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Ordinary differential equations. — Hardy inequality and properties of the quasilinear
Sturm–Liouville problem, by PAVEL DRÁBEK and ALOIS KUFNER.

ABSTRACT. — We present a necessary and sufficient condition for discreteness of the set of all eigenvalues
(having the usual Sturm–Liouville properties) of a quasilinear Sturm–Liouville–type problem with weights on an
infinite interval. We point out that the same condition is necessary and sufficient for the compact embedding of
certain weighted Sobolev and Lebesgue spaces. Our result completes those from the linear theory.
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1. INTRODUCTION

Let p > 1 be a real number and letϕ : R → R be defined asϕ(s) = |s|p−2s for s 6= 0,
ϕ(0) = 0. Let r = r(t), c = c(t) be continuous and positive functions on [0, ∞). For
x = x(t) defined on [0, ∞) setx(∞) = limt→∞ x(t). We study the eigenvalue problem

(1.1)

{
(r(t)ϕ(x′(t)))′ + λc(t)ϕ(x(t)) = 0, t ≥ 0,

x′(0) = 0, x(∞) = 0,

whereλ ∈ R is a spectral parameter.
Let W

1,p
∞ (r) be the set of all absolutely continuous functionsx = x(t) defined on

[0, ∞) such thatx(∞) = 0 and

(1.2) ‖x‖1,p;r :=

(∫
∞

0
r(t)|x′(t)|p dt

)1/p

< ∞.

ThenW
1,p
∞ (r) equipped with the norm‖ · ‖1,p;r is a uniformly convex Banach space.

A functionx ∈ W
1,p
∞ (r) is called aweak solutionof (1.1) if the integral identity

(1.3)
∫

∞

0
r(t)ϕ(x′(t))y′(t) dt = λ

∫
∞

0
c(t)ϕ(x(t))y(t) dt

holds for ally ∈ W
1,p
∞ (r) (with both integrals being finite).

The parameterλ is called aneigenvalueof (1.1) if this problem has a nontrivial (i.e.
nonzero) weak solution (called aneigenfunctionof (1.1) associated withλ).

We say that the(S.L.) Property for(1.1) is satisfied if

• the set of all eigenvalues of (1.1) forms an increasing sequence{λn}
∞

n=1 such thatλ1 > 0
and limn→∞ λn = ∞. Every eigenvalueλn, n = 1, 2, . . . , is simple in the sense that
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there exists a unique normalized eigenfunctionxλn associated withλn. Moreover, the
eigenfunctionxλn has preciselyn−1 zeros in(0, ∞). In particular,xλ1 does not change
sign in (0, ∞). For n ≥ 3, between two consecutive zeros ofxλn−1 in (0, ∞), there is
exactly one zero ofxλn .

Our main result depends on the following condition on the weight functions
(coefficients in the equation)r andc:

(1.4) lim
t→∞

(∫ t

0
c(τ ) dτ

)1/p(∫
∞

t

r1−p′

(τ ) dτ

)1/p′

= 0,

and we state it in the next theorem.

THEOREM 1.1. The (S.L.) Property for(1.1) is satisfied if and only if(1.4)holds.

It is an interesting fact that condition (1.4) is closely connected with thecompact
embedding

(1.5) W
1,p
∞ (r) ↪→↪→ Lp(c),

whereLp(c) is the weighted Lebesgue space of all functionsx = x(t) defined on(0, ∞)

for which

‖x‖p;c :=

(∫
∞

0
c(t)|x(t)|p dt

)1/p

< ∞.

(Note thatLp(c) equipped with the norm‖ · ‖p;c is a uniformly convex Banach space.)
Indeed, it follows from the results of Opic and Kufner [10, Theorem 7.13 and Remark
7.14] that (1.5) holds if and only if (1.4) and also

(1.6) lim
t→0+

(∫ t

0
c(τ ) dτ

)1/p(∫
∞

t

r1−p′

(τ ) dτ

)1/p′

= 0

are satisfied. However, the weight functionsr andc are much more general in [10] than in
our situation. Namely, the continuity and positivity ofr andc in [0, ∞) imply that (1.6) is
always satisfied provided (1.4) holds. So, due to [10], we also have the following assertion.

THEOREM 1.2. The compact embedding(1.5)holds if and only if(1.4) is satisfied.

As a consequence of Theorems 1.1 and 1.2 we then immediately obtain the following
corollary.

COROLLARY 1.3. The (S.L.) Property for(1.1) is satisfied if and only if the compact
embedding(1.5)holds.

REMARK 1.4. It is interesting to point out that if (1.4) is violated, but

(1.7) sup
t∈(0,∞)

(∫ t

0
c(τ ) dτ

)1/p(∫
∞

t

r1−p′

(τ ) dτ

)1/p′

< ∞,



QUASILINEAR STURM–LIOUVILLE PROBLEM 127

then only acontinuous embedding

W
1,p
∞ (r) ↪→ Lp(c)

holds instead of a compact one (see [10, Theorem 1.14]). Condition (1.7) clearly
guarantees the boundedness of possible eigenvalues from below but, as the following
example shows, it is not sufficient to make our approach work.

EXAMPLE 1.5. Letp = 2, r(t) = (t + 1)2, c(t) ≡ 1. Then(∫ t

0
c(τ ) dτ

)1/p(∫
∞

t

r1−p′

(τ ) dτ

)1/p′

=

(∫ t

0
dτ

)1/2(∫
∞

t

dτ

(1 + τ)2

)1/2

=

(
t

1 + t

)1/2

,

i.e. condition (1.7) holds but (1.4) is violated. The initial value problem (IVP)

((t + 1)2x′(t))′ + λx(t) = 0, x(0) = 1, x′(0) = 0,

has the following solutions: forλ =
1
4,

x(t) = (t + 1)−1/2
(

1 +
1

2
ln(t + 1)

)
;

for λ < 1
4,

x(t) = (t + 1)−1/2
[(

1

2
−

1

2
√

1 − 4λ

)
(t + 1)

1
2

√
1−4λ

+

(
1

2
−

1

2
√

1 − 4λ

)
(t + 1)−

1
2

√
1−4λ

]
;

for λ > 1
4,

x(t) = (t + 1)−1/2
[
cos

(
1

2

√
4λ − 1 ln(t + 1)

)
−

1
√

4λ − 1
sin

(
1

2

√
4λ − 1 ln(t + 1)

)]
.

It follows that the boundary value problem (BVP)

(1.8) ((t + 1)2x′(t))′ + λx(t) = 0, x′(0) = x(∞) = 0,

has no solutionx ∈ W
1,2
∞ (r), i.e. there is no eigenvalue of (1.8).

REMARK 1.6 (Regularity of the weak solution). It can be shown that for any weak
solutionx = x(t) of (1.1) we haverϕ(x′) ∈ C1[0, ∞), the equation holds at every point
andx′(0) = 0. Indeed, take an arbitraryy ∈ C∞

0 (0, ∞) in (1.3) and integrate by parts to
get ∫

∞

0

[
r(t)ϕ(x′(t)) −

∫ t

0
λc(τ)ϕ(x(τ )) dτ

]
y′(t) dt = 0,
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i.e. the distributional derivative of the expression in brackets is equal to zero. Hence there
is a constantk ∈ R such that

(1.9) r(t)ϕ(x′(t)) −

∫ t

0
λc(τ)ϕ(x(τ )) dτ = k

a.e. in(0, ∞). However, continuity ofcϕ(x) implies thatrϕ(x′) ∈ C1[0, ∞) and (1.9)
holds at every point of [0, ∞). It then follows that the equation in (1.1) also holds at
every point of [0, ∞). Now, taking into account this fact and a test functiony ∈ W

1,p
∞ (r),

y(0) 6= 0, in (1.3), integrating by parts we arrive atx′(0) = 0.

REMARK 1.7 (The linear casep = 2). Let us note that ifp = 2, it has been proved
by Lewis [8] that condition (1.4) is necessary and sufficient for the discreteness and
boundedness from below of the spectrum of the maximal self-adjoint extension of the
abstract linear operator generated by the equation in BVP (1.1) (the so-calledBD property).
However, it is not completely clear what is the analogue of such spectrum in the nonlinear
casep 6= 2 (see e.g. Appell, DePascale and Vignoli [2]).

On the other hand, ifp = 2 then most of our results follow directly from Theorem
1.2 and the linear theory (see e.g. Yosida [12]). Indeed, the properties of compact linear
self-adjoint operators could be used to study the eigenvalue problem (1.1).

REMARK 1.8. The properties of the eigenvalues and eigenfunctions of (1.1) have been
studied already in Drábek and Kufner [5]. However, the necessity of (1.4) was not
discussed there at all and the proofs of some key assertions showing the sufficiency of
(1.4) were not included. Here, we include the proofs of all key assertions and complete the
following picture:

(1.4)3;

s{ nnnnnnnnnnn

nnnnnnnnnnn bj

"*MMMMM

MMMMM

W
1,p
∞ (r) ↪→↪→ Lp(c) ks +3_______ _______ (S.L.) Property

REMARK 1.9. The reader will easily figure out that similar results also hold for other
boundary conditions in (1.1). In particular, one can prove these results for “Dirichlet
boundary conditions”x(0) = x(∞) = 0.

This paper is organized as follows. In Section 2 we apply a variational argument to
construct a sequence of eigenvalues of (1.1) approaching infinity. From this construction
it is not clear if this sequence exhausts the entire set of eigenvalues. That is why we state
some comparison and oscillation results for quasilinear equations in Section 3 in order
to get more information about the zeros of eigenfunctions. The proof of the main result
(Theorem 1.1) is given in Section 4. In order not to interrupt the continuous flow of ideas
of the proof, we postpone some technical assertions and their proofs to the Appendix.

2. VARIATIONAL EIGENVALUES

The following assertion is a standard consequence of the Lagrange multiplier method and
compactness of the embedding (1.5).
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LEMMA 2.1. Assume that(1.4) holds. Then(1.1) has the least (principal) eigenvalue
λ1 > 0 which can be characterized as follows:

(2.1) λ1 = min

∫
∞

0 r(t)|x′(t)|p dt∫
∞

0 c(t)|x(t)|p dt
,

where the minimum is taken over allx ∈ W
1,p
∞ (r), x 6= 0.

Further in this section, we assume that (1.4) holds. In order to get the higher eigenvalues
we employ a variational argument of Ljusternik–Schnirelmann type. Let

S := {x ∈ W
1,p
∞ (r) : ‖x‖p;c = 1}

and letSk−1 be the unit sphere inRk. Fork ∈ N, let

Fk := {A ⊂ S : A = h(Sk−1), whereh is a continuous odd function fromSk−1 into S}.

Define

(2.2) λk := inf
A∈Fk

sup
x∈A

‖x‖
p

1,p;r
.

Following literally the proofs from Dŕabek and Robinson [6, Section 3], one can show (due
to the compactness of the embedding (1.5)) thatλk, k = 1, 2, . . . , are the eigenvalues of
(1.1) and limk→∞ λk = ∞. Note also that everyA ∈ F1 is formed by two antipodal points
from S and so, fork = 1, the two characterizations (2.1) and (2.2) coincide. Following
verbatim Dŕabek and Robinson [7, Section 3] one can also show that the eigenfunctionxλn

associated with the eigenvalueλn has at mostn − 1 zeros in(0, ∞). We thus have

PROPOSITION2.2. Assume that(1.4)holds. Then{λk}
∞

k=1 defined by(2.2) is a sequence
of eigenvalues of(1.1), limk→∞ λk = ∞, and any eigenfunction associated withλn, n =

1, 2, . . . , has at mostn − 1 zeros in(0, ∞).

REMARK 2.3. We point out that at the moment it is not clear if the sequence of
variational eigenvaluesconstructed by (2.2) exhausts the set of all eigenvalues of (1.1).
To prove this fact requires more effort. See the following two sections.

LetA ⊂ S be a compact symmetric set and let

γ (A) := inf{m ∈ N : ∃ continuous and odd mapping ofA into Rm
\ {0}},

γ (A) := ∞ if no suchm exists,

be its Krasnosel’skiı̆ genus. Define the family of sets

F∗

k := {A ⊂ S : A compact and symmetric, γ (A) = k}, k ∈ N,

and

(2.3) λ∗

k := inf
A∈F∗

k

sup
x∈A

‖x‖
p

1,p;r
.
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Thenλ∗

k is also a sequence of variational eigenvalues of (1.1) (cf. Drábek and Robinson [6,
Section 3]), and, sinceFk ⊂ F∗

k , we haveλ∗

k ≤ λk, k ∈ N. As in Drábek and Robinson
[6, Section 3], one can easily show thatλ∗

1 = λ1 andλ∗

2 = λ2.

The following assertion which follows directly from the result of Szulkin [11] will be
important for us.

PROPOSITION2.4. Assume that for somek ≥ 2, j ≥ 1, we have

(2.4) λ∗

k = λ∗

k+1 = · · · = λ∗

k+j .

Then the set of eigenfunctions associated withλ∗

k and normalized by‖xλ∗
k
‖p;c = 1 consists

of more than two antipodal points.

3. COMPARISON AND OSCILLATION RESULTS

Let t0 ∈ [0, ∞), A, B ∈ R. Consider the IVP

(3.1)

{
(r(t)ϕ(x′(t)))′ + λc(t)ϕ(x(t)) = 0,

x(t0) = A, x′(t0) = B.

By a solution to IVP(3.1) we understand an absolutely continuous functionx = x(t)

defined on [0, ∞) such thatrϕ(x′) ∈ C1[0, ∞), the equation in (3.1) is satisfied at every
point and the initial conditions hold. According to Došlý [4, Theorem 1.1], IVP (3.1) has
a unique solution which is extensible to the entire interval [0, ∞).

Recall that the equation in (3.1) is calleddisconjugateon an interval [a, b] ⊂ [0, ∞)

if any nontrivial solution to this equation has at most one zero in [a, b].
Let W

1,p

0 (a, b) denote the usual Sobolev space of functionsy on (a, b) with y(a) =

y(b) = 0. The following separation and comparison results can also be found in [4].

PROPOSITION3.1 ([4, Theorem 2.2]).Let [a, b] ⊂ [0, ∞). Then the following statements
are equivalent:

(i) The equation in(3.1) is disconjugate on[a, b].
(ii) There exists a solution of the equation in(3.1)having no zero in[a, b].

(iii) The functional

F(y; a, b) :=
∫ b

a

[r(t)|y′(t)|p − c(t)|y(t)|p] dt

is positive for everyy ∈ W
1,p

0 (a, b), y 6= 0.

In particular, the following two assertions follow immediately from Proposition 3.1.

COROLLARY 3.2. Let xi = xi(t), t ∈ [0, ∞), i = α, β, be two solutions of IVP(3.1)
with t0 = 0, A = 1, B = 0, λ = µi, i = α, β, 0 < µα < µβ , and assume that bothxi,

i = α, β, have at least one zero in[0, ∞). Let ti be the first zero ofxi, i = α, β, in (0, ∞).
Thentβ < tα.
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COROLLARY 3.3. Letxi = xi(t), i = α, β, be as above and assume that they both have
more than one zero in(0, ∞). Then between two consecutive zeros ofxα there is at least
one zero ofxβ .

Recall that the equation (3.1) is callednonoscillatoryif for any nontrivial solution to
this equationx = x(t) there existsT = T (x) > 0 such thatx(t) 6= 0 for all t ∈ [T , ∞). If
this is not true, the equation in (3.1) is calledoscillatory.

The following oscillation and nonoscillation criteria from Došlý [3] will be used.

PROPOSITION3.4 ([3, Theorems 6 and 4]).If

lim sup
t→∞

(∫
∞

t

r1−p′

(τ ) dτ

)p−1(∫ t

0
c(τ ) dτ

)1/p

<
(p − 1)p−1

λpp
,

then the equation in(3.1) is nonoscillatory, while if

lim sup
t→∞

(∫
∞

t

r1−p′

(τ ) dτ

)p−1(∫ t

0
c(τ ) dτ

)1/p

>
1

λ
,

then it is oscillatory.

We immediately get

COROLLARY 3.5. Assume that(1.4) holds. Then the equation in(3.1) is nonoscillatory
for all λ ∈ R. On the other hand, if(1.4) is violated, i.e.

lim sup
t→∞

(∫
∞

t

r1−p′

(τ ) dτ

)1/p′(∫ t

0
c(τ ) dτ

)1/p

> 0,

then there existsλ0 > 0 such that the equation in(3.1) is oscillatory providedλ ≥ λ0.

We also have

COROLLARY 3.6. Assume that(1.4) holds and letx = x(t) be a nontrivial solution of
(3.1). Thenx has at most a finite number of zeros in(0, ∞).

PROOF. There is the largest zeroξ of x by Corollary 3.5. The assertion now follows from
the compactness of the interval [0, ξ ] and from the uniqueness of the solution of IVP (3.1)
with a t0 ∈ [0, ξ ]. 2

The following result on comparison of the largest zeros of eigenfunctions correspond-
ing to two different eigenvalues requires more effort.

LEMMA 3.7. Assume that(1.4) holds and letxi = xi(t), t ∈ [0, ∞), i = α, β, be two
eigenfunctions corresponding to eigenvaluesλα, λβ such that0 < λα < λβ . Assume that
bothxi, i = α, β, have at least one zero in(0, ∞). Denote byξi ∈ (0, ∞) the largest zero
of xi, i = α, β. Then0 < ξα < ξβ .

PROOF. The existence of the largest zerosξi, i = α, β, follows from Remark 1.6 and
Corollary 3.5. The proof thatλα < λβ implies 0< ξα < ξβ is postponed to the Appendix
(see Corollary A.4). 2
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4. PROOF OFTHEOREM 1.1

Necessity of (1.4). We proceed via contradiction. Assume that (1.4) is violated. It then
follows from Corollary 3.5 that there existsλ0 > 0 such that the equation in (3.1) is
oscillatory for allλ ≥ λ0. In particular, takingn large enough, the (S.L.) Property implies
that it is oscillatory withλ = λn. Hence there exists a nontrivial solutionx of this equation
with infinitely many zeros approaching infinity. The (S.L.) Property also entails that the
eigenfunctionxλn associated withλn has the largest zeroξn ∈ (0, ∞). Now, choose
ξn < a < b such that the interval(a, b) contains at least two zeros ofx. Then we have a
contradiction with Proposition 3.1(i), (ii).

Sufficiency of (1.4).Some auxiliary assertions are needed.

LEMMA 4.1. Assume that(1.4) holds. Then every eigenvalue of(1.1) is simple, i.e., for
any eigenvalueλe of (1.1), all associated eigenfunctionsxλe are mutually proportional.

This lemma follows immediately from the homogeneity of (1.1) and from the
uniqueness of the solution of IVP (3.1) witht0 = 0, A = 1 andB = 0.

LEMMA 4.2. Assume that(1.4)holds. Ifxλe is an eigenfunction of(1.1)associated with
an eigenvalueλe > λ1, thenxλe has at least one zero in(0, ∞).

The proof of this lemma relies on the method invented by Anane [1] and Lindqvist [9]
and follows the lines of the proof of Proposition A.2.

LEMMA 4.3. Assume that(1.4) holds. Letλα, λβ be two eigenvalues of(1.1) such that
λα < λβ andxλα , xλβ be corresponding eigenfunctions having at least one zero in(0, ∞),

respectively. Then the number of zeros ofxλβ in (0, ∞) is strictly larger than the number
of zeros ofxλα in (0, ∞).

This assertion follows directly from Corollaries 3.2, 3.3, 3.6 and from Lemma 3.7.

LEMMA 4.4. Assume that(1.4)holds. Let{λm}
∞

m=1 be a sequence of eigenvalues of(1.1)
such thatlimm→∞ λm = λ0. Thenλ0 > 0 is also an eigenvalue of(1.1).

PROOF. Sinceλm ≥ λ1, we haveλ0 ≥ λ1 > 0. Let us denote by{xλm}
∞

m=1 the set of
eigenfunctions associated with{λm}

∞

m=1 and normalized by‖xλm‖1,p;r = 1, xλm(0) > 0.

Due to the reflexivity ofW1,p
∞ (r) and compactness of the embedding (1.5) we can pass to

a subsequence such thatxn ⇀ x0 (weakly) inW
1,p
∞ (r) andxλm → x0 (strongly) inLp(c)

for somex0 ∈ W
1,p
∞ (r). Takingy = xλm in

(4.1)
∫

∞

0
r(t)ϕ(x′

λm
(t))y′(t) dt = λm

∫
∞

0
c(t)ϕ(xλm(t))y(t) dt,

we arrive at
1 = ‖xλm‖

p

1,p;r
= λm‖xλm‖

p
p:c,

i.e.
‖xλm‖p;c = 1/λ

1/p
m .
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In particular,‖x0‖p;c = 1/λ
1/p

0 , i.e.x0 6= 0. The integral identity (4.1) is equivalent to the
operator equation

(4.2) J (xλm) = fm

with fm = λmcϕ(xλm), whereJ : W
1,p
∞ (r) → (W

1,p
∞ (r))∗ is defined in the Appendix.

It follows from xm → x0 in Lp(c) thatfm → λ0cϕ(x0) in (W
1,p
∞ (r))∗. By Lemma A.1

we infer thatxλm is strongly convergent inW1,p
∞ (r), i.e. xλm → x0 in W

1,p
∞ (r). Now, it

follows from continuity ofJ and (4.2) that

J (x0) = λ0cϕ(x0),

i.e.x0 = xλ0 is an eigenfunction of (1.1) associated with the eigenvalueλ0. 2

PROPOSITION4.5. Assume that(1.4) holds. Then the set of all eigenvalues of(1.1)
consists of isolated points from the interval(0, ∞).

PROOF. Let λ0 be a limit point of some sequence{λm}
∞

m=1 of eigenvalues of (1.1). Then
λ0 > 0 is an eigenvalue of (1.1) with associated eigenfunctionxλ0 (see Lemma 4.4). We
can extract an increasing or a decreasing subsequence converging toλ0. We denote it again
{λm}

∞

m=1. If {λm}
∞

m=1 is increasing andλm → λ0, then the number of zeros ofxλm strictly
increases withm (due to Lemmas 4.2 and 4.3), soxλ0 has more zeros than anyxλm , a
contradiction with Corollary 3.6. In the case that{λm}

∞

m=1 is decreasing, by Lemmas 4.2
and 4.3 the number of zeros ofxλm is finite for anym ∈ N and strictly decreasing as
m → ∞, a contradiction. 2

We now finish the proof of sufficiency of (1.4). Let us consider the sequence of
variational eigenvalues{λk}

∞

k=1 and {λ∗

k}
∞

k=1 given in (2.2) and (2.3), respectively. Our
aim is to show thatλk = λ∗

k, k ∈ N, and that this is the entire set of all eigenvalues of
(1.1) with all properties stated in Section 1. Indeed, everyλk, k = 1, 2, . . . , is a simple
eigenvalue according to Lemma 4.1, andxλ1 has no zero in(0, ∞) due to Proposition
2.2. The eigenfunctionxλ2 has exactly one zero in(0, ∞) according to Lemma 4.2 and
Proposition 2.2, and there is no eigenvalue of (1.1) strictly betweenλ1 andλ2 thanks to
Lemmas 4.2 and 4.3. Ifλ3 = λ2 (= λ∗

2) thenλ∗

3 = λ∗

2 and Proposition 2.4 would contradict
Lemma 4.1. Henceλ3 > λ2. It follows from Lemmas 4.2, 4.3 and Proposition 2.2 that the
eigenfunctionxλ3 has exactly two zeros in(0, ∞) and that there is no eigenvalue of (1.1)
lying strictly betweenλ2 andλ3. In particular,λ∗

3 = λ3. We can continue by induction.
The interlacing property of the zeros ofxλk−1 andxλk

then follows from Corollary 3.2 and
Lemma 3.7.

This completes the proof of Theorem 1.1.

A. A PPENDIX

In this section we assume that (1.4) holds and present some technical assertions which are
used in the proofs of the main results of this paper. Let us define the operator

J : W
1,p
∞ (r) → (W

1,p
∞ (r))∗
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by

〈J (x), y〉 =

∫
∞

0
r(t)ϕ(x′(t))y′(t) dt

for x, y ∈ W
1,p
∞ (r). Here 〈·, ·〉 denotes the duality pairing between(W1,p

∞ (r))∗ and
W

1,p
∞ (r). The operatorJ is continuous and(p−1)-homogeneous. It also has the following

properties.

LEMMA A.1. There exists an inverse operator

J−1 : (W
1,p
∞ (r))∗ → W

1,p
∞ (r),

it is bounded and continuous.

PROOF. The strict monotonicity ofϕ implies that

〈J (x) − J (y), x − y〉 > 0 for x 6= y.

HenceJ is injective. Using the Ḧolder inequality we get

(A.1) 〈J (x) − J (y), x − y〉 ≥ (‖x‖
p−1
1,p;r

− ‖y‖
p−1
1,p;r

)(‖x‖1,p;r − ‖y‖1,p;r)

and the boundedness ofJ follows.
To prove thatJ−1 is continuous we proceed via contradiction. Suppose it is not, i.e.,

there exists a sequence{fn}
∞

n=1, fn → f (strongly) in(W
1,p
∞ (r))∗ and

‖J−1(fn) − J−1(f )‖1,p;r ≥ δ for a δ > 0.

Let xn := J−1(fn) andx := J−1(f ). It follows that

‖fn‖∗‖xn‖1,p;r ≥ 〈fn, xn〉 = 〈J (xn), xn〉 = ‖xn‖
p

1,p;r
,

i.e.
‖xn‖

p−1
1,p;r

≤ ‖fn‖∗,

where‖ · ‖∗ is the norm on(W1,p
∞ (r))∗. Due to the reflexivity ofW1,p

∞ (r) we may then
assume thatxn ⇀ x̃ in W

1,p
∞ (r). Hence

〈J (xn) − J (x̃), xn − x̃〉 = 〈J (xn) − J (x), xn − x̃〉(A.2)

+ 〈J (x) − J (x̃), xn − x̃〉 → 0

sinceJ (xn) → J (x) in (W
1,p
∞ (r))∗. It follows from (A.1) (with x := xn, y := x̃) and

(A.2) that ‖xn‖1,p;r → ‖x̃n‖1,p;r . The uniform convexity ofW1,p
∞ (r) then implies that

xn → x̃ in W
1,p
∞ (r). SinceJ is injective, we obtaiñx = x, a contradiction. 2

Fora ∈ [0, ∞) let W1,p
a,∞(r) be the set of all absolutely continuous functionsx = x(t)

defined on [a, ∞) such thatx(a) = x(∞) = 0 and

|||x||| :=

(∫
∞

a

r(t)|x′(t)|p dt

)1/p

< ∞



QUASILINEAR STURM–LIOUVILLE PROBLEM 135

ThenW
1,p
a,∞(r) equipped with the norm||| · ||| is a uniformly convex Banach space. Since

(1.4) implies

(A.3) lim
t→∞

(∫ t

a

c(τ ) dτ

)1/p(∫
∞

t

r1−p′

(τ ) dτ

)1/p′

= 0,

we also have a compact embedding

(A.4) W
1,p
a,∞(r) ↪→↪→ L

p
a (c),

whereL
p
a (c) is the weighted Lebesgue space of all functionsx = x(t) defined on(0, ∞)

for which

‖x‖ =

(∫
∞

a

c(t)|x(t)|p dt

)1/p

< ∞

(cf. [1, Theorem 7.13 and Remark 7.14]).
It follows from the Lagrange multiplier method and the compactness of the embedding

(A.4) that the infimum

(A.5) λa = inf

∫
∞

a
r(t)|x′(t)|p dt∫

∞

a
c(t)|x(t)|p dt

(taken over allx ∈ W
1,p
a,∞(r), x 6= 0) is achieved at somexa ∈ W

1,p
a,∞(r), λa is the principal

eigenvalue of

(A.6)

{
(r(t)ϕ(x′(t)))′ + λc(t)ϕ(x(t)) = 0,

x(a) = x(∞) = 0,

andxa is the corresponding principal eigenfunction.
The valueλ ∈ R, λ 6= λa, for which there is a nonzero solutionx ∈ W

1,p
a,∞(r) of (A.6)

is called ahigher eigenvalueof (A.6) andx is a correspondinghigher eigenfunction. The
variational characterization (A.5) implies thatλ > λa for any higher eigenvalueλ. It also
follows easily from (A.5) that for anyx ∈ W

1,p
a,∞(r) we have

(A.7)
∫

∞

a

r(t)|x′(t)|p dt − λa

∫
∞

a

c(t)|x(t)|p dt ≥ 0.

Another consequence of (A.5) is that if the infimum in (A.5) is achieved at somex ∈

W
1,p
a,∞(r) then it must also be achieved at|x| ∈ W

1,p
a,∞(r). But the regularity argument

similar to that from Remark 1.6 combined with the uniqueness of the solution of IVP (3.1)
shows that no minimizer in (A.5) has a zero in(a, ∞). Further, we normalizexa in such a
way thatxa > 0 in (a, ∞). The situation with higher eigenfunctions is different.

PROPOSITIONA.2. Let x ∈ W
1,p
a,∞(r) be an eigenfunction associated with a higher

eigenvalueλ of (A.6). Thenx has at least one zero in(a, ∞).
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PROOF. Assume that there exists a higher eigenfunctionx ∈ W
1,p
a,∞(r) such thatx > 0 in

(a, ∞). Then

(A.8)
∫

∞

a

r(t)ϕ(x′(t))z′(t) dt = λ

∫
∞

a

c(t)ϕ(x(t))z(t) dt

for anyz ∈ W
1,p
a,∞(r). But we also have

(A.9)
∫

∞

a

r(t)ϕ(x′
a(t))y

′(t) dt = λa

∫
∞

a

c(t)ϕ(xa(t))y(t) dt

for anyy ∈ W
1,p
a,∞(r). For ε > 0 andX (t) = maxt∈(a,∞){xa(t), x(t)} set

xa,ε(t) = xa(t) + εX (t), xε(t) = x(t) + εX (t)

and

y(t) =
x

p
a,ε(t) − x

p
ε (t)

x
p−1
a,ε (t)

, z(t) =
x

p
ε (t) − x

p
a,ε(t)

x
p−1
ε (t)

.

Thenxa,ε/xε, xε/xa,ε ∈ L∞(a, ∞) and hencey, z ∈ W
1,p
a,∞(r). Adding (A.8) and (A.9)

with y andz chosen as above we obtain

(A.10)
∫

∞

a

r(t)

{[
1 + (p − 1)

(
xε

xa,ε

)p]
|x′

a,ε|
p

+

[
1 + (p − 1)

(
xa,ε

xε

)p]
|x′

ε|
p

}
dt

−

∫
∞

a

r(t)

[
p

(
xε

xa,ε

)p−1

|x′
a,ε|

p−2x′
a,εx

′
ε + p

(
xa,ε

xε

)p−1

|x′
ε|

p−2x′
εx

′
a,ε

]
dt

=

∫
∞

a

c(t)

[
λ

(
x

xε

)p−1

− λa

(
xa

xa,ε

)p−1]
(xp

ε − x
p
a,ε) dt.

Since for a functionu = u(t), u > 0 in (a, ∞), we have|(logu)′| = |u′
|/u, we can

rewrite (A.10) as follows:

(A.11)
∫

∞

a

r(t)(x
p
a,ε − xp

ε )[|(logxa,ε)
′
|
p

− |(logxε)
′
|
p] dt

−

∫
∞

a

r(t)pxp
ε |(logxa,ε)

′
|
p−2(logxa,ε)

′[(logxε)
′
− (logxa,ε)

′] dt

−

∫
∞

a

r(t)px
p
a,ε|(logxε)

′
|
p−2(logxε)

′[(logxa,ε)
′
− (logxε)

′] dt

=

∫
∞

a

c(t)

[
λ

(
x

xε

)p−1

− λa

(
xa

xa,ε

)p−1]
(xp

ε − x
p
a,ε) dt.

It follows from the inequality

|a|
p

− |b|
p

≥ p|b|
p−2b(a − b),



QUASILINEAR STURM–LIOUVILLE PROBLEM 137

which holds for anya, b ∈ R, that the left hand side in (A.11) is nonnegative, i.e. we have

(A.12)
∫

∞

a

c(t)

[
λ

(
x

xε

)p−1

− λa

(
xa

xa,ε

)p−1]
(xp

ε − x
p
a,ε) dt ≥ 0.

Note that for allε ≤ ε0 with ε0 small enough, the integrand in (A.12) is bounded by a
function fromL1(a, ∞). Letting ε → 0 in (A.12), it follows from the Lebesgue theorem
that

(λ − λa)

∫
∞

a

c(t)(xp
− x

p
a ) dt ≥ 0.

However, renormalizingx so that the last integral is negative, we arrive at a contra-
diction. 2

REMARK A.3. The method from the previous proof is taken from Anane [1] and
Lindqvist [9]. A similar approach proves thatλa is a simple eigenvalue (cf. [1], [9]). In our
case the simplicity ofλa is a consequence of the uniqueness of the solution of IVP (3.1).

COROLLARY A.4. Let xi = xi(t), t ∈ [0, ∞), i = α, β, be two eigenfunctions of(1.1)
corresponding to the eigenvalues0 < λα < λβ and assume thatxα, xβ have the largest
zerosξα, ξβ ∈ (0, ∞). Assume that(1.4)holds. Thenξα < ξβ .

PROOF. Assume the contrary:ξα ≥ ξβ . If ξα > ξβ , we define a function̄xα = x̄α(t),

t ∈ [0, ∞), as follows:

x̄α(t) =

{
0, t ∈ [0, ξα),

xα(t), t ∈ [ξα, ∞),

and let bex̂α the restriction ofx̄α to the interval [ξβ , ∞). Sincexα ∈ W
1,p
∞ (r), we have

x̂α ∈ W
1,p
ξβ,,∞

(r). Moreover,

(A.13)
∫

∞

ξβ

r(t)|x̂′
α(t)|p dt − λα

∫
∞

ξβ

c(t)|x̂α(t)|p dt = 0.

Now, we define a function̂xβ ∈ W
1,p
ξβ,,∞

(r) asx̂β(t) = xβ(t), t ∈ [ξβ , ∞). Then

(A.14)
∫

∞

ξβ

r(t)ϕ(x̂′
β(t))y′(t) dt − λβ

∫
∞

ξβ

c(t)ϕ(x̂β(t))y(t) dt = 0

for any y ∈ W
1,p
ξβ,,∞

(r). Since x̂β does not change sign in(ξβ , ∞) (note thatξβ is the

last zero ofxβ in (0, ∞)), λβ is the principal eigenvalue and̂xβ is the corresponding
eigenfunction of (A.6) witha = ξβ (cf. Proposition A.2). It then follows from (A.7) that∫

∞

ξβ

r(t)|x̂′
α(t)|p dt − λβ

∫
∞

ξβ

c(t)|x̂α(t)|p dt ≥ 0,

which contradictsλβ > λα and (A.13). Ifξα = ξβ we proceed similarly to conclude that
λα < λβ are both eigenvalues of (A.6) witha = ξα = ξβ having eigenfunctionŝxα, x̂β

which do not have a zero in(ξα, ∞). This contradicts Proposition A.2. 2



138 P. DRÁBEK - A . KUFNER

ACKNOWLEDGEMENTS. The first author was supported by the Research Plan MSN 4977751301 of the
Ministry of Education, Youth and Sports of the Czech Republic.

REFERENCES

[1] A. A NANE, Simplicit́e et isolation de la première valeur propre dup-Laplacien avec poids.
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