prove existence and, under an additional assumption, uniqueness of an evolution system of
measures$y, ), g for a stochastic differential equation with time dependent dissipative coefficients. We prove that
if Pg; denotes the corresponding transition evolution operator, Bgep behaves asymptotically as— +oo

like a limit curve (which is independent j for any continuous and bounded “observakje”
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1. INTRODUCTION

We are given a separable Hilbert spatéwith norm|-| and inner product, -)); we denote
by L(H) the space of all bounded linear operatorddnWe are also given a cylindrical
Wiener process defined on a filtered probability sp@ee.#, (#;);>0, P) in H.

We are concerned with the following stochastic differential equation:

(1.1) dX = (AX + F(t, X))dt + VCdW(1), X(s)=x€H,

whereA: D(A) ¢ H — H is the infinitesimal generator of @ semigroupe’4 in H,
C € L(H) is symmetric nonnegative arfd: D(F) C R x H — H is such thatF (¢, -) is
dissipative for alk € R.

Whens is negative, in order to give a meaning to equation|(1.1), we shall ext&ng
and the filtration(.%;);>o for all r < 0. To do so we take another cylindrical proc®sg(r)
independent of¥ () and set

W (t) if t >0,

W) = { Wi(—t) ift <O.

Moreover, we denote by?, theo-algebra generated B (s), s <t,¢t € R, k € N.
ConcerningA, C, F we shall assume

HypoTHESIS1.1. (i) There isw > Osuch that{Ax, x) < —w|x|? for all x € D(A).
(i) C e L(H) is symmetric, nonnegative and such that

+00 .
/ Tr[e'ACe' A" dt < +oo.
0
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(i) F:R x H — H is continuous and there exi8f > 0and K > 0 such that
|F(,0) <M, |F(,x)—F(¢,y)|<K|x—y|l foralx,yeH, teR.
Moreover,
(F(t,x)—F(t,y),x —y) <0 forallx,ye H,t eR.
A mild solution X(r,s,x) of (L) is an adapted stochastic proce¥s e

C([s, T); L3482, %, P)) such that

t
1.2) X@,s,x)= eIy / ARG, X(ry s, X)) dr + Walt,s), t>s,

N

whereW, (z, s) is thestochastic convolution
t

(1.3) WA(t,s):/ AV C AW (r), ¢ > s.
S

It is well known that, in view of Hypothesjs 1.1(ii)f 4 (z, s) is a Gaussian random variable
in H with mean 0 and covariance opera@y s given by

t
(1.4) Or5x =/ dACe N xdr, t>s, x€H,
s

and that there exists a unique mild solution[of|1.1) (seelel.g. [5]). We define the transition
evolution operator

Py ip(x) =E[p(X(t,s,x)], t>s5, ¢ € Cp(H),

whereCy(H) is the Banach space of all continuous and bounded mappingd — R
endowed with the sup norm

lello = suple(x)].
xeH

REMARK 1.2. Sincet, s, x) — X (t, s, x) iS mean square continuous, hence continuous
in distribution, it follows by definition tha® , is Feller, that is, P; ;¢ € Cp(H) for all
¢ € Cp(H) and anys < .

The aim of this paper is to prove the existence and, under a suitable condition,
uniqueness of aavolution system of measures);cr indexed byR (seel[2]). This means
that each), is a probability measure oH and

(1.5) / Ps 10(x) vs(dx) = / o) v (dx) forallp € Cp(H), s <.
H H

This concept is the natural generalization of the notion of an invariant measure to
nonautonomous systems. We notice that an evolution system of measures indéked by
is a measure solution of the corresponding (dual) Kolmogorov equation on all the real line.
So, it is a generalization of a measure solution of the Kolmogorov equations on half-lines
(seel[1)]).
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Using the systenty,);cgr We are able to study the asymptotic behaviouPpfe(x).
We prove that

(1.6) lim P p(x) = / oY) vi(dy), VteR, xeH
§—>—00 H
and
a.7) lim |:Px,tg0(x) —/ o(y) vt(dy)] =0, VseR, xeH.
t——+00 H

The second result implies th# ;¢ (x) approaches as — +oco a curve, parametrized
by ¢, which is independent of andx. This is the natural generalization of the strongly
mixing property for an autonomous dissipative system (see e.g. [4, §3.4]).

In a paper in preparation we shall study the case when the coeffigignt) is
singular, generalizing the results in [3].

2. EXISTENCE AND UNIQUENESS OF AN EVOLUTION FAMILY OF MEASURES
INDEXED BY R

It is convenient to write equatiof (1.1) as a family of deterministic equations indexed by
w € 2. SettingY (r) = X(¢, s, x) — Wa(t, s), we see that' (¢) is a mild solution of the
deterministic evolution equation

(2.1) Y'(t) = AY(t) + F(t, Y (1) + Wa(t, s)), Y(s)=x.
In the following we shall treat' (¢) as a classical solution for simplicity. This argument

can be made rigorous by approximatit with n(n — A)~1W, andx with n(n — A)~1x
and then lettingg — oo.

LEMMA 2.1. Foranym € N there isC,, > 0 such that
(2.2) E(X (1,5, 0)[*") < Cu(L+ e ™09 |x|2m),

ProOF Multiplying 2.3) by | (r)|?"~2Y(s) and taking into account Hypothesis [1.1
yields, for a suitable constaﬁ’l;,lq,

L Ly 2" < —olY 2" + (F (& Watt, ), Y(O) Y (022

2m dt 2m—2
F(F(, Y (1) + Walt, ) — F(1, Wa(t, s)), Y ()Y (1)
—olY ()2 4 (F(t, Wal(t, s)), Y(O)Y ()22
—§|Y(z>|2’" + CLIF(Wa(t, s))|?".

A

IA

By a standard comparison result it follows that

t
Y ()" < e x| 4 ZmQ%,/ e | F (0, Wa(t, 0))|*" do,

N
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and finally we find that, for some constad ,
(23) IX(t, 5. 0" < Che ™ "

t
+C} ( f e | F (o, Wa(t, 0))|?" do + |Walt, s>|2'">.
s

Now the conclusion follows by taking expectation, recalling that in view of Hypothegis 1.1,
|[F(t, )| <|F@,0)|+|F(t,x)— Ft,0 <M+Klx|, teR, xeH,
and using the fact that

sup E|W4(t,5)[?" < +00. O
teR, t>s

The following lemma gives a generalization to the time dependent case of a result
proved in [4].

LEMMA 2.2. Assume that Hypothedis]] holds. Then for any € R, there exists), €
L2(£2, .Z,P) (independent of) such that

(2.4) lim X@,s,x)=n inL%R,Z, P).
§—>—00

Moreover,

(2.5) EIX (1, s, x) — n|% < 267220 (x| 4 Cp).

PROOF Leth > OandsetZ(r) = X(t,s,x)— X(t,s —h,x), t >s.ThenZ(t) is amild
solution of the following problem:

(2.6) { Z't)=AZ@t)+ F(t, X (¢, s,x)) — F(t, X(¢t,s — h, x)),

Z(s)=x—X(s,s —h,x).

Multiplying (2.6) by Z(r) and taking into account Hypothe§is]l.1 yields

242002 < —wlza)
2 dt
Therefore

1X(t,5,%) = X(t,5 —h,0)[* = |ZO)|? < e 2D |x — X (5,5 — h, ).
Now, by Lemma 2.]1 it follows that
(2.7)  EIX(t,s,x) — X(t,s —h,x)2 <2720 (1x]2 4+ Co(1 4 e 2" x]?).

Consequently, by the completenesd8f2, .%, P), for anyr € R and anyx € H, there
exists the limit
lim X(@, s, x):=n(x) inL%R,Z,P).
§—>—00

Moreover, letting: — oo yields [2.5) (if we know thaty; (x) is independent af).
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It remains to show thai; (x) is independent af.
Letx,y € HandsetV(r) = X(¢,s,x) — X(¢,s,y). ThenV(¢) is the solution of the
following problem:

(2.8) { VI@t) =AV(@)+ F@t, X(¢t,s,x)) — F(t, X(1,5,)),

V(i) =x—y.

Multiplying (2.8) by V (r) and taking into account Hypothefis[l.1 yields

% %IV(t)IZ <—olVO?, 1eR,
so that
X (1,8, %) — X(t,5, 2= |V <e 209 x —y]2, 15seR.
Lettings — —oo we see that, (x) = n,(y), as required. O

In the following we shall denote by the law ofy,, ¢ € R.

PROPOSITION2.3. (v);cr IS an evolution system of measures indexei py

(2.9) /H Psip(x) vs(dx) = /pr(x) vi(dx), s=t, ¢eCy(H).

Moreover, for allp € C,(H) we have

(2.10) i Paew = [ 0wy, xen
§——00 H
PROOF Let us first prove[(2.70). Lei € C(H). Lettings — —oo in the identity
Ps1p(x) = E[p(X (1, 5, x))]
and recalling[(Z}4) yields
lim Py ,0(x) = E[p(n,)] Z/ (y) ve(dy),
§—>—00 H
and [2.10) is proved. Let us proje (R.9). ket 7 < 7. Lettings — —oo in the identity
Ps,tPt,r(P(x) = P p(x),
recalling Remark 1]2 and taking into account (2.10) yields
| peomrnin = [ poivean. o
H H

The following result gives information on the asymptotic behaviouPofy (x) when
t — 4o00.
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PROPOSITION2.4. Letgp € C,}(H). Then for any € R andx € H, we have

(2.112) t_!i_r;rlo[Ps,lw(x) — /H o(x) v,(dx)] =0.
PROOF Fixs € R andx € H and choose; < s. Set, forr > s,
Xt)=X(,s,x), Y@)=X({,s1,x), Zt)=X@)—Y(@®).
Then we have
%Z(r) =AZW)+F@t,X@)—F@, Z(1t), Z(s)=x—X(s,s1,X).
Multiplying scalarly both sides of this identity by (s) and taking into account the
dissipativity of F (¢, -) yields
d
T1Z0P = 20120,
so that
1X (1,5, %) — X (1,51, )2 = |Z(1)|? < e 20~ |x — X (s, 51, %)%
Lettings; — —oo yields
1X(t,5,%) = ml? =120 < 20V |x — 2.
Consequently,

2
= [E[p(X (t, 5, x))] — E[p(n)][?

Py 1(x) —/ @ (x) v (dx)
H
2 _ 2 2 —2w(t—s) _ 2
= |I¢|IC§(H)E(|X(I,S,X) n1%) = ||</>||C]3(H)€ E(lx — nsl%),
which yields the conclusion. O
We end the paper with a uniqueness result.

PROPOSITION2.5. Assume thats;),cRr IS an evolution system of measures indexel by
and that there exist€' > 0 such that

sup | Ix1?¢(dx) < C.
teRJH

Then¢, = v, forall t € R.
PROOF. Lety € Cl}(H). By the assumption we have, for< ¢,

/ Pyrp(x) ¢y (dx) = / () & (dx).
H H

We claim that

(2.12) lim /H Pyrp(0) & (dx) = /H () vy (dx).

§—>—00

By the claim it follows that; = v; by the arbitrariness af. To prove the claim write

(2-13)/ P 1p(x) §s(dX)=/ (Ps,zw(X)—/ () vf(dy)> §s(dx)+/ o(y) vi(dy).
H H H H
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But, since
Py 1p(x) —/ e vi(dy) = E(p(X (7,5, x) — (1)),
H
we have, taking into accourft (2.5),

2
< PN BAX @, 5,2) = n0)l?)

Py 1p(x) — / e(y) ve(dy)
H
< 27200 (3 P+ 9N,y

So

' / (Ps,zgo(x) - / o(y) w(dy)) £ (dx)
H H

and the conclusion follows. O

2

< 2PNy ppye 2 <C2+ /H |x|2;s<dx>>,
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