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ABSTRACT. — In [B8H] a structure theorem for Gorenstein algebras in codimension 2 was obtained. In Section 1
of this article we give a geometric application and prove a structure theorem for good birational canonical
projections of regular surfaces of general type with= 5 to P4 (Theorem 1.6). In Section 2 we show how this

can be used to analyze the moduli space of canonical surfaces witd, p, =5 andk? =11 (Theorem 2.4).
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0. INTRODUCTION

Open problems in the theory of algebraic surfaces of general type can roughly be put into
two classes: first, there are questions concerning the existence of surfaces with prescribed
invariants (the “geography”) and, secondly, the problem of describing their moduli spaces
and canonical resp. pluricanonical models has to be addressed (the “botany”). We want to
consider the aforementioned issues, especially the latter, in the special case of surfaces with
geometric genup, = 5, more precisely for canonical surfacedth(i.e. those for which

the 1-canonical map is a birational morphism onto the imagé)mith ¢ = 0 andp, = 5.

A Gorenstein algebra in codimension 2 is a finkealgebraB (R some “nice” base
ring) with B = Extfe(B, R), possibly up to some twist if the base ring is graded (cf.
Section 1 below for precise definitions).

Given a regular surfacg of general type with canonical map— Y ¢ P* a birational
morphism, the canonical rir§ = &, o HO(S, Os(mK)) is a codimension 2 Gorenstein
algebra overtd = CJxo, ..., x4], the homogeneous coordinate ring®t. In Section 1
we prove a converse to this assertion based on a structure theorem for Gorenstein algebras
proven in [BH]: Starting from somel-moduleR with a Gorenstein symmetric resolution
of length 2 such that some mild depth condition on a certain ideal of minors associated
to a presentation matrix &R as.A-module is satisfied, one finds thatis automatically
a Gorenstein algebra in codimension 2 (the point being, of courseRhas a ring
structure). Then we can sét = ProjR, which turns out to be the canonical model of
a surfaceS as above, provide® has only rational double points as singularities. This is
our Theorem 1.6 on good birational canonical projections of regular surfaces of general
type withp, = 5to P4, It is a generalization to higher codimension of a structure theorem
for Gorenstein algebras in codimension 1 proven in [Cat2] for the purpose of studying the
moduli of canonical surfaces iB®. The main difference is that within the codimension
1 setting the presence of a ring structure ®ris equivalent to eclosedcondition on
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Fitting ideals of a presentation matrix 6f over A, the so-called “ring condition” or
“rank condition” or “condition of Roucé—Capelli”, aptly abbreviated R.C., whereas in
codimension 2 the ring condition is automatic, at least if we restrict attention to the case
where the canonical image c P* has isolated non-normal locus.

In Section 2 we use Theorem 1.6 to analyze canonical surfaceskgita 11 and in
particular we prove that “generically” the presentation matrices of the canonical®ings
asA-modules can be reduced to an explicit normal form (cf. Lemma 2.1; “generically”
here means that ifly := A/Anny R, then the subscheme Bf defined by the zeroth
Fitting ideal of R/ Ay - 1 is a collection of three reduced points). The proof of Lemma 2.1
is an admittedly painstaking calculation, but it pays off immediately afterwards: Using
Lemma 2.1 one can explicitly solve the Gorenstein symmetry condition imposed on the
resolution of the canonical rind for K2 = 11, a problem raised already in [Cat3, after
Remark 6.6]. We are then able to deduce that regular surfacegpwith 5 andk? =11
whose canonical map is a birational morphism and whose canonical rings satisfy the above
genericity assumption, form an irreducible unirational open set of dimension 38 inside their
moduli space (Theorem 2.4).

One must mention that a theorem very similar to this last result was proven previously
by Daniel RoRberg by completely different methods in his long article |Ross]: He
constructs the canonical imageas the degeneracy locus of a morphism between reflexive
sheave§ and§ withrk § = rk ¥+ 1, and considers only thogewhich are smooth except
for a number of improper double points. He then deduces that the canonical surfaces with
Pg =5, =0, K? = 11 such that has only improper double points form a unirational
open set of dimension 38 in their moduli space. Our approach is more algebraic and, in
our opinion, of some interest (apart from its novelty) because it allows one to analyze
also surfaces wherE could have more complicated singular locus, and it gives detailed
information on the structure of the canonical rings.

We do not repeat here the history of the ideas underlying our approach since it can be
found in [Cat38] and the introduction of fii].

Our commutative algebra notation agrees largely with [Ei], but the following point
(which traditionally seems to cause notational confusion) should be noted: EoR an
ideal in a Noetherian ring antf a finite R-module, we write gradd, M) for the length
of a maximalM -regular sequence containedfirl= min{i : ExtiR(R/I, M) # 0}), and
also, if there is no risk of confusion, gradie := gradéAnng (M), R) and gradd .=
grad€l, R). Furthermore ifR = (R, m, k) is a Noetherian local ring or graded ring with
m a unique maximal element among the graded proper ide&qefg. a positively graded
algebra over a field), we write depkh:= gradém, R). This is in accordance with [B-He]
and the terminology seems to go back to Rees.

Finally, | would like to thank Fabrizio Catanese for introducing me to the problem and
for continuous stimulus and helpful suggestions.

1. THE STRUCTURE THEOREM FOR GOOD BIRATIONAL
CANONICAL PROJECTIONS TaP*

In this section we recall some facts for canonical surfacé®'ineeded in the following
and prove the structure theorem 1.6.
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DEFINITION 1.1. Let S be a smooth surface and : § — Y < P* a morphism given
by a5-dimensional base-point free linear subspdcef Ho(S, Os(K)) and such thatr
is birational onto its image’ in P4. ThenY is called acanonical surfacen P* (andx a
good birational canonical projectipn

In the above situation, sind€s is nef, S is automatically a minimal model of a surface
of general type.

Henceforth we assume thétis aregular surfacei.e.q = h'(S, O5) = 0, basically
because then the canonical riRg= P, HO(S, O5(nK)) enjoys the following property
which makes it convenient to study by homological methods:

PROPOSITION1.2. R, viewed as a module over the homogeneous coordinateAiag
C[xo, . .., x4] of P*vian, is a Cohen—Macaulay (CM) module iff S is a regular surface.

For a proof one can consult [Cil, Props. (1.1) and (5.1)].

On the other hand, the fact thatis a good birational canonical projectiof{(K) =
7*0pa(1)) implies that various remarkable duality statements holdRfowhich we shall
frequently exploit and which can be best expressed in terms of properties of the minimal
free resolution ofR. Precisely:

DEFINITION 1.3. Let R := k[x1,...,x,] be a polynomial ring inr indeterminates
over some field, graded in the usual way, and I& be a gradedR-algebra. ThenB
is said to be aGorenstein algebra of codimensionand with twistd € 7Z) over R if
B = Exty, (B, R(d)) as B-modules.

[The B-module structure on E¥(B, R(d)) is induced fromB by functoriality of
Ext.(-, R(d)): If b € B andm, : B — B is multiplication byb on B, then the map
Ext} (my, R(d)) is multiplication byb on Ext, (B, R(d)).]

THEOREM 1.4. With the hypotheses and notation of Definitibd, R is a Gorenstein
algebra of codimensiof over. A and as such has a minimal graded free resolution of the
form

n+1 (*ﬂ;r) n+1 n+1
Re: 0> PA-6+r) —— PA-6+s5) e PA(-s)
i=1 j=1 j=1

1

@ B) n+1
— @A(—ri) - R - 0.
i=1

PROOF (SKETCH). SettingX := ProjR, the canonical model &f, we see thatr, being
given by a base-point free linear subsystenmkf|, factors throughX as in the diagram

N/

X

Y cP?
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and ¢ is a finite morphism ontd@. Hence by relative duality for finite morphisms (cf.
e.g. [Lip, p. 48ff]), Ysox = Home, (¥+0x, wy), Wherewy = Ext} ,(Oy, wpa) and
P
wy are the Grothendieck dualizing sheavestofX resp.; butiHomg, (¥+O0x, wy) =
Exté 4(w*(9x, wpa) sinceY has codimension 2 iR* (cf. also [Har, p. 242]). Furthermore
P

Vewx = R(1) (cf. [Cat2, p. 76, Prop. 2.7]) angl,Ox = R. Thus we get

(1) R = 8ngp4 (R, Opa(—6)).

SinceR is CM we obtain a length 2 resolution

(2) 0> F—>F— Fp—R—>0,

with Fp, , F1, F> graded freed-modules. Taking Hom (-, A(—6)) of (2) we get
() 0— Fy (—6) — F\'(—6) — Fy (—6) — Ext4(R, A(—6)) — 0.

Since&xtéﬂ)4 (R, Opa(—6)) is the sheaf associated to EXRR, A(—6)), andR the sheaf

associated t®R, and we have resolutions (2) and (3) of length 2 adefor these two
modules, it follows easily that Eit(ﬂ%, A(—6)) equals the full module of sections of the

sheaféxr? 4(5%, Opa(—6)), andR the full module of sections ok; thus from (1) we infer
P
the isomorphism afl-modules

@) R = ExtZ (R, A(—6)),

which is also an isomorphism dR-modules since it is functorial with respect to
endomorphisms dR (which follows from the functoriality of the isomorphismiswy =
Homo, (Y«Ox, wy) and Hom o, (¥4 Ox, wy) = (‘lxtéw4 (¥«Ox, wpsa) above). The iso-
morphism (4) lifts to an isomorphism of minimal graded free resolutions (2) and (3).
In particular, rankFp = rankF», and since Anp R # 0 one has rankp — rankFy +
rankF, = 0, whence there exists an integeisuch that rany = rankF, = n + 1,
rankF1 = 2n + 2. For the fact that now (2) can be symmetrized to give a resol®Rioas

in the statement of the theorem we referl t@f3 Section 2] or[Gra, p. 938ff., Lemma 2.1
and Proposition 2.3]. O

Next, we certainly havg, (S) > 5 for surfaces§ as in Definition 1.1, and for simplicity
we assumey, (S) = 5 in what follows. As forK§ of such surfaces, we list here:

e One can only expect to find canonical surface®frwith pg = 5andg = 0in the
range 8< K2 < 54. The lower bound follows from Castelnuovo’s inequalfy >
3pg + g — 7. The upper bound follows from the Bogomolov—Miyaoka—Yau inequality
K? < 3e(S) in combination with Noether’s formul& 2+ e(S) = 12(1— g + p), where
e(S) is the topological Euler characteristic §f

e For K2 = 8 resp. 9 the solutions one gets are the complete intersections of2tyfe
resp.(3, 3) (cf. [En, p. 284ff.]).

e Existence is known in the cas&® = 10, 11, 12; the cas& 2 = 10 is treated in[Cil],
subsequently also ih [Cat3, p. 42ff.] ahd [Ross, p. 108ff.], by approaches differentin taste
each time. Moreover, in the latter case one has a satisfactory picture of the moduli space
of these surfaces; fat2 = 11, 12 a partial description of the moduli spaces i$in [Ross].

Therefore let us also assunk& > 10 henceforth.
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For the casg, = 5, ¢ = 0, K? > 10, the numbers, r;, s;, i = 1,...,n+ 1,
appearing in the resolutidR, of Theorem 1.4 are readily calculated; this is doné in|[Cil,
p. 304, Prop. (5.3)] (cf. als@ [Cat3, p. 41, Prop. 6.2]):

THEOREM 1.5. For a canonical surface i®* with g = 0, Pe =5, K? > 100ne has a
resolution of the canonical rint,
_ﬂt
(5) RgO—»AGﬁMBAGAW—LﬂL~M—$%%
9P A A2 - R0,
wheren 1= K2 — 9.

However, what is important here is that there is a converse to the story told so far, on
which rests the analysis of canonical surfaces done in this work:

THEOREM1.6. LetR be some finited-module with minimal graded free resolution as
in (5). Write A := (« B), A’ := A with first row erased/,(A’) = Fitting ideal ofn x n
minors ofA’, and assume

e depthr, (A") > 4.
ThenR is a Gorenstein algebra; assume furthermore that
e X :=ProjR has only rational double points as singularities.

EndowY := SupgR) < P* with its scheme structure given By = Anny R. ThenXx
is the canonical model of a surfaceof general type witly = 0, p, = 5, K% =n+0.
More precisely, if we writely := A/Jy, the morphismy : X — Y c P* induced by the
inclusionAy c R is a finite birational morphism, and is part of a diagram

S Y cP?

b
N4
X
wheresS is the minimal desingularization &, « is the contraction morphism contracting

exactly theg—2)-curves ofS to rational double points oX, and the composite ;= ¥ ok

is a birational morphism witlr*Opa (1) = Os(K) (i.e. itis 1-canonical forS). Moreover
Y is a canonical surface ii?*.

PROOFE The fact thatR is a Gorenstein algebra (commutative, associative with R)
follows from [Boh, Theorem 2.5].

Note that since the ideal ofn + 1) x (n + 1) minors of A, I,+1(A) (i.e. the
zeroth Fitting ideal ofR), and Anry R have the same radical, the Eisenbud—-Buchsbaum
acyclicity criterion (cf. [El, Thm. 20.9, p. 500]) gives grafjg1(A) = grade Anny R =
codimg Anng R > 2, whereas also grade = gradéAnng R, A) < projdimgR = 2
(cf. e.g. [B-He, p. 25]), whenc#, defined by the annihilator ideal AprfiR C A, is in
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fact a two-dimensional algebraic subschem®&bfNote in particular that mighta priori
very well be reducible or non-reduced with the subscheme structure given by Rriwe
deliberately want to avoid assuming anything like AyfR being prime or radical, since
this is awkward to verify (in machine computations of explicit examples).

R is CM because gradk = projdim, R and thusR is a perfect module (cf__[B-He,
p. 59, Thm. 2.1.5]). Next, the morphisin: X — Y induced by the inclusiorly C R is
finite sinceR is a finite Ay-module and thug.Ox = R is a finite Oy-module over any
affine open of. Now A’ is a presentation matrix 6t/ (Ay-1), whence by Fitting’s lemma,
I,(A") C Anng(R/Ay) and(I,(A") - Ay)R C Ay. SinceR is Cohen—Macaulay, we have
grad€l,(A’), R) = dimR — dim(®R/L,(A")R) > 2, and there is thus a (homogeneous)
elementd € I,(A") - Ay C Ay which is a non-zerodivisor of® (therefore also ofly)
with dR Cc Ay C R. Thus one gets

(6) Rld™Y = Ay[d Y.

(By the way, this shows that the algebra structureRois uniquely determined since it is
a subalgebra afly[d~1].) From (6) one sees that gives an isomorphism on the degree
zero components of the total rings of quotientsRofesp.Ay obtained by inverting all
homogeneous non-zerodivisors in these rings; this birational.

If R denotes the sheaf dhassociated t&, we have the picture

X = SpecR — Y c P4

The fact thatX has only rational double points as singularities implies #has locally
Gorenstein and the dualizing sheaf is invertible,wxy = Ox(Kx), whereKy is an
associated (Cartier) divisor. Moreovergif is the dualizing sheaf for, we havey' wy =
wy sincey is finite. Moreover, by relative duality for the finite morphism

Yewx = YHomo, (Ox, I//!a)y) = Homw, (V«Ox, wy) = 8xtép4(i, wps),
whence, a = Exr2(R, Ops(—6)), we get

@) Yoy = R(1) = Y. (Y*Opa(1)).

Thus, sheafifying o = SpecR, we deduce from (7) thay*Opa(l) = wy, i.e. the
morphismys is canonical. Sinc&® equals the full module of sections of the sh&aand
the morphismy is finite, we get

R =P HOP*, Y. (¥ *Opa(m))) = @) HO(X, Ox (mKx)).

m>0 m=>0

(The easiest way to see thatis equal to the full module of sections &fis perhaps to
look at the exact sequence relating local and global cohomologies

0— HJR) - R > @ HO®* R(m)) - HL(R) — O,

wherem = (xg, ..., x4) is the irrelevant maximal ideal of, and to note that sinc® is
Cohen-Macaulay, depth = dim®R = 3 and thus#2(R) = HL(R) = 0.)
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By our assumption that has only rational double points as singularities, we see that
our X is a disjoint union of normal projective surfaces (reduced and irreducible) with
only rational double points as singularities such thgt is ample on each irreducible
component: In fact, af is a Cohen—Macaulay ringX is pure two-dimensional by
Macaulay’s unmixedness theorem (cf.I[Ei, Cor. 18.14 and Ex. 18.6]), reduced by
assumption, and if two irreducible components met, then removing all the rational
double points would disconnect them; this contradicts Hartshorne’s connectedness theorem
becauseX is Cohen—Macaulay (cf._[Ei, Thm. 18.12]).

Let S be the surface obtained by passing to the minimal desingularization of (each
connected component off: It comes equipped with a morphisin: § — X which
contracts exactly the curves with self-intersectie® on S. Let # = ¢ o « be the
composition. Clearly it is birational onto the image Then the assumption that has
only rational double points as singularities implies that @$0p4(1) = ws and

R= EB HO(S, Og(mKs)).

m>0

Now we are almost done: It only remains to see thas irreducible and to calculate the
invariants ofS (which might still be a union of several connected components). This can
be done in one stroke now:

The invariantsp, (S), ¢(S), K§ are immediately found from the resolution (5): If
S had several connected components, their geometric genera would have to add up to
pg(S) = Ry = 5. This is impossible since the morphismis 1-canonical and birational
ontoY c P4

For the higher plurigenera one hgs = (’g)K§+x(OS), m > 2, by Kodaira’s formula
(cf. [Bom, p. 185]); on the other hand, writir,, for the mth graded piece oR, and
P, A(—ao j) = ABA(-2", @; A(—a1) = A(=3?"*2, P, A(—az j) = A(—6) @
A(—4)", one has

2

dime Ry = > (-1 Y (’" - “Z" + 4)
J

i=0

from the Hilbert resolution oR ((’l‘) = 0 fork < I). Comparing these one concludes that
K?+6—¢q =15+n, 3K? + 6 — g = 33+ 3n, whence the invariants are the ones given
in the theoremd = O is clear sinc& is CM by Prop. 1.2). O

RemMARK 1.7 (cf. [CIil, §4]). With the set-up of Theorem 1.8,(1,(A’)) = non-normal
locus ofY. Infact,y : X — Y is the normalization map, and therefore the sheaf of ideals
Annop4(1p*(‘)x/(‘)y) = Annoﬂp4 (R/0Oy) defines the non-normal locus Bf But sinceA’

is a presentation matrix faR/Ay, it is /Anng(R/Ay) = /I,(A’) (cf. e.g. [El, Prop.
20.6, p. 498]) and the assertion follows.

REMARK 1.8. If Y c P* has only improper double points as singularities (i.e. points
with tangent cone consisting of two planes spanfiifig thenY is sometimes said to have
ordinary singularities We state here (cf._[Cil, p. 306ff.]):
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THEOREM1.9. Letr : S — Y C P be a canonical surface with = 0, p, = 5. If ¥

2
has ordinary singularities, the numbécY) := (KS_S) is the number of improper double
points ofY (a very special case of the “double point formula of Severi”).

REMARK 1.10. Given a matrixd = (a B) with entries in the first row cubic forms

on P* and linear entries otherwise, satisfying’ = Bo’, in machine computations
(e.g. with Macaulay 2, cf[[G4S]) one will usually check the following propertiesiof

in order for the hypotheses of Theorem 1.6 to be satisfied: First, chdimA) = 2

and codim/,,(A’) > 4. Secondly, to check that = ProjR has only rational double
points as singularities, it suffices to check that the subscherifé défined byr,.1(A)

is regular away from a finite number of improper double points (i.e. it is in particular
reduced, whence coincides with the subscheme defined by &nindeed,yy : X — Y

is the normalization map (the fact th&it= ProjR is normal follows in this case because
X is isomorphic toY away from a codimension 2 subset and hence is non-singular in
codimension 1 and Cohen—Macaulay: thus it is normal by Serre’s criterion). If one knows
the singular points of explicitly, the fact that they are improper double points follows by
a tangent cone computation which is in general quite feasible.

2. ANALYSIS OF THE CASEK? = 11

Letw : S — Y be a canonical surface Bf with ¢ = 0, p, = 5, K2 = 11. According to
Theorem 1.5, one has a resolution

. , (D 6 @p) 2
1) Re:0— A-6DA(—4H —— A(-3)° —— ABA(-Y°->R—>0
of the canonical rin@R of S. We want to solve the ring conditioa=(Gorenstein symmetry
condition) explicitly in this case. More notation:

A1 A A3|B1 By B3
(2 A=(@p)=:|a1 a2 az|by by b3 |,
as as ag|bs bs be

where the4d;, B;,i = 1,2, 3, are cubic forms, the;, b;, j = 1,..., 6, are linear forms;
A’ ;= A with first row erased/>(A), I2(A’) :=Fitting ideals of 2x 2 minors of A, A’
respectivelyJy := Anng R, Ay := A/Jy. Furthermore we will assume that

(A) the zeroth Fitting ideal ofR/Ay, i.e. I2(A"), definesscheme-theoreticallghree
reduced points ifP*.

This is of course equivalent to saying that the saturatiah©f’) is the homogeneous ideal
of three reduced points i, This is a natural condition from the point of view of Theorem
1.9: if Y has ordinary singularities, then has exactly three improper double points; the
three points are exactly the non-normal pointy'dly Remark 1.7.

The following is the key result:

LeEmmA 2.1. If assumption(A) holds, then acting on the tableau (&) with elements

((1) 8), ¢ € Glz2(C), from the left, and elements 8fy;(C) from the right, one can eventually
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obtain the normal form
i A1 A, Az|B1 By Bs
() A=| 0 a a3|0 by b3 |=(@p)
as —ap O |ba —by O

such that Gorenstein symmetry still holdg3’ = B&’. Thed;, b; are linear forms such
that

V (do, @3, by, b3) = {first non-normal point of’},

V (da, do, ba, by) = {second non-normal point af},

V (da, as, ba, b3) = {third non-normal point of’}.

(TheA;, B;, j € {1, 2, 3}, are of course cubics, linear combinations of thg B;.)
Before giving the proof we make a preliminary observation:

REMARK 2.2. Writea,, resp.g, for the uth resp.vth column ofa resp.g. We want to
make a list of some invertible row and column operationgdhat preserve the Gorenstein
symmetry:

(i) Elementary operations on rows: indeaf, = (3 2), @ € Gl(C) : af' = Ba! =
(ga)(gB) = (gB)(ga)'.

(if) For 1 € Candu a fixed but arbitrary column index, adding,, to «,,: Note that both
sides of each of the equatiops; ax; ;i = Y _; Brics; are just changed by a summand
ABnuBiu. This operation is of course as well applicable with thes of« and g
interchanged.

(iii) For A € C andpu, v column indices, addingg, to «,, and at the same time adding
A8, 1o «,: Both sides of each of the equatiols; o 81; = >, Briczi Change by a
summandi(Buy B + B Blv) [(ii) is thus a special case of (iii) withk = v]; the
same operation also with théles of«, 8 interchanged.

(iv) For o € C andu # v column indices, adding.«, to o, and simultaneously
subtractingh8,, from 8,: This is O.K. since it corresponds to changing the left side
of Y, aniBri = >_; Bricyi by a summand (eeny Bry — anw Bi1,.) = 0, and the right side
by a summand.(Bp, 210 — Bruouy) = 0; the same operation also with thides of
a, B interchanged.

(v) For w # v, interchanging columng,, «, and at the same time interchanging
columnsg,,, B,, which clearly preserves the symmetry.

(vi) Fora column index:, multiplying columne,, by —1 and then interchanging columns
—ay, and g, (i.e. the substitution,, — B, B, — —ay): Namely,) " anifii =
Do Bhioui & 32, oniBli — By = 32, Bricti — hpBiu-

Call these operations (Op). Note that (Op)(ii)—(vi) correspond to multiplicatioa rom

the right by symplectic 6< 6 matrices. In fact, more systematically, one sees that since
g; gj) € Gl2,42(C), S1, S2, S3, S4 (n +1) x (n+ 1) matrices,
can be characterized by the equatihs), = $257, S35 = 455, S15) — S285 = Li11,

if A= (¢ pB)isan(m + 1) x (n + 1) matrix with o’ symmetric (as in Thm. 1.5) then

symplectic matrice{
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also(aS1 + BS3)(aS2 + BS4)' is symmetric (this is also immediate because the symmetry
condition can be rephrased as saying that, for each choice of homogeneous coordinate
vector(xg : ... : x4) in P4, the rows of(a B) span an isotropic subspace for the standard
symplectic form orC%*2, and a matrix is symplectic iff its transpose is).

To make the proof of Lemma 2.1 more transparent we state the following auxiliary
result separately; it will be invoked later a couple of times. The condition &@t’)
definesscheme-theoreticallthree reduced points was posed in order to have this result
at our disposal. Otherwise (A) could be replaced by the requirement’thais exactly
three non-normal points.

LEMMA 2.3. A matrix A’ satisfying conditiofA) cannot have a column with all entries
equal to zero.

PrROOF Assume that

0 ax a3
/ —
A= (O as as

by by b3
by bs bg)”

Then the three reduced points are defined scheme-theoretically by the vanishing of the
maximal minors of a 2« 5 matrix. Codimension 4 is the expected codimension for the
degeneracy locus of a2 5 matrix of linear forms; but then the degree of the subscheme
defined by the vanishing of the maximal minors must be 5, a contradiction. (This is a
special case of Porteous’ formula; seel[Mi, Lemma 1.1.1].)O

PrROOF OFLEMMA 2.1. First a general remark: Given a matrix of linear forms, call an
arbitrary linear combination of the rows with not all coefficients zegeaeralized row

Then the locus where the rows are linearly dependent is the union, over all generalized
rows, of the linear spaces cut out by the linear forms which are the entries of the generalized
@ az agbi by b3> to be such that one of

as as aglbs bs bg

the non-normal points is given by the vanishing of the linear forms in the upper raw of

the second one by the vanishing of the linear forms in the lower row, and the third as the
zero set of the linear forms obtained by adding up the two rows.

The rest of the proof is a game on the table#u using (Op) and symmetry, and
deriving Koszul sequences from the fact that the rows ofesp. their sum define three
distinct points. To ease notation, we will treat theb;, i = 1, ..., 6, andA’ as dynamical
variables. For clarity’s sake, we will box certain assumptions in the course of the following
argument.

Using (Op)(v)—(vi), then (iv) and finally (iii) one gets

’r_ O a2 az|b1 by b3
) A _(a4 as ag|bs bs be)'

row. Therefore we can assumé = <

as = 0| This cannot occur thanks to Lemma 2.3.
as # 0 Use (Op)(v), (vi), (iv), (iii) in this order to put a zero in place &f
(a4, as, ag, bs, bg are dependent!):

®) A — 0 a2 as
“\as as as

b1 by b3
bs bs 0 )°
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We claim that nov*/az, b1, by, bz are dependelﬁtFor if they are independent we can also
assumeus, as, as, bs to be independent (otherwise interchange rows and use (Op)(v),
(vi)). Symmetry givediaq + boas + bzag + bs - (—a2) = 0, which is a Koszul relation
saying there are antisymmetric matricesS of scalars such that

as by b1 as
as | _ | b2 by | _ as
ag | 5 bz |’ b3 =S ag |’
bs —ay —a bs

SS = I, ands, S are invertible. Now interchange the 4th and 5th columnstofnd

multiply by

: | 1 o] on the right. (This will in general destroy the symmetry but
0|0 1

preserve the points that are defined by the rowstofind their sum; this operation is

only used to derive a contradiction.) The second row of the transformed matrix is then

(b1, b2, b3, —ay, by, 0), and one sees that it either defirfesr the same point as the first

row, a contradiction because we assumed the points defined by the raiw®die distinct.

Thereforeup, b1, b2, bz are dependent.

We claim further that thelj\az, by, bz are independelﬁt Suppose not. Since the
possibility of a zero column was excluded by Lemma 2.3, we can then use (Op)(iii) and
621 ai Zz Zi Zf_) lg) Hereas, b1, bp, bs are
independent. We have two cases:

if necessary (vi) to ged’ = (

(1) aa, as, ae are independent. Then symmetry implies that there exist antisymmetric
matricesT’, T of scalars such that

a4 b1 b1 _[aa
as | =T | b2 |, by | =T]|as|;
as b3 b3 as

but thenT, T are invertible, contradicting the fact that a skew-symmetric matrix of
odd size has determinant zero.
(2) aa, as, ae are dependent. Since no zero column can occur (Lemma 2.3), we can use

. . 0 0 as bl bz b3
5 —
(Op)(iv) to write A" = <a4 as Ol|bs bs O

); but the symmetryisb1 = —asb>

O O az|—as a4 b3

as as 0| by bs O

But then the points defined by the second row and the sum of the rows coincide, or the
linear forms in the sum of the rows defifiea contradiction.

tells us that we are left with discussing the case=

Using the last two boxed assumptions and (Op)(iii) and then (iv), we can pass from the
shape ofA’ in (5) to

©6) A — 0 a2 as
“\as as as

0 by b3
bs bs 0 )°
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Now we play the game again, but this time it is quicker. We claim:

’as, ag, bs are dependeﬁltlf not, the symmetryusbs + aghz + bs(—az) = 0 gives as
above the existence of:3 3 invertible skew-symmetric matrices, a contradiction. But we
also claim:’ as, bsare independeﬁltOtherwise we get, using (Op)(ii) and possibly (vi),
A= 0 ap a3|0 by b3
as 0 ag|bs bs O
O ag a3|0 by by
[
atA” = (a4 O aglbs bs O
row of A” and the sum of its rows resp. coincide, or the linear forms in the sum of the rows
defined, a contradiction. Using the previous two boxed assumptions and (Op)(iv) and then
(i), we can pass from (6) to

) , and using the symmetipbs = agbs, we must look

) . But then either the points defined by the second

r (0 a2 a3
Y A_(a4 as O

0 by b3
by bs 0)°

Invoking the symmetryiobs = asb» a last time, we are through:

;0 a2 a3
A_<a4 —a» O

0 by b3
by —bp 0 )°

This concludes the proof of Lemma 2.1. O

We now proceed to apply the normal form obtained in Lemma 2.1 to solve the
Gorenstein symmetry condition imposed on the matriand to analyze the moduli space
of canonical surfaces : S — Y ¢ P* with g = 0, pg =5 andK? = 11. Combining
what has been said so far with Theorem 1.6, we conclude the following: The datum (D) of

a matrix
A1 A A3|B1 B» B3
A= 0 a az| 0 by b3
ag —ap O01|bg —bp O
with theA;, B;, i = 1,..., 3, cubic formsas, a3z, aa, bo, bz, by linear forms

onP* satisfying the symmetryob, + Azbs + Bo(—az) + Ba(—az) = 0, A1bs +
A2(=b2) + Bi(—aa) + Boaz = 0, plus the open conditions thd(A’) defines
scheme-theoretically three reduced pointsPth and that with® := cokerA,
Ann4 R be of codimensio and X = ProjR have only rational double points as
singularities, modulo graded automorphismsiab.A(—2)? resp.A(—3)° (acting
on A from the right resp. left) which preserve the normal fornigtist described,
modulo automorphisms d#,

is equivalent to the datum (Jpof

a canonical surfacer : S — ¥ c P4withg = 0, p, = 5, K? = 11such that,
denoting byR the canonical ring ofS, the zeroth Fitting ideal ofR/A - 14 as a
module over the homogeneous coordinate rinfbélefines scheme-theoretically
three reduced points i&*, modulo isomorphism.
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We now describe the set of isomorphism classes of surfaces’)ringde their moduli
spacém,(z’x = 93211,6:

First one notes that the symmetry condition in (D) amounts to the existence of
skew-symmetric 4x 4 matricesP = (P;;) and Q = (Q;;) of quadratic forms
such that(—Bs, —B3, Ao, A3)! = Pl(az, a3, by, b3)' and (—B1, —Bp, A1, Ap)! =
Q(as, —az, ba, —b2)". Of course there is some ambiguity in the choice Bf), (Qi;),
for the Koszul complexeK , (a2, as, b2, b3) andK 4 (a4, —az, bs, —b2) associated to these
regular sequences

d
A(=8) 2= A= 2 A(-28 L5 A-1)* L A — Af(az, as. b, bs),
dé 4 dé 6 di 4 d6
A(=8) 2 A3 2 A28 L A-D* 2 A - A/(as, —az, ba, —bp)

show that e.g. the vectaiP;;);<; € A(—Z)S is only determined up to addition of
do(l) wherel € A(—B)j‘1 is a vector of linear forms, and twils give rise to the same
(P;j)i<; iff they differ by dz(s) wheres € A(—4)4 is a complex scalar. In other words,
dimg(ker(d1)4) = 19 and effectively, instead of th@?;);;, one ChOOSGSF,’j)i<j €
A(—2)2/d2(A(—3)2/d3(A(—4)4)). Similarly for the(Q;;).

Next it is clear that whereas n and are subject to no further relations,
for the{(P;;)i<;} — { P24} and{(Q;j)i<;} — {Q13} the relations

Ay = —P13ap — Pozaz + P3gbs, By = — P1paz — Pi3by — P14b3,
Az = —Q14a4 + Qz4a2 — Q3abs,  Bo = Q12a4 — Q23bs + Q24b2

imply
8) Q1404 + (P13 + Q24)(—a2) + (—P23)az + Qz4bs + P3sbz = 0,
9 Q12a4 + P1oaz + (—Q23)ba + (P13 + Q24)b2 + P1ab3z = 0.

We claim that we can assume that the sequeniegs—az, as, ba, b3) and (aa, as, ba,
by, b3) are both regular, whence (8) and (9) would be Koszul relations. According to
the normal form of the matrix given in (D), aa, a3, ba, b3 are independent (and define
one of the non-normal points of). Assume both—a, and b, were expressible in
terms of the latter. TheW (az, as, b2, b3) and V (aa, az, ba, b3) would not give distinct
points, a contradiction. Therefore at least one of the seque@aes-az, az, bs, b3)
and (aa, as, bs, ba, b3) is regular. But if one of them(as, —ay, as, bs, b3) say, is not
regular, then replacing, with ap + b (which corresponds to applying once (Op)(ii)
to the matrixA) the sequencéas, —(az + b2), as, ba, b3) will be regular. Similarly if
(ag, as, ba, by, b3) fails to be regular.

Therefore considering (8) and (9) as Koszul relations, one gets two skew-symmetric
5 x 5 matricesL. = (L) andM = (My;) of linear forms such that

(10) (Q14, P13+ Q24, — P23, O34, P34)' = L(as, —az, az, ba, b3)',
(11) (Q12, P12, —Q23, P13+ Q24, P14)' = M(as, as, ba, b2, b3)".
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Seta = (a4, —az, as, bs, b3) anda’ = (a4, as, bs, b2, b3). Again looking at Koszul
complexes

A(— S)HA( 45 2% 4(—3)10 P2 4(_p10 Py A( 1)5—>A—»A/a
A(— S)HA( 4)5—>A( 3)10—>A( 2)10 A( 1)5 S A AJ)d

one sees that whereas e.g. (hg) are not unique, theL )k € A(—2)3%/ D2(A(—3)1%)
are, and dim (ker(D1))3 = 10. Likewise for the(My;).

Now equations (10) and (11) should be interpreted as saying that after dhe afd
024, say, is chosen freely, the oth@ts and Q’s in (10) and (11) are determined by
L, M, a,d.

Furthermore one remarks that then the #i@kl)kdyk#z)]#z‘ and the six

’ (M k<, k44, 124 ‘ satisfy no further relations, but the other ones enter in the following

relation resulting from equating the second resp. fourth vector components of (10) resp.
(12):

(12)  (M14— L12)as + (M2sa+ Lo3)az + (M3a+ Loa)bs + (—Mass + Los)bz = 0

The sequencéua, as, ba, b3) is regular by the characterization of the normal formAof
given in (D). One therefore infers the existence of a skew-symmetric@atrixs = (S,)
of complex scalars such that

(13) (M1a — L1, Maa+ L3, Maa+ Loa, —Mas+ Los)' = S(aa, as, ba, b3)'

and one notes that the, ;) are then uniquely determined from equation (12). Moreover
upon choosin¢M14, Moa, Maa, M45‘ arbitrarily, we can recovet.1s, Loa, Loa, Los

from S and(ag, as, ba, b3) using (13); and the six scal are not subject to any
other relation in the present set-up.

To get back to the study of the moduli space of surfaces i), (@ together the
a;, by, t =2, ...,4,and all the boxed objects above into one big affine space of parameters:

te{2,3,4}; k,l,k,ae{l,...,5}, k <A,
(ar, by, Pog, Q13, |k <1, k#2142, r,se{l, ..., 4}, r <s;
P =1 P13, L, My, Srs)|and Pz4, Q13, P13 quadratic a,, by, Ly,
M, linear in the homcoord (xg: ... : xa),
S,s complex scalars

Counting one finds that there are 3 quadratic forms, 22 linear forms and 6 scalrs in
depending on 45, 110 and 6 parameters respectively, whence wé® have,

According to the above discussion, for each choice in an open $atioé gets a matrix
A meeting the requirements in (D) and a rifRgwhich is the canonical ring of a surface
of general typeS as in (0). In other words, the parameter space for the canonical rings
of the surfaces in () is a projection of an open set & One has to show that this open
set is non-empty; this is possible, making general choicésénd verifying that one gets
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a matrix A fulfilling the open conditions in (D) e.g. with the help of a computer algebra
package like Macaulay 2 (cf._[G-S]); it is convenient to choose

A = 0 x2 xo—x4| O X3+ x4 X3
X3— X1 —Xx2 0 —x4 —x3—x4 0/’

an example already showing up in_[Ross]. It is easy to verify with Macaulay 2 that in
this case the saturation @$(A’) is radical and defines the points : 0 : 0 : 0 : O,
(0:1:0:0:0,(0:0:1:0:0inP* One then completes the matri to a matrixA
by making generic choices for the cubic foris B;, i = 1, 2, 3 (such that the symmetry
holds). Another check with Macaulay 2 shows that sdachill have the required properties
listed in Remark 1.10. We give the necessary computations in the Appendix below.
In particular, by the preceding remark one finds that the surfaces’inf¢bm an
irreducible open séf inside their moduli space, anitlis unirational (since is rational).
Moreover, the set of matrices as in (D) can be identified with an open subset

g c A?
where

d = 161dimP — 38(dimg¢ (ker(d1)s4) + dimg (ker(d})a))
—20(dimg (ker(D1)3) + dimg(ker(D)3)) = 103

To calculate the dimension of we note that we have three groups acting on thékset
normal forms of matriced in (D):

(1) The groupI” of graded automorphisms of the riogy i.e. I' = Gl5(C) and dimI”
= 25.

1491 492
(2) A = {graded auto.’s ofd @ A(—2)? of theform( 0s2 0 ) }
0 0 s

with 51, s € C\{0} andqg1, g2 quadratic. Here dintt = 32.

A1 0 Opug OO
02 0 Opurx O
0 03 0 O pus
uga 0 024 0 O
O ug O 0 A5 O
0 O ug 0 0 Ag

wherex; € C, u; € C,i = 1,...,6, and SB(C) denotes the group of symplectic
6 x 6 matrices. We have di@ = 9.

(3) ® = { group of invertible matrice N Sps(C),

Denoting byo the homomorphism
o:I'=>Au(A x0), yr— (LT~ (yL),y@T)),
we find that the semi-direct product

(AxO)x, T
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acts ortJ from the left in the following way: ford € U and((L, T),y) € (A x O) x, I'
we have
(L. T),y)-A=Ly(A)T ™"

The subgroug of the semi-direct product consisting of thagé, 7'), y) with

s3 00
L=]10 s 0], T =6x 6 identity matrix
0O 0 s

y = the automorphism ofl that multipliesx;, i =0, ..., 4,
by s~ for somes e C*,

acts trivially on®s. We put
G:=((Ax0)x, /I
Then dimG = 65. ThenG acts onJ with finite stabilizers: to see this it suffices to note

that, the surfaces under consideration being of general type, there are only finitely many
projectivities carrying’’ ¢ P onto itself, and that secondly, the equation

LAT ' =4
forA e, (L,T) € A x ® can hold only if
L = £3 x 3identity matrix, T = %6 x 6 identity matrix

(the latter follows from a direct calculation using the facts thatahess, b2, b3 resp.as,
—ay, bs, —b2 OCccurring inA are independent linear forms and tiais symplectic, whence
if T is a homothety, it must b the identity).

Thus an upper bound for the dimensiortbis

103dimY — 65dimG = 38.

On the other hand, dit > 10y — 2K2 = 38 by general principles (see [Catlb, p. 484]).
Thus dimil = 38 and one obtains the following theorem:

THEOREM2.4. Regular surfaces of general type wittp, = 5, K? = 11such that the
canonical map is a birational morphism onto the image- P* and such that assumption
(A) above is satisfied, form an irreducible unirational open geif dimensior88 inside
their moduli space.

3. APPENDIX

Here we describe the Macaulay 2 computation |G-S] to prove existence of matrices
fulfilling the conditions of datum (D) on page]50 above. We do it by checking the required
properties listed in Remark 1.10. For the sake of brevity, we do not reproduce our entire
Macaulay 2 session here, but use a mixture of code and words to explain it. We first input
the example of the matrit’

A — 0 x2 xo—x4] 0 xz3+x4 x3
T \x3—x1 —Xx2 0 —x4 —x3—x4 0



CANONICAL SURFACES INP# 55

given on pag@B above (we callAsmall ) and check that the saturation Bf(A’) is
radical. The code is:

R=27/31991[x_0..x_4];

Asmall=matrix{{0,x_2,x_0-x_4,0,x_3+x_4,x_3},
{-x_1+x_3,-x_2,0,-x_4,-x_3-x_4,0}}

Ismall=minors(2,Asmall);

Ismallsat=saturate Ismall;

Ismallsat==radical Ismallsat

Thus the matrixA” scheme-theoretically defines the poiftss= (1 : 0:0:0: 0,
Prb=@0:1:0:0:0andP3=(0:0:1:0:0inP*% Then we have to choose
a random vecto(A1, A2, Az, B1, B2, B3) of cubic forms such that, after concatenating it
with the matrixA’, we get a matrixA = (« 8) which satisfies the symmetn’ = Ba’.
Such a vector of cubics is in the kernel of the following matvix

0 X3+ x4 X3 0 —X2 —Xx0+ x4
M = .
—x4 —x3—x4 0 x1—x3 x2 O

Thus we createl as follows:

M=matrix{{0,x_3+x_4,x_3,0,-x_2,-x_0+x_4},
{-x_4,-x_3-x_4,0,x_1-x_3,x_2,0}}

G=generators (kernel M);

Auxl=random(R"1,R{-2,-2,-2});

Auxxl=transpose Auxl,

Aux2=random (R"1,R*{-1,-1,-1,-1,-1,-1,-1,-1});

Auxx2=transpose Aux2;

Aux3=Auxx1||Auxx2;

C=G*Aux3;

D=transpose C;

A=D||Asmall;

alpha=submatrix(A,{0,1,2} {0,1,2});

beta=submatrix(A,{0,1,2},{3,4,5});

alpha*(transpose beta)==beta*(transpose alpha)

One then checks that the subscheme defined by the maximal mindrgaif codimen-
sion 2 and its singular locus coincides with the poiP{s P>, Ps:

Isurfacel=saturate minors(3,A);

codim Isurfacel

Sing=Isurfacel+minors(2, jacobian Isurfacel);
Sing=saturate Sing;

Ismallsat==radical Sing

It remains to investigate the nature of the singularities of the subscheme defidgiby
at the pointsPy, P>, Ps. In fact, they all turn out to be improper double points. For this
we compute the tangent cone at these points. Let us look for exampielanfortunately,
if we putxg = 1 in the polynomials that are the generatordsafrfacel  and then
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take leading terms, it is not necessarily true that the resulting polynomials determine the
tangent cone aP; (cf. [CLS, Chapter 9, 87, p. 485]). However, this procedure does yield
the correct result if we first compute a @bner basis ofsurfacel  with respect to

a monomial order such that any monomial involving is greater than any monomial
involving only x1, ..., x4 (cf. [CLS, Ch. 9, 87, Prop. 4]). For example the lexicographic
order withxg > x1 > x2 > x3 > x4 will do:

Rnew=27/31991[x_0,x_1,x_2,x_3,x_4,MonomialOrder=>Lex];
Isurface2=substitute(Isurfacel,Rnew);
Gro=transpose gens gb Isurface2;

The elements of the desired @ner basis are now stored in the matéxo (it had

178 entries in our test computation which might seem slightly large, but the rest of the
computational steps went through). We now have toxgut 1 in the polynomials which

are the entries o6Gro and create the ideahngentconepointl generated by the
leading terms of the resulting polynomials. This is most efficiently done by successively
differentiating the entries ofsro with respect toxg: If ¢ is one of the entries and
a/+1e/8xé+l = 0, butd’/e/dxy # 0, then we storé/e/dx among the generators of
the idealtangentconepointl (in our test computation, differentiating the entries of
Gro four times with respect tog already yielded the zero matrix). We can then extract the
information we want by typing

codim tangentconepointl

degree tangentconepointl

genera tangentconepointl
tangentconepointl==top tangentconepointl
tangentconepointl==radical tangentconepointl

One finds thattangentconepointl defines a pure two-dimensional reduced
subscheme of degree 2t whose general hyperplane section has arithmetic gerus
This hyperplane section thus consists of two skew liné@ iandtangentconepoint1
defines two planes that sp&fl and intersect in the poirt;.

The computations for the poinf® and P3 are of course completely analogous.
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