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ABSTRACT. — Leth : [0, oo) — [0, co) be continuous and nondecreasing,) > 0if 1 > 0, andm, ¢ > 0. We
investigate the behavior as— oo of the fundamental solutions= u;, of 9;u — Au™ +h(H)u? =0in2 x (0, T)
satisfyinguy (x, 0) = k8g. The main question is whether the limit is still a solution of the above equation with an
isolated singularity a0, 0), or a solution of the associated ordinary differential equation (1)ud = 0 which
blows up at = 0.
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1. INTRODUCTION

Let m andg be positive parameters and: [0, co) — [0, co) hondecreasing continuous.
If one considers a reaction-diffusion equation such as

(1.2) ou — Au™ + h(t)u? =0

(u > 0 for simplicity) in a cylindrical domaiQ” = R" x (0, T) (N > 1), the behaviour

of u is subject to two competing features: diffusion associated to the partial differential
operator, here- A, and absorption which is represented by the té(mu?. Wheng > 1

andh(t) > 0 fort > 0, the absorption term is strong enough to make any positive solution
satisfy a universal bound

' -1/(q-D
(1.2) O<u(x,t) =Up(r) = <(q - 1)/ h(S)dS)
0

for every (x,t) € QT. In addition, the functior;, which appears above is a particular
solution of [1.1). The associated diffusion equation

(1.3) v— A" =0

admits fundamental solutions = v, (k¢ > 0) which satisfyvi(x,0) = k§p if m >
(N—-2)4/N.If

T
(1.4) / / h(t)v] dxdt < oo, Bg:={|x| <R},
0 Br
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for any R € (0, o0}, it is known that ) admits fundamental solutions= u; in Q7
which satisfy the initial conditioni(x,0) = kd8p. The maximum principle holds and
therefore the mapping +— uy is increasing. Ifx > 0 on (0, co) then due to universal
bound [T.2) the limitus, = lim;_ oo ux exists, anduo, is a solution of [(L]L) inQ7.
A natural question is whethetr,, admits a singularity only at the origi{®, O) or at other
points too. Actually, in the last case it will imply,, = U since the following alternative
occurs: either

() uso = Uy, (complete initial blow-ujp or
(i) uoo is a solution singular at0, 0) and such that lim,ou(x,7) = Oforallx # 0
(single-point initial blow-up.

This phenomenon was observed for the first time by Marcus @rdn/ They considered
the semilinear equation

(1.5) ou—Au+h@®u? =0

and proved[[B, Prop. 5.2]

THEOREM1.1. If h(r) = e /! (k > 0), then the complete initial blow-up occurs.

However they raised the question whether this type of degeneracy of absorption is
sharp or not. The method df|[8] relies on the construction of subsolutions associated to
very singular solutions of equations

(1.6) Ou — Au+ct®u? =0

for suitablea > 0 andc. > 0, and on the study of asymptotics of these solutions. One of
the main results of the present paper states that if the degeneracy of the absorption terms
is slightly smaller in comparison to Theorém|1.1, then localization occurs.

THEOREM1.2. If h(t) = exp(—w(?)/t), wherew is continuous, nondecreasing and
satisfies

1
2.7) / ﬂds < 00,
0 N

thenu., has single-point initial blow-up a0, 0).

The method of proof is totally different from the one of Marcus ar&@doh and based
upon local energy estimates in the spirit of the famous Saint-Venant principle| (see [5,
12,13]). Using appropriate test functions we prove by induction that the energy of the

fundamental solutionsg; remains uniformly locally bounded iQ_T\ {(0, 0)}.
In the case of the equation
(1.8) ou—Au+h@)(* -1 =0

the same type of phenomenon occurs, but at a different scale of degeneracy. We prove the
following
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THEOREM1.3. (i) If h(z) = e="" for somex > 0, then the complete initial blow-up
occurs.

@iy Ifh@) = =" for somew € C (0, c0) positive, nondecreasing and satisfyi@),
thenu, has single-point initial blow-up a0, 0).

In this paper we also extend the study of equafion (1.1) to thereg4el. The situation
is completely different forn > 1, the porous media equation with slow diffusion, and for
(N—-2)1/N < m < 1, the fast diffusion equation. Concerning the porous media equation,
we prove

THEOREM1.4. If ¢ > m > 1andh is nondecreasing with(r) = O(:¢—™/(m=Dy as
t — 0, thenug, = Uy,.

We give two proofs. The first one, valid only in the subcritical caseid < g < m +
2/N, is based upon the construction of suitable subsolutions, as in the semilinear case. The
second one, based upon scaling transformations, is valid in all thegasés> 2m > 2
where they; exists. It reduces to proving that the equation

—AY —glm pga/m =0 inRY
admits only one positive solution, the constant 1. The localization counterpart is as follows:

THEOREM1.5. Assume > m > 1linequation(L.d). If a(r) = t@—/"=D g (1)~ L with
w(t) — 0ast — 0, and

1
(2.9) / w(s)? d_s <00
0

N

where
90— m2—1
T [INm -1 +20m+Dl(g - 1)’

thenu, has single-point initial blow-up a0, 0).

Actually, the method is applicable to a much more general class of equations.
In the fast diffusion case there is always localization.

THEOREM1.6. Assumé&N —2), /N <m < landg > lin equation(L.]). Then
(1.10) oo (x, 1) < MIN(U, (1), Caut/|x M)

where

(1_ m)3 1/(A—m)
C*=<2m(mN+2—N)> '

This type of problem has an elliptic counterpart which is initiated in [10] where the
following question is considered: suppageis a C2 bounded domain iR", ¢ > 1 and
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h € C(0, o) is positive. What is the limit a8 — oo of the solutions (when they exist)
u = uy, of the problem

_ q — i
w11) { Au+h(p(x)u? =0 ing,

u = kéo onos2,
where p(x) = dist(x, 352)? It is proved in |[10] that, ifa(r) = e~ Y/’, thenuy (=
limy_ o0 u) is the maximal solution of the equation §p, that is, it satisfies
{ —Au+h(p(x)u? =0 in$2,

lim u(x) = oo.
p(x)—0

(1.12)

On the contrary, ifi(t) = t* fora > 0and 1< ¢ < (N + 1+ «)/(N — 1), itis proved

in [11] thatu, has an isolated singularity at O, and vanishes everywhere outside 0. In
a forthcoming article we shall study this localization of singularity phenomenon for the
complete nonlinear elliptic problem, replacing the powers by more general functions, and
the ordinary Laplacian by the-Laplacian operator.

Our paper is organized as follows. In §2 we study sufficient conditions for complete
initial blow-up for a semilinear heat equation. In 83 we prove a sharp sufficient condition
of existence of single-point initial blow-up for the heat equation with power nonlinear
absorption. In 84 the local energy method from 83 is adapted to the heat equation with
a nonpower absorption nonlinearity. 85 deals with the porous media equation with power
nonlinear absorption, and §6 with a fast diffusion equation with nonlinear absorption.

2. COMPLETE INITIAL BLOW-UP FOR A SEMILINEAR HEAT EQUATION

We recall the standard result concerning the existence of a fundamental salutiar,
(k > 0) to the problem

2.1) u—Au+gx,t,u)=0 inQT =RN x (0, T),
. u(x,0) = kdo.

If vis defined inQT, we denote b)@)) the function(x, 1) > g(x,t,v(x, 7). By a

solution we mean a function € L .(Q7) such thag(u) € LL (QT) and

(2.2) // (—udp — uld + g(u)d) dx dt = k¢ (0, 0)
QT

forany¢ € Cg’l(]RN x [0, T) x R). We denote byE(x, 1) = (4rr)~N/2e—xI%/4 the
fundamental solution of the heat equationdf®, by Bg(a) the open ball of center and
radiusR, andBg (0) = Bg. The following result is classical:

THEOREM2.1. Letg € C(RN x [0, T] x R) with g(x,¢,7) > 0onRY x [0, T] x Ry,
and assume that = g1 + g2 whereg; and g, are respectively hondecreasing and locally
Lipschitz continuous with respect to thevariable. Letk > 0 be such that

T
(2.3) / / gx,t,kE(x,1))dxdt < o0
0 Br
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for any R > 0. Then there exists a solutian = u; to problem(2.])). Furthermore, if
g2 = 0, thenuy is unique.

The functiong(x, 7, r) = e */!|r|9~1r with « > 0 andg > 1 satisfies[(2]3). Thus the

problem

(2.4) { du — Au+e/Muli"lu =0 in 0,

u(x,0) = kéo,

admits a unique solution. The next result is proved |n [8], but we recall the proof both for
the sake of completeness and to present the key elements of the method in a simple case.

THEOREM2.2. Fork > 0, letu; denote the solution d2.4)in 0. Thenuy 1 Us as
k — oo, where

t 1/(1-q)
(2.5) Us(t) = ((q - 1)/ e_"/sds> vt > 0.
0
PROOF CASE1l:1<g¢q <1+42/N. Foranye > 0,u; = u satisfies
(2.6) du — Au~+e¥/u? >0

on Q€. Therefore ifv = vy is the solution of

2.7) v —Av+e /1 =0 inQ>,
v(x, 0) = ko,
thenu; > vg. Lettingk — oo yields
(2.8) M up =00 > Voo = lim vy in 0.
k— o0 k— 00

If we write vao (x, 1) = e</€@=D=Y@a=D £ (x /. /1), then is radial and satisfies
N-1 1
[l (=45 ) === f1=0 on(© 00,
r 2 g—1
=0, lm e Dfe)=o0.
r—00
Furthermore the asymptotics ¢fis given in [2],
Fr) = Cr2/@D=Ne"*/41 4 5(1))  asr — oo,

for someC = C(N, g) > 0. Therefore
(2.9) fG) = Cr+ @ DNe=r®/4 yp >0,
for someC = C(N, ) > O. If we taker = ¢, we derive from[(2.8) that

(2.10) Uso(x, 1) > /1D Ya=D rx /1)y inRY.
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Let 0 < ¢ < 2/k/(g — D). Inequalities[(2.9) and (2.10) imply
(2.11) Uoo(x, 1) > Cr~ Y@=, k/@=D=/H 1 gy o By.

Therefore lim_guso(x,1) = oo for all x € By. We pick some poinkg in B,. Since
foranyk > 0O, the solutioruys,  of ) with initial valueks,, can be approximated by
solutions with bounded initial data and supporBin(xg) (0 < o < £ — |xp|), the previous
inequality implies

Uoo(X, 1) > Uoo(X — X0, I).

Reversing the roles of 0 ang yields
Uoo(X, 1) = Uso (X — X0, 1).
If we iterate this process we derive
(2.12) Uoo(X, 1) = Uoo(x —y,1) Vy e RN,

Sinceuys, is radial with respect tg, @) implies thati, (x, ¢) is independent of and
therefore it is a solution of

7 4+e*z2 =0 on(0, o),

(2.13) lim () = oo.
t—0

Thusus, = Us whereUs is defined by[(2]5).

CASE2:q > 1+2/N. Leta > Obesuchtha < geo = 1+ 2(1+ «)/N. We write

e™*/" = 1*h(t) with h(r) = 1~%¢~*/". The functionh is increasing on0, «/a] and we

extend it bys(0) = 0. Let 0< € < /. Then the solutiom = u; of ) satisfies
du— Au+ h(©)®u? >0 inRY x (0, €].

As in Case 1y is bounded from below oRY x (0, €] by h(e) Y@~ Dy, wherevs, = v
is the very singular solution of

(2.14) v — Av +t*v? = 0.

Thenve (x, 1) = t~1+0/@=D ¢ (x| /4/1), and f, = f satisfies

qg—1
f/(O) - O’ rimoo r2(1+0[)/(t171)f(r) =0.

f”+(N—r_1+%> F T 120 oni.00)

The asymptotics of,, is given in [9]:
fulr) = CrAO/@=D=N,=r%/41 4 (1)) asr — oo,

thus 5 ,
fa(r) = C(L+ r)2IF0/@=D=Np=r%/4 g e R
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Consequently,

~ 2 -1 —
(2.15) u(x, 1) > Ce/@=D=/D17"  yy ¢ B,

Taking again O< ¢ < 2\/k /(¢ — 1), we derive

lim u(x,7) =00 Vx € By.
t—0

Asin Case 1, this leads i0, (x, 1) = uso(x —y, t) foranyy € R, and finallyu o (x, t) =
Us(1). O

Next we consider the Cauchy problem for the diffusion equation with an exponential
type absorption term

(2.16) u(x, 0) = kéo,

{ du — Au+h(r)e" =0 inQ>,
whereh € C(R;) is nonnegative. Theorejm 2.1 yields the following existence result:
PROPOSITION2.3. Assumeéh satisfies
(2.17) |in3zN/2 Inh(t) = —co.
t—
Then for anyk > 0 problem(2.1§)admits a unique solutiom = u;. Furthermore

t

(2.18) up(x,t) < Vs(t) = —In</ h(s) ds) Y(x,1) € O%.
0

Notice that estimatg (2.18) is a consequence of the factthattisfies the associated
O.D.E.
Yy +h()e’ =0 in(0,00),

with infinite initial value. Our main result concerning nonexistence of localized
singularities for equatiof (2.1.6) is

THEOREM2.4. Leth(r) = e—<""" for somes > 0 and anyt > 0. Thenu; 1 Vs as
k — o0.

PrROOFE STEP 1. Construction of an approximate very singular solutiorzorn > 1 and
cn > 0to be defined later, lat = V,, be the very singular solution of

(2.19) v — Av + ¢, 1% V" = 0.

A necessary and sufficient condition for the existence Wf &
n<l+N(,+1)/2

This function is obtained in the form

Vn(X, t) = t_(1+a)l)/(’1_l)F(x/ﬁ)’
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whereF solves

1 1
AF+ ¢ .DF + %" p _ o pn 0.
2 n—1
We fix
1 N
(2.20) 2 Y e 4= Q4+ N —1)/2-1,
n—1 2
and set

1/(n—1
fn — cn/(” )F
Then f,, solves

N+2

1 .
Afa+ 58 - Dfa+ =5 fo = ;! =0.

We prove thatf, has an asymptotic expansion essentially independent, ah the
following form:
(2.21) (&) = 8(EP2+ De ¥4 so
V(e 1) > 56;1/(”*1)t_2_N/2(|x|2+t)e_‘x'2/4’.
In order to see that, we put
B 2 1/(n-1)
=5 Fo-
Then N+2 N+2
2 fn - 2 frl: =0.
By the maximum principle & f, < 1sothatO< f* < f" forn’ > n. Thus
N + Zf N+2
2 2
which implies thatf, is a subsolution of the equation fdy and therefore, i’ > n, then

N + 2>(n/—n)/(n—1)(n'—1)

(2.22) fosfv & fus (T

In the particular case = n* = (N + 4)/(N + 2), the equation falls within the scope of
the Brezis—Peletier—Terman study since it can also be written in the form

- 1 -
Afnt 58 Dfn+

- 1 ~ o
Afn+ Eé" D fa+ fn =0,

fn’~

1 1 x
An* " 'Dn* Q. aJn* n* =Y
Jur + 5E - Dfye + —— foe = Iy
and their asymptotic expansion applies (wif/2* — 1) — N = 2) as|§| — oo:
(223) fu-(®) = ClEPe A+ 0(1)), 80 fu-(§) = 8, (1512 + De ¥4 ve.

Combining [2.2P) wit = n* andn’ replaced by, and [2.2B), we get
)(nn*)/(nl)(n*l)

@24)  f®)= 8*( (512 + De P4 ve,

N+2
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Sincen > (2/(N +2))—")/(=D("-1) js hounded from below independentlyof- n*,
we get [2.2]1).

STEP 2. Some estimates from below for a related problerm order to have,, < u in the
range of values of, which is

t
(2.25) u() < Vs() = — In</ h(s)ds) Vi > 0,
0

we needh = v, to be a subsolution near= 0 of the equation that satisfies. Furthermore
this can be done up to some bounded function. It is sufficient to have

(2.26) cnt™(x" +1) = h(t)e*  Vr e (0,1,], x €0, Vs(1)]
wherer, has to be defined. In particular, at the end points of the interval,

(i) cut™ = h(1),

(2.27) ) an<|n< 1 ) 1) h(t)
A ent®r In Jea(s)ds * 2f(;h(s)als'

We write [2.26) in the form

X a
e Cpt™™"
<

14+x" = h(t)’

(2.28)

and set
e)(

o) =

Then
R nx"—1

(1 + xn)Z

The sign of¢’ is the same as the one ¢f(x) = 1+ x" — nx"~1, a function which

is decreasing then increasing, positive near 0, vanishes somewhere between 0 and 1 and
again between — 1 andn. The first maximum o is less thare/2. This is not important

in (2.28) since we can always assume that the minimum st / h(¢) is larger thare/2.
Therefore, it is sufficient to have

P'x)=e

Vs €1
<
14+ Vs@" = h(n)
in order to have[ (2.28). This is exactly (2127)(ii). If we exprégs in the form

(2.29)

h(t) = —o' (t)e ",
then [2.2F)(ii) is equivalent to

(2.30) it ()" + 1) > —o'(2).



68 A. SHISHKOV - L. VERON

Since
o@®)" +1> 2" (@) +1)",

we consider the following O.D.E. dR,.:

1% — 21_"_—77/
(m+21"

Cn

the maximal solution of which is

1/(n—1) 1/(n-1)
() = B e Y (R S RS
2\ c¢,(n — 1) 2\ ¢,(n — 1)

If we write  in the forma (1) = ¢*®, with «(0) = oo, o’ < 0, then [(2.2]7)(ii) becomes
cnt® (e + 1) > —a/(1)e* D,
and this inequality is ensured provided
(2.31) a0 S o'y e ¢, > —d (1)elmaO—an In
= —ta (1)eL-ME@O+2 N+ D)
by replacingy, by its value. Next we fix
(2.32) at) =a,(t) =0/t Vt>0
wheres > 0 is a parameter, thus

_ta/(Z)e(l—n)(a(t)+2_1(N+2) Nty _ ,(A-n)o/t=2 Hn=DN+D+D)Int _ (1)

In order to have[(2.31) it is sufficient to have the monotonicity of the fungtiamd

, _a(n—l)_n(N—}—Z)—N
P = 12 2t ’

Then there existy > 0, independent ok and o, such thatp’(r) > 0 on (0,cy].
Consequently, inequality (2.81) is ensured(6re] C (0, oy] as soon as

(2.33) e > PO — e(l—n)a/e—zfl(n(NJrz)—N) Ine

SteEP 3. Complete initial blow-up for a related problem Assume now
(2.34) h(t) = 12651 ="

for somes > 0. Forn > 2, we fixe < 6y and take, = ¢?©). On (0, €] we have

cat® (e + 1) > —a/(1)e* D,

Therefore, ifu = uy is the solution of[(2.116) wittk(r) given by [2.34), them (1) < Vs(1),
whereVs is given by [2.2p), and

Ou — Au+cpt®* W +1) >0 inQ°.
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Thereforeu is larger than the solution = v of
v — Av 4+t (" +1) =0 inQ°
with 7 (0) = k8. Furthermorel; > vy — c,t*t1/(a, + 1), wherev = vy solves
v — Av + cpt*v" =0 in Q¢

with v (0) = k8. If we letk — oo, we derive from[(2.21) and by replaciag = ¢*(©) by
its precise value(l="o/e=2  (n(N+2)=N)In¢ that

op+1

cpt o o N+2—N)Ine _ [x[2
Uoo (X, 1) > Vy(x, 1) — ——— > 82 N2(|x2 4 et - a
a, +1
on (0, €]. In particular
o o (N+2—N)Ine _ [x]2
(2.35) oo (x,€) > 86 2 N2(x2 4 e)ect™ a1 i

Taking|x|? < o /4 yields

oy (eN+2-N)Ine w2
€ n—1 4e

lim e 2N2(|x|? + €)e = 0.
e—0

Thus
!iﬂouw(x,e) =00 Vx € Bﬁ/z
As in the proof of Theorein 2.2, this implies, = V.
STEP4. End of proof. Since for any > ¢ > 0 there exists an interv&d, 6] on which

o 1—=1_ o'/t __ 0/t
5t 2801 e > ¢ ,

any solution of[(2.16) wittk (r) given by [2.34) is a subsolution i@° of the same equation
with 2(1) = e=¢ ", This implies the claim. O

3. SNGLE-POINT INITIAL BLOW-UP FOR A SEMILINEAR HEAT EQUATION

We consider the following Cauchy problem:

(3.1)

du—Au+h@udu=0 inQ>,
u(x, 0) = kéo.

The first result dealing with the localization of the blow-up that we prove is the following.

THEOREM3.1. Assumeh(r) = e “0/" where w e C([0,o0)) is a positive,
nondecreasing function which satisfiegs) > s* for somexg € [0, 1) and anys > 0,
and the following Dini-like condition:

1
(3.2) / 2 4y < oo,
0

N

Thenu, always exists and, := lim;_, - u; has a pointwise singularity g0, 0).
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PrROOF The proof is based on the study of the asymptotic properties as oo of
solutionsu = uy, of the regularized Cauchy problem

(3.3) { u— Au+h@®ulf"lu=0 inQ7,

u(x,0) = ugp(x) = M?k"N25,(x) Vx e RV,

wheres; € C(RY), suppsy C {|x| < k~1}, 8 — 8(x) weakly in the sense of measures
ask — oo and{M;} is some sequence tendingdo ask — oo fast enough so that

(3.4) Mkl/zk_N/2 — 00 ask — oo.
Without loss of generality we will suppose that
(3.5) ||ak||§2(RN) <cokV VkeN, ¢o=const

Our method of analysis is some variant of the local energy estimates method (also
called Saint-Venant principle), particularly developed in[[12,18,15-17] (see also review in
[5). Let us introduce the families of subdomains

@) =R"n{|x| >t} Vr>0,

0" (t) =2(t) x (0, r) Vre (0, 7T),

0,(t)=R2@)x @, T) Vre(T).
Step 1. The local energy framework.We fix an arbitrary € N and consider the solution
u = uy, of (3:3), but for convenience we will denote it byFirstly we deduce some integral

vanishing properties af in the subdomaing, = RY x (r, T). Multiplying ) by

u(x, t) exp(— 7= ) and integrating oveQ,, we get

T —r -1 >
(36) <2 ex%m)) \/RN lu(x, T)|“dx

t—r
Dyul? + h)|ul?™ exp| ————— ) dx dt
4 Dl +ro p( 1+T_r) x

1 2 t—r
+— lu|cexpl ————— | dx dt
1+7 —r 0, 1+T —r

= 2—1/ |u(x,r)|2dx+2_1/ lux, r)|?dx,
Q@) RN\£2(7)

wheretr > 0 is an arbitrary parameter. Usingolder’s inequality, it is easy to check that

2 N(g=1) _ 2 41 Til
3.7) lu(x,r)|“dx <ct a1 h(r) o1 lu(x, )9 h(r)dx
RM\Q(1) RM\2(r)

Here and below we denote y ¢; different positive constants which do not depend on
the parameterk, t, r, but the precise value of which may change from one occurrence to
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another. Let us now consider the energy functions

Il(r)=/ |Dyu|?dx dt, Iz(r)=/ h@)|u(x, )9 dx dt,
r Qr

(3.8)
I3(r) = / lu|?dx dt.
o

It is easy to check that

dl(r)
dr

Therefore it follows from[(3]6) and (3.7) that

/ h(r)u(x, r)|9 dx z/ h(r)|u(x, )9t tdx vt > 0.
RN RM\2(1)

(3.9) fR luGe P dx + 1) + I(r) + 13(r)

N@g-1) 2 2

<ct T h(r)” T (=Iy(r)) Tt +c/ lu(x, r)|2dx V>0 Vr:0<r<T.
(1)
Next we introduce additional energy functions

f(r,t):/ lu(x, r)|2dx, El(r,r):/ |Dyul?dx dt,
(3_10) £2(7) 0" ()

Ex(r,7) = / lu|?dx dt.
0" (v)

Now we deduce some vanishing estimates for these energy functiong. hetsome
nondecreasing smooth function defined @noco), with u(r) > 0 for t > 0 (a more
precise definition will be given later on). Then multiplyig (3.3) kb, 1) exp(—pu(t)%r)

and integrating ove®’ (t) with ¢ > k1 (remember that suppx C {|x| < k~1}) we
deduce easily

(3.11) 2lfu, () + () = 2—1/9( ) lu(x, r) |2 exp(—u(t)%r) dx

+ / (IVxut)? + 1()?|ul?) exp(—pn(t)?r) dx dt
0" ()
<u@m™?t / (IViu]® + (02 ul®) exp(—pu(0)?t) dsdr - Vo > kL.
392(t)x(0,r)

Clearly

d-]u,r(f) _

- / (Ve + (02 ul?) exp(—p(0)20) ds di
dt 92(0)x (0,r)

+ / 2up (7)) |ul? exp(—u(v)?t) dx di
0" (z)

2 / i (O (Vi + ()2 ul?) expl—(1)20) dx dt.
0 (t)



72 A. SHISHKOV - L. VERON
Sinceu/(r) > 0, it follows from (3.11) that
(3-12) Zlf,u,r(f) + Ju,r(f)

d
< u(r)‘l[—z 1 (T) + 2/

1@ (0 |ul? exp(—p(0)%) dx dt}.
07 (v)

If we suppose

21 (1) _ a
3.13 1— -
o n(r)? ~
we derive from[(3.1R)
dJ,.,
Jur (@) + Jpr (7) = —ZM(f)fllzi’—r(T).

It is easy to check that this last inequality is equivalent to

p(t) rp(s)
5 exp<frl " dS>f,L,r(T)
< —%(Ju,r(r) EXp</T: %s)ds)> VT > 11 > kL

By integrating this inequality and using the monotonicityfaf, (r) we get

fore /rz @ eXp(/T w(s) ds)dr + Jyr(12) exp(/fz &ds)
n 2 n 2 n 2

=< J;L,r(rl) Vo > 11 > k_l.

() 2 u(s) _d T u(s)
Texp(/rl Tds) = (exp(/;l > ds)),

it follows from the last inequality that

(3.14)  fur(r2) |:9Xp</r2 @ ds> — 1} + Ju,r(12) exp(/r2 @ ds)
1 -

< Jus(t) Vo> 11> kL.

Since

Now we have to defina (7). Lete > 0 and set
(3.15) w@)=er Y-k vr>kl
One can easily verify that condition (3]13) is equivalent to

(3.16) > k4 2:7Y2 12,
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Now (3:13) implies two inequalities:

2 -1\2
—k
(317) A() = /Q ( )<|qu|2+‘9(t2r—2)|u|2)dxdt
r.[2

e((p—k™H2— (1 —kH2)  e2(rp - k—l)}
+
4r r
V1o > 11 > k14 2£_l/zrl/2,

< A1) eXp[—

and

(3.18) f(r,12)

_kfl 2 _k712 -1 2 _k712
- A(Tl)[exp<8((rz ) — (1 ) )) _1} exp(8 (12 ) )
4r r
V1o > 11 > kL4 261212,
In particular, fore = 8% we infer from [3.1y) and (3.18) that
_ k—l 2
(3.19) / <|qu|2+ %W) dx dt
Qr(t) 64r
— k12 2
< eexp<—u)f <|vxu|2+ﬂ> dxdt Vr > 10(r) = kT 44v24r,
647‘ Q’(‘Eék)) 27‘
and
2 —1y2 2
e (t—k) / o U
3.20 < expl ——— v — )dx dt
(3:20) fOn)=—— XP( o ) Q’(rék))<| xul”+ o ) dx

vVt > ?ék)(r) =k 14+ 8r.

In order to have an estimate from above of the last factor on the right-hand side of
(B:19), [3:20), we return to the equation satisfiedubymultiply it by the test function
ur(x, 1) exp(—t) and integrate ove@” = RY x (0, r). After standard computations we
obtain, using[(315),

(3.21) /N |uk(x,r)|2dx+/ (Vyur? + lugl? + h (@) ugl?tY) dx dr
R or
= E””O,k”iz(RN) <cMy — oo ask— oo, Vr <T.

Due to [3:2D),[(3:21) it follows fronf (3]9) that

@22) [ e DOPdx -+ 1)+ 120+ 150

N(g—1)

2 2 1 (t — k™12
<c1t L h(r) I (=Iy(r)) et + coMirT T expl ——————

64r

> vt > ?ék) (r).
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Relationshipg (3.19)] (3.20) due fo (3.21) yield

(t—kH?
WEz(r, T)

(3.23) f@r,t)+ E1(r,T) +

(t —k™1H?

<coMpr~t exp(— =

> VT > ?ék) ().

Step 2. The first round of computations.Next we construct some sequences
{zj}, {rj}, j =k, k—1,...,1. First we specify the choice af; from condition [3.B),
namely let

(3.24) My = e

Then we choose;, r; such that

2
(3.25) c2 rk_l exp(—GTT’:”{)Mk = M,fo, O<egg<e d,

wherec is from (3.22), [[3.213). As a consequence[of (3.25) &nd [3.24) we get
(3.26) o = 8r’[(L — s0)e* +Inrt 4 Incy] Y2,

In inequality [3:2) we fixc = 7 + k~1; then due to definition[ (3.25) it follows from
@22) that

(3.27) /N lux, T)|?dx + I(r) + L(r) + I3(r)
R

1 Ng=1 __2 , _2_ £0
<ctk " +1) Fh(@r) F(=LE)T+ M Vr:0<r <.

I1(r), I2(r), I3(r) are nonincreasing functions which satisfy, due to the glabatiori

estimate[(3.21),

(3.28) 11(0) + I2(0) + I3(0) < cM;.

Let us define the numbeg by

(3.29) re = Suplr : I1(r) + Ia(r) + I3(r) > 2M;°}.

Then [3:2Y) implies the following differential inequality:

(3.30) L) + b() + () + / e, TP dx
R

2

_1 N@g-1 _ 2 ,
< 2ci(ve + k) 1 h(r) FH(=Ix(r))eTt Vr <ry.

Solving it, we get

2

(3.31) L)+ L)+ [B0) <3 +kHYHE) 7T vr <ny,
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where

r 5 \2/@-D)
H(r) = / h(s)ds and c3= <_1> (2¢1)TD/@=D
0 q-—

Next we will use more specific functions

h(t) = exp<—@>,

wherew (¢) is nondecreasing and satisfies the following technical assumption:
(3.32) 1 <w@) <wg=const Vi:0<t <1, O<ap<l

It is easy to show by integration by parts the following relation:

r _ 2
/ exp(—aw(t)>dt > 1=40) L exp(—m> vr > 0,
0 t 1—wg)a () r

wheres(r) — 0if r — 0. Therefore

2
(3.33) H(r) > —

w(r)

As a consequence we derive frgm (3.31), using (3.26),

h(r), ¢ =const> 0.

(3.34) I1(r) + Io(r) + Ia(r) < cal8ri/? (L — so)e* + Inr t +Inc) Y2 + kY

2
w(r)a1 2w(r)
<ol o,

Comparing[(3.29) and estimafe (3.34) we deducerthsatisfies

> Vr < rg.

ra-1

(3.35) ri < by,
whereby is the solution of the equation

2 -4y 20 (b
cal8b?(1 — eo)e + bt +Inc)? + kN w (b7 1b, T exp< (qw(ll;;; )
- k

=2M;° =2 exp(eoe’).

This equation may be rewritten in the form

(3.36)  Incs + len(w(bk)>+ 2w
q_

by g—1 b
Ng-1—4

2G-DN_ __2
+ NIn[8h, 7™ (1 —eo)ek +Inb L 4+ Incp)V2 + k71, “ V]
=In2+ gk  Vk eN.
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Sinces~tIns — 0 ass — oo, it follows from equality [[3.3p) that

2 b
(3.37) 1+ cy(k)eged > Ax + — w; k)
q— k
N(g-1)—4 ) 2 b
= NIn[8b, "V (1 — so)e +Inbyt+Incp)? + kb, "] 4+ — w; 0
q— k

> (1— y(k))eget  Vk eN,

where O< y (k) < 1, y(k) — 0 ask — oo. Keeping in mind conditior{ (3:32), we obtain
easily

b —(1—
(3.38) # > b 170 Al <c(inbi] + k) VkeN.
k
Due to propertie§ (3.38), it follows frorf (3]37) that
b
(3.39) cek > @by > dief VkeN, di > 0.

k

As a consequence df (3]39), (3.38) we also obtain
(3.40) Inb;* < ck  VkeN.

Now using estimatd (3.39) we are able to obtain a suitable upper estimateTofanks to
(3:39), [3:39) and (3:30) we deduce frdm (3.26) that

1/2
1/2 k k a)(bk) . C 1/2
T < Cbk eXp<§> <c eXp<§> (dl expk = F(D(bk) .

Using again estimaté (3.89) and the monotonicitywaf), we deduce from the above
relation that

1/2
(3.41) T < c[w(dw—ok)} . wois from (3.32)
1e

Therefore, from inequalitied (3.23) and (3.34), definitions_(3.25), [3.29) and property
(3:38), we derive the following estimates:

(3.42)  Ii(rp) + Io(ri) + I3(rx) < 2M;°  wherery is from (3.3%), [(3:20)
2

T
(3.43)  fUr, e +k Y+ E1(r, v + k1) + BTILZEz(rk, w4k < MO,
i

wherer, is from (3.26),[(3.4]1). Becausg < ¢ 1, it follows from definition [3.24) of the
sequencé/; that

(3.44) M < cMi—1 Yk > ko(o),
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wherec > 0 is an arbitrary constant. Therefore, adding estimdtes](3.42)[and (3.43),
we obtain, thanks td (3.44) and the fact that>> r (which follows from [3.25)), the
inequality

3
(345) friow+k D+ D L0+ Y Eilrk, s +k™) <M1 Vk > ko(e).

2
i=1 i=1

STEP 3. The second round of computationdNext we introduce the termsg_1, 7;_1.
Firstly we return to inequality (3.14). Fixing here the function
(3.46) u(@) = sr*l(r ko) Viskl4r

instead of[(3.15) and using estimates (8.16)—(3.20), we obtain

(t—k1- rk>2|u|2)
3.47 V.ul? dx dt
( ) '/;2'(r)<| M| + 642 o

k-l )2 2
< eexp Il Bt f |qu|2+ﬂ dx dt
64}" Qr(-[ék*l)(r)) 2}’

VT > rékfb(r) =kt + 42U,

and

2 -1 2 2

e (t—k"—1) o |ul

(3.48) f(r,t) < - 1exp<—T> /Qr(r("b(r))('vxu' + 7) dx dt
0

Ve TV =kt g 48U

The integral term on the right-hand side[of (3.4[7), (B.48) is now estimated by using estimate
(3:43) obtained in the first round of computations. So, we have

2
(3.49) / (|qu|2 + ”—) dx dt
Qe ) 2r
3 2
= @)Y B0+ Eiteno+ kD] < e@) M
i=1 i=1
Vk > ko(c), Vr > ry.

Using this estimate we deduce from (3.47) gnd (3.48) that

(t—nu—k1H2
642

_ _ k*l 2 e
< cor Mg eXp(—(TTgT)> VT > fék V).

(8.50) f(r,7)+ Exi(r,7) + Ex(r, 1)
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This estimate is similar to estimafe (3123) from the first round. Now we have to deduce the
analogue of[(3:31). For this we return to the initial relatijon](3.9), where we now estimate
the last term on the right-hand side py (3.48), using additionally[3.49). As a result we have

(3.51) Zl(r) < et I h(r) R (< ()T
i=1
(t—tw —k~

12 k-1
ok ) Vr >, Vo= 300,

+ csz_lrfl exp(—

which is analogous to estimafe (322) from the first round. Next we define the numbers
7—1 andrx_1 by equalities analogous 0 (3]26) apd (3.29),

.L,2
3.52 cr_lM_ex(— k_l>=M8°, O<eg<e 1,
( ) 21 Z1Mg—1 €XP| 641 k—1 0
(3.53) re—1 = supr : I1(r) + Io(r) + I3(r) = 2M;° ;}.

Now combining inequalitie (3.80) anfl (3]44), and using definitipns (3.62),](3.53), we
obtain the following differential inequality:

3
(354) > 1) = 2e1(mios + 7 + KD T RG) I Vr < s,
i=1

Solving it, we obtain an estimate similar fo (3.31). Using propérty {3.33) we arrive at

(3.55) Zl (r) <caltp—r+ e + k- 1)N

i=1 I"’I

(r) —1 ox ( 2w (r)

Yr < rp_1.
(q—l)r> T

As in the first round, from[(3.32) we expresgs.1 as a functionrk_1(rx—1) (the analogue
of 3.26)):
(3.56) Th—1 = 8r,3£21[(1 — g0t +1n reop+1In 62]1/2.

Inserting this expression int¢ (3]55) and then comparing the resulting inequality with
definition [3.53), we deduce an estimate similaffo (8.35),

(3.57) ri—1 < bg—1,

whereb;_1 is the solution of the equation

(3.58) calBb2((1— o)L +Inbt +Ine)Y? 4+ 5 + k7YY

_2_

" ®(bg—1) 971 exp((Zw(bk—l) )

4
- g — Dby
b

2M;° | = 2 expleget ).
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From [3.50), and due to definition (3]52), it follows that

2
T,
(359) f(i-1,m-1+m+kH+ #Ez(mfl, TRy )

+ E1(r-1, e+ e+ k) < M.

From [3.55), due td (3.56)—(358), it follows that

(3.60) I(rk—1) + B(ri—1) + Is(re-1) < 2M;° ;.

Summing [(3:5P),[(3.80) and using properfy (3.44), we deduce a new giobpaibori
estimate (the analogue ¢f (3]45)) which is the main starting information for the next round

of computations:
3 2
3.61) frrtmwatu+kD+Y kD + Y Einma+u+k™D
i=1 i=1
< cMy_».
We are now ready for the next round of computations, introducing the function

u(t) = sr_l(t k1 Ty — Tk—1) VT > k14 T + Th—1

instead of [(3.46), and estimafe (3.61) instead[of {3.45). We perforounds of such
computations. As a result we obtain

J 3 2 J
(3.62) f<rk_j, Y o+ k—l) +Y Lk + Y Ei <rk_j, Y+ k—l)
1=0 i=1 i=1 1=0
< cMy—j-1,
which was our main aim.

STEP 4. The control of_, le:o T asj =1,..., kwith arbitraryk € N. Itis clear
thatr,_;, x—; are defined by the conditions (sge (3.52), (B.53))

1 = €0 -1
(3.63) Czi’k,ij—j exp _64ka]‘ = Mkij, O<egg<e .
(3.64) ri—j = SUpr : Ii(r) + Ia(r) + I3(r) = 2M;° ;
Similarly to {(3.56)-{(3.58) we deduce that
(3.65) i = 82 (1 — e)et ™ +Inrt, +Incg) M2,

(3.66) rr—j < bg—j,
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whereb,_ ; satisfies

. =1 N
(367)  ca[8h% (L —eo)e ™ +Inbit +inep)M2+ 3 iy + k7]
i=0

2
o« a)(bk,j)q*1 ex < Zw(bkfj)

4 (g — Dby—;

) = 2M;° . = 2 explege ).
bt !
k—j

In the first round of computations we have obtained the upper estimaté (3.44,) fat
us suppose by induction that the following estimate is true:

0 12
(3.68) T < c[w(dlek_l.)] Vi<j-—1

We have to prove that estimafe (3.68) holds alsa fer j. Obviously condition[(3.67) is
equivalent to (se¢ (3.86))

w(br—j)
be_;

2 2 b .
(3.69)  Inca+ 1In< )+ L 2biy) +AY = In2 4 soek,
q — q

1 br—j

where

Ng—D—4 _ k14 j*lf »
AV = Nln|: 2a=DN (1 — gg)ek—I +Inbk‘ +Inep)t? + #}
bkq 1N

Because of the induction assumptipn (3.68),

1/2 10)(S)1/2
ZTkiSCZ[ (dlek’)] 56/0 S ds =. cL,

therefore
(3.70) 1AV < e(linby_j| + (k — j) +InL).
From [3.69) due td (3.70) we derive easily
. bi; .
(3.71) ce > % >de™7 Vjik—j>ko=ko(L),
k—J

whereko < oo does not depend on From [3.71) it follows in particular that
(3.72) bt < ctk—j) Vjik—j=ko

Thanks to[(3.66) and properti¢s (3.71), (3.72), we derive ffom]3.65) that
(373) n-; =85/%(A— e} +Inbct, +Incy)t?

k—j
2

1/2

C . .
< b’ exp( ) < dl/za)(bk D2 Vjik—j=ko(L).
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Using again estimatg (3.71) and monotonicity.af) we deduce fron{ (3.73) that

o 1/2
(3.74) Tp—j < c|:a)<dlek_1>i| Vjik—j>ko(L).

Thus, we have proved by induction estimate (B.68), for arbittaryj > ko(L) with r;, 7
satisfying [3.6),[(3.67) anfl (3]74).

SteP 5. Completion of the proof. We now fixn > ko(L) and takej = k — n in (3.63).
This leads to

k—n 3 2 k—n
(3.75) f<rn, >+ kl) +Y L)+ Y Ei (rn, > u+ kl)
1=0 i=1 i=1 1=0

<cM,_1 Vn > ko(L).

Next we have

k—n S o0 1/2 R — 1/2
wo drexpn=1 w(s)
3.76 E < E P < E — < d 0
579 z=ork l_i:nrl_cl [w(dle’)} _C/o s 07

i—n

asn — o0.

Therefore, for arbitrarilyy small > 0, we can find and fix = n(8) < oo such that[(3.75)
implies the uniform (with respect tb € N) a priori estimate,

T
(3.77)  sup |uk(x,t)|2dx+// (\Veur? + lux|?) dx dt
BED 0 Jixi>s

t>0

<C=C@)<oo VkeN

Sinceuy(x, 0) = 0 for all |x| > k~! andk € N, it follows from (3.77) thau(x,0) = 0
for all x # 0, which ends the proof. O

4. REGIONAL INITIAL BLOW -UP FOR AN EQUATION WITH
EXPONENTIAL ABSORPTION

The local energy method we have used in the proof of Theprem 3.1 is based on the sharp
interpolation theorems for Sobolev function spaces, which are a natural tool for the study
of solutions of equations with power nonlinearities. Here we propose an adaptation of the
method to equations with nonpower nonlinearities.

Thus, we consider the Cauchy problem

oiu — Au+h@)(e* —1) =0 inQ%>,

(4.1) u(x, 0) = kéo.

—ew @)/t
e ¢

THEOREM4.1. Assumeh(t) = wherew € C(J0, o0)) satisfies the same
asumptions as in Theorg&l Then the solutiom; always exists ando = limj_, o0 ux
has a pointwise singularity &0, 0).
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ProOF We will consider the family (x, ¢) of solutions of regularized problems:

{u, —Au+h(@®)( -1 =0 inQT,

4.2
(4-2) u(x,0) = uox(x) = M7?kN/2,(x) Vx e RV,

wheredy, is nonnegative, continuous with compact suppomBjn:, satisfies estimatg (3.5)
and converges weakly iy ask — oo, and{M;} satisfies conditiorf (3}2). Let us introduce
the energy functions (we omit the subscripin uy):

I1.0(r) :/ \Veul2dxdr,  I,(r) = (q!)*lf () u|9t dx dt,
(4.3) r QV
I3.0(r) =/ lu|?dx dt.
o)
Multiplying @2) by u(x, 1) exp(— 7). integrating overQ, and using the equality

00 Sq+l

s(e’ —1)227,

q=1

we obtain easily

(@4) Do)+ 3 1) + I0(r) < c(g)Te 1 h(r) T (— 1) ()T
=1

+c/ |u(x,r)|2dx V>0, Vr:0<r<T,VgeN.
2(1)
We introduce the additional energy functions

f(r,7) from (320)  E1o(r, r):/ |Dyul?dx dt,

(4.5) (@)

Eo0(r, r)=f lu|? dx dt.
0 ()

Instead of[(3.2)1) we derive the following glotepriori estimate:

00 41
(4.6) g Cx, )2 dx + Vel + Jug? + (1) ) :'”"' dx di
RV or = !

= 2
=c ”uo’k”Lz(RN) < CMk Vr <T.

Using estimate[ (4]6) instead ¢f (3]21) in a similar way to the proof of Theprem 3.1, we
obtain the following inequality, analogous fo (3.23):

(r — k12
WEZ,O(", T)

(t — k™12
64r

4.7 f(r,0)+ Epo(r,7) +

< cszrlexp<— ) Ve > T 0) =k 4 87
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Using this estimate we deduce from (4.4) that

2 N 2

(4.8) Lot + 1) + Iao(r) < cg) it 1 h(r) T (1] (r) i1
=1

(r — k™12

Mir—Lexp| —
+ coMyr p( 64

) VT > ?ék)(r), Vg € N.

Next, we define the numberg, r;. Firstly, set
o0

49) o= sup[r o) + Y L) + Iao > 2M,f°}, 0<eo<e ™
=1

Then we fix the sequend@{y} by (3:24) again and; by (3.25), [3:2p). Thanks to these
definitions we derive the following series of inequalities from relating (4.8):

(4.10)  Io(r) + Y L) + I30(r)
=1

_2_
1

2 N(g—1) 2
< 2e1(q) T (r + k™Y I h(r) (=L ()T Vg €N, Vr < 1.

Solving these differential inequalities we obtain the estimates

2

(411)  T1o() + Y 0 + T30r) < el + kDY (DT LH () 7
=1

Vr <rg, Vg € N,

where H (r) is from (3.31). We now have to optimize estimgte (#.11) with respect to the
parametey . By integration by parts, it is easy to check the following inequality:

2
(4.12) H() > e exp(-@)h(r) Vr>0, 70

w(r)
Using the Stirling formula! ~ (q/e)? and estimatd (4.12), we deduce frdm (4.11) that
o0
(4.13) Lo(r) + Y L) + Iao(r) < cat +k HVF, () Vr < ni.

=1
2 w(r)
ool %))

where

5 2 __ 4 2 w(r)
Fy(r)y=q o) lr «-lexpl — - exp
qg-—1 r

Fixing here the optimal value of the paramejer

-2
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where [i] denotes the integer part of we obtain easily

Fj=<c eXp(Za)(r))

r

Therefore it follows from[(4.1]3) that

> 2
(4.14)  To()+ Y L)+ I30(r) < es(r +kHY exp(@) Vr < rg.

=1
Comparing now definition[ (4]9) of;, and estimate[ (4.14), and using additionally the
expression|(3.26) of;, we obtain

(4.15) ri < by,

whereby is defined by the equation

(4.16)  cs[8b2((1— so)et +Inbt +Incp) V2 + kY exp<M>

by
= 2M,f° = 2expege’), O<eg<e L.

By an analysis similar to Step 2 in the proof of Theofenj 3.1, we obtain estimate (3.37)-
(3.40) for br. Then we prove the validity of estimate (3/41) far. As a consequence

of estimates[(4]7)[(4.14), thanks to definitiohs (B.26),](4.9j«0frx and the previous
estimates oty, rr, we get

o0
Iio(r) + Y Ii(r) + Iao(r) < 2M°,
=1
2
1 -1 Tk -1 £0
SO, +k )+ Erolri, e + k™) + WEz,o(Vk, w+kT) < M°.
k
Summing these inequalities, and using the definitiofiMf} and the property; > r,
we obtain an analogue of estimdte (3.45), namely,

o0
@4.17)  fOor o+ k™ + ot + Y L) + Iao(re) + Erore. o + kY
=1
+ Ezo(ri, e + k1) < eMy_1.

Using [4.1T) as a global priori estimate instead of (4.6) and performing a second round
of computations similar to[ (3.46]—(3]57) we derive a second glabpliori estimate

analogous td(3.61),

o0
et i1+ + kD + Itk + Y Ii(r-1) + Iao(ri—1)
=i

+ E10(rk—1, Tee1 + T + k1) + E20(rk—1, To1 + & + k) < cMy_2.
Repeating such roundstimes we derive a corresponding analogue of relafion [3.62). It

is easy to see that estimafie (3.76) for the constructed shiftsemains valid. This fact,
similar to what was used in the proof of Theorem| 3.1, yields the conclusior
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5. THE POROUS MEDIA EQUATION WITH ABSORPTION

In this section we consider the following problem dealing with fundamental solutions of
the porous media equation with time dependent absorption:

_ m—1 -1, — H T
5.0) {a,u Au™ ) + h®)|utu =0 inQT,

u(x, 0) = kdo.
It is standard to assume that> 0 is a continuous function and, ¢ are positive real

numbers. By a solution we mean a functiene L1 _(Q7) such that™ e LL (Q7),

loc loc
hut e L (QT) and

(5.2) ff (—ude — |u" " uAd + h(t)|u|? " up) dx dt = k¢ (0, 0)
QT

forany¢ e Cg’l(RN x [0, T)). If h = 0andm > (N — 2);/N this problem admits a
solution for anyk > 0. Whenm > 1 this solution has the form

1/(m-1)
_ i, m=De P
(5.3) Bi(x,t) =1 (Ck SN 12N ,
where
N 2Am—1)¢/N
(5.4) and Cy=a(m, N)k .

b= ———

Nm—-21)+2
Since By is a supersolution for problerm (5.1), a sufficient condition for existence (and
unigueness) afy is

(5.5) // Bi(x,)h(t)dx dt < oo.
QT

By the change of variable = ¢¢/N x this condition is independent &f> 0 and we have

PROPOSITIONS.1. Assumen > 1,q > O. If

1
(5.6) / h(H)t= dt < oo,

0
then problen(5.7) admits a unique positive solutian= u. In the particular case where
h(t) = O(t%) (¢ > 0), the condition is

N(g—m)—2
Nm—-1)+2

We recall that if§ > 1 andm > (N — 2);/N, any solution of the porous media
equation with absorption is bounded from above by the maximal solUtiogiven by

t -1/(g—1)
(5.8) Uy(t) = <(q - 1)/0 h(s) ds) .

(5.7)



86 A. SHISHKOV - L. VERON

THEOREMS5.2. Assume; + 1 > 2m > 2andh € C((0, c0)) is nondecreasing, positive
and satisfiesi(r) = 0(@—™/m=Dy ast — 0. Then for anyk > 0, u; exists and
Iimk_wo Up ‘= oo = Uj,.

PrROOFE We first notice that

. gq—m N(@—m)—2
1>2m>2 e 1 and .
qg+1> > [ qg>m> m—1>N(m—1)~|—2

STeEP 1. Caseq < m + 2/N. In this range of values we know [[14] that there exists a
nonnegative very singular solutian= vy to

(5.9) dv—Av"+v1 =0 inQT,

andvy, = limy_, v, where they; are solutions of the same equation with initial daia.
Furthermorep, is unique[6], radial with respect toand has the following form:

Voo(X, 1) = fl/(qfl)F(|x|/t(q7m)/2(q71))7
whereF solves
N - 1 J— 1 .
(Fm)// + —(Fm)/ + unF/ 4T F_F1=0 in(.o0)
(5.10) n 24 —1) -1
F'(©=0 and limn?@™F@) =o0.
n—00

Actually F has compact support in [€] for some&y > 0. Lety = (¢ — m)/(m — 1).
Then for anye > 0, u = u Satisfies, for some > 0,

ou — Au™ +ce’u? >0 in QF.
If we setwe (x, 1) = a’voo (x, at) With 8 = 1/(m — 1) anda = e ~1c=@~D/(@=m) then
ywe — Aw" +ce’w? =0 inQT.
By comparisoni, > w, in Q€. If we take in particular = ¢, this implies

(5.11) Uoo(x, 1) > C_1/<q_m)t_1/(m_1)voo(x, C—(m—l)/(q—m))

— C—lt—l/(m—l)F(C(m—l)/Z(q—l)|x|).
If |x] < & = ¢~ ™m=D/2a-Dgy we derive that lim o ue (x, ) = oo, locally uniformly
in Be,. This impliesus, = Up,.

STEP2.Casegy > m+2/N. We give an alternative proof valid for ajl We first observe
that it is sufficient to prove the result whei) is replaced by . If we look for a family
of transformations — T, (x) of the form

Ty(u)(x, 1) = %u(Px, er) V(x,1) € 0, V£ >0
which leaves the equation

(5.12) u — Alu|" u+ Y ufu=0
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invariant, we finde = 1+ y)/(g — 1) andg = (g —m — y(m — 1))/2(g — 1). Due to
the value ofy, we haveg = 0. Because of uniqueness and the value of the initial mass,

(5.13) Te(up) = ugey V€ >0,Vk >0, SO0 Ty(us) = UVl > 0.

Therefore
U (X, 01) = uso(x,t)  VY(x,t) € O, VL > 0.

In particular, if we take = =1,
Uoo(X, 1) =t %uso(x, ) =t %P (x).
Plugging this decomposition intp (5]12) yields
—at Tl — T AP™ 17 e = 0,

where all the exponents ofcoincide since

m m 1 m
_, oaq — = ) o = .
m—1 =Y m—1 m-—1

oam =

Thereforep is a positive and radial (as thg are) solution of
—ap— AP+ ¢ =0 inRV.
Settingy = ¢™ yields
1
(5.14) —AYy — —— YL yd/m =0 inRN.
m—1

Clearlyy = o = (m — 1)~™/@=1 is a solution. By a standard variation of the Keller—

Osserman estimate, any solution is bounded from abovbRuttingy (x) = Ay (a), it
is easy to findA > 0 anda > 0 such that

(5.15) Ay —gYm L ga/m =0 inRY,

with 0 < ¢ < 1. Writing ¥ as a solution of an ODE, we derive
¥ (r) = ¥(0) +/ sl_"/ W1 — g myerlags  vr > 0.
0 0

If ¥4/™ is not constantly 1, the right-hand side of the above inequality is decreasing with
respect to, and the only possible nonnegative limit is 0, by the La Salle principle. Thus

I/‘}N—i-N—_llD/-l—%ljfl/m SO
r

forr > rg large enough. IV =2, we setrt = Inr, ¥ (7)) = ¥ (r) and get

v + %eZTwl/m <0
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for t > Inrg, and the concavity oft yields a contradiction. ItN > 3, we setr =
rN=2/(N —2) and¥ (1) = rN =2y (r). Then¥ satisfies

W 4 ey @GN/ N=D=1/my1/m _ o

Again the concavity yields a contradiction. In any case we obfaia 1, or equivalently

¥ = o, and finally,us = fl/<m*1)1/fg/’". o

THEOREMS5.3. Assume; > m > landh € C(0, c0) is nondecreasing, positive. If
h(r) = t@—m/m=Dy, )~ withw(r) - 0asr — 0, and

1
(5.16) / w(s)? d—s < 00,
0 N

where
mé—1

0 = ,
[Nm—-1)+2(m+D]g—-1)
thenus, = limy_ o ux has a pointwise singularity g0, 0).

PrROOF The structure of the proof is similar to the one of Theofen 3.1. We study the
asymptotic behaviour as — oo of solutionsu = uy(x, t) of the regularized Cauchy
problem

wr — Alu™ ) + h(Olul?tu =0 in Q7

(517) 1 mN
u(x,0) = ug(x) = M 'k~ m 18 (x), x eRV,
wheredy is as in Theorerp 3] 1. Let us rewrite problgm ($.17) in the form

(P~ tv), — Av+ h(@®) v lv =0 inQT,
(5.18) v=uve=ul"tu, p=1/m, g=q/m,

L N

v, 017 Mu(x, 0) = JuoklPvok i= uok(x) = Mk P8 (x).

Without loss of generality we may suppose

p+l

p+1 N
P _ 7= y
(5.19) IO, ) = T dx <ok vk e,

Now the sequencgV;} is such that

r N
(5.20) M kTP — 00 ask — oo.

SteP 1. The local energy framework Consider the following energy functions:

Il(r)zf |V v|?dx dt, Iz(r)zf h()|v|8ttdx dt,
QV r

(5.21)
I3(t) = / lo|PtL dx dt.
o
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Analogously to[(3.9) we deduce the inequality

(5.22) /N v, TP dx + IL(r) + I(r) + I3(r)
R

N(g=p) _ptl , ptl +1
<ct 1 h(r) (=L (r)sT +c lv(x,r)|P™"dx VYr>0,Vr:0<r<T.
£2(7)

This inequality will control the spreading of energy with respect to thariable (the

time direction). As to the vanishing property of energy in variahleve will use the finite
speed of propagation of support for the porous media equation with slow diffusion. In the
domain Q) (r) we will use the energy functio1(r, 7) = Joo@ |V v|2dx dt from
(B3-12). Since supp(-, 0) = suppur(-,0) = suppvox = {x : |x| < k~1}, multiplying
equation[(5.18) by(x, r) and integrating ove@ (), t > k~1, we obtain after simple
computations (see, for examplel|[1L, 4]) the differential inequality

1 (P+D(A-61) d 1#17(1"77%
523 [ oG0Py + Ex(r, 1) < or P00 (——E1<r, r))
(1) dt
vVt > k_l, Vr > 0,
where
1_N(l—p)+(l7+1) _o, p+1

TNA-pt2p+ D TNA-pt2p D)
Solving this inequality and keeping in mind th&f(r, t) > 0 for all» > 0 andr > 0, we
deduce easily that

A-6)A-p)

(5.24) v, r)=0 Va:l|x|>k 4 cortTME(r kT TR
= k1 4+ cox(r), Vr > 0.

Here the constanfy > O depends on the parameters of the problem under consideration,
but not orr andk. Analogously to[(3.25) we deduce the following globadriori estimate:

pr1(RY)

625 [ (%l el ol dxdr < cluol ]
Qr

Thus, due to[(5.18)E(5.R0), it follows froin (5]25) that
(5.26) E1(r,0) <cM; Vr>D0.

Next we return to the inequality (5.22). Due [fo (3.24) it follows fr¢m (5.22) that

N(g—p) _ptl ptl
(5.27) I(r) + I(r) + I3(r) < c(k_:L + x(r)) &1 h(r) s+t (—Ié(r)) 1 Vr > 0.

We remark that due t¢ (5.26) we have

a-0p)A-p)
(5.28) x(r) < et M, p
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STEP 2. The first round of computations Now we have to define, r;. First we impose
the condition

(1-01)dA-p)

5.29 > e TP s from
k k

Then [5.27) yields

1 N(g—p) _ptl , ptl
(5.30)  I(r):=I1(r) + Lo(r) + I3(r) < ck™ "+ ) 1 h(r) F1(=1'(r)) s
Vr:0<r <ry.
Solving this differential inequality we get the estimate
ctk™ Y+ )N
P

(Jo h(s)ds)sr

Remember that the functioh(s) has the formi(s) = s®D/A=P)y(5)~1, therefore
estimate[(5.31) yields

(5.31) I(r) < Vr:0<r <.

p+l
cow(r)er (k= + )N
p+l
ri-r

(5.32) I(r) < Vr:0<r<r.

Thus, as a second condition which defines our pairr, we suppose that

p+1
=l N
cow (r) &7 (k" 4 7¢) :
T <cMi_1, cisfrom (5.26)
rk17”

(5.33)

Moreover, we will find the pait;, r; such that
(5.34) Kl <1

Then the following inequality is a sufficient condition for validity pf (5.33):

p+1 —ptl

(5.35) cow(r) s Pr, TP < eMi_1, cis from )
k
and we can defing, by
c2 % 1-p Lo
(5.36) re = (—) w(rk)ﬁMkf’l“.
C

Now we have to choose the sequektf }. We set
(5.37) Mi:=¢  VkeN,

and we definey, in accordance with assumptidn (5.29), by

L st
(5.38) w=crp ‘M, "7, cyisfrom (5.28)
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Further, due td(5.36) anfl (5]37), it follows from (§.38) that

R S
(539) Tk = Cl(r]f+lM]iL P) NI-p)+2(p+1)

1-p 1
Cc2 A-p)(p+D —(1— 1— NA-p)+2(p+D
= c1|:<?) o) 7 MM
(1-61)(A-p)

ecy L+p
= 61<—> w(re)’,

where
_ 1-6)A—-p) A-pp+1)

g-pr  @-pINA-p+2p+D]
From definition [(5.3p) and because [of (§.37) gnd (j3.43),

1-p
cp\ 1 =2 1-p 1-p
5.40 <|—= SPexpl ———=(k —1) | = czexpl ——— k),
(5.40) rk_<c> wg p( p+1( )) c3 D( P

S

andry — 0 ask — oo. Therefore, since(s) — 0 ass — O, it follows from [5.39)
thatt; — 0 ask — oo. Consequently, we can suppdsseo large that conditior (5.84) is
satisfied. Thus, we have the péif, ;) for largek € N.

SteP 3. The second round of computationsAs a starting globa& priori estimate of a
solution we will now use, instead df (5]25), (5] 26), the following estimate:

(5.41) Ii(re) = / IVevPdxdt < I(r) < cMy_1,
{t=>rg, xeRN}
which follows from [5.3P), due to definitiof (5.83), (5]36) @f Using property[(5.24),
estimate[(5.28) and properfy (5]29), it follows frdm (5.41) that
(5.42) Ev(r k™t + 1) < () < k) < cMi—r Vr > 1.

Sincewv(x, ;) = 0 for all x with |x| > k~* + 7, we deduce similarly td (5.23) that

(5.43) / Iv(x,rk+r)|p+1dx+E1(rk+r, k1t +1)
2(7)

(p+1D(A-61)

p+1
__(ptDA=0y) d 1 p+I-(1-67)T-p)
< cr (PHD-A=6p0-p) | — d—El(rk +rk T+ +1)
T

Vr >0, VT > 0.

Solving this differential inequality, we obtain

(5.44) v,k +r) =0 Vxlx| >k g 4 coxa(r),

(1-67)(A—p

)
wherey1(r) i= r* " E1( +r, k"1 + 1)~ T forr > 0. But (5.42) implies

A-6)-p)
(5.45) x1(r) < clrl_ele_llﬂ’
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Now we definery_1, rx—1. In the same way af (5.29) we impose

L st
- it
(5.46) Th—1 > Clrk—lle—l r

Similarly to (5.30)(5.3R) we deduce

il g N
cow(r) 7 (k™ + T + Th—1)

ptl
ri-r

(5.47) I(r) < Vr:0<r <rg+ri_q.

The second condition defining the pajr-1, rx_1 is analogous td (5.33):

| N
cow(ry +rp—1) s P (k™" + 1 + Tk —1)

(5.48) 7 < cMy_3, cisfrom (5.26)
(rk +rr—1) &7

Supposing that

(5.49) Flv g4+ o<1,

we can define_1 by the following analogue of (5.36):

—D
1 1-p _1-p
(5.50) P+ rp—1 = (C—Z) ’ w(r + rkfl)ﬁMk_sz-
Cc
And in accordance withf (5.46) let us define 1 by
(1-61)dA-p)

(5.51) Tt = e M,
Due to [5.50) we have

1
cal(r + )P M| TP

1-p 1
c2 A=-p)(p+D) —@A=p) 4, 1-p N(I-p)+2(p+D)
Cl|:<?> o(rg +ry-1) 87 M5 UM,

IA

Tk—1

IA

(1-69A-p)

eco I+p s
=al— oy +re-1)°,

wheres is from (5.39). Notice that, due tp (547, (548), we also have
(5.52) I(rg + rg-1) < 1(rg +15-1) < cMy—2,
and, analogously t¢ (5.42),

(5.53) Ex(rk Y4 m4w_1) <h() < Lr+rm-1) <cMy_2 Yr=>r+r_1.
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STEP 4. Completion of the proof We can use estimatgs (5]5%), (3.53) insteal of [5.41),
(5.42) for the third round of computations. Aftgisuch rounds we deduce that

(5.54) Il(Xj:rk—i) =< 1(i"k—i> < cMy—j,
i=0 i=0

J J J
(5.55) El(r, Kt ka—i) <h(r) < 11( Vk—i) <cMp—j Vr> Zrk—i,

i—0 i—0 i—0
where

(1-69)1-p)

1
(5.56) Thk—i < C1 ez +p w(
c

with the same§ as in [5.39), and

1-p

i e 4 i 1 1
(557) o= (2) o o)
1=0 ¢ 1=0

Estimates[(5.54) will remain true as long as the following analogue of reldfion| (5.49) is
valid: ‘

J

Kt Z i < L
i=0

Now we will check this condition. Due t§ (3.82), it follows froin (5]57) that

i Lp 1- 1-p
c\ Pt = -0 —o71 1-p :
E re—) < (—) wg "M, " =1CM, ", =Cexpl ————(k—i—1)).
= c ! ! p+1

Therefore, from[(5.56), it follows that

O

(1-61)dA-p)

i 1-p)k—i—1 §

ozl ) oo -2
_. A-pk—i-D\\]°
- clp(eo 5452

Thus we have, using in particular the monotonicity.f),

J j B i s
R )]

i=0 i=0

¢ @-ps\\T°
o[ eleee-55)

_ G+ (e’
1-p Ay K

IA

s,
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where 1 1
—Pp — P .
Ai=Cexpl ——k|), Ax=Cexpl—k—-—j—-1)].
1 p( p+l) 2 IO[ er1( J )}
Due to condition[(5.16) and estimafe (5.58) we can fince N, which depends on the
parameters of problem under consideration, but does not depend df) such that

k—kg
Z i +k1<1 VkeN.
i=0

Finally, our estimateg (5.54]-(5)57) are true forjalk k — ko. Therefore the conclusion

of Theoren{ 5.8 follows from estimates (5/54)—(5.57), in the same way as Thgorem 3.1
follows from estimateq (3.75)=(3[77). O

6. THE FAST DIFFUSION EQUATION WITH ABSORPTION

When(1 - 2/N); < m < 1, itis known that the mere fast diffusion equation
(6.1) hv—AV"=0 inQ™®

admits a particular fundamental positive solution with initial data (k > 0) called the
Barenblatt—Zel'dovich—Kompaneets solution, defined by

L—m)e [x|?
2mN  t2t/N ’

wheret andCy are given in[(5.4). The main feature of this expression is that ligg Cx
= 0, therefore

(6.3) klim Bi(x,t) = W(x,t) = C*(t/|x|2)1/(lfm)’
—00

(6.2) Bi(x,1) =1t7¢ (ck +

where

1- m)3 1/(1-m)
Cy = .
(Zm(mN +2- N))

This solution has a persisting singularity and is calledzor blade[18]. It also has the
property that

|im0W(x, t)=0 Vx#0.

t—

This phenomenon is at the origin of the work of Chasseigne amt\ez on extended
solutions of the fast diffusion equation| [3]. Concerning problém]|(5.1), Propogitign 5.1
is still valid providedm > (14 2/N);. We shall denote by: = u; the solutions

of (6.1). Furthermore estimate (5.8) holds. Combining this with the fact thaBthere
supersolutions for they, we derive the following

THEOREM6.1. Assumgl —2/N); < m < landh € C(0, c0) is positive. Assume
also that(5.6) holds. Thenis := limg_, o ux has a pointwise singularity &0, 0) and the
following estimate is satisfied:

6.4 _ » Ix|2 =1/(1-m) t -1/(g-1
. Uso(x,1) < MIn{ Cyt 20N ,(@—-21 A h(s)ds .
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REMARK. The profile of us, near (x,t) = (0,0) is completely unknown. In
particular a very challenging question could be to give precise estimates of the quantity
min{W(x, 1), Up(t)} — uco(x, 1).
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