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ABSTRACT. — The geodesic problem in Wasserstein spaces with a metric perturbed by a conformal factor is
considered, and necessary optimality conditions are established in a case where this conformal factor favours the
spreading of the probability measure along the curve. These conditions have the form of a system of PDEs of the
kind of the compressible Euler equations. Moreover, self-similar solutions to this system are discussed.
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1. INTRODUCTION

Let us consider a closed convex setc R? and the seP(£2) of probability measures
in £2. Givenp € (1, c0), we denote by, (£2) the subspace of measures with firgteh
moment, i.e.

Wy,(82) == {MGP(Q) : / |x|pdu<oo}.
Q2

We endowW, (£2) with the canonical Wasserstein distari&g (., v) of orderp (seel[1],
[10] for the basic facts about,).

It is well known thatW,(£2) is a length space, and that (constant speed) geodesics
of W,($2) are in one-to-one correspondence with optimal transport plans, via McCann’s
linear interpolation procedure (see for instance Proposition 7.2.2 of [1]). Here we consider,
instead, the case when the Wasserstein metric is perturbed by a conformalLfactoby
minimizing

1
(1.1) fo L?(uo) |/ [2(1) dt

among all curves connectinguo = u« to w1 = v, one obtains a new squared distance
depending orp and L, and we are interested in computing the geodesics relative to this
distance. In[(1]1)|./|(¢) is the rate of change d¥,, also called the metric derivative,
along the curve. (see[(Z.11)).

This problem has been introducedlin [2], where the main goal was to choose alfactor
favouring atomic measures in order to give a time-dependent approach to some branched
transport problems which may be applied to the study of river networks, pipe systems,
blood vessels, tree structures etc. In fact, by setfigg) = >, af (for 0 < r < 1) if
u =Y ;aidy,andL = +oo on measures which are not purely atomic, there is a strong
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link between this variational problem and those which were first presentedlin [11] and
[9] (the latter uses in fact a time-dependent approach, but by means of measures on the
space of paths instead of paths on the space of measures). This chbisdmfact a local
functional on measures which, among probability measures, favours the most concentrated
ones. In[[2], as a natural counterpart, the case of local functidnalkich prefer spread
measures is considered as well and the two problems sound somehow specular. The aim of
the present paper is in fact to consider this second problem and to find optimality conditions
in the form of PDEs.

In particular, we study in detail the case whe(u) is they-th power of theL4 norm
of the density of. with respect to Lebesgue measuté, with ¢ > 1 andy > 0 given,
andL(u) = +oo if u is a singular measure. So, geodesics with respect to the new metric
tend to spread the density as much as possible. Denoting thye density ofu,, we find
that a necessary optimality condition for geodesics is gfet 2; see[(2.5) for general)

(1.2) %(K(t)vu) + KV - (v ®@wvu) + H()Vui =0,

wherew;, is the tangent velocity field gi,, linked tou, via the continuity equatiog’;ut +

V - (vu;) = 0. HereH (t) < 0 andK (¢) > 0 are suitable functions depending only on the
metric derivative ofu; and onL(u,). As Brenier pointed out to us, this equation is very
similar to the compressible Euler equation, but with a negative pressure field (r)u?;

a similar equation, with constant and = 3, recently appeared also in [7], in the one-
dimensional case. In fact the main difference appears in the relationship betwdepette
and the speed part: here it is multiplicative, whilelih [7] it is additive, as we will explain in
a while.

The appearance of the Euler equation as an optimality condition is not very surprising,
taking into account the approach developed, in the incompressible case, by Brenier (first in
a purely Lagrangian framework ihl[3],][4], and then in a mixed Eulerian-Lagrangian one
in [5], [6]). In this connection, we mention that our derivation of the optimality condition
differs from [4], [6], where duality is used to perform first variations, and uses instead a
perturbation argument directly at the level of the primal problem.

Due to the non-convex nature of this problem, we do not know of any sufficient
minimality condition for the geodesics. In this connection, one may notice that, in the
casey = g/2 andp = 2, we have

1 1/2
inf 8/ ul dx + —/ |v|2udx = 2LuL?) (/ lv|%u dx)
§>0 Q ) Q Q

and the minimak.2(x) norm ofw is strictly linked to the metric derivative. This suggests a
connection between the “multiplicative” model studied here andlin [2], and the “additive”
model

[t ) d
min w? + |v|*u)dxdt . —u+V-(vu) =0
0 Je dt

subject to Dirichlet conditions at= 0 and: = 1. This additive model, in the cage= 3,
is exactly the one studied ini[7] (in this connection, see also [8]). Notice that this problem
is convexin the pair(u, vu). It turns out, indeed, that the (necessary and sufficient, by the
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convex nature of the problem) optimality conditions for the additive model are very similar
to (1.2), the only difference being that andK do not depend on time.

In the last part of the paper we compute and characterize particular self-similar
solutions of [(L.R).

2. OPTIMALITY CONDITIONS FOR WEIGHTEDWASSERSTEIN GEODESICS

2.1. A new velocity vector field

DEFINITION 1. If we are given a Lipschitz curve : [0,1] — W,(£2), we define a
velocity fieldof the curve to be any vector field : [0, 1] x 2 — R¢ such that for a.e.
t € [0, 1] the vector fieldy, = v(z, -) belongs to L? (u;)]¢ and the continuity equation

d
— V- =0
dtMt + (vpr)

is satisfied in the sense of distributions: this means that fap mIC}(Q) and anyt, <

RS [0, 1], .
2

[ o~ [ odus= | ds/Qw»vxdus,
n

or, equivalently, in differential form,
d
—/¢dm =/ V¢ -v,du, fora.er el0,1].
dt Q

We say thaw is thetangentfield to the curveu, if, for a.e.r, v, has minimal L? (u1,)]¢
norm for anys among all the velocity fields.

It is now well known (see for instance Theorem 8.3.1 and Proposition 8.4.5 in [1]) that
for any Lipschitz or absolutely continuous curpe with values inW,(£2) there exists a
unique tangent field and moreover it is characterized by

Wp(ethn, the)

fora.e.r € [0, 1].
] [0, 1]

(2.1) lvdllLe ) = |0'1() = lim
h—0
The right hand side in the equality above is the rate of chang¥,chlong the curve,,
also called thenetric derivativeof ;.
We now want to investigate how velocity fields change if we modify the cugve

THEOREM2.1. Let a Lipschitz function, : [0, 1] — W,(£2) and a smooth function
T : [0, 1] x 2 — £2 be such that for any the function?; := T (z, -) is a diffeomorphism.
Consider the new curve; given byu, = (T3)z 1. If v, is a velocity field for,, then the
vector fieldv’ defined by

P oT
UV, Uy = (Tt)ﬁ VT - v + 5 Mt

is a velocity field fon;.
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PrROOE We have

/¢du;+h—/ ¢du;=/¢on+hdm+h—/¢ondm
2 2 2 2

:/g(qjoTﬁh—¢°Tt)dlit+h+/g¢°Ttd(Mt+h—Mt)

t+h oT
=,/9<./t (V¢)0Ts-5

where in the last equality we have used the fact thas a velocity field foru, with test
functiong o T;. It is now convenient to divide b, rewrite and pass to the limit @s— 0:

pdu iy — Jo ddiy 1 [rth T
@2 L= - L ’=/ dliz+hz/ (V@) o Ty —-
2 t t

t+h
ds) ditesn + / ds / (V$) o T, - VT, - vy diss,
K t 2

ds

N
1 t+h
+/Q(V¢)on-vn-vtdm+zf dsfngt-(vsdus—v,dm
t

wherey; = ¢ o T;. In the first term on the right hand side the measwygs, weakly
converge tou,, sincet — pu, is Lipschitz continuous, while the integrand uniformly
converges as a function of the space variabte (V¢) o T; - % ash — 0. Hence we

get convergence of the integral. If we prove that the last term tends to zero at least for a.e.
t € [0, 1] we get the assertion, since then we would have

lim Jo pduy, — Jodduw,
h—0 h

oT
=/ <(V¢)0Tt'a_+(v¢)OTz‘VTt"Ut>dﬂt2/ Vo v, du;,
Q t Q

and this is nothing but the differential version of the continuity equatiorvfand .’ (it
remains to provey, € L?(u;) but this is straightforward sincg is a diffeomorphism and

this allows us to write down the densities and estimate them). To prove that the last term
vanishes at the limit we see that, for fix¢de Lip(£2), the function

d
s gy (s) ::/ Vi - vedug = _/ Ydus
(9] ds 0
is L sinceyu; is a Lipschitz curve itW, (£2) and hence almost anye [0, 1] is a Lebesgue
point. This allows us to fix a negligible sat c [0, 1] such that any point € [0, 1]\ N is

a Lebesgue point for all the functioggll for 11 € Q. We now fixz € [0, 1] \ N and try to
prove that the last integral ifi (2.2) tends to zero. frax Q we have

1 t+h
’Z/ dS/ Vi - (vgdus — vedy)
t 2

1 t+h
f—f ds
h J;

1 t+h
+ ’Z/ dS/ Vi, - (vsdus — vr dy)
t 2

/ V(W — WIl) v d g
2

+ ‘fg V(W — V) - v duy
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) ] 1 t+h
< Lip(¥r — ¥ |—|pr (n) + Ef ds /Q Vi, - (s dus — v ding)|.
t

In the last sum the second term tends to zero siris& Lebesgue point f(yw,l, and the
first term may be made as small as we want by choosigpse tor, sincey, = ¢ o T
and bothp andT are regular. O

2.2. Derivation of the optimality conditions

We consider the minimization problem presented_in [2], i.e. finding a curve of measures
in W,(£2) of minimal length according to a metric which, roughly speaking, is the
Wasserstein (infinitesimal) metric multiplied by a conformal factor. Precisely, if we define
for ¢ > 1 the functional

wlded ifv=u-L9,
Ly(v) = Ja .
400 otherwise,

we want to minimize

1
| oo,

where|u’|(¢) is the metric derivative of the curye and the minimization occurs among
all the Wasserstein—Lipschitz curves> u, with given initial and final points, i.ezo and
w1 are given probability measures Wi, (£2). We will always consider only the non-trivial
caseug # 1. If we defineV(u,r) = f_Q |v,|? du;, Wwherew is the tangent field to the
curvepu,;, we know thatju'|(f) = V (u, 1)Y/?. We may generalize the functional we want
to minimize by considering

1
Fw) = fo Ly(u)® V (e, 1)’ dt

which reduces to the case studiedlih [2kif= 1 andg = 1/p. Notice that in this case

the functional does not change under reparametrization of curves, wiile-ifl/p the
minimization selects a particular parametrization. ot 1/ p the existence of a minimum

is not ensured. Anyway we do not deal here with existence results.(see [2]), but we only
look for necessary optimality conditions. We will consider variationg aff the form

w; = (Tf)gpuy With TH(t,x) =x+e&(t,x), T° =id+e&(z, ),

for arbitrary regular functions € C2°([0, 1] x £2; RR?). In the end optimality conditions

will be expressed through a system of PDEs: we will obtain the result after collecting some
lemmas. What we want to do now is exploiting the fact that for a minimizing curttee
following quantity must be minimal for = O:

1
F) = < /0 Fe (1) Ve(1)? dr),

provided we defind’, (1) = L, (1f) andV, () = V(u®, t). Since it is not easy to deal with
the termV,(¢), we will replace it by\7€(t) given by

Ve(t) = f |V ) |7 dpuf.
2
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Here the vector field* is the one we get by Theordm P.1 when the rifajs 7¢ and the
initial field v, is the tangent field ta,. In this way we haveV, (t) > V. (1) (sincev? is not
necessarily of minimal.? norm) butV, (0) = V.(0). Thus we may switch t&, (1) instead
of V. (1), getting

~ 1 ~
S = ( /0 Fe()* Ve ()P dt).

We will compute the derivative cﬁ(uf) with respect tee and get the conditions we are
looking for.

LEMMA 2.2. If u is a curve given by, = u,£? and such tha§(u) < oo, then for
almost any < [0, 1],

4= /JTE)’ r )qdcd
% & - 61) _Q( t <JTIS .

In particular,

d
d_Fs(t)Ls:O =1~ C])/ (V- é)u? dﬁd.
€ 2

Moreover, fore sufficiently small (depending dh, but not orr),

d
gFg(f) < CLg4(r)-

PROOF We look at the integrand in the definition 6§: to do this it is necessary to look
at the density of the measupe. Thanks to the change of variables formula, this density
can be easily seen to be given by

u _
up = J]t’s o (T/) g
t

where J stands for the Jacobian (this formula is a consequencd;ofbeing a
diffeomorphism at least for smal). Thus, after changing variables, we have

q
Uy d
F =L,(ud) = — ) JTPdLY.
S(I) q(ﬂz) /.;Z(JTf) !

The derivative of the integral is

1- )(JT@)’( u '
DY\ e )

where(JTf)’ stands for the derivative OfT/° with respect te. This quantity may be easily
estimated byCu/, since 1— a < JTf <14 aand(JTf) < B for suitable constants

and B. Since for almost any the functionz, must belong ta ¢ (because the functional

we are minimizing is finite) we can apply the dominated convergence theorem and get the
assertion. To obtain the derivativesat 0 it is sufficient to notice that/ 7 ) |.—0 = V -§,

which is well known. The same estimate we used to get dominated convergence may be
used to get the last inequality. O

In the next lemma we consider the teffn
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LEMMA 2.3. If uis acurve such thaf () < oo, then for almost any < [0, 1],

" VT? v+ o VE v + 9% d
. U . . ’l; —_— .
' t s t 91 Mt

&

d -~
2.3 —V, = VTE .
(2.3) e (1) p/ﬂ‘ L+ 5

In particular,

d -~ _ 9E
- vs(t>|s:o=p/ v, va~(vs~vf+—) dpy.
£ Q ot

Moreover, fore sufficiently small (depending dh, but not ory),
d -
%VSU) =CV(p, 1) +1).

ProoF If we compute the densities ¢f; and the expression of the new velocity field
and we change variable in the integral by meang ef 7/ (x), as we did in the previous
lemma, we get

&

Jat

p
d//L[.

(2.4) Ve(t) = / VTF v, +
2

When we differentiate the integrand we get exactly the integrand if (2.3), and we only

need to show that this expression is uniformly dominated, at least for sraatil almost

everyt, to get the result. By boundedness of the derivativegoit is not difficult to see

that the norm of the first vector in the scalar product in the integrand may be estimated by

p—1
< (Clv | + )P,

&

’VTf'”mL

at

while for the second we have

0
‘Vé-vﬂra—f < Clo|+C

for a suitable constar@. Hence, sincey, € [L?(u,)]¢ for almost every the integrability
is proved and the differentiation under the integral sign can be performed

To conclude, we put together the previous two results in order to compute the derivative
of the integral irv.

THEOREM2.4. If pisacurve with§(u) < ocoandV (u, t) > Vo > 0for almost every,
then

1
i§(m)|€:0=a(1_q) / Felyb / (V- &l dcd dr
d€ 0 Q

1
d
+pﬂ/ F“vﬂ—lf |vf|"—2<vs-vt+—‘§>~vtdutdr,
0 2 ot

whereF (t) = L,(u;) and V (¢) has the usual meaning.
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PROOF By the definition of§(1.¢) we see that the pointwise derivative of the integrand is
dF - - av
aFe (D == Ve)f + BF()* Ve ()P~ —.
de de
By the regularity of7* the termF,(t) may be estimated both from above and below by

F(t), up to multiplicative constants. As far & (¢) is concerned, the argument is a little
more tricky. Indeed, we must writé () according to[(Z}4), then estimate

&

oT
VT v +

Ay =B =
ot

< At|v| + B,

for ¢ small enough, where the constant$ are as close to 1 as we want and the constant
B is as small as we want (this comes fronfy’ = id + O(e) andaT?/dtr = O(e)), and
get

AVO—B <V <AtVO 4+ B.
The assumptiorv > Vo > 0 allows us to infer from these inequalities that alsbmay
be estimated both from above and belowWyp to multiplicative constants. Finally, by
the estimates in Lemmps £.2 dnd| 2.3, we bound the whole pointwise derivativeby?

since we have .
dF<CF dV<C(V+1)<C 1+1 1%
de = 7 de — - Vo)
where the last inequality too follows froi > Vo. SinceLg V8 is integrable on [01], we

may differentiate under the integral sign and get

V()P + ﬁF(t)“V(t)’s’ld—

dv
)dl.
€ le=0

The result follows when we replace the derivatives iby the explicit expressions we
computed in Lemmgs 2.2 apdP.3. O

d . G w1dF
d—g%(u )Ia:O—fO (aF(t) T

e=0

REMARK 1. If 8 = 1/p and p is a minimizer, it is always possible to get the lower
boundV > Vp by reparametrizing in time, for instance by choosing the constant speed
parametrization.

COROLLARY 2.5. If u minimizes§ with given boundary conditiongg and i1, then its
densityu and its tangent field satisfy

1
06(1—61)/ F(t)“_lV(t)ﬁ/(V-E)M?dﬁddt

0 2
9§

1
+pﬂ/ F(z)“V(r)f‘—lf u,|vt|”_2<V§ v+ —) ‘v dLldt =0
0 Q Jat

for any vector field € C>(]0, 1[x £2; RY).

PROOF It is sufficient to notice that when we create the modified cyrvetarting from
the vector fields we do not change the initial and final points of the curve, so that the
minimality implies that the derivative @(u°) ate = O vanishes. O
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2.3. A system of PDEs
The following theorem follows directly from the previous section.

THEOREM2.6. Letuo, n1 € W,(£2) and lety be a curve minimizing on I" (uo, (1),
with a finite minimum value. Then, denoting:hy, -) the density ofi; and bywv(z, -) the
tangent field to the curve, (u, v) provide a weak (distributional) solution of the system

d .
H(OVul + K@)V - (u|v|’ %0 @ v) + E(K(t)u|ru|l’*2v) =0 ing,

d .
(25) Eu + V. (vu) = 0 in £2,
uv-n=20 onas2,

limu(r, VL% = wo, limu(t, )L = uy,
mou( ) 2% mu( ) 221

whereH (1) = a(1 — ¢) F()* V(1) and K (1) = pBF()*V (t)P~1.

Given (o, (1), existence of minimizers is ensured wheneyeg 1 + 1/d or, for
generalg, under the assumption thaty = uoL? and 1 = u1L? with ug, uy € LI(2)
(see[2]), hence under these conditions existence of solutions to this system is ensured.

It is interesting to rewrite the equations, make some formal simplification and look at
some particular cases.
First we expand all the terms in the first equation of sysfenj (2.5), obtaining

(2.6) H@®Vu? + K@) uv|?"%v - Vo + v[v|P2V - (uv) + u(v - V|v|’?)v)

pri i p—2 i P=2,, —
+K(l)(v|v| dtu+udt(v|v| )> +dtK(t)u|v| v=0.
Notice that this is always a vector equation, i.e. a system itself, consistidggfiations
with d + 1 unknown functions (the componentswfand the density). This system is
then completed by the continuity equation. As usualybywv we mean the vector whose
i-th component i _; v;dv;/dx;.

A formal simplification in [2.p) may be done: in fact there is a term
(K (t)v|v|P~2)(du/dt +V - (uv)) that might be removed by using the continuity equation.
This is actually possible only under extra regularity assumption& @amdwv (it consists
in testing the continuity equation against the prodki¢t)v|v|”~2 which is not in general
C? or regular enough). Anyway, after this formal simplificatidn, [2.6) becomes

(2.7 H@OVul + K@) (u|v|P"%v - Vo + u(v - Viv|P2)v)
d d
+ K(t)ua(vw’*?) + EK(t)uw’*zv =0.

Notice that in the casg = 1/p we can reparametrize in time the solution and there are
several possible parametrization choices that present some advantages. For instance, we
could choose a parametrization so tiRat) is constant, to get rid of the final derivative in

time. This choice implies
Fa P/ (=D
Vi) =(— ,
o=(%)
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and this, in the case of a boundgd| < oo, is sufficient to have the lower bounnd > Vj,
since in this casé is bounded from below by a positive constant.

Another important fact to be noticed is that [n (2.7) there is a comméactor. It is
still formal, but in this way we should get, dn > 0},

H®u?2Vu + K@) (o) %v - Vo + (v - Vv|P?)v)
d d
K(1)—@|v|P~?) + —K()|v|P %0 = 0.
+ (t)dt(vlvl Hd; O Fv =0

REMARK 2. One might wonder whether the solutiomsre automatically positive a.e.

in £2 for + € 10, 1[. This could be suggested by the fact that in the minimization problem
spreadness of the density is favoured. In the next section we will see with explicit examples
that this is not necessarily the case.

We finish this overview of simplifications of the system by looking at the simplest case,
ie.p =qg =2, =1,8 = 1/2, in the parametrization regime whekeis constant. In
this case we get

d .
—2V(t)1/2Vu + K<v -Vo + Ev) =0 in{u> 0},

uv-n=0 onoas2,
limu(r, )L = po,  limu(r, )L = pq.
twu( ) 1o mu( ) m1

Under no constraint on the parametrization we have, instead,

d dK .
—2V()Y°Vu + K(t)('v Vo + Ev) to— - = 0 in{u> 0},

uv-n=0 onos2,
limu(r, )L = po;  limu(r, )L = pq.
[wu( ) 10 mu( ) ni

3. SELF-SIMILAR SOLUTIONS

3.1. Homothetic solutions with fixed center

In this section we look for particular solutions of syst¢m|(2.5) which are self-similar in the
sense that, for any, the measure, is the image under a homothety of a fixed measure.
For simplicity we will consider only the case of systgm [2.9), i.e. with=- ¢ = 2, and

we assume that @ 2. The regularity of the candidate solutions we will propose will be
enough to ensure that we can use this simplified system, instead of system (2.5). To start
this analysis it is necessary to establish the following lemma.

LEMMA 3.1. If uis a curve inW2(£2) of the formu, = (Tr())s for a certain regular
functionRr : [0, 1] — ]0, 1] (whereTg(x) = Rx is the multiplication by a factoR, hence
a homothety), then its tangent field is givendpyx) = xR'(¢)/R(¢).
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PrROOF Itis not difficult to prove that the field we have just defined solves the continuity
equation and hence is a velocity field. Indeed; & C1(£2), then

d d
d_/ pdu = —/ ¢ (R(1)x) dp(x) =/ V@ (R(t)x) - R'(1)x dju(x)
tJo dt Q 2

R'(1)
R(1)

= / Vo (R(t)x) - R()xdp(x) = / Vo - v duy.

Q 2
It remains to prove thab is actually the tangent velocity field, i.e. that &€ norm is
minimal for a.es. This is achieved if we are able to prove thjat||,2(,,, = |u|'(?) for a.e.
t € [0, 1]. To do this, fix two times < ¢ + h and see that the map(x) = xRt +h)/R(t)
is a transport between, and ;1. Since it is the gradient of the convex functien—
x2R(t+h)/2R (1), itis actually the optimal transport according to the quadratic cost. Hence

Wi ) _ 1 [ (RC+D) 2, R 2
2 _ﬁfg< RO —1) X du,(x)—)/g(R(t)) x“dps(x).

Since this last quantity is exactly the normeofin L2(u,), this proves that is the tangent
field to the curveu. O

REMARK 3. In the casep # 2 the same result is true, but one has to use the
characterization of tangent velocity fields in terms of limits of gradients of smooth maps
(see Proposition 8.4.5 aofl[1]).

A first result we prove is the following:

THEOREM3.2. If (u,v) is a self-similar solution of syster@.5) with u Lipschitz
continuous, then necessarilyis of the form

u(t,x) = (A, — B,|x|2) v 0 for suitable coefficientd,, B; > 0.

PROOF We look at the equatiof (3.7) with = ¢ = 2, which is valid on{u > 0}, and

we freeze time, i.e. we look at the resulting space equation for fix¥de use the fact
thatwv is of the formwv,(x) = ¢;x, which implies that all the terms, v - Vv anddv/dt

are of the same form. This easily implies that a¥o is of the same form. Hence, at
timet, on{u > O}, we haveu(x) = A, — B;x?, where a prioriB, could also be negative.
However, we can prove tha, cannot be negative. In fact, if it were, andsif were a
convex unbounded domain, thercould not be the density of a probability measure. On
the other hand, one can easily see that on bounded convex dahagissimilar solutions
must vanish orp$2, otherwise we should get a jump of the density at the boundary of
{u > 0} when rescaling, but was supposed to be Lipschitz (except in the case that the
solution is constant in time). This implies that also in the case bbunded the coefficient

B; must be positive. For the same continuity reason we see that the fegier0} must
agree with2 N {A; — B;x2 > 0} in order to have continuity of, and this proves the
formula. ]

REMARK 4. A similar result could be obtained for generic Wasserstein spaces with
exponenip > 1 any self-similar solution should be of the fout, x) = (A; — B¢|x|”) V0.
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THEOREM3.3. If i1 is a probability measure o with density
u(x) = A[(R® = |x|?) v 0],

then for any regular and monotone functi@n: [0, 1] — [0, 1] the curveu; = (Tr())sit
is a solution to systerf2.g)together with its tangent field.

PrROOF It is sufficient to check the first vector equation in {2.9). First we compute the
correct constani: we must have

R 2
1= A/o (R? = 1P dwqr®Ydr = ARd+2a)dd —

and hencet = R=472(d + 2)/(2wy). This allows us to compute the terfi(r):

R 2(d +2

F= AZ/ (R? = 22 dwgrd~Ldr = R4 2912

0 (d+Bwyg

Then we computé& by recalling that, (x) = xR’ (¢)/R(?):
R\?2 R d
V= (E) A/O I’Z(RZ - r2) dwdrd_l dr = m(R,)Z

We must also computév/dr andv - Vo:
dv  R'R— (R)? R’ R'\?
—_— =, Vo=|— 1, v-Vo=|— X.
ot R?

We now compute

_ o 2d+2)
Kit)=F@®tV(t 1/2:RdR/ 1—,
() V@) |R'| OET
. e o 2(d +2)
K'(t) = signR)(—dR™ 41 — R"4R)2R") —=——.
() gn(R)( (R") ) TdT Do
If we sete = signR)—2Y*2 _ thenk = ¢cR4(R)LandK’ = c(—dR1 -

Vd(d+8wy
R=4(R")72R”), but also—2VY2Vu(x) = cdR'R~%2x. Inserting everything in the
equation we must check that

4 /

R R
dR'xR™47? 4 R_d(R’)_lx? —(dR4 1+ l'e—d(R’)—ZR”)xE = 0.

The proof is complete as this last equation is (miraculously enough) always satis-
fied. |

REMARK 5. By a similar proof we can show that, fpr £ 2, if & has a density of the
formu(x) = A[(R? — |x|?) Vv 0], thenu gives rise to a self-similar solution.

REMARK 6. This kind of self-similar solutions can join two different probability
measures which are homothetic, and in particular arrive at the Dirac dgalskreover,

it is not in general possible to link a measuresgoby a curve with finite energy: in_[2],
conditions to ensure this possibility are provided, but in general they are not satisfied in the
caseg = 2.
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3.2. Moving self-similar solutions

We have characterized all the self-similar solutions which link two homothetic probability
measures. It is however interesting to look also at the moving self-similar solutions, i.e. at
solutions obtained by homotheties and translations together.

In this case we consider a reference meaguand we look for solutions of the form
(THyia, whereT?(x) = R(t)x + x(¢). It is not difficult to replace Lemm@.l with the
following:

LEMMA 3.4. If uis a curve of the formu, = (T7);1, then its tangent field is given by

R'(1)
R(1)

v (x) = (x =) +X'(@).

PROOF The result may be proved very similarly to Lemma]3.1: it is sufficient to check
the continuity equation

d
E/QMRO)X +x@)du(x) = /9 Vo (R(Dx +X(1)) - (R'()x +X'(1)) dpu(x)

_ R'(t _
= / Vo (R(1)x +x(1)) - ( )(R(t)x +X'(1) dp(x) = / Vo -vidu,
o R(t) Q
and then to check the optimality of the norm by the fact that the map
R(t + h) _ _
[and W(X —)C(t)) +X(l +I’l)

transportsu, to w4+, and is optimal, and that

1 (R(t+h)

2
W2 i RO (x—x@)+x@+h) —x> dug(x)

converges to

R/(t) _ , 2
/Q( RO (x —=x(@) +x (t)> dpe(x) = [vell g2,y U

For computational simplicity we consider moving self-similar solutions only under a
special reparametrization.

THEOREM3.5. If i1 is a probability measure of2 with density
u(x) = A[(R” — |x|%) v 0]

and x(0), x(1) € 2 are assigned, a curve, = (T");i, parametrized so thak =
FV~Y2 s constant, is a moving self-similar solution (solving sys(@r8) together with
its own tangent field) if and only if the vectormoves on the straight line segment from
x(0) to x (1) with constant speed arkl is a strictly concave function ef This means

=0, R¥(R)?+ (d+ 43 is constant ancR strictly concave.
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PrROOFE We only need to check under which conditions the first equation is satisfied. We
re-write in this case the quantity considered in Thedrerh 3.3: first we compute

d+2 d+2
u(x) = A[(R® = |x — %> v 0], Azz(Rd%), wm:-%u %),
_ 2d+2 3 )
F=R" EEYIP V——d+4(R)+()

We have used the fact that is symmetric around () and hence there is no mixed term
(x — x(2)) - ¥'(¢) in computingV (¢). Then we go on withlv/dr andv - Vv:

dv ( _)R”R—(R’)Z _,R’+_,, v R’ ;
—=Xx—X)——X —=+x, v=|—)1,
ot R2 R R

v R 2 . R , v v R L
v- v_<R)(x x)+Rx, a7 +v-Vo=( x) + x".
Then we look at the condition to hav&’(r) = 0, which is equivalent to"—2V being
constant, and thuB?/ (d(R')2+(d+4)(x')%) must be constant. Assumitkgto be constant

we try to satisfy the equation, and we write it in the following form that we can obtain after
multiplying by V%/2:

v 1
—2VVu+F|— 4+ =v-Vov ) =0.
at 2

This equation becomes

2, 2) @ +2 3 , 2d+2) R_”
2(_d+4(R) <>>—d+2<x )+ RS (= D + 1) =0

To satisfy this equation it is necessary and sufficient that the two parts, the one involving
x — x and the other witlt”, both vanish. After simplifying we get

4

R2A(R) + (d + & (@)D + % —0, =0

Hence we must hav&(r) = (1—1)x(0)+rx (1) andx’(r) = e = ¥ (1)—x(0). Now we recall
thatR% (d(R)2+ (d +4)(x")?) was assumed to be constant and 68')2+ (d +4)(x')? =
CR % Hence we geR” = —CR~%~1 Thus,u is a moving self-similar solution if and
only if the following conditions simultaneously hold:

d(R")2 + (d+ 4e? = CR™ % for a certainC,
R’ = —CR%-1 for the same’,
x(t) = x(0) + te.

By differentiating the first equation we get/R'R” = —2dCR~%~1R’ and hence the
second is automatically satisfied, provided we can ensurekthgtO a.e. This means that

R being strictly concave is sufficient (it is not possible to have more than one time instance
where R’ vanishes), but it is also necessary from the second equation. The result is thus
proved. O
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