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Ordinary differential equations. — Existence of periodic solutions for some second
order quasilinear Hamiltonian systems, by MARIO GIRARDI and MICHELE MATZEU,
communicated on 12 May 2006.

ABSTRACT. — A class of second order nonautonomous quasilinear Hamiltonian systems(S) is considered. We
show that, for anyT < T0, whereT0 depends on the growth coefficients of the Hamiltonian functionH , there
exists aT -periodic andT/2-antiperiodic solution of the system(S) below, provided two symmetry conditions
hold forH .
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INTRODUCTION

In the present paper we are interested in the existence of periodic solutions to the following
second order quasilinear Hamiltonian system

(S) −ü(t) = b(t)∇H(u(t), u̇(t)), t ∈ R,

where∇H denotes the gradient ofH with respect to its first variable inRN , andb is a
periodic function.

In [2] the authors, in collaboration with D. De Figueiredo, introduced a method in
order to solve a quasilinear elliptic equation by a variational approach using mountain pass
techniques and some estimates for mountain pass solutions of semilinear problems suitably
approximating the quasilinear problem.

A similar approach allows one to solve another quasilinear problem with more general
assumptions (see [3]), a semilinear integro-differential equation with nonsymmetric kernel
(see [5]), finally a fully nonlinear elliptic equation (see [4]).

The aim of the present paper is to use some basic ideas of [2]–[5] in order to find
periodic solutions of(S).

As a matter of fact, in [2]–[5] it is very important that the Poincaré inequality holds
in the variational approach in order to show that the approximating solutions actually
converge to a solution of the initial problem. In the present case, we consider a variational
approach in which, thanks to some symmetry assumptions onH , one can use the Wirtinger
inequality, which still allows us to prove the convergence of the approximating solutions.

TheT -periodicity of the solution found is ensured for anyT < T0, whereT0 depends
on the growth coefficients ofH with respect to its two variables and on the maximum of
b(·), which is further supposed to beT/2-periodic. Indeed one finds that this solution is
evenT/2-antiperiodic.
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Obviously, as a particular case, one can also consider autonomous Hamiltonian
systems, if one choosesb(t) ≡ 1.

1. THE RESULT

Let H : RN
× RN

→ R be a function continuously differentiable in the first variable (let
∇H denote the corresponding gradient) and continuous in the second variable. Letb be a
continuous periodic function onR.

The problem is to find a nonzero periodic solution to the following second order
quasilinear Hamiltonian system:

(S) −ü(t) = b(t)∇H(u(t), u̇(t)), t ∈ R.

We prove the following

THEOREM 1. Letb andH be as above and suppose that:

(H0) ∇H is Lipschitz continuous in a sufficiently large neighbourhood of the origin,
(H1) H(x, y) = H(−x, y) for all x, y ∈ RN ,
(H2) H(x, y) = H(x, −y) for all x, y ∈ RN ,
(H3) limx→0 H(x, y)/|x|

2
= 0 uniformly with respect toy ∈ RN ,

(H4) there exista1 > 0, p > 1, andr ∈ (0, 1) such that

|∇H(x, y)| ≤ a1(1 + |x|
p)(1 + |y|

r) ∀x, y ∈ RN ,

(H5) there existϑ > 2 such that

0 < ϑH(x, y) ≤ x∇H(x, y) ∀x ∈ RN
\{0}, ∀y ∈ RN ,

(H6) there exista2, a3 > 0 such that

H(x, y) ≥ a2|y|
ϑ

− a3 ∀x, y ∈ RN .

Then there exists a positive numberT0, explicitly depending onp, r, ϑ , a1, a2, a3, N and
B = max{|b(t)| : t ∈ [0, T ]}, such that, for allT ∈ (0, T0), if b is aT/2-periodic function,
then there exists a nonzero classicalT -periodic andT/2-antiperiodic solution of(S).

REMARK 1. From(H4) and(H5) it follows thatϑ ≤ p + 1.

REMARK 2. Let us point out that, ifb(t) ≡ 1, then Theorem 1 applies and yields the
existence of aT -periodic andT/2-antiperiodic nonzero solution, for anyT < T0, of the
autonomousHamiltonian system

−ü(t) = ∇H(u(t), u̇(t)), t ∈ R,

if (H0), . . . , (H6) hold.
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REMARK 3. Note that, as a consequence of theT -periodicity andT/2-antiperiodicity of
the solutionu(·), one gets ∫ T

0
u(t) dt = 0.

As a standard example of a functionH satisfying(H0), . . . , (H6), one can consider
∇H(x, y) = h(x, y) with

h(x, y) =

{
ã1x|x|

p−1(1 + |y|
β), |x| ≤ δ1, |y| ≤ δ2,

x|x|
p−1

|y|
r , |x| ≥ δ̃1, |y| ≥ δ̃2,

wherep, β > 1, r ∈ (0, 1), and ãi , δj , δ̃j (j = 1, 2) are fixed positive constants with
δ̃j > δj .

2. A VARIATIONAL APPROACH TO THE PROBLEM

Let us consider the space

V = {v ∈ H 1([0, T ]; RN ) : v(0) = v(T )}

and itsL2 orthogonal decomposition

V = V0 ⊕ V1 ⊕ V2

where

V0 = RN
=

{
1

T

∫ T

0
v(t) dt : v ∈ V

}
,

V1 =

{
v ∈ V : v(t) =

∑
k=2h+1

h∈Z

ake
i2kπt/T , a−k = ak

}
,

V2 =

{
v ∈ V : v(t) =

∑
k=2h

h∈Z\{0}

ake
i2kπt/T , a−k = ak

}
.

Fix w in V1 and consider the functional

Iw(v) =
1

2

∫ T

0
|v̇(t)|2 dt −

∫ T

0
b(t)H(v(t), ẇ(t)) dt ∀v ∈ V.

PROPOSITION1. Let b(·) beT/2-periodic. Then any critical pointuw of Iw on V1 is a
weak solution of the following second order Hamiltonian system withT -periodic boundary
conditions:

(Sw)

{
−üw(t) = b(t)∇H(uw(t), u̇w(t)),

uw(0) = uw(T ), u̇w(0) = u̇w(T ).

Moreover,uw is T/2-antiperiodic.
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PROOF. Let uw be critical onV1, that is,

〈I ′
w(uw), v1〉 = 0 ∀v1 ∈ V1.

We have to prove that

〈I ′
w(uw), v0 + v1 + v2〉 = 0 ∀v = v0 + v1 + v2 ∈ V = V0 ⊕ V1 ⊕ V2

(as the critical points ofIw on the whole spaceV are the weak solutions of(Sw), and, if
uw ∈ V1, thenuw is T/2-antiperiodic).

It is enough to prove that

〈I ′
w(uw), v0〉 = 〈I ′

w(uw), v2〉 = 0 ∀v0 ∈ V0, ∀v2 ∈ V2.

On the other hand,

I ′
w(uw(t)) = −u′′

w(t) − b(t)∇H(uw(t), ẇ(t))

and one has, by(H1), (H2) and theT/2-periodicity ofb(·),

(1) b(t + T/2)∇H(uw(t + T/2), ẇ(t + T/2)) = b(t + T/2)∇H(−uw(t), −ẇ(t))

= −b(t)∇H(uw(t), −ẇ(t)) = −b(t)∇H(uw(t)), ẇ(t)).

Therefore the functionb(t)∇H(uw(t), ẇ(t)) is T/2-antiperiodic, so it is orthogonal toV2
as well as toV0, as it has zero mean.

Since−u′′
w obviously belongs toV1, the proof is complete. 2

In the following we will put

‖v‖ =

(∫ T

0
|v̇(t)|2 dt

)1/2

∀v ∈ V1,

which is a norm equivalent to theH 1-norm ofV , as the Wirtinger inequality holds in the
spaceV1.

Therefore the functionalIw, for anyw ∈ V1, has the form

Iw(v) =
1

2
‖v‖

2
−

∫ T

0
b(t)H(v(t), ẇ(t)) dt ∀v ∈ V1.

3. PROOF OFTHEOREM 1

First of all, fix R > 0 and put

CR = {v ∈ V1 ∩ C2([0, T ]) : ‖v‖C2([0,T ]) ≤ R}.

PROPOSITION2. For anyw ∈ CR, there exists a mountain pass critical point ofuw ∈ CR

for Iw onV1 (as defined in Step3 below).
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We prove Proposition 2 in several steps.

STEP 1. Let w ∈ CR. Then there existρR, αR > 0 depending onR, but not onw, such
that

Iw(v) ≥ αR ∀v ∈ V1 : ‖v‖ = ρR.

PROOF. From(H1) it follows that, for anyε > 0, there existsδ > 0 such that

H(v(t), ẇ(t)) <
1

2
ε|v(t)|2 ∀t ∈ [0, T ] : |v(t)| ≤ δ,

hence∫ T

0
H(v(t), ẇ(t)) dt < (ε/2)

∫ T

0
|v̇(t)|2 dt + K(1 + R)r

∫ T

0
|v(t)|p+1 dt

≤ K ′(ε/2 + K(1 + R)r‖v‖
p−1)‖v‖

2

with a constantK ′ depending on the Wirtinger and Sobolev inequalities. Choosing

‖v‖ =

(
ε

2K(1 + R)r

)1/p−1

= ρR

one gets ∫ T

0
H(v, ẇ) ≤ K ′ε‖v‖

2.

Recalling thatB = maxt∈[0,T ] |b(t)|, if one choosesε < 1/2BK ′ andαR = (1/2 −

K ′ε)ρ2
R, the assertion follows. 2

STEP 2. Letw ∈ CR and fixṽ in V1 with ‖ṽ‖ = 1. Then there exists̃s > 0, independent
of w andR, such that

(1) Iw(sṽ) ≤ 0 ∀s ≥ s̃;

thenv = s̃ṽ satisfies
‖v‖ > ρR, Iw(v) ≤ 0.

PROOF. It follows from (H6) that

Iw(sṽ) ≤
1

2
s2

− a2|s|
ϑ

∫ T

0
|v|

ϑ dt + a3T .

By the Sobolev embedding theorem, asϑ ≤ p + 1 (see Remark 1), one gets

Iw(sṽ) ≤
1

2
s2

− a2|s|
ϑ (Sϑ )ϑ + a3T

whereSϑ is the embedding constant ofV1 in Lϑ ([0, T ]). Sinceϑ > 2, one gets somẽs
such that(1) holds.
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STEP 3. Let w ∈ CR. Then there exists a mountain pass critical pointuw for Iw on V1,
that is,

(2) Iw(uw) = inf
γ∈Γ

max
t∈[0,1]

I (γ (t))

where
Γ = {γ ∈ C0([0, 1]; RN ) : γ (0) = 0, γ (1) = v}

and
Iw(uw) ≥ αR > 0 (⇒ uw 6≡ 0).

PROOF. This is a consequence of a theorem by Ambrosetti and Rabinowitz (see [1]), as
Iw(0) = 0, Steps 1 and 2 hold, and the Palais–Smale condition is trivially satisfied, due to
the continuous embedding ofV1 into L∞(0, T ; RN ) and the fact thatp > 2. 2

PROPOSITION3. Let w ∈ CR and let uw be a mountain pass solution given by
Proposition2. Then there exists a positive constantc1(R) depending onR, but not on
w, such that

‖uw‖ ≥ c1(R).

PROOF. Actually the estimate holds for any critical pointuw of Iw on V1 with uw 6≡ 0
and one does not use the mountain pass nature ofuw. Indeed, if one putsv = uw in the
relation ∫ T

0
u̇wv̇ =

∫ T

0
b(t)∇H(uw, ẇ)v ∀v ∈ V1,

one gets

(3) ‖uw‖
2

=

∫ T

0
b(t)∇H(uw, ẇ)uw dt.

From (H3), (H4), (H5), it follows that, for anyε > 0, there exists a positive constant
cε,R, depending onε andR, but not onw, such that

|∇H(uw, ẇ)| ≤ ε|uw| + cε,R|uw|
p.

Together with this inequality, (3) yields

‖uw‖
2

≤ B

(
ε

∫ T

0
|uw|

2
+ cε,R

∫ T

0
|uw|

p+1
)

,

hence, by the Wirtinger inequality and the continuous Sobolev embedding,

(1 − ε(T /2π)2)‖uw‖
2

≤ c̃ε,R‖uw‖
p+1,

which implies the assertion if we chooseε < (2π/T )2, asp + 1 > 2. 2

PROPOSITION4. 4 Let w ∈ CR and let uw be a mountain pass solution given by
Proposition2. Then there exists a constantc2 > 0, independent ofw andR, such that

‖uw‖ ≤ c2.
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PROOF. From the inf-maximum characterization ofuw, by choosingγ in Γ as the line
segment joining 0 andv, one gets

Iw(uw) ≤ sup
s≥0

Iw(sv),

hence, by(H6),

Iw(uw) ≤ B sup
s≥0

{
s2

2

∫ T

0
|v̇|

2
− a2|s|

ϑ

∫ T

0
|v|

ϑ
+ a3T

}
.

Sinceϑ > 2, such an upper bound is a maximum and it does not depend onR andw,
hence

Iw(uw) ≤ const ∀R > 0, ∀w ∈ CR.

At this point, using the criticality ofuw for Iw, (H5) and (3), one gets

1

2
‖uw‖

2
≤ const+

1

ϑ

∫ T

0
b(t)∇H(uw, ẇ)uw = const+

1

ϑ
‖uw‖

2,

from which the estimate follows, asϑ > 2. 2

Actually, for anyw ∈ CR, any mountain pass solution of(Sw) is not only weak, but
even of classC2, so a classical solution, since it solves a problem of the type

(4)

{
−üw(t) = ϕ(t) (= b(t)∇H(uw(t), ẇ(t))), t ∈ [0, T ],

uw(0) = uw(T ), u̇w(0) = u̇w(T ),

whereϕ belongs toC0([0, T ]).

PROPOSITION5. There exists a constantµ > 0 such that the mountain pass solutions
uw of (4) satisfy, for anyR > 0, and anyw ∈ CR,

‖uw‖C2([0,T ]) ≤ µ(1 + Rr).

PROOF. This is a consequence of(H4), Proposition 4 and the fact thatuw solves (4) in
the classical sense. 2

PROPOSITION6. There exists a constantR > 0 such that

w ∈ CR ⇒ uw ∈ CR

for any mountain pass solutionuw of (4).

PROOF. This easily follows from Proposition 5 and the fact thatr < 1. 2

At this point it is very natural to introduce an iterative scheme in the following way.
Let R be given by Proposition 6 and letu0 be arbitrarily fixed inCR. Let us defineun as a
mountain pass solution of the following problem, for anyn ∈ N:

(Sn)

{
−ün(t) = b(t)∇H(un(t), u̇n−1(t)), t ∈ [0, T ],

un(0) = un(T ), u̇n(0) = u̇n(T ).

Obviously, by Proposition 6, one hasun ∈ CR for anyn ∈ N.



8 M . GIRARDI - M . MATZEU

Now we are in a position to give

Proof of Theorem 1. Let un be a mountain pass solution of(Sn) for anyn ∈ N. First of
all we prove that there exists some positive numberT0 such that, ifT < T0, then the whole
sequence{un} strongly converges inV1.

Indeed, using(Sn) and(Sn+1), one gets∫ T

0
u̇n+1(t)(u̇n+1(t) − u̇n(t)) dt =

∫ T

0
b(t)∇H(un+1(t), u̇n(t))(un+1(t) − un(t)) dt,∫ T

0
u̇n(t)(u̇n+1(t) − u̇n(t)) dt =

∫ T

0
b(t)∇H(un(t), u̇n−1(t))(un+1(t) − un(t)) dt,

which yields

(5) ‖un+1 − un‖
2

≤ B

∫ T

0
|∇H(un+1(t), u̇n(t)) − ∇H(un(t), u̇n−1(t))| |un+1(t) − un(t)| dt

≤ B

∫ T

0
|∇H(un+1(t), u̇n(t)) − ∇H(un(t), u̇n(t))| |un+1(t) − un(t)| dt

+ B

∫ T

0
|∇H(un(t), u̇n(t)) − ∇H(un(t), u̇n−1(t))| |un+1(t) − un(t)| dt.

Denoting byc′

R
, c′′

R
the best Lipschitz constants of∇H with respect to its two variables in

the setBR × BR where

BR = {x ∈ RN : |x| ≤ R},

one gets from (5) the relation

‖un+1 −un‖
2

≤ B

(
c′

R

∫ T

0
|un+1 −un|

2 dt + c′′

R
‖un −un−1‖

(∫ T

0
|un+1 −un|

2 dt

)1/2)
.

Using the Wirtinger inequality (asun andun+1 areT -periodic with zero mean), one obtains

‖un+1 − un‖
2

≤ B

(
c′

R

(
T

2π

)2

‖un+1 − un‖
2
+ c′′

R

(
T

2π

)
‖un − un−1‖ ‖un+1 − un‖

)
,

from which

(6) ‖un+1 − un‖ ≤

Bc′′

R
(T /2π)

1 − Bc′

R
(T /2π)2

‖un − un−1‖ = γ ‖un − un−1‖,

whereγ is positive if

T <
2π√
Bc′

R

.
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Actually, by putting

(7) T0 = min

 2π√
Bc′

R

,

√
B2(c′′

R
)2 − 4Bc′

R
− Bc′′

R

2Bc′

R


and ifT < T0, the constantγ in (6) is less than 1. Therefore ifT < T0, given by (7), then
(6) implies that{un} is a Cauchy sequence inV1, so it strongly converges to someu in V1.

At this point, from the Ascoli–Arzelà’s theorem and the fact that{un} is contained
in CR, it follows that the whole sequence{un} converges inC2([0, T ]). Then it is easily
verified that it converges to a classical solutionu of (S). The fact thatu is not identically
zero is an immediate consequence of Proposition 3, if we putR = R. 2
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