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Mathematical analysis.— Transversality of covariant mappings admitting a potential,
by MARC LESIMPLE and TULLIO VALENT.

ABSTRACT. — It is shown that for any mapping between Banach spaces which is covariant under a nonlinear
action of a Lie group and has a symmetric first derivative with respect to some duality, the image of any point
close to the origin belongs to the polar of the orbit of that point under the commutator subgroup of the symmetry
group.
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INTRODUCTION

The problem of existence of local solutions for a perturbation equation of the type

(0.1) A(x)+ εB(x) = 0,

whereA andB are mappings defined on a topological vector spaceM with values in a
topological vector spaceN andε ∈ R, is related to the covariance of the operatorA under
the actions of a symmetry groupG onM andN respectively. The mappingA is supposed
to be “covariant” in the sense that it commutes with the two actions ofG (see (1.1)).

Perturbation problems in the presence of linear or affine symmetries have been studied
in [5–7] (where the actions onM andN , assumed to be Banach spaces, are given by linear
or affine representations ofG). But nonlinear actions of groups arise in boundary value
problems with symmetries (see [7]). So it is important to extend the results previously
obtained in [5] to the case of nonlinear actions of groups.

In the linear case, the existence of local solutions for equation (0.1) is linked to the
“transversality” of the mappingA at any pointx close to the origin inM. We shall seek
conditions guaranteeing the transversality ofA in the nonlinear case.

Having in mind existence results depending on the implicit function theorem, we shall
suppose thatM andN are Banach spaces. Moreover the action of the symmetry groupG,
supposed to be a Lie group, is realized as nonlinear representationsS andT obtained from
linear representations ofG onM andN , as in the theory of nonlinear group representations
elaborated in [1, 3]. If a duality pairing〈 , 〉 exists betweenM andN , then there exist a
linear operatorκ : M → N and an inner product( | ) onN such that〈x, y〉 = (κ(x) | y)

for every(x, y) ∈ M ×N (see [8]).
If the linear parts, sayS1 andT 1, of the two representationsS andT are contragredient

with respect to the bilinear form〈 , 〉 and if the product( | ) onN is T 1-invariant, then the
operatorκ intertwinesS1 andT 1.
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Once a duality is given onM × N , a differential formωA can be associated
to A and we show that ifωA is closed (which can be compared to a compatibility
condition as in perturbation theories), thenA is transversal with respect to the orbit
of any point sufficiently close to the origin, under the commutator subgroup ofG.
Here, we say thatA is transversal at a pointx if A(x) belongs to the polar of the
orbit of x (with respect to the duality), which is equivalent to saying thatA(x) is
orthogonal to the image underκ of the orbit of x (with respect to the inner product
( | ) on N ). The difficulties encountered in attempting to prove the local existence of
solutions for a perturbation problem of the form (0.1) rely on the covariance of the
mappingA; and this is a point that we aim to address by showing, in some sense, the
transversality ofA, in order to deduce local existence results from the implicit function
theorem [2].

We first show thatA is transversal for the linear action ofG given byS1 andT 1.
To the nonlinear representationS on M (resp.T on N ) there corresponds a linear

representatioñS (resp.T̃ ) on the space of polynomials onM (resp. onN ) [1, 3]. For
instance, the restriction of̃S to the spaceMn+1 of polynomials of degreen+ 1 is realized
as an extension of the restriction ofS̃ to the spaceMn of polynomials of degreen by the
n + 1-tensorial representation⊗n+1S1 on homogeneous polynomials of degreen + 1 (as
defined in Section 2; see [3] for more details). Turning to that associated linear action,
we proceed further by supposing the mappingA to be analytic and by assuming that the
linear representations associated toS andT are contragredient. ThereforeA becomes an
intertwining operator forS andT , which leads to an intertwining operator̃A for S̃ and
T̃ , which in turn is shown to be transversal with respect to the orbit (under the associated
linear action) of any point belonging to a neighborhood of the origin in the strict inductive
limit of the spacesMn, n ≥ 1. Next, by induction on the degreen, referring to the
construction of̃S, we conclude thatA is transversal. Then the case ofC∞ mappings is
considered.

Definitions and some results pertaining to nonlinear representations of Lie groups will
be recalled when needed, referring to [1, 3].

1. TRANSVERSALITY OF MAPPINGS ADMITTING A POTENTIAL

WITH RESPECT TO A DUALITY

Let G be a Lie group andg its Lie algebra. The mappingA is defined on a Banach space
M with values in a Banach spaceN . We consider two analytic representations,(S,M) and
(T ,N), of G onM andN respectively [1]. Namely,S (resp.T ) is a morphism fromG to
the group of invertible elements in the space of formal power series of the form (we use
the notations of [1, 3])

Sg = S1
g +

∑
n≥2

Sng (resp.Tg = T 1
g +

∑
n≥2

T ng )

whereg ∈ G andSng ∈ Ln(M) (resp.T ng ∈ Ln(N)), the space of symmetricn-linear
continuous mappings fromM×· · ·×M toM (resp. fromN×· · ·×N toN ); and for every
g in a neighborhood of the identitye in G, the mapx 7→ Sg(x) = S1

g(x) +
∑
n≥2 S

n
g (x)

is analytic in some ballB(0, r) in M (resp.y 7→ Tg(y) is analytic in some ballB(0, r ′)
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in N ). We denote by
⊗̂

nM the image under the symmetrization operatorσn, defined by

σn(x1 ⊗ · · · ⊗ xn) =
1

n!

∑
σ∈Sn

xσ(1) ⊗ · · · ⊗ xσ(n), x1, . . . , xn ∈ M,

of the completed projective tensor product ofM, and identify Ln(M,N) with
L(

⊗̂
nM,N). The free partS1 (resp. T 1) of S (resp. T ) is a continuous linear

representation ofG. Since we shall be concerned with the restriction ofS1 to C∞(S1)

(resp. ofT 1 to C∞(T 1)), we assume thatS1 is aC∞ representation inM (resp.T 1 is a
C∞ representation inN ).

The second degree termS2 in the seriesS1
g +

∑
n≥2 S

n
g represents the “infinitesimal

perturbation” of the linear representationS1, in the sense that the mappingF 2 : G →

L2(M,M) defined byF 2
g = S2

g ◦ (S1
g−1 ⊗ S1

g−1) (for g ∈ G) belongs to the space

Z1(G,L(M⊗̂M,M)) of 1-cocycles onG with values in theG-moduleL(M⊗̂M,M)

(endowed with the following structure: ifg ∈ G andu ∈ L(M⊗̂M,M), theng.u =

S1
g ◦ u ◦ S1

g−1 ⊗ S1
g−1; see e.g. [4]). Affine symmetries considered in [5] are expressed by

affine representations:Sg = S0
g+S1

g with S0
∈ Z1(G,M), the 1-cocycle space onG with

values inM [4].
We keep the same notations for ann-linear operator and the associated homogeneous

polynomial of degreen. There exists a neighborhoodωe of e in G such that the map
g 7→ Sng from ωe to Ln(M) is C∞ for everyn (see [1]). So we can define the differential
dS of S as an analytic representation ofg inM (see [1]) given bydSX =

∑
n dS

n
X,X ∈ g,

where

dSnX =
d

dt
SnexptX |t=0.

PutMn =
⊕n

i=1M
i with M i

=
⊗̂

iM and denote bỹM the strict inductive limit
M̃ =

⋃
n≥1Mn. ThenM̃ is a Fŕechet space.

The mappingA : M → N is supposed to be differentiable in an open subsetU of M,
containing the origin. We denote bỹS (resp.d̃S) the linear representation associated with
S (resp.dS) defined as follows (see [1]):̃Sg, g ∈ G (resp.̃dSX,X ∈ g) is the isomorphism
(resp. endomorphism) of̃M leaving invariant the subspacesMn, n ≥ 1, defined onMn by

S̃g(x1 ⊗ · · · ⊗ xn) =

n∑
p=1

∑
i1+···+ip=n

Si1g ⊗ · · · ⊗ S
ip
g (σn(x1 ⊗ · · · ⊗ xn))

(resp.d̃SX(x1 ⊗ · · · ⊗ xn) =

n∑
p=1

p−1∑
q=0

(Iq ⊗ dS
n−p+1
X ⊗ Ip−q−1 ◦ σn(x1 ⊗ · · · ⊗ xn))

with x1, . . . , xn ∈ M.
The continuous linear representationS̃ of G in M̃ is C∞ and we havedS̃ = d̃S (see

[1, 3]).
Suppose we are given a complex, separately continuous, bilinear form(x, y) 7→ 〈x, y〉

on M × N . We associate to the mappingA the differential formωA on U defined by
ωA(x)(ϕ) = 〈ϕ,A(x)〉, x ∈ U , ϕ ∈ M.
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The mappingA is assumed to be covariant in the sense that it commutes with the action
of G, that is,

(1.1) A ◦ Sg = Tg ◦ A, g ∈ G.

By differentiation we obtain

(1.2) dAx dSX(x) = dTX(A(x)), X ∈ g andx ∈ B(0, r) ∩ U

(wheredAx denotes the differential ofA atx).
Furthermore the differential formωA associated toA is supposed to be closed, i.e.,

(1.3) 〈x1, dAx(x2)〉 = 〈x2, dAx(x1)〉, x1, x2 ∈ M andx ∈ U.

It has been demonstrated in [8] that there exists an inner product( | ) onN and a linear
mappingκ : M → N such that

〈x, y〉 = (κ(x) | y) for every(x, y) ∈ M ×N.

When the mappingA “describes” a boundary value problem,κ can have the meaning of a
trace operator (see [5, 7]).

Suppose that the linear representationsS1 andT 1 are contragredient, that is to say,

(1.4) 〈S1
g(x), T

1
g (y)〉 = 〈x, y〉 for every(x, y) ∈ M ×N andg ∈ G.

Then the operatorκ intertwinesS1 andT 1 (i.e.κ ◦S1
g = T 1

g ◦κ for everyg ∈ G) provided

the inner product isT 1-invariant (i.e.(T 1(y1) | T
1(y2)) = (y1 | y2) for everyy1, y2 ∈ N ).

PROPOSITION1.1. Under conditions(1.1), (1.3) and (1.4), one has the following
transversality property:

∀X ∈ g′
= [g, g],∀x ∈ U 〈dS1

X(x), A(x)〉 = 0.

PROOF. From (1.1), (1.4) it easily follows that

〈x1, dAx2dS
1
X(x2)〉 = −〈dS1

X(x1), A(x2)〉 for all x1, x2 ∈ M andX ∈ g.

In particular, forx1 = dS1
Y (x2) with Y ∈ g, we have

〈dS1
Y (x2), dAx2dS

1
X(x2)〉 = −〈dS1

XdS
1
Y (x2), A(x2)〉.

Then, in view of (1.3),

〈dS1
XdS

1
Y (x2), A(x2)〉 = 〈dS1

Y dS
1
X(x2), A(x2)〉,

and thus〈dS[X,Y ](x2), A(x2)〉 = 0. 2

In the case of affine representations (i.e. whendSX(x) = dS1
X(x) + aX with aX =

d
dt
S0

exptX |t=0) the result of Proposition 1.1 has been stated in [5] assuming that the mapping
A admits a potential with respect toκ and( | ) (see [8]).

To show that the transversality property expressed in Proposition 1.1 holds for
nonlinear representations we need to develop further the duality.
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2. TRANSVERSALITY CRITERIA FOR ANALYTIC MAPPINGS

In this section, we suppose thatA is an analytic mapping of the formA =
∑
n≥1A

n, with
An ∈ Ln(M,N).

The duality onM×N is extended tõM× Ñ in the following way. Forx1, . . . , xn ∈ M

andy1, . . . , yn ∈ N , define

〈x1 ⊗ · · · ⊗ xn, y1 ⊗ · · · ⊗ yp〉 =

n∏
i=1

〈xi, yi〉 if p = n,

and〈x1 ⊗ · · · ⊗ xn, y1 ⊗ · · · ⊗ yp〉 = 0 if n 6= p. Let (ϕ,ψ) ∈ M̃ × Ñ , ϕ =
∑n
i=1 ϕ

i ,
ψ =

∑m
i=1ψ

i with (ϕi, ψ i) ∈ M i
×N i ; we set〈ϕ,ψ〉 =

∑n
i=1〈ϕ

i, ψ i〉 (if n ≤ m).
The linear representatioñT associated toT is supposed to be contragredient toS̃ (the

linear representation associated toS); namely,〈S̃g(ϕ), T̃g(ψ)〉 = 〈ϕ,ψ〉 (with ϕ ∈ M̃ and
ψ ∈ Ñ ) or, equivalently,

(2.1) 〈S̃g(ϕ), ψ〉 = 〈ϕ, T̃g−1(ψ)〉.

By differentiation we obtain, for everyX ∈ g,

(2.2) 〈dS̃X(ϕ), ψ〉 = −〈ϕ, dT̃X(ψ)〉.

We consider the linear operator̃A in L(M̃, Ñ) associated toA such thatÃ|Mn
∈

L(Mn, Nn), which is defined as follows: forx1, . . . , xn ∈ M,

Ã(x1 ⊗ · · · ⊗ xn) =

n∑
p=1

∑
i1+···+ip=n

Ai1 ⊗ · · · ⊗ Aip ◦ σn(x1 ⊗ · · · ⊗ xn).

In the present case, condition (1.1) means thatA intertwines the representationsS andT ,

that is,A ◦ Sg = Tg ◦ A as power series, for everyg ∈ G. Now, sinceÃ ◦ Sg = Ã ◦ S̃g,
Ã is an intertwining operator for the representations(S̃, M̃) and(T̃ , Ñ),

(2.3) Ã ◦ S̃g = T̃g ◦ Ã, g ∈ G.

By differentiation we obtain

(2.4) Ã ◦ dS̃X = dT̃X ◦ Ã for everyX ∈ g.

PROPOSITION2.1. Under conditions(1.1), (2.1) and (1.3), we have the following
transversality properties:

(i) 〈dS̃X(ϕ), Ã(ϕ)〉 = 0 for all ϕ ∈ Ũ andX ∈ g′;
(ii) 〈dSX(x), A(x)〉 = 0 for all x ∈ B(0, r) ∩ U (with r small enough) andX ∈ g′.

PROOF. The differential formωA being closed,A1 is symmetric with respect to the duality
〈 , 〉; developing the expression〈σn(x1⊗· · ·⊗xn), Ãσn(x

′

1⊗· · ·⊗x′
n)〉 with xi, x′

i ∈ M, i =

1, . . . , n, we see that̃A is symmetric, that is,

(2.5) 〈ϕ1, Ã(ϕ2)〉 = 〈ϕ2, Ã(ϕ1)〉 for everyϕ1, ϕ2 ∈ M̃.
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SinceÃ intertwinesdS̃ with dT̃ (condition (2.4)), we have

〈ϕ1, Ã ◦ dS̃X(ϕ2)〉 = 〈ϕ1, dT̃X ◦ Ã(ϕ2)〉,

and by (2.2),
〈ϕ1, dT̃X ◦ Ã(ϕ2)〉 = −〈dS̃X(ϕ1), A(ϕ2)〉.

So, takingϕ1 = dS̃Y (ϕ2) with Y ∈ g, we have

〈dS̃Y (ϕ2), Ã ◦ dS̃X(ϕ2)〉 = −〈dS̃XdS̃Y (ϕ2), Ã(ϕ2)〉.

But Ã being symmetric we can write

〈dS̃Y (ϕ2), Ã ◦ dS̃X(ϕ2)〉 = 〈dS̃X(ϕ2), Ã ◦ dS̃Y (ϕ2)〉.

Thus〈dS̃XdS̃Y (ϕ2), Ã(ϕ2)〉 = 〈dS̃Y dS̃X(ϕ2), Ã(ϕ2)〉; hence

〈[dS̃X, dS̃Y ](ϕ2), Ã(ϕ2)〉 = 0,

and so we get (i).
The statement (ii) will be proved by induction. By (i) we have in particular

〈dS1
X(x), A

1(x)〉 = 0 for x ∈ U andX ∈ g′ ; supposing that〈dSpX(x), A
k(x)〉 = 0

for p ≤ n− 1 andk ≤ m− 1, we now show that〈dSnX(x), A
m(x)〉 = 0. Indeed,

dSnX(x) = dS̃X(⊗
nx)−

n∑
p=2

p−1∑
q=0

Iq ⊗ dS
n−p+1
X ⊗ Ip−q−1(⊗

nx)

and

Am(x) = Ã(⊗mx)−

m∑
k=2

∑
i1+···+ik=m

Ai1(x)⊗ · · · ⊗ Aik (x) for x ∈ B(0, r) ∩ U.

Hence

〈dSn(x), Am(x)〉

= 〈dS̃X(⊗
nx), Ã(⊗mx)〉 −

m∑
k=2

∑
i1+···+ik=m

〈dSnX(⊗
nx),Ai1(x)⊗ · · · ⊗ Aik (x)〉

−

n∑
p=2

p−1∑
q=0

〈⊗
qx ⊗ dS

n−p+1
X (x)⊗

p−q−1 x,Am(x)〉

−

n∑
p=2

p−1∑
q=0

m∑
k=2

∑
i1+···+ik=m

〈⊗
qx ⊗ dS

n−p+1
X (x)⊗

p−q−1 x,Ai1(x)⊗ · · · ⊗ Aik (x)〉.

The first term vanishes by (i), as does the second and third, and the last one is a sum of terms
of the form 〈⊗

i1x,Ai1(x)〉 · · · 〈dS
n−p+1
X (x), Aij (x)〉 · · · , which vanish by the induction

hypothesis. Now,〈 , 〉 being separately continuous, we get

〈dSX(x), A(x)〉 =

∑
n,m

〈dSnX(x), A
m(x)〉 = 0. 2
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3. TRANSVERSALITY CRITERIA FORC∞ MAPPINGS

Note that ifT 1 is irreducible, the commutation relation (1.2) gives thatdTXA(0) = 0 for
everyX ∈ g; in particularA(0) belongs to

⋂
X∈g KerdT 1

X, which is an invariant subspace

of N ; soA(0) = 0. Note that ifG is nilpotent andT 1 unitary thenT ∼ T 1 (see [1]) and
(1.1) reduces to the following condition of covariance forA considered in [5]:

A ◦ Sg = T 1
g ◦ A, g ∈ G.

In the following we suppose thatA(0) = 0.

PROPOSITION3.1. Suppose thatA is C∞. Then under conditions(1.1), (2.1)and (1.3),
for any pointx ∈ B(0, r)∩U (with r small enough)A(x) belongs to the polar of the orbit
of x underg′, that is,

〈dSX(x), A(x)〉 = 0 for everyX ∈ g′.

PROOF. PutAn = (1/n!)A(n)(0), whereA(n)(0) is thenth differential ofA at 0, and
consider the operator̃A in Lg(M̃, Ñ), the space of linear mappingsF from M̃ to Ñ such
thatF |Mn

∈ L(Mn, Nn), which is defined as follows: forx1, . . . , xn ∈ B(0, r) ∩ U ,

Ã(x1 ⊗ · · · ⊗ xn) =

n∑
p=1

∑
i1+···+ip=n

Ai1 ⊗ · · · ⊗ Aip ◦ σn(x1 ⊗ · · · ⊗ xn).

To carry over the development of Section 2 to the present case, we must prove thatÃ

intertwinesdS̃ with dT̃ .
Consider the formal serieŝA =

∑
n≥1A

n and let us show that̂A is a formal
intertwining operator forS andT . Let g ∈ G and takex ∈ U with ‖x‖ small enough
for the segment [0, Sg(x)] to be contained inU . Taylor’s formulas for the mappingsA◦Sg
andTg ◦ A yield for thenth order term

n∑
p=1

Ap
( ∑
i1+···+ip=n

Si1g (x)⊗ · · · ⊗ S
ip
g (x)

)
=

n∑
k=1

T kg

( ∑
j1+···+jk=n

Aj1(x)⊗ · · · ⊗Ajk (x)
)
.

Therefore we have formally
Â ◦ Sg(x) = Tg ◦ Â(x).

Now, ˜̂
A = Ã; thus

˜̂A ◦ Sg = Ã ◦ S̃g = T̃g ◦ Ã.

Hence, according to the proof of Proposition 2.1, we have〈dS
p
X(x), A

n(x)〉 = 0 for all
X ∈ g′ and allp, n. Since〈 , 〉 is separately continuous anddSpX is continuous ifp ≥ 2,
writing again Taylor’s formula forA up to ordern, we obtain

|〈dS
p
X(x), A(x)〉| = o(‖x‖2n+p) for p ≥ 2 and everyn.

It follows that 〈dSpX(x), A(x)〉 = 0 if p ≥ 2, and according to Proposition 1.1 we have
〈dS1

X(x), A(x)〉 = 0; therefore〈dSX(x), A(x)〉 = 0. 2
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École Norm. Sup. (4) 10 (1977), 405–418.

[2] M. L ESIMPLE - T. VALENT, Local existence of solutions for perturbation problems with
nonlinear symmetries. Preprint, Universit̀a di Padova, 2005.

[3] G. PINCZON, Nonlinear multipliers and applications. Pacific J. Math. 116 (1985), 359–400.
[4] J. SIMON , Introduction to the 1-cohomology of Lie groups. In: Harmonic Analysis and

Representations of Semisimple Lie Groups, J. A. Wolf, M. Cahen and M. De Wilde (eds.),
Reidel, Dordrecht, 1980, 449–465.

[5] T. VALENT, An abstract setting for boundary problems with affine symmetries. Rend. Lincei
Mat. Appl. (9) 7 (1996), 47–58.

[6] T. VALENT, A perturbation problem in the presence of affine symmetries. Rend. Lincei Mat.
Appl. (9) 7 (1996), 253–266.

[7] T. VALENT, Nonlinear symmetries of mapping. Existence theorems for perturbation problem in
the presence of symmetries. In: Recent Developments in Partial Differential Equations, Quad.
Mat. 2, Seconda Univ. Napoli, Caserta, 1998, 211-253.

[8] T. VALENT, On the notion of potential for mappings between linear spaces. A generalized
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