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Ordinary differential equations. — Existence of periodic solutions for some second
order quasilinear Hamiltonian systembBy MARIO GIRARDI and MICHELE MATZEU,
communicated on 12 May 2006.

ABSTRACT. — A class of second order nonautonomous quasilinear Hamiltonian sygtenssconsidered. We
show that, for anyf" < Ty, whereTp depends on the growth coefficients of the Hamiltonian functirthere
exists aT-periodic andT /2-antiperiodic solution of the systeq§) below, provided two symmetry conditions
hold for H.
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INTRODUCTION

In the present paper we are interested in the existence of periodic solutions to the following
second order quasilinear Hamiltonian system

&) —i(t) =b@)VHu@),u)), tekR,

whereV H denotes the gradient ¢f with respect to its first variable iR", andb is a
periodic function.

In [2] the authors, in collaboration with D. De Figueiredo, introduced a method in
order to solve a quasilinear elliptic equation by a variational approach using mountain pass
techniques and some estimates for mountain pass solutions of semilinear problems suitably
approximating the quasilinear problem.

A similar approach allows one to solve another quasilinear problem with more general
assumptions (sekl[3]), a semilinear integro-differential equation with nonsymmetric kernel
(seel®]), finally a fully nonlinear elliptic equation (séé [4]).

The aim of the present paper is to use some basic ideas of [2]-[5] in order to find
periodic solutions ofS).

As a matter of fact, in_[2]-[5] it is very important that the Poircamequality holds
in the variational approach in order to show that the approximating solutions actually
converge to a solution of the initial problem. In the present case, we consider a variational
approach in which, thanks to some symmetry assumptioti$,@me can use the Wirtinger
inequality, which still allows us to prove the convergence of the approximating solutions.

The T-periodicity of the solution found is ensured for afiy< Tp, whereTp depends
on the growth coefficients aff with respect to its two variables and on the maximum of
b(-), which is further supposed to [#/2-periodic. Indeed one finds that this solution is
evenT /2-antiperiodic.
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Obviously, as a particular case, one can also consider autonomous Hamiltonian
systems, if one choosésr) = 1.
1. THE RESULT

Let H : RN x RY — R be a function continuously differentiable in the first variable (let
V H denote the corresponding gradient) and continuous in the second varialbbehé et
continuous periodic function dR.

The problem is to find a nonzero periodic solution to the following second order
guasilinear Hamiltonian system:

(S) —ii(t) =b@)VHu@),u(t)), teR.
We prove the following

THEOREM 1. Letb and H be as above and suppose that:
(H0) VH is Lipschitz continuous in a sufficiently large neighbourhood of the origin,
(H1) H(x,y)= H(—x,y)forall x,y e RV,
(H2) H(x,y) = H(x,—y)forall x,y € RV,
(H3) limy_0H(x, y)/|x|? = 0 uniformly with respect to € RV,
(H4) there existi; > 0, p > 1, andr € (0, 1) such that
IVH(x, )| <ar(L+ x|))A+1y)  Vx,y e RY,
(H5) there existy > 2 such that
O0<v®H(x,y) <xVH(x,y) VxeRM\{0},VyeR",

(H6) there existip, az > 0 such that

H(x,y) > aglyl” —ag V¥x,y e RV.
Then there exists a positive numti@t explicitly depending omp, r, 9, a1, a2, az, N and
B =max{|b(t)| : t € [0, T]}, such that, for alll' € (0, Tp), if b is aT /2-periodic function,
then there exists a nonzero classi@aperiodic andT /2-antiperiodic solution of S).
REMARK 1. From(H4) and(H5) it follows that® < p + 1.
REMARK 2. Let us point out that, ib(z) = 1, then Theorem 1 applies and yields the
existence of & -periodic andr'/2-antiperiodic nonzero solution, for arfy < Tp, of the
autonomougiamiltonian system

—ii(t) = VH@(@), i(1)), teR,

if (HO), ..., (H®6) hold.
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REMARK 3. Note that, as a consequence of Theeriodicity andrl’ /2-antiperiodicity of
the solutionu(-), one gets
T
/ u(@)dt =0.
0

As a standard example of a functi¢h satisfying(HO), ..., (H6), one can consider
VH(x,y) = h(x,y)with

B, y) = | AT xS 8 Iyl < 8.
’ x|x [Pyl x| > 81, |y| > b2,

wherep, 8 > 1,r € (0, 1), anda;, §;, S,- (j = 1,2) are fixed positive constants with
5 > 9.

2. A VARIATIONAL APPROACH TO THE PROBLEM

Let us consider the space
V ={ve HY0, T]; RY) : v(0) = v(T)}
and itsL? orthogonal decomposition
V=V Vid W

where
1 T
VO=RN={—f v(t)dt:veV},
T Jo

Vlz{veV:v(t)= Z ape'2mt/T ak=5k},

k=2h+1
heZ

VZ:{vEV:v(I)z Z age! %/ T a_kzﬁk}.

k=2h
heZ\{0}

Fix w in V1 and consider the functional

T T
Iy (v) = %/0 |i)(t)|2dt—/o b H (v(t), w(t)dt YveV.

PROPOSITION]1. Letb(-) be T /2-periodic. Then any critical point,, of I,, on V1 is a
weak solution of the following second order Hamiltonian systemTigieriodic boundary
conditions:

) {—iiw(t) = b(t)VH (uy (1), ity (1)),

Uy (0) = uy(T), 1y(0) =1, (T).

Moreoveru,, is T /2-antiperiodic.
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PrROOF Letu,, be critical onVy, that is,
(I, (uy),v1) =0 Vg € V1.
We have to prove that
(I (uy),vo+vi+v2) =0 VYo=w+vit+veV=VWoVieW
(as the critical points of,, on the whole spac& are the weak solutions @f,,), and, if
uy € Vi, thenu,, is T /2-antiperiodic).
It is enough to prove that
(I, (uy), vo) = (I,,(uy), v2) =0 Vg € Vo, Yvp € Va.
On the other hand,
Ly (uyy (1)) = —uy, (1) = b(O)V H (uy (1), (1))

and one has, byH1), (H2) and theT /2-periodicity ofb(-),

Q) bt +T/2VHuy(t +T/2), 0t +T/2) = b(t + T/2)VH(—uy(t), —(r))
= —b(t)VH (uy(t), —w(t)) = —=b(t)VH (uy(1)), w(t)).

Therefore the functioh(z)V H (u,, (¢), w(t)) is T /2-antiperiodic, so it is orthogonal i,
as well as to/y, as it has zero mean.
Since—u!) obviously belongs td/1, the proof is complete. O

In the following we will put

T 1/2
sz(/|me> Yu e Vi,
0

which is a norm equivalent to th&#1-norm of V, as the Wirtinger inequality holds in the
spaceV;.
Therefore the functional,,, for anyw € V1, has the form

T
I,(v) = %llv”2 —/0 b)H(v(t), w(t))dt Vv e V.

3. PROOF OFTHEOREM 1
First of all, fix R > 0 and put
Cr={veVinC*[0.T]) : [vlczqo.r < R}-

PROPOSITION2. Foranyw € Cg, there exists a mountain pass critical pointgf € Cg
for I, on V; (as defined in Step below).
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We prove Proposition 2 in several steps.

STEP1l. Letw € Cg. Then there existg, g > 0 depending orR, but not onw, such
that
Iy(w) Zzagr Yve V|| = pr.

PrOOF From(H1) it follows that, for anye > 0, there existg > 0 such that
. 1 2
H((@), w(t)) < Eelv(t)l vie[0,T]: [v@)| <6,

hence

T T T
/ H(), w()) dt < (8/2)/ [o()2dt + K (1 + R)’/ lu(e) |7+ dr
0 0 0
< K'(e/2+ KL+ R o7~ vl

with a constank’ depending on the Wirtinger and Sobolev inequalities. Choosing

e 1/p-1
lvll = (m) = PR

one gets
T
/ H(v, ) < K'e||v]|%.
0

Recalling thatB = maxc[o,7] |0(7)|, if one chooses < 1/2BK’ andag = (1/2 —
K'e)p2, the assertion follows. O

STEP2. Letw € Cg and fixd in V1 with ||7]| = 1. Then there exists > 0, independent
of w andR, such that

D Iy(sv) <0 Vs =>s;

thenv = §7 satisfies
Il > pr, Iw(@) <O0.

ProoF It follows from (H6) that
1,(s7) < %sz —az|s|” /OT [9” dt + asT.
By the Sobolev embedding theorem,ias p + 1 (see Remark 1), one gets
I, (sD) < %sz — azls|”(S9)? + asT

whereS; is the embedding constant & in L7 ([0, T]). Since® > 2, one gets somg
such that(1) holds.
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STEP 3. Letw e Cg. Then there exists a mountain pass critical paiptfor I, on Vq,
that is,

(2 Ly (uy) = inf max I (y (1))
yel tel0,1]

where
r'={y eC%p0,1:RY): y(0) =0, y(1) =)

and
Iy(uy) =ar >0 (= uy % 0).

PrROOFE This is a consequence of a theorem by Ambrosetti and Rabinowitz (see [1]), as
I,,(0) = 0, Steps 1 and 2 hold, and the Palais—Smale condition is trivially satisfied, due to
the continuous embedding &f into L>°(0, T; RV) and the fact thap > 2. O

PROPOSITION3. Let w € Cp and letu, be a mountain pass solution given by
Proposition2. Then there exists a positive constantR) depending onR, but not on
w, such that

luwll = c1(R).

PrROOFE Actually the estimate holds for any critical poimj, of I,, on V1 with u,, # 0
and one does not use the mountain pass natusg, ofndeed, if one puts = u,, in the
relation

T T
/ Uyl = / b(t)VH (uy,, w)v VYve Vq,
0 0

one gets

T
3 w2 = /0 b)Y H (1, )ity di.

From (H3), (H4), (H5), it follows that, for anye > 0, there exists a positive constant
¢, r, depending ol and R, but not onw, such that

IVH(uy, w)| < eluyl +C£,R|Mw|p-

Together with this inequality, (3) yields

T T
2 2 1
luwll© < B(S/ 1729 +Cs,Rf |uw|p+ )a
0 0

hence, by the Wirtinger inequality and the continuous Sobolev embedding,
(L= &(T/27)*) |uw|I” < & gllww P,
which implies the assertion if we choose< (27/T)2, asp + 1 > 2. |

PROPOSITION4. 4 Letw € Cp and letu, be a mountain pass solution given by
Proposition2. Then there exists a constant> 0, independent ofy and R, such that

luwll < c2.
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PrROOF From the inf-maximum characterization @f,, by choosingy in I" as the line
segment joining 0 and, one gets

Iy (uy) < suply (sv),

s>0

hence, by H6),

§2 [T T
-2 O — 0
Iw(uw)SBsup{—/ [v]c — az|s| / 7] —i—agT}.
s=0l 2 Jo 0

Since?’ > 2, such an upper bound is a maximum and it does not deperii amd w,
hence
I,(uy) < const VR >0, Yw € Cp.

At this point, using the criticality of,, for I,,, (H5) and (3), one gets

T

5l < constt- = |+ bWV H (. ) = const = .

0
from which the estimate follows, as > 2. O

Actually, for anyw € Cg, any mountain pass solution @$,,) is not only weak, but
even of clas€'?, so a classical solution, since it solves a problem of the type

@ —iiy () = ¢(@) (= b()VH (uy(2), (), te[0,T],
Uy (0) =uy(T), 1y(0) =1y (T),
wherey belongs toC?([0, T7).

PrROPOSITIONS. There exists a constapt > 0 such that the mountain pass solutions
u,, of (4) satisfy, for anyR > 0, and anyw € Cg,

luwllc2qo,ry) < w1+ R).

PrROOF This is a consequence 0ff4), Proposition 4 and the fact that, solves (4) in
the classical sense. O

PROPOSITIONG. There exists a constait > 0 such that
weCy = uy €Cy
for any mountain pass solutian, of (4).
PrROOFE This easily follows from Proposition 5 and the fact that 1. O

At this point it is very natural to introduce an iterative scheme in the following way.
Let R be given by Proposition 6 and leg be arbitrarily fixed inC%. Let us define, as a
mountain pass solution of the following problem, for ang N:

—iin(t) = b))V H (un (1), 1tn-1(t)), t€[0,T],

(Sn) ) .
up(0) = u,y(T), 1,(0) = u,(T).

Obviously, by Proposition 6, one hag € Cx for anyn € N.
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Now we are in a position to give

Proof of Theorem 1. Let u,, be a mountain pass solution ¢f,,) for anyn € N. First of
all we prove that there exists some positive nuniyesuch that, iff < Tp, then the whole
sequencéu, } strongly converges .

Indeed, usingsS,) and(S,+1), one gets

T

T
/0 ln41(0) (ltn41(1) — tin (1)) dt =/0 b(1)V H (un11(t), ttn (1)) Un41(2) — un (1)) dt,

T

T
/0 Un (1) (tn42(1) — 1n (1)) dt :/0 b(t)VH (un(t), tin-1(1)) (un+1(t) — un (1)) dt,
which yields

(5 Nunt1 — unl?

T
< B/c.) |VH (ung-1(0), ttn (1)) — VH (un (1), ttn-1(0))| [tn41() — un(@)| dt
T
< Bfo IVH (ung-1(0), ttn (1)) — VH un (1), ttn ()] |ttn42(t) — un ()| dt
T
+ B/o IVH (un (1), tin (1)) — VHun (1), ttn—1(0))| lttn41(2) — un(t)] dt.

Denoting byc’i, c% the best Lipschitz constants BfH with respect to its two variables in
the setB; x Bi where

Bz ={x eR" :|x| <R},

one gets from (5) the relation

2 g 2 g 2 1z
lupir—unll” < B(C/R/ [pr1—u,|®dt +C%”un —up—1l </ [tp1— 1yl dt) )
0 0

Using the Wirtinger inequality (as, andu, 1 areT -periodic with zero mean), one obtains

2
2 Bl ¢ T 2 i T
i1 — unll® < R\ 52 It — unll + R\ 52 ey — wp—all g1 — unll |,
21 2

from which

BC(T /2m)

6 — P S
(6) ltng1 —unll < 1_ BC%(T/ZTL’)ZHM”

—up—1ll = v llun — up-1ll,

wherey is positive if
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Actually, by putting

201\2 _ /o "
o /B (cﬁ) 4Bc§ BCF
/BC%, ZBC%

and if T < Tp, the constany in (6) is less than 1. ThereforeIf < Tp, given by (7), then
(6) implies that{u, } is a Cauchy sequence I, so it strongly converges to somen Vj.

At this point, from the Ascoli-Arzél's theorem and the fact thét,} is contained
in Cg, it follows that the whole sequende,,} converges irC2([0, T]). Then it is easily
verified that it converges to a classical solutioof (S). The fact that is not identically
zero is an immediate consequence of Proposition 3, if weRpstR. o

@) To = min
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