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ABSTRACT. — We give some multiplicity results on existence of nontrivial solutions for superlinear elliptic
equations with a saddle structure near 0. We make use of a combination of bifurcation theory and minimax
methods.
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1. INTRODUCTION

This paper is concerned with constructing multiple nontrivial solutions of the semilinear
elliptic boundary value problem

P —Au=Aiu+ f(x,u) In2, wu=0 0nas2,

which has received much attention during the last several decadessHera bounded
smooth domain ilRY. We make the following assumptions gn

(f) feCYR xR,R).

(f2) f(x,0)=0= f,(x,0).

(f3) There areC > 0and 2< p < 2* such that f(x, u)| < C(A+ |u|P~ 1) forall x € 2
andu € R, where 2 =2N/(N —2)forN >3andZ =ocofor N = 1, 2.

(f4) There areu > 2 andM > 0 such that

O< uF(x,u) :ZM/M fx,0)dt <uf(x,u)
0

forallx € 2 andju| > M.

Hypotheses f1)—( f4) are standard conditions used in the papkr [1] by Ambrosetti and
Rabinowitz and subsequently by many others in the study of superlinear problems. The
question of interest here is in giving a lower bound on the number of nontrivial solutions.
Denote by O< A1 < A2 < --- the distinct eigenvalues of the linear eigenvalue problem

(Po) —Av=xv in2, v=0 onas.

In [1], for » < A1, one positive and one negative solution were obtained by use of the
mountain-pass theorem. Whehis also odd irnu, infinitely many solutions were obtained
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for any by the symmetric mountain-pass theorem. Without the oddness condition, a third
solution ford < A3 was constructed by Wang in [18] by using a two-dimensional linking
method and a Morse-theoretic approach. This result has been generalized and proved in
other ways by many authors (see([255] 7, 12] and the references therein). The question
is still open as to whether there exist infinitely many solutions without assuming any
symmetry conditions. Wheh > A1, in general one nontrivial solution is found in [15,

16] under an additional conditiory (x, u)u > 0. The same conclusion was proved in
[10,[11] without this additional condition when # A; and with a local sign condition

on f(x,u)u near zero whe. = A; for somei. Recently, in a paper of Mugnai [13], it

is proved that forh < A; and very close td.;, there are three nontrivial solutions. The
conditions in[[13] seem to be unduly restrictive since it is required that p with u in

(fa) andp in ( f3). This requires the nonlinear term to behave exactly |lik&2x for |u|

large. On the other hand, the bifurcation result (|14, 16]) always gives bifurcation at an
eigenvalue,; regardless of the behavior of the nonlinearity in the large.

The purpose of the current paper is two-fold. On one hand, we prove the multiplicity
result of [13] under more natural conditions. On the other hand, our approach is different
in that we make use of a combination of bifurcation analysis and minimax methods, which
have been used separatelylin|[14-16] and [3, 18]. Our method also gives some additional
information.

Before stating our main results we introduce two additional assumptions.

(fs) F(x,u) > 0forallx andu; anduf (x,u) > O for|u| > 0 small.
(fe) uf(x,u) <0forul > 0small

Denote by F™ and F~ the positive and negative parts df, respectively, i.e.
F*(x,u) = max%F(x,u),0}. The main results in this paper are the following two
theorems:

THEOREM1.1. Assumd f1)—(f5) hold and letk > 1 be fixed. Then there &> 0 such
that ford € (Ax+1 — 8, Ax+1), equation(P) has at least three nontrivial solutions.

THEOREM1.2. Assume(f1)—(fa) and (fs) hold and letk > 1 be fixed. Then there is
8 > Osuch that whesup, ,ycoxr F~(x,u) <3,

() for A € (Ar+1, Ax+1 + 8), equation(P) has at least three nontrivial solutions;
(iiy for A € (Ar4+1 — 8, Ar+1], equation(P) has at least two nontrivial solutions.

REMARK 1.3. The solutions are constructed by a combination of bifurcation arguments,
topological linking and Morse theory. In Theorems|1.1 1.2(i) two solutions are small
while the third one stays away from 0 as— Ax41. In Theoren] 12(ii), we have two
solutions which are not near 0.

The paper is organized as follows. In Section 2 we recall the classical bifurcation results
of [14, [16] and discuss their homological local content. Section 3 gives the existence
of a solution by a linking argument which requirego be close tov,41. We also get
information on the critical groups of this solution. Section 4 is devoted to the proof of the
main results. We finish Section 4 with a discussion comparing the solutions obtained from
the linking structures associated with two adjacent eigenvalues, and prove that for some
A-interval these solutions are different.
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2. BIFURCATION SOLUTIONS

In this section we get two small solutions by applying bifurcation thearyi ([16]) and then
discuss their homological local consequences. First let us recall the bifurcation result
of [16].

THEOREM2.1 (Theorem 11.35 i [16])Let E be a Hilbert space andl € C2(E, R) with
VI(u) = Lu+ H(u)

whereL € L(E, E) is symmetric andd (1) = o(Jju||) as|lu|| — 0. Consider the equation

2.2 Lu+ Hu)=Au.

Letu € o (L) be an isolated eigenvalue of finite multiplicity. Then either

(i) (u,0) is not an isolated solution of2.2)in {u} x E, or
(ii) there is a one-sided neighborhoadof 1 such that for allx € A\ {u}, (2.2) has at
least two distinct nontrivial solutions, or
(iii) there is a neighborhood of i such that for allx € A \ {u}, (2.2) has at least one
nontrivial solution.

Now we apply Theorem 2.1 to get two small solutions of equation (P). We have

PROPOSITION2.3. Let f satisfy(f1), (f2) andk > 1. Then there is @ > 0 such that
equation(P) has at least two nontrivial solutions for

(i) everyr € (Ag+1 — 8, M+1) if (f5) holds,
(i) everyx € (Ak+1, Aks1 + 8) if (fs) holds.

PROOF We prove this result by verifying that case (ii) of Theorem 2.1 occurs under the
given conditions. First, undetfi) and (f2), every eigenvalue.; of (Py) gives rise to a
bifurcation point {;, 0) of equation (P).

Let (A,u) € R x E be a solution of equation (P) ne@r;1, 0). Consider the linear
eigenvalue problem

(2.4) —Av—h(x)v=pv IN2, v=0 o0noas,

whereh(x) = f(x,u(x))/u(x) for u(x) # 0 andh(x) = 0 foru(x) = 0. Its eigenvalues
will be denoted byy(u) < pwo(u) < --- .

Suppose(f5) holds. Theni(x) > 0 andh(x) > 0 if u(x) # 0. Therefore the
standard variational characterization of the eigenvalues of (2.4) shows is less than
the corresponding-th ordered eigenvalue; of (Pg) for eachi € N and u; (u) — v;
as(ir,u) = (Ak+1,0). Butu is an eigenfunction of (2.4) with eigenvalue It follows
thatA < Ar+1 and alternative (i) of Proposition 2.3 holds. Likewise (ii) is valid j§) is
satisfied. O

The (weak) solutions of equation (P) correspond to critical points of

1
I(u) = E/ (IVul? — ru?) dx —/ Fx,u)ydx, uekE:=Wyf).
2 2
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We will use the following notation. Fof € N,
J
E() =ke(—A—1)), Ej=@E®). v =dmEQ;), ¢ =dmE;.
i=1

Thuse; =Z{:1vi.ForceR,
I={ucE|Iw)<c}), Ke={uecE|I'(u)=0, Iu)=c.

For later use we give information on the critical group/cédit 0. We say a functional
I € CY(E, R) has docal linking structureat 0 with respect to a direct sum decomposition
E =Y & Z (cf. [10,[11]) if there is am > 0 such that

I(w) <O0forueYwith lu| <r, I@)>O0forueZwithO < |u| <r.
Recall that they-th critical group of I at its isolated critical point is defined as
Co(lu) = H,(I°NU, I°N U \ {u}).

Herec = I'(u) and H,(A, B) is theg-th relative singular homology group of the topol-
ogical pair(A, B) with coefficients in a field. We have

PROPOSITION2.5. If (f5) is satisfied, thei€', (1, 0) = 84,¢,,,F Wheni € [Axi1, Aet2).
If (fe) is satisfied, thei®, (1, 0) = 8, ¢ F wheni € (Ag, Arya].

PROOFE The nondegenerate cases are easily seen. At A1, u = 0 is an isolated
degenerate solution of equation (P) with Morse indgxand nullity v,. When (fs) is
satisfied,/ has a local linking at O with respect to the decompositiba= E; 1 @ Ekil.
When( fg) is satisfied, we see tha&t(x, u) < 0 for |u| small and ther has a local linking
at 0 with respect to the decompositih= E; & E;-. Proposition 2.2 in[[17] then gives
the conclusions of Proposition 2.5. O

3. MINIMAX SOLUTIONS

In this section we construct a large solution of equation (P) by applying a homological
linking argument and give some estimate of its Morse index. This is done for ¢Ages

and(fs)-

LEMMA 3.1. Let f satisfy(f1)—(f3) andk > 1. Then there exist constangs, r1 > O,
depending o < A2, such that

(3.2) Iw) > P foru e Exq with [lu]| = ry.

PROOFE By (f2) and(f3), fore > 0, there isC, > 0 such that

£
Ft(x,1) < Er2+cg|t|”.
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1
Thus foru € Ei 1

1 A
I(u)z—<1— +"3)||u||2—csf |u|? dx.
2 Akt2 Q

Leta € (0, 1) be such that
1 o l1-«o

)4 o + 2
Then by the Gagliardo—Nirenberg inequality, for sofie> 0 independent of < Ay 2,

(1-a)p/2
/ lul? dx < C1|u||*” (/ uzdx> .
2 2

1
/ u?dx < — |Vu|2dx, Yu € E,f‘+l,
2 A2 Jo

Since

one has
—(1— 2
/Q ul? dx < Con 5 PP lullP,  Yu € Eiby.

Therefore, settin@f = C.C1 gives

1 Ate 2 A, —(-a)p/2
3.3 Tw>=(1- —Cxr 3
3.3 (u) > 2( a2 ) [l | 42 [zl

Let |lu|| = r and

1 AteN 2 & --op2
g(r)=§<l—T+2)r _C)‘k+2 rp.

It is easy to see that achieves its maximum oR at

_ Mz = O+ ) \MP7?
r1=ri(k,A) = = 1002
PC A

with the maximum given by

1 1 — A — (A p/(p—2)
34 gr) = (5 = ;)(pcrz/@‘” (“ZA—(”)) = By = Pa(k. 2.
k+2

Hence (3.3) and (3.4) show (3.2) holds. The proof is completed

Next take an eigenfunctiogyo corresponding toriio. Set Viy1 = Eps1 @
spargr12} and let

Or={uec Vigr|llull <Ry, u=v+tery2, v € Exqq, t >0},

whereR1 > 0 will be given below. We have
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LEMMA 3.5. Let f satisfy(fs), (f5) andk > 1. Then there exist®1 > 0 independent
of L < Ar42,81 > 0andoy € R such that

I(u) <op<p1 foruedQi, Vre (hig1— 081, Aeya).
ProoF It follows from ( f3) that
F(x,t) > Clt|*,  V[t| > M,
for some positive constarif independent ok. Foru € Vi1, writeu = y + z, where

y € E; andz € E(Ar+1) @ spafgi+2}. Then

1 A 1 Iy
3.6 1 <-{1-— 24 (1 =2 2_ Cllul* C.
(3.6) (u) =< 2( Ak)llyll +2< Ak+2>llzll el +
Sincep > 2 andV;41 is finite-dimensional, (3.6) shows there exi&s > 0 independent
of A such that
I(u) <0 foru € Vipq with |lu|| = R;.

Now fixing suchR1 > 0, notice that
001 ={u =v+ 1912 | v € Exqa, (vl < Ry, t =0)or (lull = Ry, £ > 0)}.

Forv € Ejy1 with |Jv]| < R, write v = w + z, wherew € E; andz € E(Ax+1). Then

3.7 I(v):%/Q(Wuﬂz—sz)dx—l—%[(2(|VZ|2—AZ2)dx—/QF(x,v)dx

1 A 1 A
< —(1— —)nznz < —(1— —)R%.
2 )\k+1 2 )‘-k+l

Here we only used the assumptidtix, 1) > 0 in (f5). If we taked; = ﬂlxk+1/R% and
o1 = B1/2, the conclusion of Lemma 3.5 follows from (3.7). O

REMARK 3.8. If (f3) is strengthened to

(fp) Thereisyu > 2 such that

0<,uF(x,u):=u/ fx,t)dt <uf(x,u), Vxe2,u#0,
0

we can get a sharper estimate éarin the last lemma. In fact, using similar arguments to
the above we have
I(u)foi, Yu e oQ,
where
-2

n _ _ _
o1 =01tk 1) = = =(Cp) 20212 (g — W2

in which C is such that (x, r) > C|¢|*, following from (f,).
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Set
. 1
S1:={u € E | llull =r}.

It follows from Lemmas 3.1 and 3.5 tha; andsS; link homologically ([6]) since we can
chooseR; > r1. Define

c1:= inf supI(u)
Tell yer|

where
I = {z | v is a singulary1 + 1-chain withdt = 9 Q1}.

It is well known ([16]) that the functional satisfies the Palais—Smale condition. By
Theorem 1.5 of Chapter Il in[6] we have

LEMMA 3.9. Assumd f1)—(fs) hold. Therc; > 81 > Qis a critical value ofl and there
isaup € K¢, such that

(3.10) Coqv1(1, uz) # 0.
Next we considet f) instead of( f5) for f near 0. Set
Q2 ={u € Vig1 | lull < Rz, u=v +1tgry2, v € Eg11, 1 > 0},
whereR, > 0 will be given below. We have

LEMMA 3.11. Let f satisfy(f3), (fa) and (fs), andk > 1. There existR, > 0 inde-
pendent of, 52 > 0 andoz € R such that whersup, jcoxr F~ (x, 1) < d2,

312 I(u) <op<pr foruedQa Vire (b1 — 82, Aet1+ 82).
PROOFE With the same&R; > 0 as given in Lemma 3.5, we have
I(u) <0 foru € Viqq with |lu|| = Ry.

Checking the proof there, we s > 0 can be chosen to be the same if we make
SURy eexr F~ (x, u) smaller. Now seR; := Ry. Notice that

002 ={u =v+1tgry2|v € Egq1, (vl < Rz, t =0) or (ull = Rz, t = 0)}.

Let M = SUR, yeoxr F~(x, u). FOrv € Exi1with |v]| < Rz, writing v = w +z, where
w € Ep andz € E(Ag+1), We have

_} 2 2 1‘ 2 2 _
B13 I = (JVw|* — 2w*) dx + (1Vz] AZ9) dx F(x,v)dx
2)a 2)a 2
1 A 1 A N
—(1-— 242 (1- = 24 M|
_2( Ak)llwll +2< Ak+1>”Z“ + M|$2|
1 )\_)Lk-q—l) 2 A
< -| — |R5+ M|$2|.
2( Ak+1 2
Take N
22# and (Tz:ﬂ.
R + [82|Agy1 2

If M < 85, then (3.13) shows that (3.12) holds. O
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It follows from Lemmas 3.1 and 3.11 tha, and S link homologically ([6]) since
we can choos®, > ro. Define

c2:= inf supl(u)
TEFZMEH\

where
I = {t | T is asingular;1 + 1-chain withdt = 3 Q5}.

Now applying Theorem 1.5 of Chapter Il inl [6] again, we have

LEMMA 3.14. Assumd f1)—(fa) and(fg) hold. Thenc, > B1 > 0Ois a critical value of
I and there is ai» € K, such that

(3.15 Clk+1+l(1’ uz) # 0.

4. PROOFS OF THE MAIN RESULTS AND FURTHER REMARKS

We begin by giving the proofs of our main results, using the partial results of the previous
sections.

ProoF oF THEOREM [I.7. By Proposition 2.3(i), equation (P) has two nontrivial
solutions which are small. By Lemma 3.9, equation (P) has a solution with positive energy
bounded away from O for neari;+1. Hence these three solutions are different. O

ProoF OFTHEOREM[I.Z. For case (i), the proof is similar to that of Theoiffen] 1.1. By
Proposition 2.3(ii) and Lemma 3.14, we obtain two small solutions from the bifurcation
result and one large one from the linking argument. As above, these three solutions are
different.

We prove case (ii) next. It follows from Lemma 3.14 tlidhas a critical pointz with
I(uz) > B1 > 0andCy, ,41(1, uz) # 0. Assumel has only two critical points 0 angb.
Denote byS* the unit sphere irE. Chooseairg < 0. Following the same arguments as in
[18], we have

(4.1) H,(I) = H,(S®), H,(E, 1) =0, V¥g=0,12,....

Then itis easy to see that, . 1(/, u2) = C, (1, 0) for all ¢. But this is impossible since by
Proposition 2.5C, (1, 0) = §,,¢, F for anyA € (At, Ak+1]. The proof is complete. O

We conclude this section with further discussion on the linking structure used to
construct the solutions in Theorerps|1.1 1.2 which stay away from zero. Under
(fu)—(fa), whenx # A;, it is well known that there is a solution given by the linking
method. Of course, the linking structure used depends on wheie located. For
A € (M, Ai+1) the same linking structure is used. In Section 3, we proved that the
solution constructed by using the linking associated with, 1, Ax42) is still valid for
A € (Ak+1 — 6, Ax+1] producing one of the larger solutions in the main theorems. Next, we
examine the difference between the solutions constructed by using the linking associated
with (g, Ak+1) and(Arr1, Ax+2). By showing they are different and by getting information
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on their local critical groups, we can give a different proof of Theoferh 1.1. This proof
provides some different information on the solutions although it requires a slightly stronger
condition.

Take an eigenfunctiop,1 corresponding ta .1 and letV, = E; & sparfgir1}. By
arguments as in Section 3, we have

LEMMA 4.2. Let f satisfy(f1)—(f4). There existR > 0independent of € (A, Ary1)
such that
I(u) <0 foru e Vi with|u| = R,

and there exis, = (») > 0andr; = r(x) > 0, dependent oA € (A, Ak+1), such that
I(u) > B foru e Ei with [lu]| = r;.
Now for fixed R > 0 given in Lemma 4.2, define

Oy ={ueVi|u=v+rtg1, veE t >0, |lull <R},
Sy = 1{u € Ef | ul =r).

It follows from Lemma 4.2 that Q; andS; link since we can choosg > r, for any
A € (Ak, Ar+1). By Theorem 1.2 of Chapter Il in [6RQ; andS; also link homologically.
Therefore we can define

¢, = inf supl(u)
Terue‘ﬂ

where
I' = {zr | tisasingular; + 1-chain withdr =90, }.

Thenc, > B, > 0is a critical value off for A € (A, Ax+1) and there is; € K., such
that

4.3) Coer1(L.u3) # 0.

A similar argument to that in_[1] shows thaj, is bounded inE uniformly in A €
(A, A+1)- By standard elliptic regularity arguments, is bounded inC1(£2) uniformly
in A € (A, Ak+1). We give the asymptotic behavior of the solutipnasi — M- FOP
this purpose we assume

(f7) uf(x,u) > 2F(x,u) > 0 for all x andu and the first inequality is strict fgi| > 0
small.

Note that( f7) is slightly stronger thaiifs). Under( f7) we have

LEMMA 4.4. ¢ < SUR,cp, I(u) — 0,andu; — 0in CO(2) asr — A.,,.

PROOF It is easy to see; — 0 asi — A ,. By regularity for a subsequenag —
Ajy1, WE may assume;, — u in C9%(£2) asn — oco. We only need to show = 0. Since

2cq, =21 (uy,) — (I/(ufn), Ug,) = / (f(x,ug)ug, —2F(x, ug,)) dx,
Q

lettingn — oo, the conclusion follows froni f7). ]



106 P. H. RABINOWITZ - J. B. SU - Z.-Q. WANG

Using the fact thai; is small, we get an estimate for the Morse index pfor A near
Ak+1. Denote bym (u;) andn(u;) the Morse index and nullity af;, respectively. Then

LEMMA 4.5. There iss; > 0 such that
mu;) > Ly, n(uy) < veg1, VA€ (g1 — 61, Agsr1).
We summarize the above results:

PROPOSITION4.6. Let f satisfy (f1)—(fa) and (f7). For A € (A, Ara1), there is a
solutionu, of equation(P) satisfying/(u) > O, Cy41(1,u;) # 0, I(up) — 0 and
u); — 0(in CO(.Q)) asi — Ay g Furthermore, there ig; > 0 such that

Cy(I,u) =0, Vgq¢ [k, Lx+1l, YA € (Mgr1 — 81, Aier1).

Now for 2 close toi1 from the left, we can construct two solutions of equation (P) by
using the linking associated withy, Ar+1) and(Adr+1, Ax+2). ASAL — Aj41 ONE solution
tends to 0 and the other stays away from 0. Hence we have the following result.

THEOREMA4.7. Let f satisfy (f1)—(f4) and (f7). There is§ > 0 such that forr €
(Mk+1 — 8, Ak+1), the solutions of equatioP) constructed by using linking associated
with (Ag, Ar11) and (Akr1, Arr2) both exist and are different.

Finally, we give a different proof of Theorem 1.1 (undg¢¥)j by showing the existence
of a third nontrivial solution via a Morse-theoretic approach.

Let A € (Ar+1 — 8, Ak+1) and letu,, up be the solutions constructed above with
0 < I(u;) < I(u2). Assume that’ has only three critical point§0, u;,, u>}. Choose
aop, a1, a2 € Rsuch thatig < 0 < a1 < I(u)) < a2 < I(u2). Then by the deformation
and excision properties of homology (see €.9. [6]), we have

Cy(1,0) = H, (14, 1),  Cq(I,uy) = Hy (12, 1Y),  Cy(I,u2) = Hy(E, 1%?).
LEMMA 4.8. Forallg =0,1,2,...,
C,(1,00 =68, F, H,(I)=8,,F, Hy(E, I")=6,4+1F.

PrROOF The first result follows from 0 being a nondegenerate critical point @fith
Morse index¢;. The others follow from (4.1) and the exact sequence of the triple
(E, I, [90), ]

LEMMA 4.9.
Cor1(1,u2) = Cy(1, up) forg > £ + 2,

and we have an exact sequence

0— Cpy2(d,u2) = Co1(1, uy)
— Hy+1(E, ['Y) — Cy1(,u2) — Cy (I, u;) — 0.
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PrROOF This lemma is obtained by using the exact sequence of the {ilé?2, 191)
and Lemma4.8. O

NEW PROOF OFTHEOREM 1.1. Inthe caseii1 > 2, €xyr1 = €k + vir1 > € + 2, by
Lemma 4.9 and (3.10), we get

Clk+1 (Ia u)») = Czk+1+1(17 MZ) # 0.

However, by Lemma 4.5, we haw®, (I, u;) = 0 forg ¢ [£;, £,+1] and the Morse index
of u, is eitherfy or ¢ + 1. If it is £, then by the shifting theoren ([6]) we have

Copon (I up) = Copgg (L up) = Cypy (I u3) #0

where/ is the restriction off to the kernel off”(u;). Thereforeu, is a local maximum
point of I and we geC, (1, u;) = 84.,,,F. This contradicts (4.3). If the Morse index is
£ + 1, we can use the shifting theorem to g&t(/, u;) = §,,¢,+1FF, still a contradiction
for €xy1 > € + 1.

Next assumeyi1 = 1; thenfyy1 = £ + 1. SinceCy 11(1,u)) # 0 we have
Cy(, uy) = 84 ¢, +1F. By Lemma 4.9,

0— Cyi2(,uz) - Cyq1(I,up) - Hy11(E, I'Y) — Cyya(1,uz2) — 0.

Since the map fron@y, 41(1, uy) to Hy,41(E, I°1) is injective (cf. [3] for a proof), we get
Cy+2(1, up) = 0, a contradiction with Lemma 3.9. The proof is complete. O
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