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Mathematical analysis.— Transversality of covariant mappings admitting a potential
by MARC LESIMPLEand TULLIO VALENT.

ABSTRACT. — It is shown that for any mapping between Banach spaces which is covariant under a nonlinear
action of a Lie group and has a symmetric first derivative with respect to some duality, the image of any point
close to the origin belongs to the polar of the orbit of that point under the commutator subgroup of the symmetry

group.
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INTRODUCTION
The problem of existence of local solutions for a perturbation equation of the type
(0.1) A(x) + €B(x) =0,

where A and B are mappings defined on a topological vector spicwith values in a
topological vector spac¥ ande € R, is related to the covariance of the operatounder
the actions of a symmetry growd on M andN respectively. The mapping is supposed
to be “covariant” in the sense that it commutes with the two actior® ¢éee [(1.1L)).

Perturbation problems in the presence of linear or affine symmetries have been studied
in [BH7] (where the actions oW andN, assumed to be Banach spaces, are given by linear
or affine representations @). But nonlinear actions of groups arise in boundary value
problems with symmetries (see [7]). So it is important to extend the results previously
obtained in[[5] to the case of nonlinear actions of groups.

In the linear case, the existence of local solutions for equafiof (0.1) is linked to the
“transversality” of the mapping at any pointx close to the origin im/. We shall seek
conditions guaranteeing the transversalityddh the nonlinear case.

Having in mind existence results depending on the implicit function theorem, we shall
suppose tha/ andN are Banach spaces. Moreover the action of the symmetry gggup
supposed to be a Lie group, is realized as nonlinear representétintl” obtained from
linear representations 6¥ on M andN, as in the theory of nonlinear group representations
elaborated in[]1, |3]. If a duality pairing, ) exists betweed and N, then there exist a
linear operatok : M — N and an inner produgt| ) on N such thatlx, y) = (x(x) | y)
for every(x, y) € M x N (seel8]).

If the linear parts, say' andT'%, of the two representatiorssand T are contragredient
with respect to the bilinear forr, ) and if the product | ) on N is T1-invariant, then the
operator intertwinesst and 7.
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Once a duality is given o x N, a differential formw, can be associated
to A and we show that ifws is closed (which can be compared to a compatibility
condition as in perturbation theories), thénis transversal with respect to the orbit
of any point sufficiently close to the origin, under the commutator subgrouf of
Here, we say that is transversal at a point if A(x) belongs to the polar of the
orbit of x (with respect to the duality), which is equivalent to saying thAdk) is
orthogonal to the image under of the orbit of x (with respect to the inner product
(']) on N). The difficulties encountered in attempting to prove the local existence of
solutions for a perturbation problem of the forfn {0.1) rely on the covariance of the
mappingA; and this is a point that we aim to address by showing, in some sense, the
transversality ofA, in order to deduce local existence results from the implicit function
theorem|[2].

We first show that is transversal for the linear action 6 given by st and7'%.

To the nonlinear representatighon M (resp.T on N) there corresponds a linear
representatlors (resp. T) on the space of polynomials aif (resp. onN) [1 [3]. For
instance, the restriction &f to the space,,+1 of polynomials of degree + 1 is realized
as an extension of the restriction ®fto the space/, of polynomials of degree by the
n + 1-tensorial representatia®” 151 on homogeneous polynomials of degree- 1 (as
defined in Section 2; se&][3] for more details). Turning to that associated linear action,
we proceed further by supposing the mappint¢p be analytic and by assuming that the
linear representations associatedstand 7" are contragredient. Thereforebecomes an
intertwining operator forS and 7', which leads to an intertwining operatarfor S and
T, which in turn is shown to be transversal with respect to the orbit (under the associated
linear action) of any point belonging to a neighborhood of the origin in the strict inductive
limit of the spacesM,, n > 1. Next, by induction on the degreg referring to the
construction ofS, we conclude tha#i is transversal. Then the case @™ mappings is
considered.

Definitions and some results pertaining to nonlinear representations of Lie groups will
be recalled when needed, referring[tol[1, 3].

1. TRANSVERSALITY OF MAPPINGS ADMITTING A POTENTIAL
WITH RESPECT TO A DUALITY

Let G be a Lie group and its Lie algebra. The mapping is defined on a Banach space

M with values in a Banach spadé We consider two analytic representatio(s, M) and

(T, N), of G on M andN respectivelyl[1]. Namely§ (resp.T) is a morphism fronGG to

the group of invertible elements in the space of formal power series of the form (we use
the notations of [[1,13])

Sg =S+ S (respTy =T} + ) T}

n>2 n>2

whereg € G and Sy € L,(M) (resp.Ty € L,(N)), the space of symmetrie-linear
continuous mappings frod x - - - x M to M (resp. fromN x - - - x N to N); and for every
g in a neighborhood of the identityin G, the mapx > S, (x) = S3(x) + 3,5 S1 (x)
is analytic in some balB(0, r) in M (resp.y — T,(y) is analytic in some balB(0, r’)
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in N). We denote b@nM the image under the symmetrization operatgrdefined by

Gn(X1®~~®xn)—;Zxa(1)®~-~®xa(n), X1, ... X € M,

Toe@,

of the completed projective tensor product &f, and identify £,(M, N) with
£(®”M, N). The free partS! (resp. T1) of S (resp. T) is a continuous linear
representation of7. Since we shall be concerned with the restrictionsbfto C>°(S1)
(resp. of 71 to C*°(T1)), we assume that? is a C> representation i/ (resp.T! is a
C* representation iv).

The second degree ter§? in the seriesSg1 + ) -0 Sg represents the “infinitesimal
perturbation” of the linear representatiéh, in the sense that the mappiikf: G —
L2(M, M) defined byFZ = 520 (S;_1 ® S;_l) (for g € Q) belongs to the space

7Y@, L(M&M, M)) of 1-cocycles onG with values in theG-module L(M&M, M)
(endowed with the following structure: f € G andu € L(M&M, M), theng.u =
Sg ouo S;,l ® S;,l; see e.g.[]4]). Affine symmetries considered.ih [5] are expressed by

affine representations, = Sg0+ S;,L with $° ¢ Z1(G, M), the 1-cocycle space a& with
values inM [4].

We keep the same notations for @tinear operator and the associated homogeneous
polynomial of degree:. There exists a neighborhoad, of ¢ in G such that the map
g > Sg fromw, to £, (M) is C* for everyn (see[1]). So we can define the differential
dS of § as an analytic representationgiin M (seel[1]) given byiSx =), dS%, X € g,

where 4
dsy = n

dar exptX|=0°
_ PutM, = @/_; M with M/ = @, M and denote by7 the strict inductive limit
M = J,-1 M,. ThenM is a Féchet space.

The mappingA: M — N is supposed to be differentiable in an open subsef M,
containing the origin. We denote hfy(rgsp.ﬁ?) the linear representation associated with
S (resp.dS) defined as follows (seel[1]§,, ¢ € G (respdSx, X € g) is the isomorphism
(resp. endomorphism) @ff leaving invariant the subspac#s,, n > 1, defined onM" by

n .
Ser1® - @x) =) Y Si® @S (o.(r1® - ®x)
p=Llii+-+ip=n

n p—1
(respdSx(x1®- - @x) =Yy (U, ®dSy " @I, g 100,(:1® - @ x2))
p=14=0
with x1,...,x, € M. ~ ~ o
The continuous linear representati§of G in M is C* and we havelS = dS (see
[1,13]).
Suppose we are given a complex, separately continuous, bilineadtonmn — (x, y)
on M x N. We associate to the mappimy the differential formw, on U defined by
wA(X)(@p) = (p, AX)), x e U,p € M.
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The mappingd is assumed to be covariant in the sense that it commutes with the action
of G, that is,

(1.1) AoS,=T,0A, geG.
By differentiation we obtain
(1.2) dA,dSx(x) =dTx(A(x)), X egandx e BO,r)NU

(whered A, denotes the differential of atx).
Furthermore the differential form 4 associated ta is supposed to be closed, i.e.,

(1.3) (x1,dAy(x2)) = {x2,dA,(x1)), x1,x2€ M andx € U.

It has been demonstrated [A [8] that there exists an inner prgducbon N and a linear
mappings : M — N such that

(x,y) = (k(x)|y) forevery(x,y)e M x N.

When the mappingt “describes” a boundary value problem¢an have the meaning of a
trace operator (seel[5, 7]).
Suppose that the linear representatishand 7! are contragredient, that is to say,

(1.4) (S3(x). T;(») = (x.y) forevery(x,y) € M x N andg € G.

Then the operator intertwiness* and7? (i.e.x o S; = Tg1 ok for everyg € GG) provided
the inner product ig’ -invariant (i.e.(T1(y1) | T1(y2)) = (y1| y2) for everyys, y» € N).

ProposiTION1.1. Under conditions(L.1)), (I.3) and (1.4), one has the following
transversality property:

VX eg =[g,g],VxeU (dSt(x), A(x)) =0.
Proor From [1.]),[(T.h) it easily follows that
(x1, dA,d S (x2)) = —(dSk(x1), A(x2)) forall x1, x2 € M andX € g.
In particular, forx; = d St (x2) with ¥ € g, we have
(dSy(x2), dA,dSy (x2)) = —(dSxdS}(x2), A(x2)).
Then, in view of [1.B),
(dSkdSy (x2), A(x2)) = (dSyd Sk (x2), A(x2)),
and thus(dSix.y) (x2), A(x2)) =0. O

In the case of affine representations (i.e. whey (x) = dS}((x) + ax with ay =
%ngpt_xh:O) the rtlasultlof Propositign 1.1 has been statedlin [5] assuming that the mapping
A admits a potential with respect toand( | ) (seel[8]).

To show that the transversality property expressed in Propoditign 1.1 holds for
nonlinear representations we need to develop further the duality.
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2. TRANSVERSALITY CRITERIA FOR ANALYTIC MAPPINGS

In this section, we suppose thatis an analytic mapping of the forsd =), _; A", with
A" e L,(M, N). o N

The duality onM x N is extended td/ x N in the following way. Forq, ..., x, € M
andy1, ..., y, € N, define

n
(1@ @x y1®-- @ yp) = [ [ 3)  if p=n,
i=1
and(x1®@ - ®x,, y1® - ®yp) = 0ifn # p. Let (p, ¥) € il? X_ﬁ,w =Yi1¢,
Yo=Y vt with (¢f, ¥') € M x N'; we setlp, ) = Y1_q (", ¥') (it n < m),
The linear representatldﬁ associated t@" is supposed to be contragredlenlStt()the

linear representation aSSOC|atecS1)onamer,<Sg(<p) To(y)) = (@, ¥) (with o € M and
v e N) or, equivalently,

(2.1) (Se(@). W) = (@, T2 (¥)).

By differentiation we obtain, for ever¥ € g,

(2.2) (dSx (@), ¥) = — (9, dTx ().

We consider the linear operatot in £(M, N) associated toA such thatA|,, e
L(M,, N,), which is defined as follows: fory, ..., x, € M,

n
Axmi®--®@x)=Y > A'® - ®@A7oo(x1® - ®x,).
p=Llij+-+ip=n
In the present case, conditign ([L.1) means thattertwines the representatloﬁsandT

that is,A o S, = T, o A as power series, for every € G. Now, smceA 08, = Ao Sg,
Ais an mtertwmmg operator for the representatl()ﬂsM) and(T N)

~ ~

(2.3) AoS,=T,0A, geG.
By differentiation we obtain
(2.4) AodSy =dTx oA for everyX e g.

PropPosITION2.1. Under conditions(L.d), (2.1) and (I.3), we have the following
transversality properties:

(i) (dSx(¢), A(p)) =0forallp € U andX € ¢;
(i) (dSx(x), A(x)) = Oforall x € B(0,r) N U (withr small enough) anX < g¢'.

PrRooFE The differential formw4 being cIosedA1~is symmetric with respect to the duality
(,); developing the expressidn), (x1®- - -®x,), Ao, (x| ®- - -®x,)) Withx;, x/ e M, i =
1,...,n,we see thatt is symmetric, that is,

(2.5) (91, A(g2)) = (92, A(p1)) foreveryps, ¢p € M.
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SinceA intertwinesd S with 4T (condition [2.4)), we have
(1, A 0 dSx(¢2)) = (g1, dTx o A(g2)),

and by [2.2), o _
(p1,dTx o A(p2)) = —(dSx(¢1), A(2)).

So, takingy: = d Sy (¢2) With Y € g, we have
(dSy(@2), A 0 dSx(¢2)) = —(dSxdSy (92), A(g2)).

But A being symmetric we can write

(dSy(¢2), A 0 dSx(¢2)) = (dSx(¢2), A 0 dSy(¢2)).
Thus(dSxd Sy (¢2), A(g2)) = (dSydSx(¢2), A(g2)); hence

([dSx, dSyl(g2), A(g2)) =0,

and so we get (i).

The statement (i) will be proved by induction. By (i) we have in particular
(dSt(x), Al(x)) = Oforx € U andX e g'; supposing thatdS% (x), A*(x)) = 0
for p <n —1andk <m — 1, we now show thad S% (x), A (x)) = 0. Indeed,

~ n [)—1
Sy () = dSx(@"x) = > > L, ®dSy " @ I, g 1(®"x)
p=2q=0

and
A" =A@ ) - Y AW ®--®Ax) forxeBO,rNU.
k=2 i14~+ix=m

Hence
(dS"(x), A" (x))

= (dSx(@" %), A@"x) — Y Y (dSk(®"x), AT(x) @ ® A(x))
k=2 i1+-+ir=m

n p—1
=D Y @ix@dsy ") @1 x, A ()
p=24=0

n -1 m
- pZ Yo Y @ edsy e er iy Al @ - @ Ak ().

p=2q=0k=2 i1+-~+ix=m
The first term vanishes by (i), as does the second and third, and the last one is a sum of terms
of the form (®1x, A1 (x)) - - - (dSE’{pH(x), Ali(x)) - - -, which vanish by the induction
hypothesis. Now{ , ) being separately continuous, we get
(dSx(x), A(x)) = Z(dSS’((x), A™(x)) = 0. U

n,m
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3. TRANSVERSALITY CRITERIA FORC® MAPPINGS

Note that if 7' is irreducible, the commutation relatign (IL.2) gives thak A(0) = O for
everyX e g; in particularA(0) belongs tcﬂxeg KerdTy, which is an invariant subspace

of N; so A(0) = 0. Note that ifG is nilpotent andr'! unitary thenT ~ T'1 (see[[1]) and
(L.7)) reduces to the following condition of covariance foconsidered in [5]:

AongTgloA, geG.
In the following we suppose that(0) = 0

PROPOSITION3.1. Suppose thatt is C*°. Then under conditionfL.1), (2.1)and (1.3),
for any pointx € B(0, r) N U (with r small enough) (x) belongs to the polar of the orbit
of x underg/, that is,

(dSx(x), A(x)) =0 foreveryX €g'.

PROOE PutA" = (1/n|)A(")(0) where A™(0) is the n" differential of A at 0, and
consider the operatoft in L (M N) the space of linear mapplngéfrom M to N such
thatF|Mn € L(M,, N,), WhICh is defined as follows: fory, ..., x, € B(O,r)NU,

n
A1 ® - ® xp) =Z Z AT® - QA7 00,(x1® - Q x,).
p=Llii+-+ip=n

To carry over the development of Section 2 to the present case, we must pro@ that
intertwinesd S with dT. R

Consider the formal seried = > .>1 A" and let us show tha#t is a formal
intertwining operator forS and 7. Let g € G and takex € U with |x|| small enough
for the segment [0S, (x)] to be contained i/ Taylor’s formulas for the mapping$o S,
andT, o A yield for then™" order term

ZH:A”< Z Sél(x)®...®S;P(x)>=2n:T;( Z Ajl(x)®...®Ajk(x)).
p=1

i1+-tip=n k=1 Jit-tje=n
Therefore we have formally R
Ao Sy(x) =Ty 0 A(x).
Now, Z\: A; thus
Xonggognggog.
Hence, according to the proof of Proposit 2.1, we hai&f’y(x), A"(x)) = 0 for all
X € ¢’ and allp, n. Since( , ) is separately continuous amlc$‘§ is continuous ifp > 2,
writing again Taylor's formula fod up to ordem, we obtain
(dSE(x), A(x))| = o(||x||*"TP) for p > 2 and every:.

It follows that (dS,’}(x), A(x)) = 0if p > 2, and according to Proposition 1.1 we have
(dS%(x), A(x)) = O; therefore(dSx (x), A(x)) =0. DO
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