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ABSTRACT. — The geodesic problem in Wasserstein spaces with a metric perturbed by a conformal factor is
considered, and necessary optimality conditions are established in a case where this conformal factor favours the
spreading of the probability measure along the curve. These conditions have the form of a system of PDEs of the
kind of the compressible Euler equations. Moreover, self-similar solutions to this system are discussed.
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1. INTRODUCTION

Let us consider a closed convex setΩ ⊂ Rd and the setP(Ω) of probability measures
in Ω. Givenp ∈ (1,∞), we denote byWp(Ω) the subspace of measures with finitep-th
moment, i.e.

Wp(Ω) :=

{
µ ∈ P(Ω) :

∫
Ω

|x|p dµ < ∞

}
.

We endowWp(Ω) with the canonical Wasserstein distanceWp(µ, ν) of orderp (see [1],
[10] for the basic facts aboutWp).

It is well known thatWp(Ω) is a length space, and that (constant speed) geodesics
of Wp(Ω) are in one-to-one correspondence with optimal transport plans, via McCann’s
linear interpolation procedure (see for instance Proposition 7.2.2 of [1]). Here we consider,
instead, the case when the Wasserstein metric is perturbed by a conformal factorL(µ): by
minimizing

(1.1)
∫ 1

0
L2(µt )|µ

′
|
2(t) dt

among all curvesµ connectingµ0 = µ to µ1 = ν, one obtains a new squared distance
depending onp andL, and we are interested in computing the geodesics relative to this
distance. In (1.1),|µ′

|(t) is the rate of change ofWp, also called the metric derivative,
along the curveµ (see (2.1)).

This problem has been introduced in [2], where the main goal was to choose a factorL

favouring atomic measures in order to give a time-dependent approach to some branched
transport problems which may be applied to the study of river networks, pipe systems,
blood vessels, tree structures etc. In fact, by settingL(µ) =

∑
i a
r
i (for 0 < r < 1) if

µ =
∑
i aiδxi , andL = +∞ on measures which are not purely atomic, there is a strong
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link between this variational problem and those which were first presented in [11] and
[9] (the latter uses in fact a time-dependent approach, but by means of measures on the
space of paths instead of paths on the space of measures). This choice ofL is in fact a local
functional on measures which, among probability measures, favours the most concentrated
ones. In [2], as a natural counterpart, the case of local functionalsL which prefer spread
measures is considered as well and the two problems sound somehow specular. The aim of
the present paper is in fact to consider this second problem and to find optimality conditions
in the form of PDEs.

In particular, we study in detail the case whenL(µ) is theγ -th power of theLq norm
of the density ofµ with respect to Lebesgue measureLd , with q > 1 andγ > 0 given,
andL(µ) = +∞ if µ is a singular measure. So, geodesics with respect to the new metric
tend to spread the density as much as possible. Denoting byut the density ofµt , we find
that a necessary optimality condition for geodesics is (forp = 2; see (2.5) for generalp)

(1.2)
d

dt
(K(t)vu)+K(t)∇ · (v ⊗ vu)+H(t)∇uq = 0,

wherevt is the tangent velocity field ofµt , linked tout via the continuity equationd
dt
ut +

∇ · (vtut ) = 0. HereH(t) < 0 andK(t) > 0 are suitable functions depending only on the
metric derivative ofµt and onL(µt ). As Brenier pointed out to us, this equation is very
similar to the compressible Euler equation, but with a negative pressure fieldp = H(t)uq ;
a similar equation, withH constant andq = 3, recently appeared also in [7], in the one-
dimensional case. In fact the main difference appears in the relationship between theL part
and the speed part: here it is multiplicative, while in [7] it is additive, as we will explain in
a while.

The appearance of the Euler equation as an optimality condition is not very surprising,
taking into account the approach developed, in the incompressible case, by Brenier (first in
a purely Lagrangian framework in [3], [4], and then in a mixed Eulerian-Lagrangian one
in [5], [6]). In this connection, we mention that our derivation of the optimality condition
differs from [4], [6], where duality is used to perform first variations, and uses instead a
perturbation argument directly at the level of the primal problem.

Due to the non-convex nature of this problem, we do not know of any sufficient
minimality condition for the geodesics. In this connection, one may notice that, in the
caseγ = q/2 andp = 2, we have

inf
δ>0

δ

∫
Ω

uq dx +
1

δ

∫
Ω

|v|
2u dx = 2L(uLd)

(∫
Ω

|v|
2u dx

)1/2

and the minimalL2(µ) norm ofv is strictly linked to the metric derivative. This suggests a
connection between the “multiplicative” model studied here and in [2], and the “additive”
model

min

{∫ 1

0

∫
Ω

(uq + |v|
2u) dx dt :

d

dt
u+ ∇ · (vu) = 0

}
subject to Dirichlet conditions att = 0 andt = 1. This additive model, in the caseq = 3,
is exactly the one studied in [7] (in this connection, see also [8]). Notice that this problem
is convexin the pair(u,vu). It turns out, indeed, that the (necessary and sufficient, by the
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convex nature of the problem) optimality conditions for the additive model are very similar
to (1.2), the only difference being thatH andK do not depend on time.

In the last part of the paper we compute and characterize particular self-similar
solutions of (1.2).

2. OPTIMALITY CONDITIONS FOR WEIGHTEDWASSERSTEIN GEODESICS

2.1. A new velocity vector field

DEFINITION 1. If we are given a Lipschitz curveµ : [0,1] → Wp(Ω), we define a
velocity fieldof the curve to be any vector fieldv : [0,1] × Ω → Rd such that for a.e.
t ∈ [0,1] the vector fieldvt = v(t, ·) belongs to [Lp(µt )]d and the continuity equation

d

dt
µt + ∇ · (vµt ) = 0

is satisfied in the sense of distributions: this means that for allφ ∈ C1
c (Ω) and anyt1 <

t2 ∈ [0,1], ∫
φ dµt2 −

∫
φ dµt1 =

∫ t2

t1

ds

∫
Ω

∇φ · vs dµs,

or, equivalently, in differential form,

d

dt

∫
φ dµt =

∫
Ω

∇φ · vt dµt for a.e.t ∈ [0,1].

We say thatv is thetangentfield to the curveµt if, for a.e. t , vt has minimal [Lp(µt )]d

norm for anyt among all the velocity fields.

It is now well known (see for instance Theorem 8.3.1 and Proposition 8.4.5 in [1]) that
for any Lipschitz or absolutely continuous curveµt with values inWp(Ω) there exists a
unique tangent field and moreover it is characterized by

(2.1) ‖vt‖Lp(µt ) = |µ′
|(t) = lim

h→0

Wp(µt+h, µt )

|h|
for a.e.t ∈ [0,1].

The right hand side in the equality above is the rate of change ofWp along the curveµt ,
also called themetric derivativeof µt .

We now want to investigate how velocity fields change if we modify the curveµt .

THEOREM 2.1. Let a Lipschitz functionµt : [0,1] → Wp(Ω) and a smooth function
T : [0,1] ×Ω → Ω be such that for anyt the functionTt := T (t, ·) is a diffeomorphism.
Consider the new curveµ′

t given byµ′
t = (Tt )]µt . If vt is a velocity field forµt , then the

vector fieldv′ defined by

v′
t · µ′

t = (Tt )]

[(
∇Tt · vt +

∂T

∂t

)
µt

]
is a velocity field forµ′

t .
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PROOF. We have∫
Ω

φ dµ′

t+h −

∫
Ω

φ dµ′
t =

∫
Ω

φ ◦ Tt+h dµt+h −

∫
Ω

φ ◦ Tt dµt

=

∫
Ω

(φ ◦ Tt+h − φ ◦ Tt ) dµt+h +

∫
Ω

φ ◦ Tt d(µt+h − µt )

=

∫
Ω

(∫ t+h

t

(∇φ) ◦ Ts ·
∂T

∂t

∣∣∣∣
s

ds

)
dµt+h +

∫ t+h

t

ds

∫
Ω

(∇φ) ◦ Tt · ∇Tt · vs dµs,

where in the last equality we have used the fact thatvt is a velocity field forµ, with test
functionφ ◦ Tt . It is now convenient to divide byh, rewrite and pass to the limit ash → 0:

(2.2)

∫
Ω
φ dµ′

t+h −
∫
Ω
φ dµ′

t

h
=

∫
Ω

dµt+h
1

h

∫ t+h

t

(∇φ) ◦ Ts ·
∂T

∂t

∣∣∣∣
s

ds

+

∫
Ω

(∇φ) ◦ Tt · ∇Tt · vt dµt +
1

h

∫ t+h

t

ds

∫
Ω

∇ψt · (vs dµs − vt dµt ),

whereψt = φ ◦ Tt . In the first term on the right hand side the measuresµt+h weakly
converge toµt , since t 7→ µt is Lipschitz continuous, while the integrand uniformly
converges as a function of the space variablex to (∇φ) ◦ Tt ·

∂T
∂t

ash → 0. Hence we
get convergence of the integral. If we prove that the last term tends to zero at least for a.e.
t ∈ [0,1] we get the assertion, since then we would have

lim
h→0

∫
Ω
φ dµ′

t+h −
∫
Ω
φ dµ′

t

h

=

∫
Ω

(
(∇φ) ◦ Tt ·

∂T

∂t
+ (∇φ) ◦ Tt · ∇Tt · vt

)
dµt =

∫
Ω

∇φ · v′
t dµ

′
t ,

and this is nothing but the differential version of the continuity equation forv′ andµ′ (it
remains to provev′

t ∈ Lp(µ′
t ) but this is straightforward sinceTt is a diffeomorphism and

this allows us to write down the densities and estimate them). To prove that the last term
vanishes at the limit we see that, for fixedψ ∈ Lip(Ω), the function

s 7→ gψ (s) :=
∫
Ω

∇ψ · vs dµs =
d

ds

∫
Ω

ψ dµs

isL∞ sinceµt is a Lipschitz curve inWp(Ω) and hence almost anys ∈ [0,1] is a Lebesgue
point. This allows us to fix a negligible setN ⊂ [0,1] such that any pointt ∈ [0,1] \N is
a Lebesgue point for all the functionsgψt1 for t1 ∈ Q. We now fixt ∈ [0,1] \N and try to
prove that the last integral in (2.2) tends to zero. Fort1 ∈ Q we have∣∣∣∣1

h

∫ t+h

t

ds

∫
Ω

∇ψt · (vs dµs − vt dµt )

∣∣∣∣
≤

1

h

∫ t+h

t

ds

∣∣∣∣∫
Ω

∇(ψt − ψt1) · vs dµs

∣∣∣∣ +

∣∣∣∣∫
Ω

∇(ψt − ψt1) · vt dµt

∣∣∣∣
+

∣∣∣∣1

h

∫ t+h

t

ds

∫
Ω

∇ψt1 · (vs dµs − vt dµt )

∣∣∣∣
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≤ Lip(ψt − ψt1)LipWp (µ)+

∣∣∣∣1

h

∫ t+h

t

ds

∫
Ω

∇ψt1 · (vs dµs − vt dµt )

∣∣∣∣.
In the last sum the second term tends to zero sincet is a Lebesgue point forgψt1 , and the
first term may be made as small as we want by choosingt1 close tot , sinceψs = φ ◦ Ts
and bothφ andT are regular. 2

2.2. Derivation of the optimality conditions

We consider the minimization problem presented in [2], i.e. finding a curve of measures
in Wp(Ω) of minimal length according to a metric which, roughly speaking, is the
Wasserstein (infinitesimal) metric multiplied by a conformal factor. Precisely, if we define
for q > 1 the functional

Lq(ν) =

{∫
Ω
uq dLd if ν = u · Ld ,

+∞ otherwise,

we want to minimize ∫ 1

0
Lq(µt )|µ

′
|(t) dt,

where|µ′
|(t) is the metric derivative of the curveµ and the minimization occurs among

all the Wasserstein–Lipschitz curvest 7→ µt with given initial and final points, i.e.µ0 and
µ1 are given probability measures inWp(Ω). We will always consider only the non-trivial
caseµ0 6= µ1. If we defineV (µ, t) =

∫
Ω

|vt |
p dµt , wherev is the tangent field to the

curveµt , we know that|µ′
|(t) = V (µ, t)1/p. We may generalize the functional we want

to minimize by considering

F(µ) :=
∫ 1

0
Lq(µt )

α V (µ, t)β dt

which reduces to the case studied in [2] ifα = 1 andβ = 1/p. Notice that in this case
the functional does not change under reparametrization of curves, while ifβ > 1/p the
minimization selects a particular parametrization. Forβ ≤ 1/p the existence of a minimum
is not ensured. Anyway we do not deal here with existence results (see [2]), but we only
look for necessary optimality conditions. We will consider variations ofµ of the form

µεt = (T εt )]µt with T ε(t, x) = x + εξ(t, x), T ε = id + εξ(t, ·),

for arbitrary regular functionsξ ∈ C∞
c ([0,1] ×Ω; Rd). In the end optimality conditions

will be expressed through a system of PDEs: we will obtain the result after collecting some
lemmas. What we want to do now is exploiting the fact that for a minimizing curveµ the
following quantity must be minimal forε = 0:

F(µεt ) =

(∫ 1

0
Fε(t)

αVε(t)
β dt

)
,

provided we defineFε(t) = Lq(µ
ε
t ) andVε(t) = V (µε, t). Since it is not easy to deal with

the termVε(t), we will replace it byṼε(t) given by

Ṽε(t) =

∫
Ω

|(vε)t |
p dµεt .
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Here the vector fieldvε is the one we get by Theorem 2.1 when the mapT is T ε and the
initial field vt is the tangent field toµt . In this way we haveṼε(t) ≥ Vε(t) (sincevεt is not
necessarily of minimalLp norm) butṼε(0) = Vε(0). Thus we may switch tõVε(t) instead
of Vε(t), getting

F̃(µεt ) =

(∫ 1

0
Fε(t)

αṼε(t)
β dt

)
.

We will compute the derivative of̃F(µεt ) with respect toε and get the conditions we are
looking for.

LEMMA 2.2. If µ is a curve given byµt = utLd and such thatF(µ) < ∞, then for
almost anyt ∈ [0,1],

d

dε
Fε(t) = (1 − q)

∫
Ω

(JT εt )
′

(
ut

JT εt

)q
dLd .

In particular,
d

dε
Fε(t)|ε=0 = (1 − q)

∫
Ω

(∇ · ξ)u
q
t dLd .

Moreover, forε sufficiently small (depending onT , but not ont),

d

dε
Fε(t) ≤ CLq(µt ).

PROOF. We look at the integrand in the definition ofFε: to do this it is necessary to look
at the density of the measureµεt . Thanks to the change of variables formula, this density
can be easily seen to be given by

uεt =
ut

JT εt
◦ (T εt )

−1,

where J stands for the Jacobian (this formula is a consequence ofT εt being a
diffeomorphism at least for smallε). Thus, after changing variables, we have

Fε(t) = Lq(µ
ε
t ) =

∫
Ω

(
ut

JT εt

)q
JT εt dLd .

The derivative of the integral is

(1 − q)(JT εt )
′

(
ut

JT εt

)q
,

where(JT εt )
′ stands for the derivative ofJT εt with respect toε. This quantity may be easily

estimated byCuqt , since 1− a ≤ JT εt ≤ 1 + a and(JT εt )
′
≤ B for suitable constantsa

andB. Since for almost anyt the functionut must belong toLq (because the functional
we are minimizing is finite) we can apply the dominated convergence theorem and get the
assertion. To obtain the derivative atε = 0 it is sufficient to notice that(JT εt )

′
|ε=0 = ∇ ·ξ,

which is well known. The same estimate we used to get dominated convergence may be
used to get the last inequality. 2

In the next lemma we consider the term̃Vε.
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LEMMA 2.3. If µ is a curve such thatF(µ) < ∞, then for almost anyt ∈ [0,1],

(2.3)
d

dε
Ṽε(t) = p

∫
Ω

∣∣∣∣∇T εt · vt +
∂T ε

∂t

∣∣∣∣p−2(
∇T εt · vt +

∂T ε

∂t

)
·

(
∇ξ · vt +

∂ξ

∂t

)
dµt .

In particular,

d

dε
Ṽε(t)|ε=0 = p

∫
Ω

|vt |
p−2vt ·

(
∇ξ · vt +

∂ξ

∂t

)
dµt .

Moreover, forε sufficiently small (depending onT , but not ont),

d

dε
Ṽε(t) ≤ C(V (µ, t)+ 1).

PROOF. If we compute the densities ofµεt and the expression of the new velocity field
and we change variable in the integral by means ofy = T εt (x), as we did in the previous
lemma, we get

(2.4) Ṽε(t) =

∫
Ω

∣∣∣∣∇T εt · vt +
∂T ε

∂t

∣∣∣∣p dµt .
When we differentiate the integrand we get exactly the integrand in (2.3), and we only
need to show that this expression is uniformly dominated, at least for smallε and almost
everyt , to get the result. By boundedness of the derivatives ofT ε it is not difficult to see
that the norm of the first vector in the scalar product in the integrand may be estimated by∣∣∣∣∇T εt · vt +

∂T ε

∂t

∣∣∣∣p−1

≤ (C|vt | + C)p−1,

while for the second we have∣∣∣∣∇ξ · vt +
∂ξ

∂t

∣∣∣∣ ≤ C|vt | + C

for a suitable constantC. Hence, sincevt ∈ [Lp(µt )]d for almost everyt the integrability
is proved and the differentiation under the integral sign can be performed.2

To conclude, we put together the previous two results in order to compute the derivative
of the integral int .

THEOREM 2.4. If µ is a curve withF(µ) < ∞ andV (µ, t) ≥ V0 > 0 for almost everyt ,
then

d

dε
F̃(µε)|ε=0 = α(1 − q)

∫ 1

0
F α−1V β

∫
Ω

(∇ · ξ)u
q
t dLd dt

+pβ

∫ 1

0
F αV β−1

∫
Ω

|vt |
p−2

(
∇ξ · vt +

∂ξ

∂t

)
· vt dµt dt,

whereF(t) = Lq(µt ) andV (t) has the usual meaning.
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PROOF. By the definition ofF̃(µε) we see that the pointwise derivative of the integrand is

αFε(t)
α−1dF

dε
Ṽε(t)

β
+ βFε(t)

αṼε(t)
β−1dṼ

dε
.

By the regularity ofT ε the termFε(t) may be estimated both from above and below by
F(t), up to multiplicative constants. As far as̃V ε(t) is concerned, the argument is a little
more tricky. Indeed, we must writẽV ε(t) according to (2.4), then estimate

A−
|vt | − B ≤

∣∣∣∣∇T εt · vt +
∂T ε

∂t

∣∣∣∣ ≤ A+
|vt | + B,

for ε small enough, where the constantsA± are as close to 1 as we want and the constant
B is as small as we want (this comes from∇T εt = id + O(ε) and∂T ε/∂t = O(ε)), and
get

A−Ṽ 0
− B ≤ Ṽ ε ≤ A+Ṽ 0

+ B.

The assumptionV ≥ V0 > 0 allows us to infer from these inequalities that alsoṼ ε may
be estimated both from above and below byV up to multiplicative constants. Finally, by
the estimates in Lemmas 2.2 and 2.3, we bound the whole pointwise derivative byCF αV β

since we have
dF

dε
≤ CF,

dṼ

dε
≤ C(V + 1) ≤ C

(
1 +

1

V0

)
V,

where the last inequality too follows fromV ≥ V0. SinceLαqV
β is integrable on [0,1], we

may differentiate under the integral sign and get

d

dε
F(µε)|ε=0 =

∫ 1

0

(
αF(t)α−1dF

dε

∣∣∣∣
ε=0
Ṽ (t)β + βF(t)αṼ (t)β−1dṼ

dε

∣∣∣∣
ε=0

)
dt.

The result follows when we replace the derivatives inε by the explicit expressions we
computed in Lemmas 2.2 and 2.3. 2

REMARK 1. If β = 1/p andµ is a minimizer, it is always possible to get the lower
boundV ≥ V0 by reparametrizing in time, for instance by choosing the constant speed
parametrization.

COROLLARY 2.5. If µ minimizesF with given boundary conditionsµ0 andµ1, then its
densityu and its tangent fieldv satisfy

α(1 − q)

∫ 1

0
F(t)α−1V (t)β

∫
Ω

(∇ · ξ)u
q
t dLd dt

+ pβ

∫ 1

0
F(t)αV (t)β−1

∫
Ω

ut |vt |
p−2

(
∇ξ · vt +

∂ξ

∂t

)
· vt dLd dt = 0

for any vector fieldξ ∈ C∞
c (]0,1[×Ω; Rd).

PROOF. It is sufficient to notice that when we create the modified curveµε starting from
the vector fieldξ we do not change the initial and final points of the curve, so that the
minimality implies that the derivative of̃F(µε) at ε = 0 vanishes. 2
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2.3. A system of PDEs

The following theorem follows directly from the previous section.

THEOREM 2.6. Letµ0, µ1 ∈ Wp(Ω) and letµ be a curve minimizingF onΓ (µ0, µ1),
with a finite minimum value. Then, denoting byu(t, ·) the density ofµt and byv(t, ·) the
tangent field to the curveµ, (u,v) provide a weak (distributional) solution of the system

(2.5)



H(t)∇uq +K(t)∇ · (u|v|
p−2v ⊗ v)+

d

dt
(K(t)u|v|

p−2v) = 0 in Ω,

d

dt
u+ ∇ · (vu) = 0 in Ω,

uv · n = 0 on ∂Ω,

lim
t↓0
u(t, ·)Ld = µ0, lim

t↑1
u(t, ·)Ld = µ1,

whereH(t) = α(1 − q)F (t)α−1V (t)β andK(t) = pβF(t)αV (t)β−1.
Given (µ0, µ1), existence of minimizers is ensured wheneverq < 1 + 1/d or, for

generalq, under the assumption thatµ0 = u0Ld andµ1 = u1Ld with u0, u1 ∈ Lq(Ω)

(see[2]), hence under these conditions existence of solutions to this system is ensured.

It is interesting to rewrite the equations, make some formal simplification and look at
some particular cases.

First we expand all the terms in the first equation of system (2.5), obtaining

(2.6) H(t)∇uq +K(t)(u|v|
p−2v · ∇v + v|v|

p−2
∇ · (uv)+ u(v · ∇|v|

p−2)v)

+K(t)

(
v|v|

p−2 d

dt
u+ u

d

dt
(v|v|

p−2)

)
+
d

dt
K(t)u|v|

p−2v = 0.

Notice that this is always a vector equation, i.e. a system itself, consisting ofd equations
with d + 1 unknown functions (the components ofv and the densityu). This system is
then completed by the continuity equation. As usual, byv · ∇v we mean the vector whose
i-th component is

∑
j vj∂vi/∂xj .

A formal simplification in (2.6) may be done: in fact there is a term
(K(t)v|v|

p−2)(du/dt+∇ · (uv)) that might be removed by using the continuity equation.
This is actually possible only under extra regularity assumptions onK andv (it consists
in testing the continuity equation against the productK(t)v|v|

p−2 which is not in general
C1 or regular enough). Anyway, after this formal simplification, (2.6) becomes

(2.7) H(t)∇uq +K(t)(u|v|
p−2v · ∇v + u(v · ∇|v|

p−2)v)

+K(t)u
d

dt
(v|v|

p−2)+
d

dt
K(t)u|v|

p−2v = 0.

Notice that in the caseβ = 1/p we can reparametrize in time the solution and there are
several possible parametrization choices that present some advantages. For instance, we
could choose a parametrization so thatK(t) is constant, to get rid of the final derivative in
time. This choice implies

V (t) =

(
F α

K

)p/(p−1)

,
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and this, in the case of a bounded|Ω| < ∞, is sufficient to have the lower boundV ≥ V0,
since in this caseF is bounded from below by a positive constant.

Another important fact to be noticed is that in (2.7) there is a commonu factor. It is
still formal, but in this way we should get, on{u > 0},

H(t)uq−2
∇u+K(t)(|v|

p−2v · ∇v + (v · ∇|v|
p−2)v)

+K(t)
d

dt
(v|v|

p−2)+
d

dt
K(t)|v|

p−2v = 0.

REMARK 2. One might wonder whether the solutionsu are automatically positive a.e.
in Ω for t ∈ ]0,1[. This could be suggested by the fact that in the minimization problem
spreadness of the density is favoured. In the next section we will see with explicit examples
that this is not necessarily the case.

We finish this overview of simplifications of the system by looking at the simplest case,
i.e. p = q = 2, α = 1, β = 1/2, in the parametrization regime whereK is constant. In
this case we get

(2.8)



−2V (t)1/2∇u+K

(
v · ∇v +

d

dt
v

)
= 0 in {u > 0},

d

dt
u+ ∇ · (vu) = 0 inΩ,

uv · n = 0 on∂Ω,

lim
t↓0
u(t, ·)Ld = µ0, lim

t↑1
u(t, ·)Ld = µ1.

Under no constraint on the parametrization we have, instead,

(2.9)



−2V (t)1/2∇u+K(t)

(
v · ∇v +

d

dt
v

)
+ v

dK

dt
= 0 in {u > 0},

d

dt
u+ ∇ · (vu) = 0 inΩ,

uv · n = 0 on∂Ω,

lim
t↓0
u(t, ·)Ld = µ0; lim

t↑1
u(t, ·)Ld = µ1.

3. SELF-SIMILAR SOLUTIONS

3.1. Homothetic solutions with fixed center

In this section we look for particular solutions of system (2.5) which are self-similar in the
sense that, for anyt , the measureµt is the image under a homothety of a fixed measure.
For simplicity we will consider only the case of system (2.9), i.e. withp = q = 2, and
we assume that 0∈ Ω. The regularity of the candidate solutions we will propose will be
enough to ensure that we can use this simplified system, instead of system (2.5). To start
this analysis it is necessary to establish the following lemma.

LEMMA 3.1. If µ is a curve inW2(Ω) of the formµt = (TR(t))]µ̄ for a certain regular
functionR : [0,1] → ]0,1] (whereTR(x) = Rx is the multiplication by a factorR, hence
a homothety), then its tangent field is given byvt (x) = xR′(t)/R(t).
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PROOF. It is not difficult to prove that the field we have just defined solves the continuity
equation and hence is a velocity field. Indeed, ifφ ∈ C1

c (Ω), then

d

dt

∫
Ω

φ dµt =
d

dt

∫
Ω

φ(R(t)x) dµ(x) =

∫
Ω

∇φ(R(t)x) · R′(t)x dµ(x)

=

∫
Ω

∇φ(R(t)x) ·
R′(t)

R(t)
R(t)x dµ(x) =

∫
Ω

∇φ · vt dµt .

It remains to prove thatv is actually the tangent velocity field, i.e. that itsL2 norm is
minimal for a.e.t . This is achieved if we are able to prove that‖vt‖L2(µt )

= |µ|
′(t) for a.e.

t ∈ [0,1]. To do this, fix two timest < t+h and see that the mapT (x) = xR(t+h)/R(t)

is a transport betweenµt andµt+h. Since it is the gradient of the convex functionx 7→

x2R(t+h)/2R(t), it is actually the optimal transport according to the quadratic cost. Hence

W2
2 (µt , µt+h)

h2
=

1

h2

∫
Ω

(
R(t + h)

R(t)
− 1

)2

x2 dµt (x) →

∫
Ω

(
R′(t)

R(t)

)2

x2 dµt (x).

Since this last quantity is exactly the norm ofvt in L2(µt ), this proves thatv is the tangent
field to the curveµ. 2

REMARK 3. In the casep 6= 2 the same result is true, but one has to use the
characterization of tangent velocity fields in terms of limits of gradients of smooth maps
(see Proposition 8.4.5 of [1]).

A first result we prove is the following:

THEOREM 3.2. If (u,v) is a self-similar solution of system(2.5) with u Lipschitz
continuous, then necessarilyu is of the form

u(t, x) = (At − Bt |x|
2) ∨ 0 for suitable coefficientsAt , Bt > 0.

PROOF. We look at the equation (2.7) withp = q = 2, which is valid on{u > 0}, and
we freeze time, i.e. we look at the resulting space equation for fixedt . We use the fact
thatv is of the formvt (x) = ctx, which implies that all the termsv, v · ∇v anddv/dt
are of the same form. This easily implies that also∇u is of the same form. Hence, at
time t , on {u > 0}, we haveu(x) = At − Btx

2, where a prioriBt could also be negative.
However, we can prove thatBt cannot be negative. In fact, if it were, and ifΩ were a
convex unbounded domain, thenu could not be the density of a probability measure. On
the other hand, one can easily see that on bounded convex domainsΩ self-similar solutions
must vanish on∂Ω, otherwise we should get a jump of the density at the boundary of
{u > 0} when rescaling, butu was supposed to be Lipschitz (except in the case that the
solution is constant in time). This implies that also in the case ofΩ bounded the coefficient
Bt must be positive. For the same continuity reason we see that the region{u > 0} must
agree withΩ ∩ {At − Btx

2 > 0} in order to have continuity ofu, and this proves the
formula. 2

REMARK 4. A similar result could be obtained for generic Wasserstein spaces with
exponentp > 1 any self-similar solution should be of the formu(t, x) = (At−Bt |x|

p)∨0.
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THEOREM 3.3. If µ̄ is a probability measure onΩ with density

u(x) = A[(R2
− |x|2) ∨ 0],

then for any regular and monotone functionR : [0,1] → [0,1] the curveµt = (TR(t))]µ̄

is a solution to system(2.5) together with its tangent fieldv.

PROOF. It is sufficient to check the first vector equation in (2.9). First we compute the
correct constantA: we must have

1 = A

∫ R

0
(R2

− r2)dωdr
d−1 dr = ARd+2ωd

2

d + 2
,

and henceA = R−d−2(d + 2)/(2ωd). This allows us to compute the termF(t):

F = A2
∫ R

0
(R2

− r2)2 dωdr
d−1 dr = R−d 2(d + 2)

(d + 4)ωd
.

Then we computeV by recalling thatvt (x) = xR′(t)/R(t):

V =

(
R′

R

)2

A

∫ R

0
r2(R2

− r2) dωdr
d−1 dr =

d

d + 4
(R′)2.

We must also computedv/dt andv · ∇v:

∂v

∂t
= x

R′′R − (R′)2

R2
, ∇v =

(
R′

R

)
I, v · ∇v =

(
R′

R

)2

x.

We now compute

K(t) = F(t)V (t)−1/2
= R−d

|R′
|
−1 2(d + 2)

√
d(d + 4)ωd

,

K ′(t) = sign(R′)(−dR−d−1
− R−d(R′)−2R′′)

2(d + 2)
√
d(d + 4)ωd

.

If we set c = sign(R′)
2(d+2)

√
d(d+4)ωd

thenK = cR−d(R′)−1 andK ′
= c(−dR−d−1

−

R−d(R′)−2R′′), but also−2V 1/2
∇u(x) = cdR′R−d−2x. Inserting everything in the

equation we must check that

dR′xR−d−2
+ R−d(R′)−1x

R′′

R
− (dR−d−1

+ R−d(R′)−2R′′)x
R′

R
= 0.

The proof is complete as this last equation is (miraculously enough) always satis-
fied. 2

REMARK 5. By a similar proof we can show that, forp 6= 2, if µ̄ has a density of the
form u(x) = A[(Rp − |x|p) ∨ 0], thenµ gives rise to a self-similar solution.

REMARK 6. This kind of self-similar solutions can join two different probability
measures which are homothetic, and in particular arrive at the Dirac massδ0. Moreover,
it is not in general possible to link a measure toδ0 by a curve with finite energy: in [2],
conditions to ensure this possibility are provided, but in general they are not satisfied in the
caseq = 2.
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3.2. Moving self-similar solutions

We have characterized all the self-similar solutions which link two homothetic probability
measures. It is however interesting to look also at the moving self-similar solutions, i.e. at
solutions obtained by homotheties and translations together.

In this case we consider a reference measureµ̄ and we look for solutions of the form
(T t )]µ̄, whereT t (x) = R(t)x + x̄(t). It is not difficult to replace Lemma 3.1 with the
following:

LEMMA 3.4. If µ is a curve of the formµt = (T t )]µ̄, then its tangent field is given by

vt (x) =
R′(t)

R(t)
(x − x̄(t))+ x̄′(t).

PROOF. The result may be proved very similarly to Lemma 3.1: it is sufficient to check
the continuity equation

d

dt

∫
Ω

φ(R(t)x + x̄(t)) dµ(x) =

∫
Ω

∇φ(R(t)x + x̄(t)) · (R′(t)x + x̄′(t)) dµ(x)

=

∫
Ω

∇φ(R(t)x + x̄(t)) ·
R′(t)

R(t)
(R(t)x + x̄′(t)) dµ(x) =

∫
Ω

∇φ · vt dµt ,

and then to check the optimality of the norm by the fact that the map

x 7→
R(t + h)

R(t)
(x − x̄(t))+ x̄(t + h)

transportsµt toµt+h and is optimal, and that

1

h2

∫
Ω

(
R(t + h)

R(t)
(x − x̄(t))+ x̄(t + h)− x

)2

dµt (x)

converges to ∫
Ω

(
R′(t)

R(t)
(x − x̄(t))+ x̄′(t)

)2

dµt (x) = ‖vt‖L2(µt )
. 2

For computational simplicity we consider moving self-similar solutions only under a
special reparametrization.

THEOREM 3.5. If µ̄ is a probability measure onΩ with density

u(x) = A[(R2
− |x|2) ∨ 0]

and x̄(0), x̄(1) ∈ Ω are assigned, a curveµt = (T t )]µ̄, parametrized so thatK =

FV −1/2 is constant, is a moving self-similar solution (solving system(2.8) together with
its own tangent field) if and only if the vectorx moves on the straight line segment from
x̄(0) to x̄(1) with constant speed andR is a strictly concave function oft . This means

x̄′′
= 0, R2d(d(R′)2 + (d + 4)(x̄′)2) is constant andR strictly concave.
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PROOF. We only need to check under which conditions the first equation is satisfied. We
re-write in this case the quantity considered in Theorem 3.3: first we compute

u(x) = A[(R2
− |x − x̄|2) ∨ 0], A =

(d + 2)

2Rd+2ωd
, ∇u(x) = −

(d + 2)

Rd+2ωd
(x − x̄),

F = R−d 2(d + 2)

(d + 4)ωd
, V =

d

d + 4
(R′)2 + (x̄′)2.

We have used the fact thatut is symmetric around̄x(t) and hence there is no mixed term
(x − x̄(t)) · x̄′(t) in computingV (t). Then we go on withdv/dt andv · ∇v:

∂v

∂t
= (x − x̄)

R′′R − (R′)2

R2
− x̄′

R′

R
+ x̄′′, ∇v =

(
R′

R

)
I,

v · ∇v =

(
R′

R

)2

(x − x̄)+
R′

R
x̄′,

∂v

∂t
+ v · ∇v = (x − x̄)

R′′

R
+ x̄′′.

Then we look at the condition to haveK ′(t) = 0, which is equivalent toF−2V being
constant, and thusR2d(d(R′)2+(d+4)(x̄′)2)must be constant. AssumingK to be constant
we try to satisfy the equation, and we write it in the following form that we can obtain after
multiplying byV 1/2:

−2V∇u+ F

(
∂v

∂t
+

1

2
v · ∇v

)
= 0.

This equation becomes

2

(
d

d + 4
(R′)2 + (x̄′)2

)
(d + 2)

ωdRd+2
(x − x̄(t))+ R−d 2(d + 2)

(d + 4)ωd
((x − x̄)

R′′

R
+ x̄′′) = 0.

To satisfy this equation it is necessary and sufficient that the two parts, the one involving
x − x̄ and the other with̄x′′, both vanish. After simplifying we get

R−2(d(R′)2 + (d + 4)(x̄′)2)+
R′′

R
= 0, x̄′′

= 0.

Hence we must havēx(t) = (1−t)x̄(0)+t x̄(1) andx̄′(t) = e = x̄(1)−x̄(0). Now we recall
thatR2d(d(R′)2+(d+4)(x̄′)2)was assumed to be constant and sod(R′)2+(d+4)(x̄′)2 =

CR−2d . Hence we getR′′
= −CR−2d−1. Thus,u is a moving self-similar solution if and

only if the following conditions simultaneously hold:
d(R′)2 + (d + 4)e2

= CR−2d for a certainC,

R′′
= −CR−2d−1 for the sameC,

x̄(t) = x̄(0)+ te.

By differentiating the first equation we get 2dR′R′′
= −2dCR−2d−1R′ and hence the

second is automatically satisfied, provided we can ensure thatR′
6= 0 a.e. This means that

R being strictly concave is sufficient (it is not possible to have more than one time instance
whereR′ vanishes), but it is also necessary from the second equation. The result is thus
proved. 2
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