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Ordinary differential equations. — Hardy inequality and properties of the quasilinear
Sturm—Liouville problemby PavEL DRABEK and ALOIS KUFNER.

ABSTRACT. — We present a necessary and sufficient condition for discreteness of the set of all eigenvalues
(having the usual Sturm—Liouville properties) of a quasilinear Sturm—Liouville—type problem with weights on an
infinite interval. We point out that the same condition is necessary and sufficient for the compact embedding of
certain weighted Sobolev and Lebesgue spaces. Our result completes those from the linear theory.
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1. INTRODUCTION

Let p > 1 be a real number and let: R — R be defined ag(s) = |s|?~2s for s # 0,
¢(0) = 0. Letr = r(t), ¢ = c(¢) be continuous and positive functions on ¢8). For
x = x(¢) defined on [Qoo) setx(co) = lim,;_, « x(¢). We study the eigenvalue problem

(1.1)

(re&' @) + re(ex(t)) =0, >0,
x'(0) =0, x(oc0)=0,

wherei € R is a spectral parameter.

Let Wolg,p(r) be the set of all absolutely continuous functions= x(¢) defined on
[0, 00) such thatt(co) = 0 and

00 1/p
(1.2) lxlla, psr = (/0 r(t)lx’(t)l”dt) < oo.

ThenWolgp (r) equipped with the norrii - ||1, ., is @ uniformly convex Banach space.
A functionx € Wolcgp (r) is called awveak solutiorof ) if the integral identity

e9]

(1.3) /0 r®)e'(0)y' (1) dt = A /O c(®(x(@)y(r)dt

holds for ally € Wolcgp(r) (with both integrals being finite).

The parametek is called areigenvalueof (L.7)) if this problem has a nontrivial (i.e.
nonzero) weak solution (called agenfunctiorof (1.1) associated with).

We say that théS.L.) Property for(L.1)) is satisfied if

« the setof all eigenvalues ¢f (1.1) forms an increasing sequengg ; such thae.; > 0
and lim,_, .. A, = co. Every eigenvalue,,,, n = 1,2, ..., is simple in the sense that
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there exists a unique normalized eigenfunctigp associated witlk,,. Moreover, the
eigenfunctiony;,, has precisely — 1 zeros in(0, oo). In particular,x;, does not change
sign in (0, co). Forn > 3, between two consecutive zerosxf_, in (0, o), there is
exactly one zero af,,, .

Our main result depends on the following condition on the weight functions
(coefficients in the equatiom)andc:

t 1/p ) , 1/p’
(1.4) z“m (/ C(‘L’)d‘L’) (/ pl-r (‘L’)d‘[) =0,
—> 00 0 ¢

and we state it in the next theorem.
THEOREM1.1. The (S.L.) Property fofL.1)is satisfied if and only iI.4) holds.

It is an interesting fact that conditiof (1.4) is closely connected withcthrpact
embedding

(1.5) WEP(r) > LP(c),

whereL?(¢) is the weighted Lebesgue space of all functions x(¢) defined on(0, co)

for which
[e%e} 1/p
lxllp;c == (/0 C(t)IX(t)I”dt> < 00.

(Note thatL?(c) equipped with the nornjj - | .. is a uniformly convex Banach space.)
Indeed, it follows from the results of Opic and Kufnér[[10, Theorem 7.13 and Remark
7.14] that[(1.5) holds if and only if (1} 4) and also

t 1/p o0 ) 1/p
(1.6) lim (/ c(r)dr) (/ ri=p (r)dr) =0
t—0+ 0 ¢

are satisfied. However, the weight functionandc are much more general in [10] than in

our situation. Namely, the continuity and positivity;oindc in [0, co) imply that [1.6) is
always satisfied provideff (].4) holds. So, dué td [10], we also have the following assertion.
THEOREM1.2. The compact embeddir{§.5) holds if and only if(I.4)is satisfied.

As a consequence of Theorefms|1.1 andl 1.2 we then immediately obtain the following
corollary.

CoROLLARY 1.3. The (S.L.) Property fofL.1) is satisfied if and only if the compact
embeddindT.5) holds.

REMARK 1.4. Itis interesting to point out that [f (1.4) is violated, but

t 1/p 00 , 1/p
1.7 sup (/ (1) d‘L’) (/ =P (1) d‘L’) < 00,
1€(0,00) \JO t
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then only acontinuous embedding
Ws! (r) = LP(c)
holds instead of a compact one (séel[10, Theorem 1.14]). Condftioh (1.7) clearly
guarantees the boundedness of possible eigenvalues from below but, as the following

example shows, it is not sufficient to make our approach work.

EXAMPLE 1.5. Letp =2, r(t) = (r + 1)2, ¢(r) = 1. Then

‘ Up oo ' TN VA P NN V.
c(t d‘l,') (/ r—P(z d‘l,') =</ dr) (/ —)
</0 ) t ) 0 t (1+T)2
~ ;\2
S \141) 7
i.e. condition[(I.J) holds buf (1.4) is violated. The initial value problem (IVP)

(t+D%'@®) +rx(t) =0, x©0) =1, x'(0) =0,

has the following solutions: for = %,

x() =@+ 1)1/2(1+ % In(r + 1));

fora < %,
1 1 1
1) = t+11/2[<———> t+1)zvi-4
x()=(@t+1 3 2\/m( )
1 1 1
Aot ;+1—2¢1—4f\}
<2 2«/1—4)»)( )
for x> %,

x(t) = (t + l)‘l/z[cos(%«/m\ —1In(t + 1)) - sin(%«/% —1In@t + 1))]

4 —1
It follows that the boundary value problem (BVP)

(1.8) ((t+ D%’ (@1) + rx(t) =0, x'(0) = x(c0) =0,
has no solution: € Woléz(r), i.e. there is no eigenvalue .8).

REMARK 1.6 (Regularity of the weak solution). It can be shown that for any weak
solutionx = x(¢) of (L.1) we have-p(x") € C1[0, 00), the equation holds at every point
andx’(0) = 0. Indeed, take an arbitrary € C3°(0, o0) in ) and integrate by parts to
get

o0 t
/0 [V(t)w(x/(t))—fo )»C(T)fﬂ(X(f))dT]y’(t)dt=0,
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i.e. the distributional derivative of the expression in brackets is equal to zero. Hence there
is a constant € R such that
t

(1.9) (e (1)) — /0 re(De(x(0) dt = k

a.e. in(0, oo). However, continuity ofcg(x) implies thatre(x’) € €10, co) and )
holds at every point of [0c0). It then follows that the equation i (].1) also holds at
every point of [Q o). Now, taking into account this fact and a test functioa Wolé” ),
y(0) # 0, in (1.3), integrating by parts we arrive g(0) = 0.

REMARK 1.7 (The linear casp = 2). Let us note that ifp = 2, it has been proved
by Lewis [8] that condition[(1]4) is necessary and sufficient for the discreteness and
boundedness from below of the spectrum of the maximal self-adjoint extension of the
abstract linear operator generated by the equation in BVP (1.1) (the so-BBllpaperty).
However, it is not completely clear what is the analogue of such spectrum in the nonlinear
casep # 2 (see e.g. Appell, DePascale and Vignali [2]).

On the other hand, ip = 2 then most of our results follow directly from Theorem
[1.2 and the linear theory (see e.g. Yosida [12]). Indeed, the properties of compact linear
self-adjoint operators could be used to study the eigenvalue proplem (1.1).

REMARK 1.8. The properties of the eigenvalues and eigenfunctiors dgf (1.1) have been
studied already in Cabek and Kufner[[5]. However, the necessity pf [1.4) was not
discussed there at all and the proofs of some key assertions showing the sufficiency of
(I.4) were not included. Here, we include the proofs of all key assertions and complete the
following picture:

W;’,”(r) <ses LP(c) € = = = = = > (S.L.) Property

REMARK 1.9. The reader will easily figure out that similar results also hold for other
boundary conditions in (1.1). In particular, one can prove these results for “Dirichlet
boundary conditionsk (0) = x(c0) = 0.

This paper is organized as follows. In Sectign 2 we apply a variational argument to
construct a sequence of eigenvalueq of](1.1) approaching infinity. From this construction
it is not clear if this sequence exhausts the entire set of eigenvalues. That is why we state
some comparison and oscillation results for quasilinear equations in Sgttion 3 in order
to get more information about the zeros of eigenfunctions. The proof of the main result
(Theorenf 1]1) is given in Sectiff 4. In order not to interrupt the continuous flow of ideas
of the proof, we postpone some technical assertions and their proofs to the Appendix.

2. VARIATIONAL EIGENVALUES

The following assertion is a standard consequence of the Lagrange multiplier method and
compactness of the embeddifg {1.5).
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LEMMA 2.1. Assume thafI.4) holds. Then(I.)) has the least (principal) eigenvalue
A1 > 0 which can be characterized as follows:

(2.1) A1 =min Jo rOW I dr
' Jo~e@lx@|Pdt”

where the minimum is taken over alle W2”(r), x # 0.

Further in this section, we assume tfjat)(1.4) holds. In order to get the higher eigenvalues
we employ a variational argument of Ljusternik—Schnirelmann type. Let

Si={x e W' () : xllpse = 1)
and letS*—* be the unit sphere iR*. Fork € N, let
Fie i ={ACS:A=hnS* 1), whereh is a continuous odd function fros*—* into S}.
Define

2.2 Ar = inf suplx||? ..
(2.2) k Aekaej)” 11 e

Following literally the proofs from Cabek and Robinson|[6, Section 3], one can show (due
to the compactness of the embedding](1.5)) thatc = 1,2, ..., are the eigenvalues of
(L.7) and lim—.» Ax = co. Note also that everyl € F; is formed by two antipodal points
from S and so, fork = 1, the two characterizations (2.1) arid (2.2) coincide. Following
verbatim D&bek and Robinson][7, Section 3] one can also show that the eigenfungtion
associated with the eigenvalig has at most — 1 zeros in(0, oco). We thus have

PROPOSITION2.2. Assume thafl.4) holds. Ther{i;}72, defined by2.9)is a sequence
of eigenvalues ofL.T), limi_. o Ax = oo, and any eigenfunction associated with n =
1,2,..., has at most — 1 zeros in(0, co).

REMARK 2.3. We point out that at the moment it is not clear if the sequence of
variational eigenvaluesonstructed by[(2]2) exhausts the set of all eigenvalues gf (1.1).
To prove this fact requires more effort. See the following two sections.

Let A C S be a compact symmetric set and let

y(A) :=inf{m € N : 3 continuous and odd mapping gfinto R™ \ {0}},
y(A) ;=00 if nosuchm exists,

be its Krasnosel'skigenus. Define the family of sets
Fi={ACS: Acompactand symmetrig/(A) =k}, keN,
and

(2.3) Ap = Ainjfr* Suj)”x”ip‘r'

k X€



130 P. DRABEK - A. KUFNER

Thena; is also a sequence of variational eigenvalue@ (1.1) (&bBk and Robinson|6,
Section 3]), and, sinc&; C F;, we haver; < Ar, k € N. As in Drabek and Robinson
[6, Section 3], one can easily show thgt= A1 andAj = A».

The following assertion which follows directly from the result of Szulkinl[11] will be
important for us.

PROPOSITION2.4. Assume that for sonke> 2, j > 1, we have
(2.4) M=M= = My

Then the set of eigenfunctions associated wjthnd normalized byx,\z lp;c = 1consists
of more than two antipodal points.

3. COMPARISON AND OSCILLATION RESULTS
Letsg € [0, 00), A, B € R. Consider the IVP

3.1) { (r(ex' 1)) + re®)p(x () = 0,
’ x(tg) = A, x'(t9) = B.

By a solution to IVP(3.1) we understand an absolutely continuous functios: x(r)
defined on [0oc0) such that¢(x’) € C1[0, 00), the equation inl) is satisfied at every
point and the initial conditions hold. According to Bl [4, Theorem 1.1], IVP[(3]1) has
a unique solution which is extensible to the entire intervabff).

Recall that the equation ifi (3.1) is calldisconjugateon an interval &, b] C [0, co)
if any nontrivial solution to this equation has at most one zerajb].

Let Wg”’(a, b) denote the usual Sobolev space of functioren (a, b) with y(a) =
y(b) = 0. The following separation and comparison results can also be fouhd in [4].

PROPOSITIONS.1 ([4, Theorem 2.2])Let[a, b] C [0, o). Then the following statements
are equivalent:

(i) The equation ir{3.))is disconjugate offz, b].
(i) There exists a solution of the equation(@1) having no zero ifa, b].
(i) The functional

b
F(y:a,b) 1=/ [rO1Y' 017 = cly@®IF]dt

is positive for every e Wé”’(a, b), y # 0.
In particular, the following two assertions follow immediately from Propositioh 3.1.

COROLLARY 3.2. Letx; = x;(¢), t € [0,00), i = «, 8, be two solutions of IVR3.T)
withtg =0, A =1, B =01 =pu;, i =0, p,0 < us < ug, and assume that bot,
i = «, B, have at least one zero [, oo). Lets; be the first zero of;, i = «, 8, in (0, 00).
Thentg < t,.
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COROLLARY 3.3. Letx; = x;(¢), i = a, 8, be as above and assume that they both have
more than one zero i, co). Then between two consecutive zerosofhere is at least
one zero ofig.

Recall that the equatiof (3.1) is callednoscillatoryif for any nontrivial solution to
this equationx = x(¢) there existd" = T'(x) > O such thak(z) # Oforallr € [T, o). If
this is not true, the equation i (3.1) is callescillatory.

The following oscillation and nonoscillation criteria from & [3] will be used.

PrRoPOSITION3.4 ([3, Theorems 6 and 4])f

00 , p—1 t 1/p _ -1
lim Sup(/ riP (1) dr) </ c(7) d‘[) < &
t—00 t 0 )»pl’

then the equation if3.7)) is nonoscillatory, while if

00 , p—-1 t r 1
lim sup(/ rl=p (t)dr) (/ c(r)dr) > =,
t—00 t 0 A

then it is oscillatory.
We immediately get

COROLLARY 3.5. Assume thafl.4) holds. Then the equation {8.])) is nonoscillatory
for all A € R. On the other hand, ifI.4)is violated, i.e.

o ) 1/p’ t 1/p
lim sup(f ri=p (t)dr) (/ c(r)dr) > 0,
t—00 t 0

then there existso > 0 such that the equation i8.1))is oscillatory provided. > Ao.
We also have

COROLLARY 3.6. Assume thafl.4) holds and letx = x(r) be a nontrivial solution of
(3.1). Thenx has at most a finite number of zeros( co).

PrROOF There is the largest zekoof x by Corollary{3.5. The assertion now follows from
the compactness of the interval fJ and from the uniqueness of the solution of IVP {3.1)
with azg € [0, &]. a

The following result on comparison of the largest zeros of eigenfunctions correspond-
ing to two different eigenvalues requires more effort.

LEMMA 3.7. Assume thafl.4) holds and letr; = x;(7), t € [0,00), i = «, B, be two

eigenfunctions corresponding to eigenvalags Ag such thatd < A, < 1g. Assume that
bothx;, i = «, B, have at least one zero {0, co). Denote by; € (0, co) the largest zero
ofx;, i =, 8. Then0 < &, < &g.

PROOF. The existence of the largest zesi = «, B, follows from RemarK 16 and
Corollary[3.%. The proof that, < g implies 0< &, < &g is postponed to the Appendix

(see Corollary Al). O
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4. PROOF OFTHEOREM1.1

Necessity of (1]4). We proceed via contradiction. Assume tHat|(1.4) is violated. It then
follows from Corollary[ 3.} that there existy > 0 such that the equation ifi (3.1) is
oscillatory for allA > Aq. In particular, taking: large enough, the (S.L.) Property implies
that it is oscillatory withh. = 1,,. Hence there exists a nontrivial solutiorof this equation

with infinitely many zeros approaching infinity. The (S.L.) Property also entails that the
eigenfunctionx,, associated with, has the largest zer§, < (0, oo). Now, choose

&, < a < b such that the intervala, b) contains at least two zeros of Then we have a
contradiction with Propositidn 3.1(i), (ii).

Sufficiency of (I]4)5ome auxiliary assertions are needed.

LEMMA 4.1. Assume thafI.4) holds. Then every eigenvalue @) is simple, i.e., for
any eigenvalue., of (1.1), all associated eigenfunctions, are mutually proportional.

This lemma follows immediately from the homogeneity ¢f [1.1) and from the
uniqueness of the solution of IVP (3.1) with=0, A = 1 andB = 0.

LEMMA 4.2. Assume thafl.4) holds. Ifx;, is an eigenfunction off.1) associated with
an eigenvalue., > i1, thenx;,, has at least one zero if®, co).

The proof of this lemma relies on the method invented by Anahe [1] and Lind@vist [9]
and follows the lines of the proof of Proposition A.2.

LEMMA 4.3. Assume thafl.4) holds. Letr,, A5 be two eigenvalues df.T) such that
Lo < Agandx;,, Xg be corresponding eigenfunctions having at least one ze@, ito),
respectively. Then the number of zerosgf in (0, co) is strictly larger than the number
of zeros ofx,, in (0, 00).

This assertion follows directly from Corollarigs B.2,]3.3) 3.6 and from Lefnnja 3.7.

LEMMA 4.4. Assume thaff.4)holds. Let{,, )}, be a sequence of eigenvaluegDil)
such thatim,, . ,» = Ao. Thenig > 0Ois also an eigenvalue {L.1)).

PROOF. Sincei, > A1, we haverp > A1 > 0. Let us denote byx;,, }>> , the set of
eigenfunctions associated with,, };>_; and normalized by x;,, [I1,p;» = 1, x;,,(0) > 0.

Due to the reflexivity oWV(i;” (r) and compactness of the embedd(1.5) we can pass to
a subsequence such thgt— xg (weakly) in WQC;” (r) andx;, — xo (strongly) inL?(c)

for somexg € WP (r). Takingy = x;._ in

m

o0 o0
(4.1) /c; r(t)w(XLm M)y @) dt = )\m/c; c®)p(xy, (0)y@)dt,
we arrive at
L=, 17 . = Amllxa, e,
i.e.

1
1, Nl pee = 1/A0 P
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In particular, || xoll p;c = 1/)»(1)”’, i.e.xg # 0. The integral identitl) is equivalent to the
operator equation

(4.2) J(xn,,) = fm

with f,, = Amco(xy,,), whereJ : WEP(r) — (WP (r))* is defined in the Appendix.
It follows from x,, — xg in LP(c) that f,, — roce(xo) in (WEP(r))*. By Lemm
we infer thatx;,, is strongly convergent W (), i.e.xy, — Xoin WP (). Now, it

follows from continuity of/ and [4.2) that

J (x0) = Aocy(x0),
i.€.xp = X3, is an eigenfunction of (I}1) associated with the eigenvajue O

ProOPOSITION4.5. Assume thafl.4) holds. Then the set of all eigenvalues (@f1)
consists of isolated points from the intery@l co).

PROOF. Let g be a limit point of some sequen¢g,, },-_, of eigenvalues of (1/1). Then
2o > O'is an eigenvalue of (I.1) with associated eigenfunctign(see Lemma 44). We
can extract an increasing or a decreasing subsequence convergint®denote it again
{Am}or_q- 1f {An )04 is increasing and,, — Ao, then the number of zeros of,, strictly
increases withn (due to Lemmag 4|2 arjd 4.3), s, has more zeros than any,,, a
contradiction with CoroIIar6. In the case tHaf,}°>°_, is decreasing, by Lemm.2
and[4.3 the number of zeros of,, is finite for anym e N and strictly decreasing as
m — 00, a contradiction. O

m

We now finish the proof of sufficiency of (1.4). Let us consider the sequence of
variational eigenvalueg\;}7°; and {A;}2; given in ) and3), respectively. Our
aim is to show that; = A}, k € N, and that this is the entire set of all eigenvalues of
(L) with all properties stated in Sectiph 1. Indeed, evaryk = 1,2,..., is a simple
eigenvalue according to Lemma f.1, and has no zero in0, o) due to Proposition
[Q. The eigenfunctiow,, has exactly one zero itD, co) according to Lemm@.Z and
Propositior] 2.p, and there is no eigenvalue[of|(1.1) strictly betwkgeand A, thanks to
Lemm ar@.& M3 = X2 (=A%) thend} = A% and Propositio4 would contradict
Lemmd4.1. Hences > 1,. It follows from Lemmas 4)4, 4|3 and Propositjon]2.2 that the
eigenfunctiony,, has exactly two zeros if0, co) and that there is no eigenvalue pf (1.1)
lying strictly between., andis. In particular,A3 = A3. We can continue by induction.
The interlacing property of the zeros.of, , andx;, then follows from CorollarE]Z and
Lemmd3.y.

This completes the proof of Theor¢m]1.1.

A. APPENDIX

In this section we assume thpt ([1.4) holds and present some technical assertions which are
used in the proofs of the main results of this paper. Let us define the operator

T WEP ) = (WEP o))
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by
o0
(J (). y) = /O PG (1) di
for x,y € Wolg,”(r). Here (-, ) denotes the duality pairing betweewolg”(r))* and

Wol<;p (r). The operatov is continuous andp — 1)-homogeneous. It also has the following
properties.

LEMMA A.1. There exists an inverse operator
I WP ) = W (),
it is bounded and continuous.
PROOFE The strict monotonicity of implies that
(Jx)—J(y),x—y)>0 forx #y.
HenceJ is injective. Using the Elder inequality we get
(A1) (T = T x =) = Ul = I 1Y) Uxlaper — 151l per)

and the boundedness éffollows.
To prove that/~1 is continuous we proceed via contradiction. Suppose it is not, i.e.,

there exists a sequengg,}° ,, f, — f (strongly) in(We (r))* and
1) — T 2Pl pr =8 foras > 0.

Letx, := J~1(f,) andx := J~1(f). It follows that

p
I fullllxn I, pir = (fis Xn) = (J (Xn), Xn) = ||xn||1,p;r7

-1

||xnllf,,;, < 1 fulls
where|| - |, is the norm on(W” (r))*. Due to the reflexivity ofwlP () we may then
assume that, — % in WX”(r). Hence
(A2) (J(xn) = J(X), X0 — X) = (J(xn) — J(x), Xxp — X)

+(J(x) = J(X), x, —X) = 0

sinceJ(x,) — J(x)in (W&;”(r))*. It follows from ) (withx := x,, y := X) and
that ||x, 1, p;r = [IXall1,p;r- The uniform convexity oﬂivgg”(r) then implies that
Xy, — Xin Wolcgp(r). SinceJ is injective, we obtairt = x, a contradiction. O

Fora € [0, 00) let Wjjé’o(r) be the set of all absolutely continuous functians- x ()
defined on ¢, co) such thatv(a) = x(co) = 0 and

00 1/p
Il = ( / r(t)lx’(t)|”dt) <50
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Then Waljé’o (r) equipped with the nornj - ||| is a uniformly convex Banach space. Since

(L.4) implies

t 1/p 0 ) 1/p'
(A.3) lim ( / c(t)dr) ( / ri=r (f)df> =0,
—> 00 a t

we also have a compact embedding
(A4) Wako(r) > LE(),

whereL! (¢) is the weighted Lebesgue space of all functiens x(¢) defined on(0, co)

for which
00 1/p
Il = ( [ c<z>|x<r>|wt) o

(cf. [1, Theorem 7.13 and Remark 7.14]).
It follows from the Lagrange multiplier method and the compactness of the embedding
(A-4) that the infimum

L2 r@)Ix' 1)|P dt

(A.5) ha = I o dr

(taken over alk W;’é’o(r), x # 0) is achieved at some, € Waljé’o (r), Aq is the principal
eigenvalue of

(A6) {omwumny+mkua»=a
x(a) = x(00) =0,
andx, is the corresponding principal eigenfunction.
The valuer € R, A # A4, for which there is a nonzero solutiane Wal;é’o(r) of
is called ahigher eigenvaluef (A.6) andx is a correspondingigher eigenfunctionThe
variational characterizatiof (A.5) implies that- A, for any higher eigenvalug. It also

follows easily from ) that for any € W2 (r) we have

(A.7) /OO r)|x' )P dt — Ag /OO c@®)|x®)|P dt = 0.

Another consequence df (A.5) is that if the infimum [in_(A.5) is achieved at soree
Waljé’o(r) then it must also be achieved jatf € Waljé’o(r). But the regularity argument
similar to that from Remark 1.6 combined with the uniqueness of the solution of TVP (3.1)
shows that no minimizer if (Al5) has a zero(in co). Further, we normalize, in such a

way thatx, > 0in (a, c0). The situation with higher eigenfunctions is different.

PROPOSITIONA.2. Letx € W,}jé’o(r) be an eigenfunction associated with a higher
eigenvalue. of (A.6). Thenx has at least one zero i, c0).
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PROOF Assume that there exists a higher eigenfunciicn Waljé’o (r) such thatx > 0in
(a, o). Then

(A.8) / r)e(x' ()7 (1) dt =)»/ c®)p(x(t))z(t) dt
foranyz e Waljé’o(r). But we also have
(A.9) / r(0e(x, (0))y' (1) dt = i / c®)p(xq (1) y(t) dt

foranyy e Walj(fo(r). Fore > 0 andX (t) = maXe(,o00) {xa (t), x (1)} set
xa,a(t):xa([)'l'&‘.)((t)’ xe(t) =x(@) +eX (1)

and

xh e () —xL(1) xP(t) — x £ (1)

— . =g
xS Xt

Thenx, . /xe, X /Xa.c € L®(a, o0) and hencey, z € WaL, (). Adding {A.g) and|[(A.9)
with y andz chosen as above we obtain

o0 xe \? , Xae\" ’
(A.10) / r1|11+(p—121) |xa€|p—|— 1+(p-21 . |x8|p dt
a Xa,e ’ Xe
* Xe rt roap=2. Xa,e -t np=2.11
— r@®)| p e 1Xg. 6|7 xg e Xe + P P |xe |77 XX, ¢ dt
a a,e &
00 x p—1 X p—1
[l (E) ) e o
a e a,e

Since for a functiorw = u(t), u > 0 in (a, 00), we have|(logu)’| = |u'|/u, we can
rewrite [A.10) as follows:

y@) =

(A.11) /oor(l)(xzf,s —xP)[llogx, )| — |(logx.)'|7] dt
- /OO r(t)pxg|(Iogxa,e)/|p_2(|nga,s)/[(|ngs)/ - (Inga‘s)/] dt

- / h r(t)pxk e1(logxe) 1P ~2(logx,) [(I0g x, ¢) — (logxe)'] dt

00 p—1 p—1
:/ c(t)[x(ﬁ) — xa( al ) ](xé’ — xie)dr.
a Xe Xa,e

la|? — |b|” > p|b|P~%b(a — b),

It follows from the inequality
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which holds for any:, b € R, that the left hand side ifi (A.11) is nonnegative, i.e. we have

00 p—1 p—1
(A.12) / c(z)[x<i> - xa( all ) ](xg —xlydr = 0.
a Xe Xa,e

Note that for alle < eg with g small enough, the integrand in (A]12) is bounded by a
function fromL1(a, 00). Lettinge — 0 in (A.13), it follows from the Lebesgue theorem
that

- Aa)/ c®)(x? —xFydr = 0.

However, renormalizinge so that the last integral is negative, we arrive at a contra-
diction. a

REMARK A.3. The method from the previous proof is taken from Anahe [1] and
Lindgvist [9]. A similar approach proves tha} is a simple eigenvalue (cf.[[1].]9]). In our
case the simplicity of, is a consequence of the uniqueness of the solution of[[VP (3.1).

COROLLARY A.4. Letx; = x;(t), t € [0,00), i = «, B, be two eigenfunctions d.1))
corresponding to the eigenvalués< 1, < Ag and assume that,, xg have the largest
zerosky, & € (0, 00). Assume thafl.4)holds. Therg, < &5.

PROOFR Assume the contrary, > &g. If &, > &g, we define a functiort, = x(1),
t € [0, 00), as follows:
07 t S [O’ %‘O()v

-xot(t)’ t G[EOMOO)’

Xa(t) = {

and let bex, the restriction ofx, to the interval g, co). Sincex, € Wolg)p (r), we have
R € nglg”foo(r). Moreover,

(A.13) / r(0))xX, ()P dt — Ay / c(t)|xo ()P dt = 0.
&p &p

Now, we define a functiofig ngﬂ"’,’oo(r) asig(t) = xp(t), t € [, 00). Then

o0

(A.14) /g r(DeEg(1))y' (1) dt — rp /g ceEp)y()dt =0
B B

foranyy e W;};foo(r)' Sincexg does not change sign i§g, oo) (note thatég is the

last zero ofxg in (0, 00)), Ag is the principal eigenvalue antk is the corresponding
eigenfunction of[(A.p) withu = &g (cf. Propositiof A.P). It then follows fronj (A7) that

o0 o0
f r()|%, () dt —/\ﬂf c(D|Xe )" dt = 0,
& &

which contradicts.g > A, and [A.13). If&, = &g we proceed similarly to conclude that
Le < Ap are both eigenvalues gf (A.6) with = &, = &z having eigenfunctions,, is
which do not have a zero if§,, o). This contradicts Propositign A.2. O
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