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Algebraic geometry. — The Picard group of the moduli stack of stable hyperelliptic
curves by MAURIZIO CORNALBA.

ABSTRACT. — We compute the Picard group of the moduli stack of stable hyperelliptic curves of any genus,
exhibiting explicit and geometrically meaningful generators and relations.
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In a recent papel [1], Arsie and Vistoli have shown, as a byproduct of their study of moduli
of cyclic covers of projective spaces, that the Picard group of the moduli 3tacéf
smooth hyperelliptic curves of gengs> 2 is finite cyclic, and that its order isg8+ 4

for odd g, and 4 + 2 for eveng, over any field of characteristic not dividing 2+ 2. In
another recent paperl[3], Gorchinskiy and Viviani have given a geometric construction of
generators for the Picard groups in question. On the other hand, it was shawn in [2] that,
in characteristic zero, the identity

L(g=1)/2] Lg/2]
€Y @g+Hr=géir+2 Y (+D—D&+4>  jg—i3
i=1 j=1

holds in Pi¢H,) ® Q, where H, is the closure ofH, inside the stackM, of
genusg stable curves. In the formula, stands for the Hodge class, whig, &1, .. .,
£l(g-1)/2) 81, ..., 8|4/2), henceforth calledboundary classgsare the classes of the
irreducible components of the complementtf in ﬁg (see below for precise definitions).
Moreover, it was proved in the same paper that the boundary classes are independent in
Pic(ﬁg) ® Q. We wish to show that, combining these results of [2] with thosglof [1] and an
idea of [3], one gets almost immediately a complete description ajﬁg,m in particular,

one finds thalml) is valid already in I?T_ﬁ:g), and not just modulo torsion. One also gets an
alternate—and to me somewhat simpler—proof of the result of Gorchinskiy and Viviani
mentioned above. We shall work ov@r however, let us mention that|(1) has been proved

in any characteristic by K. Yamakil[6] (cf. alsbl[5]), whose methods could probably be
used to push everything through in all characteristics except those not covered by Arsie
and Vistoli’s results.

We begin by recalling some known facts about stable hyperelliptic curves and their
moduli. First of all,#, is a smooth Deligne—-Mumford stack of dimensiog 2 1. Its
boundary, that is, the complementﬁ_rk of the dense open substatk, is a divisor with
normal crossings

Eir + &1+ -+ Eg-p/2) T A1+ -+ Algy2)
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(cf. [2]). Here the summands are the irreducible components of the boundary, which can
be described as follows. Any stable hyperelliptic cutveof genusg has a semistable
model C” which can be represented as an admissible double coveringl(cf. [4]) of a stable
(2¢ + 2)-pointed curve of arithmetic genus zero; 6t — I" be this covering. Any
nodep of I' divides it in two pieces, one containirjg> 2 marked points, and the other

2¢g + 2 — j > 2 marked points; we may assume thiat ¢ + 1. If j = 2i 4+ 1 is odd, there

is just one node of”’ lying abovep, and we will say that it is @mode of typed;. Such a

node dividesC’ in two pieces of generaandg — i. We will say that the piece of genus

i is atail of type A;; of course, when = g/2, the other piece is a tail of typs; as well.

If insteadj = 2i + 2 is even, there are two nodes abgyeand we will say that they form
apair of nodes of type;. Such a pair divideg” in two pieces of generaandg — i — 1.

We will say that the piece of genuds atail of type &;; the other piece is also a tail of
type E; wheni = (g — 1)/2.

One passes from’ to the stable model by contracting all tails of typ&Zg, which are
smooth rational components meeting the rest’oih just two points. The resulting nodes
are said to bef type Zj,. The remaining nodes @’ remain unchanged i@, and hence
can be classified as nodes of typeor pairs of nodes of typ&;, i > 1. Clearly, one can
speak of tails of typej; or &;,i > 1, also forC. We now define the divisor§jy, &,
andA;, fori > 1, as the loci of stable hyperelliptic curves possessing, respectively, a node
of type Ziyr, &;, Or A;.

A stable hyperelliptic curve” comes with a hyperelliptic involution, which corre-
sponds to the sheet interchange in the covetihg> I". Under the involution, the nodes
belonging to a pair of typé&; get interchanged, while nodes of all other types stay fixed.

One defineir, &, 8; as the classes in F{Hg) of the line bundleD(&Ei), O(&;),
O(4;), respectively. The classés are the pullbacks t@g of the classes with the same
names in Pi(:/Vg). Instead, if we denote b§;, the pullback tdl_ig of the class with the
same name in P(Mg) (often also calledy), then

L(s=1)/2]
Sirr = &ir + 2 Z &i.
i=1
Let . be the order of the Hodge class in #t;). By the results of Arsie and Vistoli,
h divides & + 4. On the other hand, sinde. restricts to the class of a trivial line
bundle onH,, it must be an integral linear combination of boundary classes. Since the
boundary classes are independent, this relation must be proportidrial to (1). Thus the integer
(8¢ + 4)/ h divides bothg and & + 4 = 4(2¢g + 1). If g is odd, it is prime to &g + 1),
so the only possibility is that = 8g 4+ 4. We conclude that Pi{,) is generated by the
Hodge class. Now, if is an element of Pi@,), its restriction taH, must be of the form
n for some integen. Thusu — na is an integral linear combination of boundary classes.
This means that and the boundary classes generatc{ﬁjp. Again by the independence
of the boundary classes, any relation between themiandst be a multiple of (1).
Wheng is even divides 4 + 2, by [1]. Moreover, all the coefficients df|(1) are even.
Arguing as in the odd genus case, we conclude that
g g/2—-1 8/2
) (4g +h =S+ 3 (+D(g— ki +2) j(g— N3,
i=1 =1

J
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If, in addition, g is not divisible by 4, the coefficients ¢f|(2) are relatively prime. Reasoning
as in the odd genus case, one concludes thatRicis generated by the Hodge class,
and that Pi(,‘l_-{g) is generated by. and by the boundary classes, subject to the single
relation [2).

We may summarize what has been proved in the following statement.

PROPOSITION1. Letg > 2 be an integer. Wheg is not divisible by4, Pic(ﬁg) is
generated by, and by the boundary classes. The relations between these classes are
generated by(I) wheng is odd, and by(2) wheng is even. Moreovei(?) is valid for

any every.

When g is divisible by 4, things are not as straightforward, since, as observed by
Gorchinskiy and Viviani, in this case Rik,) is not generated by the Hodge class. The
argument used in the preceding cases just shows that the order of the Hodge class is either
2g + 1 (the correct answer) orgd+ 2, but does not enable one to pin it down. In order
to handle this case, followin@|[3] we introduce another natural line bundﬁ@rﬁor any
g > 2. For any familyae : X — S of stable hyperelliptic curves of genys we let
W = W, be the divisor swept out by the Weierstrass points in the fibers, that is, the fixed
scheme of the hyperelliptic involution minus the nodes of typdn the fibers. Clearly,
away from nodes of typ&j,, W is a Cartier divisor, etale ovef. Actually, W is Cartier
everywhere. In fact, in suitable local analytic coordinatégan be described near a node
of type Zirr as the locus irC? x S with equationxy = f, where f is a function ons,
while the hyperelliptic involution corresponds te, y) — (y, x); hence a local equation

for W is x — y. Now look at the line bundle)§+1(—(g — 1)W) on X, wherew, is the
relative dualizing sheaf, and observe that its restriction to any smooth filbeisdfivial.
To see this it suffices to consider the case whi@na point, in which our claim is obviously
true, sincewy = m*wp1(W) andO(W) = n*(Op1(g + 1)), whererr : X — Plis the
hyperelliptic double covering.

To define a line bundleZ on ﬁg we need to give, for each family : X — § as
above, a line bundl&, on S, natural under morphisms of families. Actually, it suffices to

do this only whers is etale overl_ig. The idea would be to take &, the direct image of

a)§+1(—(g —1HW). Unfortunatelyw§+1(—(g — 1)W) is not necessarily trivial on singular

fibers ofa, so in general this procedure does not yield a line bundle. To cure this, we twist
w§+1(—(g —1)W) by a suitable divisor whose support is contained in the union of singular
fibers. We letG; andE; be the divisors irX swept out, respectively, by tails of typg and

of type &;. We claim thatVf = & ™ (—(g — DW — (2 — 4)G; — Y (g — 2i — 1)E})

is trivial on every fiber otx, smooth or singular. In fact, et be a fiber, and le€” — I

be the corresponding admissible double covering. To show that the restrictiénoof is
trivial it suffices to show that this is true for its pullback@®. On the other hand, it is clear
that this pullback comes from a line bundle Bnthus it suffices to show that has degree
zero on every component @f or, equivalently, on every tail of typg; or A; of C. This

is immediate. For instance, I&t be a tail of typeZ;. Notice that the restriction aD(E;)

to T has degree-2, while the restriction ofoc has degreei2 Therefore the restriction of

M to T has degree equal ta@ + 1) — (g — 1)(2i + 2) + 2(g — 2i — 1) = 0. Similar
considerations apply to the tails of tyge. In conclusion,
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3 Zy = ax(M)
= (0f(—(g = DW = D@ —4)Gi = Y (g — 2 — D))

is a line bundle; as it behaves nicely under morphisms of families, this defines a line bundle
Z onH,. We define; € Pic(H,) to be the class of. Wheng is odd,g +1,g—1, 2g —4i,
andg — 2i — 1 are all even, and replacing them with their halves |n (3) produces another
line bundleZ” on’H,, whose class we denote by. Clearly,; = 2¢'.

We now have at our disposal all the necessary ingredients to state our main result,
which is the following.

THEOREM2. Letg > 2be an integer. Whepg is evenPic(ﬁg) is generated by and by

the boundary classey, &1, ..., &/2-1, 81, . . ., 8¢/2, Subject to the single relation

g/2—1 g/2
(4) A+ =&n+2 Y (+D@+D&+4)_j@2j+1Ds;.

i=1 j=1
Wheng is odd, Pic(ﬁg) is generated by’ and by the boundary classésg;, &1, ...,
£g-1)/2, 61, - . ., 8(g—1)/2, Subject to the single relation
(8=1)/2 (g=1/2

G G+ =t +2 Y (+DQ@+DE+E D 2+ 1D

i=1 j=1

In particular, Pic(F,) is free abelian of ranlg for anyg > 2.

The essential step in establishing the theorem is the following result, whose proof will
be given later.

LEMMA 3. The following identity holds iRic(H,) ® Q:

Lg—1/2] Lg/2]
6)  g+2r=En+2 Y (+D@+DE+4Y j@2j+ D
i=1 j=1

Theorem[ P follows from the lemma by the same exact reasoning used to prove
Proposition[L; we will not repeat the argument here. An immediate consequence of
Theoren{ P and Propositign} 1 is a formula foin terms of the boundary classes and
or¢’.

COROLLARY 4. In Pic(H,),

g/2-1 .. g/2
g ii+1 2 i
Sr_ - §; wheng is even,

(g=1)/2 l(l + 1) (g=1/2
gt'— Y i - > j? wheng is odd.
i-1 i
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To prove the formulas, subtragy2 times [(4) from|[(R) forg even, andg times [$)
from (1)) for ¢ odd to obtain, respectively,gd+ 2 times the first identity, or 8+ 4
times the second one. Since @it;) has no torsion, the result follows. Another immediate
consequence of Theorgn 2 and Corollgly 4 is the following result of Gorchinskiy and
Viviani; to make contact with their notation just observe that they wjite indicate our
line bundleZ wheng is even, and oug’ wheng is odd.

COROLLARY 5 ([3]). Wheng is odd,» = g¢’in Pic(H,), andPic(H,) is generated by’
Wheng is even) = (g/2)¢ in Pic(H), andPic(H,) is generated by. If g is not divisible
by4, Pic(H,) is generated by, while if g is divisible by4, A generates an indeXsubgroup
of Pic(H,).

Finally, wheng is divisible by 4, the greatest common divisor of the coefficients of
@) is exactly 4. Since P((Z_{g) has no torsion, we obtain a valid identity if we divide all
coefficients of) by 4. This settles the question of the structure of the subgrour[ﬁfgl?ic
generated by and by the boundary classes.

PROPOSITIONG. Let g > 2 be an integer which is divisible bg. Theni and the
boundary classes generate an indgsubgroup ofPic(H,), and the relations between
them are generated by

g/2—-1

i +1)(g —i g/2
@t k=Gt ) (4D

s it ig— N3

j=1
At this point, all we have to do to finish up is prove Lemja 3.

ProoOF OFLEMMA [3.  The argument is essentially the one originally used to pfdve (1),
and we shall freely employ results from [2]. If we pigkfamilies of stable hyperelliptic
curves, all with smooth and complete one-dimensional base, we can constrgckthe

matrix whose entries are the degrees of the various boundary classes on the given families.
It was shown in[[2] that the families can be chosen in such a way that this matrix is non-
singular. This proves that the boundary classes are independent. It also reduces the task of
proving Lemm4 B to the one of evaluating, for each one ofktfamilies, the degrees @f

and of the boundary classes, and showing that one gets an identity[if, in (6), one replaces
each class with its degree. In other words, we must show that

L(g—1)/2] Lg/2]
(1) (4g+2)degs =degtin+2 Y (i+1)(2i+1)degsi+4 >  j(2j+1)degs;
i=1 j=1

for each one of the families.

The first family that one considers is constructed as followsbbe a general divisor
oftype(2g +2,2)inY = P! x P!, and letf : Y — P! be the projection to the second
factor. AsD is general, it is smooth, anfip : D — PL is a simple covering, in the sense
that above each point @ there is at most one ramification point, and the ramification
index at this point is 2. Sinc&®(D) is a square, there is a double covering X — Y
ramified atD. The surfaceX is smooth and, writingr for the composition of; and f,
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n 1 X — P!is afamily of genusg stable hyperelliptic curves. All singular fibers of
7 are of typeZjr, and the degree &y, is equal to their number, that is, to the number
of ramification points off;p. This can be easily calculated using the Riemann—Hurwitz
formula for fp and the genus formula fap C Y, and turns out to beg+ 4. To prove|()

in our case we must therefore show that ¢gleg 2. This is also easy to do. Writ& for

the ramification divisor of). Sincew, = n*ws(W) andn*(D) = 2W, we have

W§t(—(g = DW) = n* 0§ @W) = n* (@1 (D)) = " (Op1,1(0, 2) = 7* (Opa (2).

Hencear*(w;‘;H(—(g —1DHW)) = Op1(2), and deg = 2, as desired.

The remaining — 1 families are all obtained by the same general procedure. We start
with a family of stable(2g + 2)-pointed curves of genus zero, consisting of a family of
curvesf : Y — S plus sectiondy, ..., Do, 2, and we seD = ) D;. We assume that
S is a smooth complete curve, that the general fibef @ smooth, and tha®(D) is a
square. We let) : X — Y be the double covering branched alobg write R for the
ramification divisor ofy, and sett = f o 5. Thenz : X — S is a family of semistable
hyperelliptic curves of genug, and to obtain a family of stable hyperelliptic curves we
pass to its stable model : X’ — S. In practice, as all the degrees we need to consider
are readily computed on : X — S, we will work mostly with this family, rather than
with 7’ : X’ — §. The degrees of the boundary classes have been computéd in [2]; we do
not need to know them individually, but just that, as a consequence of Lemma (4.8) and
formula (4.10) inl[2], they are tied to the self-intersectionby the relation

®) (2g +1(D - D) = — 2gdegEir — Y (2 + 2)(2g — 2i) degs;
i>0
—2) (2i +1)(2g — 2i + 1) degs;.
i>0

Next, we compute the degree pon the familyz’ : X’ — S, that is, degZ,/). The line
bundleZ, is the pushforward of the line bundle éh

L= a)§+1(—(g ~DR-Y (2 - 4)Gi - Y (g2 — 1)E,~)

whereE;, 0 <i < |(g — 1)/2], is the sum of all tails of type; in the fibers ofr, each
counted with the appropriate multiplicity, ar@ is the sum of all tails of typet;, also
counted with the appropriate multiplicity. By this we mean the following. p & a node
in a singular fiber ofr; complex analyticallyX is of the formxy = ¢ nearp, wheret is
a local parameter of. Either p is a node of typej;, or it belongs to a pair of typ&;; let
T be the corresponding tail. Th@happears with multiplicityn in G; or in E;. Notice that
the contribution of node to the degree af;, or the contribution to the degreegfi > 1,
of the pair of nodes to whiclp belongs, isn; instead, when = 0, we get a contribution
of 2m to the degree ofj;. Notice also that the intersection numberrotvith 7 is 2/ + 1
if pisoftypeAa;, and 2 + 2 if p belongs to a pair of typ&;. The appearance of tails of
type &y in the definition ofL is due to the fact that the pullback 6 of the Weierstrass
divisor W, in X" is R 4+ Eo. We also observe thaD - D) = —(wy - D), asD is a disjoint
union of sections. In view of these remarks, and since the degrée ot 7. (L) is equal
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to the intersection number @&f with a section ofr, we have

(2g+2)degz = (L - R)
= @ D)+ 2(R-R) — (g = D(Eo- R)
— > (g—2i —D(E;i-R) =Y (2g — 4)(Gi - R)
= —g(D- D) — (g — Ddegéir — » (g — 2 — 1)(2i + 2) deg;
— ) (2g — 4i)(2i + 1) degs;.

Identity (7) follows by substituting fo¢D - D) the value given by {8). O
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