Rend. Lincei Mat. Appl. 18 (2007), 139-151



**Geometry.** — *Configuration spaces of tori*, by YOEL FELER, communicated by F. Catanese.

ABSTRACT. — The *n*-point configuration spaces  $\mathcal{E}^n(\mathbb{T}^2) = \{(q_1, \ldots, q_n) \in (\mathbb{T}^2)^n | q_i \neq q_j \forall i \neq j\}$  and  $\mathcal{C}^n(\mathbb{T}^2) = \{Q \subset \mathbb{T}^2 | \#Q = n\}$  of a complex torus  $\mathbb{T}^2$  are complex manifolds. We prove that for n > 4 any holomorphic self-map F of  $\mathcal{C}^n(\mathbb{T}^2)$  either carries the whole of  $\mathcal{C}^n(\mathbb{T}^2)$  into an orbit of the diagonal (Aut  $\mathbb{T}^2$ )-action in  $\mathcal{C}^n(\mathbb{T}^2)$  or is of the form F(Q) = T(Q)Q, where  $T : \mathcal{C}^n(\mathbb{T}^2) \to \text{Aut } \mathbb{T}^2$  is a holomorphic map. We also prove that for n > 4 any endomorphism of the torus braid group  $B_n(\mathbb{T}^2) = \pi_1(\mathcal{C}^n(\mathbb{T}^2))$  with a non-abelian image preserves the pure torus braid group  $P_n(\mathbb{T}^2) = \pi_1(\mathcal{E}^n(\mathbb{T}^2))$ .

KEY WORDS: Configuration space; torus braid group; holomorphic endomorphism.

MATHEMATICS SUBJECT CLASSIFICATION (2000): 32H02, 32H25, 32C18, 32M05, 14J50.

### 1. INTRODUCTION

The configuration space  $C^n(X)$  of a complex space X consists of all n-point subsets ("configurations")  $Q = \{q_1, \ldots, q_n\} \subset X, \#Q = n$ . The automorphism group Aut X acts in  $C^n(X)$  by  $X \supset Q \mapsto AQ = \{Aq_1, \ldots, Aq_n\}$ . If Aut X is a complex Lie group, any holomorphic map  $T: C^n(X) \rightarrow \text{Aut } X$  produces the holomorphic self-map ("endomorphism")  $F_T$  of  $C^n(X), F_T(Q) = T(Q)Q$ ; such a map  $F_T$  is called *tame*. Choosing a base point  $Q^0 \in C^n(X)$ , define an endomorphism  $F_{T,Q^0}$  by  $F_{T,Q^0}(Q) = T(Q)Q^0$ ; it maps the whole configuration space into one orbit (Aut  $X)Q^0$  of the diagonal (Aut X)-action in  $C^n(X)$ ; maps that have the latter property are said to be orbit-like.

V. Lin [13, 15, 17] proved that when n > 4 and X is  $\mathbb{C}$  or  $\mathbb{CP}^1$ , an endomorphism F of  $\mathcal{C}^n(X)$  is either tame or orbit-like. The latter happens if and only if F is abelian, i.e. the image  $F_*(\pi_1(\mathcal{C}^n(X)))$  under the induced endomorphism  $F_*$  of the fundamental group  $\pi_1(\mathcal{C}^n(X))$  is abelian. (Recall that  $\pi_1(\mathcal{C}^n(X))$  is the braid group  $B_n(X)$  of X; it is non-abelian whenever  $n \ge 3$ .) Similar results were obtained by V. Zinde (see [22–26]) for  $X = \mathbb{C}^*$ .

Here we treat the endomorphisms of the configuration spaces of a torus  $\mathbb{T}^2$ , which completes the story for all non-hyperbolic Riemann surfaces.

Throughout the paper, Aut  $\mathbb{T}^2$  stands for the group of all biholomorphic ( $\equiv$  biregular) self-mappings of  $\mathbb{T}^2$ .

DEFINITION 1.1. A group homomorphism  $\varphi: G \to H$  is called abelian if its image is abelian. A continuous map  $F: X \to Y$  of path connected spaces is called abelian if the induced homomorphism  $F_*: \pi_1(X) \to \pi_1(Y)$  is abelian.

THEOREM 1.2. For n > 4, each holomorphic map  $F : C^n(\mathbb{T}^2) \to C^n(\mathbb{T}^2)$  is either tame or orbit-like; the latter happens exactly when F is abelian. Any automorphism of  $C^n(\mathbb{T}^2)$  is tame.

COROLLARY 1.3. For n > 4, the set  $\mathcal{H}(\mathcal{C}^n(\mathbb{T}^2), \mathcal{C}^n(\mathbb{T}^2))$  of all holomorphic homotopy classes of non-abelian holomorphic endomorphisms of  $\mathcal{C}^n(\mathbb{T}^2)$  is in natural one-to-one correspondence with the set  $\mathcal{H}(\mathcal{C}^n(\mathbb{T}^2), \operatorname{Aut} \mathbb{T}^2)$  of all holomorphic homotopy classes of holomorphic maps  $\mathcal{C}^n(\mathbb{T}^2) \to \operatorname{Aut} \mathbb{T}^2$ .

COROLLARY 1.4. For n > 4, the orbits of the natural  $(\operatorname{Aut} C^n(\mathbb{T}^2))$ -action in  $C^n(\mathbb{T}^2)$ coincide with the orbits of the diagonal  $(\operatorname{Aut} \mathbb{T}^2)$ -action in  $C^n(\mathbb{T}^2)$ .

Artin [1] proved that automorphisms of the braid group  $B_n = B_n(\mathbb{C})$  preserve the pure braid group  $P_n$ . V. Lin [14–18] generalized this to non-abelian endomorphisms of  $B_n(\mathbb{C})$  and  $B_n(\mathbb{CP}^1)$ ; the case of  $B_n(\mathbb{C}^*)$  was handled by V. Zinde [25, 26]. N. Ivanov [10] proved an analogue of Artin's theorem for automorphisms of braid groups of all Riemann surfaces of finite type but  $\mathbb{CP}^1$ . Our next theorem states an analogue of Lin's theorem for the torus braid group  $B_n(\mathbb{T}^2) = \pi_1(\mathcal{C}^n(\mathbb{T}^2))$  and the pure torus braid group  $P_n(\mathbb{T}^2)$ , which is the fundamental group of the *ordered* configuration space  $\mathcal{E}^n(\mathbb{T}^2) = \{(q_1, \ldots, q_n) \in (\mathbb{T}^2)^n \mid q_i \neq q_j \forall i \neq j\}$ . Part (b) of the next theorem is similar to results obtained in [14–26] for the braid groups of  $\mathbb{C}$ ,  $\mathbb{CP}^1$  and  $\mathbb{C}^*$ .

THEOREM 1.5. (a) Let n > 4 and  $\varphi$  be a non-abelian endomorphism of  $B_n(\mathbb{T}^2)$ . Then  $\varphi(P_n(\mathbb{T}^2)) \subseteq P_n(\mathbb{T}^2)$ .

(b) For  $n > \max\{m, 4\}$ , any homomorphism  $\varphi \colon B_n(\mathbb{T}^2) \to B_m(\mathbb{T}^2)$  is abelian.

Let us outline the plan of the proof of Theorem 1.2. By Theorem 1.5(a), a non-abelian holomorphic self-map F of  $\mathcal{C}^n(\mathbb{T}^2)$  fits into a commutative diagram

(1.1) 
$$\begin{array}{c} \mathcal{E}^{n}(\mathbb{T}^{2}) \xrightarrow{f} \mathcal{E}^{n}(\mathbb{T}^{2}) \\ p \\ \downarrow \\ \mathcal{C}^{n}(\mathbb{T}^{2}) \xrightarrow{F} \mathcal{C}^{n}(\mathbb{T}^{2}) \end{array}$$

where  $p: \mathcal{E}^n(\mathbb{T}^2) \ni q = (q_1, \ldots, q_n) \mapsto \{q_1, \ldots, q_n\} = Q \in \mathcal{C}^n(\mathbb{T}^2)$  is a Galois covering with Galois group  $\mathbf{S}(n)$ . The map f is non-constant, holomorphic and *strictly equivariant* with respect to the standard action of the symmetric group  $\mathbf{S}(n)$  in  $\mathcal{E}^n(\mathbb{T}^2)$ , meaning that there is an automorphism  $\alpha$  of  $\mathbf{S}(n)$  such that  $f(\sigma q) = \alpha(\sigma)f(q)$  for all  $q \in \mathcal{E}^n(\mathbb{T}^2)$ and  $\sigma \in \mathbf{S}(n)$ . To study such maps f, we start with an explicit description of all nonconstant holomorphic maps  $\lambda: \mathcal{E}^n(\mathbb{T}^2) \to \mathbb{T}^2 \setminus \{0\}$ . The set L of all such maps is finite and separates points of a certain submanifold  $M \subset \mathcal{E}^n(\mathbb{T}^2)$  with codim M = 1; we endow L with a special simplicial structure. The action of  $\mathbf{S}(n)$  in  $\mathcal{E}^n(\mathbb{T}^2)$  induces a simplicial  $\mathbf{S}(n)$ -action in the complex L; the orbits of this action may be exhibited explicitly. A map f as above induces a simplicial self-map  $f^*$  of L, defined by  $f^*\lambda = \lambda \circ f$  for  $\lambda \in L$ , which carries important information about f. Since f is strictly equivariant,  $f^*$  is nicely related to the  $\mathbf{S}(n)$ -action on L. Studying all these things together, we come to the desired conclusion.

#### 2. Some algebraic properties of torus braid groups

The main goal of this section is to prove Theorem 1.5.

By O. Zariski [21] (cf. J. Birman [2]), the torus braid group  $B_n(\mathbb{T}^2)$  admits a presentation with n+1 generators  $\sigma_1, \ldots, \sigma_{n-1}, a_1, a_2$  and the defining system of relations

- (2.1) $\sigma_i \sigma_i = \sigma_i \sigma_i$ for  $|i - j| \ge 2$ ,  $i, j = 1, \dots, n - 3$ ;
- for i = 1, ..., n 2: (2.2) $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$
- for k = 1, 2 and i = 2, ..., n 1; (2.3) $\sigma_i a_k = a_k \sigma_i$
- $(\sigma_1^{-1}a_k)^2 = (a_k\sigma_1^{-1})^2$  for k = 1, 2;(2.4)

(2.5) 
$$\sigma_1 \cdots \sigma_{n-2} \sigma_{n-1}^2 \sigma_{n-2} \cdots \sigma_1 = a_1 a_2^{-1} a_1^{-1} a_2;$$

 $\sigma_1 \cdots \sigma_{n-2} \sigma_{n-1} \sigma_{n-2} \cdots \sigma_1 = a_1 a_2 \cdot a_1$  $a_2 \sigma_1^{-1} a_1^{-1} \sigma_1 a_2^{-1} \sigma_1^{-1} a_1 \sigma_1 = \sigma_1^2.$ (2.6)

For  $(a_1, \ldots, a_n) \in \mathcal{E}^n(\mathbb{T}^2)$  and  $m = 1, \ldots, n-1$ , set  $\mathcal{E}^{n-m}(\mathbb{T}^2 \setminus \{a_1, \ldots, a_m\}) = \{(q_{m+1}, \ldots, q_n) \in (\mathbb{T}^2 \setminus \{a_1, \ldots, a_m\})^{n-m} \mid q_i \neq q_j\}$ . For  $m \leq n-2$ , the maps  $t_{m+1} \colon \mathcal{E}^{n-m}(\mathbb{T}^2 \setminus \{a_1, \ldots, a_m\}) \ni (q_{m+1}, \ldots, q_n) \mapsto q_{m+1} \in \mathbb{T}^2 \setminus \{a_1, \ldots, a_m\}$  and  $t_1 \colon \mathcal{E}^n(\mathbb{T}^2) \ni (q_1, \ldots, q_n) \mapsto q_1 \in \mathbb{T}^2$  define smooth locally trivial fibrings (see [6]) with fibres isomorphic respectively to  $\mathcal{E}^{n-1}(\mathbb{T}^2 \setminus \{a_1\})$  and to  $\mathcal{E}^{n-m-1}(\mathbb{T}^2 \setminus \{a_1, \dots, a_{m+1}\})$ . These spaces are aspherical and the final segments of the exact homotopy sequences of the above fibrings look as  $1 \to P_{n-1;1} \to P_n(\mathbb{T}^2) \to \mathbb{Z}^2 \to 1$  and  $1 \to P_{n-m-1;m+1} \to P_{n-m;m} \to \mathbb{F}_m \to 1$ , where  $P_{n-m;m} = \pi_1(\mathcal{E}^{n-m}(\mathbb{T}^2 \setminus \{a_1, \ldots, a_m\}))$  and  $\mathbb{F}_m$  is a free group of rank *m*. This leads to the following well-known statement.

**PROPOSITION 2.1.** The subgroups  $P_{n-s;s}$  fit into the normal series  $\{1\} \subset P_{1;n-1} \subset P_{1;n-1}$  $\cdots \subset P_{n-m-1;m+1} \subset P_{n-m;m} \subset \cdots \subset P_{n-1;1} \subset P_{n;0} = P_n(\mathbb{T}^2) \text{ with } P_{1;n-1} \cong \mathbb{F}_{n-1}, \dots, P_{n-m;m}/P_{n-m-1;m+1} \cong \mathbb{F}_m, \dots, P_{n-1;1}/P_{n-2;2} \cong \mathbb{F}_2, P_n(\mathbb{T}^2)/P_{n-1;1} \cong \mathbb{Z}^2.$ 

COROLLARY 2.2. Any non-trivial subgroup  $H \subseteq P_n(\mathbb{T}^2)$  admits non-trivial homomorphisms to  $\mathbb{Z}$ . In particular, a group G with the finite abelianization G/G' = G/[G,G]cannot have non-trivial homomorphisms to  $P_n(\mathbb{T}^2)$ .

The exact homotopy sequence of the covering  $p: \mathcal{E}^n(\mathbb{T}^2) \to \mathcal{C}^n(\mathbb{T}^2)$  looks as  $1 \to \mathbb{C}^n(\mathbb{T}^2)$  $P_n(\mathbb{T}^2) \xrightarrow{p_*} B_n(\mathbb{T}^2) \xrightarrow{\delta} \mathbf{S}(n) \to 1$ , where  $\delta(\sigma_i) = (i, i+1)$  for  $i = 1, \ldots, n-1$ and  $\delta(a_1) = \delta(a_2) = 1$ . Let *i* be the homomorphism of the Artin braid group  $B_n =$  $\pi_1(\mathcal{C}^n(\mathbb{C}))$  to the torus braid group  $B_n(\mathbb{T}^2)$  sending the standard generators  $\sigma_1, \ldots, \sigma_{n-1}$ to the eponymous generators of  $B_n(\mathbb{T}^2)$ .

LEMMA 2.3. Let n > 4 and let  $\varphi \colon B_n(\mathbb{T}^2) \to B_m(\mathbb{T}^2)$  be a homomorphism such that the composition  $\Phi = \delta \circ \varphi \circ i \colon B_n \xrightarrow{i} B_n(\mathbb{T}^2) \xrightarrow{\varphi} B_m(\mathbb{T}^2) \xrightarrow{\delta} \mathbf{S}(m)$  is abelian. Then  $\varphi$  is abelian. In particular,  $\varphi$  is abelian whenever  $\delta \circ \varphi$  is.

PROOF. Let  $\Phi': B'_n \to \mathbf{S}(m)$  be the restriction of  $\Phi$  to the commutator subgroup  $B'_n = [B_n, B_n]$ . Since  $\Phi$  is abelian,  $\Phi'$  is trivial and hence  $\varphi(i(B'_n)) \subseteq \text{Ker } \delta = P_m(\mathbb{T}^2)$ . By the Gorin–Lin theorem [8],  $B'_n = [B'_n, B'_n]$  for n > 4, and Corollary 2.2 shows that  $\varphi(i(B'_n)) = 1$ . Hence  $\varphi \circ i$  is abelian and (2.2) implies that  $\varphi(i(\sigma_1)) = \cdots = \varphi(i(\sigma_{n-1}))$ ; thus, (a)  $\varphi(\sigma_1) = \cdots = \varphi(\sigma_{n-1})$ . By (2.6), (a) and (2.3), we obtain (b)  $\varphi(\sigma_2)^2 = \varphi(a_2)^{-1}\varphi(a_1)\varphi(a_2)\varphi(a_1)^{-1}$ . By (a) and (2.5), we get (c)  $(\varphi(\sigma_2))^{2(n-1)} = \varphi(a_1)\varphi(a_2)^{-1}\varphi(a_1)^{-1}\varphi(a_2)$ . Multiplying the relations (b) and (c) we see that  $(\varphi(\sigma_2))^{2n} = 1$ . Since  $B_m(\mathbb{T}^2)$  is torsion free (see [6, Theorem 8]),  $\varphi(\sigma_2) = 1$  and, by (a) and (b),  $\varphi$  is abelian.  $\Box$ 

PROOF OF THEOREM 1.5. Let n > 4 and let  $\varphi$  be a non-abelian endomorphism of  $B_n(\mathbb{T}^2)$ . By Lemma 2.3, the homomorphism  $\Phi = \delta \circ \varphi \circ i \colon B_n \to \mathbf{S}(n)$  is non-abelian. By V. Lin's theorem (see [17, Sec. 4] or [15, 16, 18]),  $\Phi$  coincides with the standard epimorphism  $B_n \to \mathbf{S}(n)$  up to an automorphism of  $\mathbf{S}(n)$ ; thus, the homomorphism  $\delta \circ \varphi$  is surjective. N. Ivanov (see [10, Theorem 1]) proved that for n > 4 any non-abelian homomorphism  $B_n(\mathbb{T}^2) \to \mathbf{S}(n)$  whose image is a primitive permutation group on *n* letters coincides with the standard epimorphism  $\delta$  up to an automorphism  $\delta$  up to an automorphism of  $\mathbf{S}(n)$ . Therefore,  $\operatorname{Ker}(\delta \circ \varphi) = P_n(\mathbb{T}^2) = \operatorname{Ker} \delta$ ,  $\operatorname{Ker}(\delta \circ \varphi) = \operatorname{Ker} \delta = P_n(\mathbb{T}^2)$ , which implies that  $\varphi^{-1}(P_n(\mathbb{T}^2)) = P_n(\mathbb{T}^2)$  and a fortiori  $\varphi(P_n(\mathbb{T}^2)) \subseteq P_n(\mathbb{T}^2)$ .

To prove (b), we use another theorem of Lin ([17, Theorem 4.4]), which says that for  $n > \max(m, 4)$  any homomorphism  $B_n \to \mathbf{S}(m)$  is abelian; thus  $\Phi = \delta \circ \varphi \circ i : B_n \to \mathbf{S}(m)$  is abelian.  $\Box$ 

#### 3. ORDERED CONFIGURATION SPACES

# 3.1. Holomorphic mappings $\mathcal{E}^n(\mathbb{T}^2) \to \mathbb{T}^2 \setminus \{0\}$

DEFINITION 3.1. We denote by  $\mathfrak{M}$  the finite cyclic subgroup of  $\operatorname{Aut} \mathbb{T}^2$  consisting of  $\pm$  id and all automorphisms of  $\mathbb{T}^2$  induced by multiplication on the complex line by non-integral complex numbers.  $\mathfrak{M}$  is isomorphic to  $\mathbb{Z}_2$ ,  $\mathbb{Z}_4$  or  $\mathbb{Z}_6$ . Let  $\mathfrak{M}_+$  consist of all  $\mathfrak{m} \in \mathfrak{M}$  with  $0 \leq \operatorname{Arg} \mathfrak{m} < \pi$ , i.e.  $\mathfrak{M}_+$  consists of 1, 2 or 3 elements (see [7, Chap. V, Sec. V.4.7]).

Let  $\mathfrak{N}$  be a minimal generating set of the  $\mathbb{Z}$ -module of group endomorphisms of  $\mathbb{T}^2$ (any endomorphism of the group  $\mathbb{T}^2$  is induced by multiplication on the complex line by a complex number);  $\#\mathfrak{N} = 2$  (see [20, Chap. VI, Sec. 5] and [12, Chap. 10]). Moreover, either  $\#\mathfrak{M}_+ = 1$  or we may assume that  $\mathfrak{N} \subseteq \mathfrak{M}_+$ .

THEOREM 3.2. Any non-constant holomorphic map  $f : \mathcal{E}^n(\mathbb{T}^2) \to \mathbb{T}^2 \setminus \{0\}$  is of the form  $f(q_1, \ldots, q_n) = \mathfrak{m}(q_i - q_j)$  with certain  $\mathfrak{m} \in \mathfrak{M}_+$  and  $i \neq j$ .

To prove the theorem we need some preparation.

DEFINITION 3.3. A configuration  $(a_1, \ldots, a_m) \in \mathcal{E}^m(\mathbb{T}^2)$  is called exceptional if there exist  $i \neq j$  and an endomorphism  $\lambda$  of  $\mathbb{T}^2$  such that  $\lambda(a_i) = \lambda(a_j)$  and  $\lambda^{-1}(\lambda(a_i)) \subseteq \{a_1, \ldots, a_m\}$ .

LEMMA 3.4. (a) The set A of all exceptional configurations  $a \in \mathcal{E}^m(\mathbb{T}^2)$  is contained in a subvariety  $M \subset \mathcal{E}^m(\mathbb{T}^2)$  of codimension 1.

(b) For any non-exceptional configuration  $(a_1, \ldots, a_m) \in \mathcal{E}^m(\mathbb{T}^2)$ , every non-constant holomorphic map  $\lambda \colon \mathbb{T}^2 \setminus \{a_1, \ldots, a_m\} \to \mathbb{T}^2 \setminus \{0\}$  extends to a biregular automorphism of  $\mathbb{T}^2$  sending a certain  $a_i$  to 0.

PROOF. (a) Let N denote the union of all finite subgroups of order  $\leq m$  in  $\mathbb{T}^2$ ; this set is finite. Set  $M = \{(a_1, \ldots, a_m) \in \mathcal{E}^m(\mathbb{T}^2) \mid a_j - a_i \in N \text{ for some } i \neq j\}$ ; then M is a subvariety in  $\mathcal{E}^m(\mathbb{T}^2)$  of codimension 1. We show that  $A \subseteq M$ .

Let  $a = (a_1, \ldots, a_m) \in A$  and let i, j, and  $\lambda$  be as in Definition 3.3. Set  $\mu(t) = \lambda(t + a_i) - \lambda(a_i), t \in \mathbb{T}^2$ . Then  $\mu(0) = 0$  and  $\mu$  is a group homomorphism with finite kernel Ker  $\mu$  (see [3, Chap. 3, Sec. 3.1]). If  $t \in \text{Ker }\mu$ , then  $\lambda(t + a_i) = \lambda(a_i), t + a_i \in \lambda^{-1}(\lambda(a_i)) \subseteq \{a_1, \ldots, a_m\}$  and  $t \in \{a_1 - a_i, \ldots, 0, \ldots, a_m - a_i\}$ , that is, Ker  $\mu \subseteq \{a_1 - a_i, \ldots, 0, \ldots, a_m - a_i\}$ . In particular,  $\# \text{Ker } \mu \leq m$  and hence Ker  $\mu \subseteq N$ . Since  $\mu(a_j - a_i) = 0$ , we have  $a_j - a_i \in N$  and  $a \in M$ .

(b) Let  $a = (a_1, \ldots, a_m) \notin A$ . The map  $\lambda$  extends to a holomorphic self-map  $\tilde{\lambda}$  of  $\mathbb{T}^2$  (see H. Huber [9, §6, Satz 2]; also [11, Chap. VI, Sec. 2, remarks after Cor. 2.6]). By the Riemann–Hurwitz relation (see [7, Chap. I, Sec. I.2.7]),  $\tilde{\lambda}$  is an unbranched regular covering map of degree  $k < \infty$ . Clearly  $\tilde{\lambda}^{-1}(0) \subseteq \{a_1, \ldots, a_m\}$  and  $\tilde{\lambda}(a_i) = 0$  for a certain *i*. Since  $a \notin A$ , for all  $j \neq i$  we have  $\tilde{\lambda}(a_j) \neq 0$ , i.e.  $\tilde{\lambda}^{-1}(0) = \{a_i\}$  and deg  $\tilde{\lambda} = 1$ ; thus,  $\tilde{\lambda}$  is biregular.  $\Box$ 

PROOF OF THEOREM 3.2. The proof is by induction on *n*. Since any holomorphic map  $\mathcal{E}^1(\mathbb{T}^2) \cong \mathbb{T}^2 \to \mathbb{T}^2 \setminus \{0\}$  is constant, the base of induction is proved.

Assume that the assertion is already proved for some  $n = m - 1 \ge 1$ . For  $a = (a_2, \ldots, a_m) \in \mathcal{E}^{m-1}(\mathbb{T}^2)$ , denote by  $\lambda_a = \lambda(\cdot, a_2, \ldots, a_m)$  the restriction of  $\lambda$  to the fibre  $p^{-1}(a) = \mathbb{T}^2 \setminus \{a_2, \ldots, a_m\}$  of the map  $p \colon \mathcal{E}^m(\mathbb{T}^2) \ni (q_1, q_2, \ldots, q_m) \mapsto (q_2, \ldots, q_m) \in \mathcal{E}^{m-1}(\mathbb{T}^2)$ . It is clear that  $S := \{a \in \mathcal{E}^{m-1}(\mathbb{T}^2) \mid \lambda_a = \text{const}\}$  is an analytic subset of  $\mathcal{E}^{m-1}(\mathbb{T}^2)$ , and either (i)  $S = \mathcal{E}^{m-1}(\mathbb{T}^2)$  or (ii)  $\dim_{\mathbb{C}} S \le m - 2$ . In case (i),  $\lambda = \lambda(q_1, \ldots, q_m)$  does not depend on  $q_1$  and may be considered as a holomorphic map  $\mathcal{E}^{m-1}(\mathbb{T}^2) \to \mathbb{T}^2 \setminus \{0\}$ ; by the induction hypothesis,  $\lambda$  is of the desired form. Let us consider case (ii). By Lemma 3.4(a), the set A of all exceptional configurations is contained in a subvariety  $M \subset \mathcal{E}^{m-1}(\mathbb{T}^2)$  of dimension m - 2. Let  $a \in \mathcal{E}^{m-1}(\mathbb{T}^2) \setminus (S \cup M)$ . Then  $\lambda_a \colon \mathbb{T}^2 \setminus \{a_2, \ldots, a_m\}$  is a non-constant map. By Lemma 3.4(b),  $\lambda_a$  extends to an automorphism  $\tilde{\lambda}_a$  of  $\mathbb{T}^2$ . Clearly,  $\tilde{\lambda}_a(t) = \mathfrak{m}(t - a_i)$  with some  $\mathfrak{m} = \mathfrak{m}_a \in \mathfrak{M}$  and  $i = i_a$  (see [7, Chap. V, Sec. V.4.7]). Thus, for all  $q = (q_1, \ldots, q_m)$  in the connected, everywhere dense set  $\mathcal{E}^m(\mathbb{T}^2) \setminus p^{-1}(S \cup M)$  we have  $(*) \lambda(q) = \mathfrak{m}(q_1 - q_i)$  with certain  $\mathfrak{m} = \mathfrak{m}_q \in \mathfrak{M}$  and  $i = i_q$ . Since  $\mathfrak{M}$  is finite,  $\mathfrak{m}$  and i do not depend on q, and (\*) holds true for all  $q \in \mathcal{E}^m(\mathbb{T}^2)$ , which completes the induction step, thus proving the theorem.  $\Box$ 

DEFINITION 3.5. For any  $\mathfrak{m} \in \mathfrak{M}_+$  and  $i \neq j \in \{1, \ldots, n\}$ , the map  $e_{\mathfrak{m};i,j} \colon \mathcal{E}^n(\mathbb{T}^2) \ni (q_1, \ldots, q_n) \mapsto \mathfrak{m}(q_i - q_j) \in \mathbb{T}^2 \setminus \{0\}$  is called a difference. For  $\mu = e_{\mathfrak{m};i,j}$ , the pair  $\{q_i, q_j\}$  is called the support of  $\mu$  and the automorphism  $\mathfrak{m} \in \mathfrak{M}_+$  is called the marker of  $\mu$ . We denote them by supp  $\mu$  and  $\mathfrak{m}_{\mu}$  respectively.

By Theorem 3.2, any non-constant holomorphic map  $\mu : \mathcal{E}^n(\mathbb{T}^2) \to \mathbb{T}^2 \setminus \{0\}$  admits a unique representation in the form of a difference, i.e.  $\mu = e_{\mathfrak{m};i,j}$  for some uniquely defined  $\mathfrak{m} \in \mathfrak{M}_+$  and  $i, j \in \{1, ..., n\}$ .

#### 3.2. A simplicial structure on the set of differences

For any connected complex space *Y*, V. Lin [17] introduced a natural simplicial structure on the set of all non-constant holomorphic functions  $Y \to \mathbb{C} \setminus \{0, 1\}$ . He used this structure

in order to study  $\mathbf{S}(n)$ -equivariant endomorphisms of the ordered *n*-point configuration spaces of  $\mathbb{C}$  and  $\mathbb{CP}^1$ . We modify this idea and define a similar simplicial structure on the set of all non-constant holomorphic maps  $Y \to \mathbb{T}^2 \setminus \{0\}$ . (V. Lin pointed out that the same construction applies to the set of all non-constant holomorphic maps  $Y \to G \setminus \{\mathbf{e}\}$ , where **e** is the unity element of a complex Lie group *G*.)

DEFINITION 3.6. For a connected complex space Y, let L(Y) denote the set of all nonconstant holomorphic maps  $\mu: Y \to \mathbb{T}^2 \setminus \{0\}$ . For  $\mu, \nu \in L(Y)$ , we say that  $\nu$  is a proper reminder of  $\mu$  and write  $\nu \mid \mu$  if  $\mu - \nu \in L(Y)$ . This relation is symmetric, i.e.  $\nu \mid \mu$  is equivalent to  $\mu \mid \nu$ .

A subset  $\Delta^m = {\mu_0, ..., \mu_m} \subseteq L(Y)$  is said to be an m-simplex if  $\mu_i \mid \mu_j$  for all  $i \neq j$ . Since a subset of a simplex is also a simplex, we obtain a well-defined simplicial complex  $L_{\Delta}(Y)$  with the set of vertices L(Y).

LEMMA 3.7. Let  $f: Z \to Y$  be a holomorphic map of connected complex spaces. Suppose that for each  $\lambda \in L(Y)$  the map  $f^*(\lambda) := \lambda \circ f: Z \xrightarrow{f} Y \xrightarrow{\lambda} \mathbb{T}^2 \setminus \{0\}$  is non-constant. Then  $f^*: L(Y) \ni \lambda \mapsto \lambda \circ f \in L(Z)$  is a simplicial map and the restriction of  $f^*$  to  $\Delta \in L_{\Delta}(Y)$  is injective. In particular, dim  $f^*(\Delta) = \dim \Delta$ .

PROOF. For any  $\lambda \in L(Y)$ , the map  $f^*(\lambda): Z \to \mathbb{T}^2 \setminus \{0\}$  is holomorphic and nonconstant; hence  $f^*(\lambda) \in L(Z)$ . If  $\mu, \nu \in L(Y)$  and  $\mu \mid \nu$ , then  $\lambda = \mu - \nu \in L(Y)$  and  $f^*(\mu) - f^*(\nu) = f^*(\mu - \nu) = f^*(\lambda) \in L(Z)$ ; consequently,  $f^*(\mu) \mid f^*(\nu)$ . This implies that  $f^*$  is simplicial and injective on any simplex.  $\Box$ 

REMARK 3.8. Clearly, for any regular dominant map  $f: Y \to Z$  of non-singular irreducible algebraic varieties, we have  $f^*(\lambda) \neq \text{const}$  for all  $\lambda \in L(Y)$ .

Notice that by Theorem 3.2,  $L(\mathcal{E}^n(\mathbb{T}^2))$  is the set of all differences on  $\mathcal{E}^n(\mathbb{T}^2)$ .

LEMMA 3.9. Suppose that either  $\#\mathfrak{M}_+ < 3 \text{ or } s > 1$ . Let  $\{\mu_0, \ldots, \mu_s\} \in L_{\Delta}(\mathcal{E}^n(\mathbb{T}^2))$ be an s-simplex. Then  $\mathfrak{m}_{\mu_i} = \mathfrak{m}_{\mu_j}$ ,  $\#(\operatorname{supp} \mu_i \cap \operatorname{supp} \mu_j) = 1$  for all  $i \neq j$ , and  $\#(\operatorname{supp} \mu_0 \cap \cdots \cap \operatorname{supp} \mu_s) = 1$ .

PROOF. Let  $\#\mathfrak{M}_+ < 3$ ,  $i \neq j$  and let  $\mu_i = \mathfrak{m}_i(q_{i'} - q_{i''})$  and  $\mu_j = \mathfrak{m}_j(q_{j'} - q_{j''})$ . Since  $\mu_i \mid \mu_j$ , we must have  $\mu_i - \mu_j = \mathfrak{m}(q_{k'} - q_{k''})$  for some  $\mathfrak{m} \in \mathfrak{M}_+$  and  $k' \neq k''$ . Thus,  $\mathfrak{m}_i(q_{i'} - q_{i''}) - \mathfrak{m}_j(q_{j'} - q_{j''}) = \mathfrak{m}(q_{k'} - q_{k''})$ . Since  $\#\mathfrak{M}_+ < 3$ , the latter relation can be fulfilled only if either  $\mathfrak{m}_i q_{i'} - \mathfrak{m}_j q_{j'} = 0$  or  $\mathfrak{m}_i q_{i''} - \mathfrak{m}_j q_{j''} = 0$ . This implies  $\mathfrak{m}_i = \mathfrak{m}_j$  and we have (\*) either i' = j' or i'' = j''. If s = 1 we have finished the proof. If s > 2, then the property  $\#(\operatorname{supp} \mu_i \cap \operatorname{supp} \mu_j) = 1$  implies immediately that  $\#(\operatorname{supp} \mu_0 \cap \cdots \cap \operatorname{supp} \mu_s) = 1$ . For s = 2 we have  $\mu_0 = \mathfrak{m}(q_{i'} - q_{i''})$ ,  $\mu_1 = \mathfrak{m}(q_{j'} - q_{j''})$  and  $\mu_2 = \mathfrak{m}(q_{k'} - q_{k''})$ . Since  $\mu_0 \mid \mu_1, \mu_1 \mid \mu_2$  and  $\mu_2 \mid \mu_0$ , we obtain  $\#(\operatorname{supp} \mu_0 \cap \operatorname{supp} \mu_1) = \#(\operatorname{supp} \mu_1 \cap \operatorname{supp} \mu_2) = \#(\operatorname{supp} \mu_2 \cap \operatorname{supp} \mu_0) = 1$ . Let  $N = \#(\operatorname{supp} \mu_0 \cap \operatorname{supp} \mu_1) \cap \operatorname{supp} \mu_2)$ . Clearly  $N \leq 1$ ; let us show that  $N \neq 0$ . Suppose to the contrary that N = 0. Relations (\*) apply to  $\mu_0$  and  $\mu_1$ , and without loss of generality we can assume that i' = j'. For  $\mu_1$  and  $\mu_2$  the same relations tell us that either j' = k' or j'' = k''; since N = 0, the first case is impossible and we are left with j'' = k''. Finally, we apply (\*) to  $\mu_0$  and  $\mu_2$  and see that either i' = k' or i'' = k'', which leads to a contradiction and completes the proof in the case  $\#\mathfrak{M}_+ < 3$ . By

similar straightforward combinatorial computations, one can prove the lemma in the case  $\#\mathfrak{M}_+ = 3$ .  $\Box$ 

The **S**(*n*)-action in  $\mathcal{E}^n(\mathbb{T}^2)$  induces an **S**(*n*)-action in  $L(\mathcal{E}^n(\mathbb{T}^2))$ , defined by  $(\sigma\lambda)(q) = \lambda(\sigma^{-1}q)$ , which, in turn, induces a simplicial **S**(*n*)-action in  $L_{\Delta}(\mathcal{E}^n(\mathbb{T}^2))$  which preserves dimension of simplices; let us describe the orbits of this action.

DEFINITION 3.10. We define the following normal forms of simplices of dimension s > 1:  $\Delta_{\mathfrak{m}}^{s} = \{e_{\mathfrak{m};1,2}, \ldots, e_{\mathfrak{m};1,s+2}\}, \nabla_{\mathfrak{m}}^{s} = \{e_{\mathfrak{m};2,1}, \ldots, e_{\mathfrak{m};s+2,1}\}, where \mathfrak{m} \in \mathfrak{M}_{+}; these simplices are called normal.$ 

LEMMA 3.11. For s > 1, there are exactly  $\# \mathfrak{M}$  orbits of the  $\mathbf{S}(n)$ -action on the set of all *s*-simplices. Every orbit contains exactly one normal simplex.

PROOF. Since  $e_{\mathfrak{m};a,b} \nmid e_{\mathfrak{m};b,c}$ , Lemma 3.9 shows that for any *s*-simplex  $\Delta \in L_{\Delta}(\mathcal{E}^{n}(\mathbb{T}^{2}))$  there exist  $\mathfrak{m} \in \mathfrak{M}_{+}$  and distinct indices  $a, b_{0}, \ldots, b_{s}$  such that  $\Delta$  equals either  $\{e_{\mathfrak{m};a,b_{0}}, \ldots, e_{\mathfrak{m};a,b_{s}}\}$  or  $\{e_{\mathfrak{m};b_{0},a}, \ldots, e_{\mathfrak{m};b_{s},a}\}$ . An appropriate permutation  $\sigma \in \mathbf{S}(n)$  carries  $\Delta$  to a normal form.  $\Box$ 

## 3.3. Regular mappings $\mathcal{E}^n(\mathbb{T}^2) \to \mathbb{T}^2$

LEMMA 3.12. Any rational map  $\lambda : (\mathbb{T}^2)^n \to \mathbb{T}^2$  is of the form

$$\lambda(q_1,\ldots,q_n) = \sum_{i=1}^n \sum_{\mathfrak{m}\in\mathfrak{N}} k_{i,\mathfrak{m}}\mathfrak{m} q_i + c,$$

where  $k_{i,\mathfrak{m}} \in \mathbb{Z}$  and  $c \in \mathbb{T}^2$ . In particular, it is regular.

PROOF. The proof is by induction on *n*. Let n = 1. Since  $\lambda : \mathbb{T}^2 \to \mathbb{T}^2$  is rational, it extends to a regular map (see [19, Chap. II, Sec. 3.1], Cor. 1). Any regular self-map of  $\mathbb{T}^2$  is of the desired form (see Definition 3.1).

Assume that the theorem has already been proved for some  $n = m - 1 \ge 1$ . There is a subset  $\Sigma \subset (\mathbb{T}^2)^m$  of codimension 1 such that  $\lambda$  is regular on  $(\mathbb{T}^2)^m \setminus \Sigma$ . Let  $(t_0, z_0) \in (\mathbb{T}^2 \times (\mathbb{T}^2)^{m-1}) \setminus \Sigma$  and D be a small neighbourhood of  $z_0$  in  $(\mathbb{T}^2)^{m-1}$ . Without loss of generality, we may assume that  $t_0 = 0$  and  $(0, z) \notin \Sigma$  for all  $z \in D$ . For  $(t, z) \in (\mathbb{T}^2 \times D) \setminus \Sigma$ , set  $\mu(t, z) = \lambda(t, z) - \lambda(0, z)$  and  $\nu(t, z) = \mu(t, z) - \mu(t, z_0)$ . For any  $z \in D$ , we have  $\nu(0, z) = 0$  and the map  $t \mapsto \nu(t, z)$  extends to a holomorphic endomorphism  $\nu_z$ of  $\mathbb{T}^2$ ; moreover,  $\nu_{z_0}(\mathbb{T}^2) = 0$ . One can find a neighbourhood  $D' \Subset D$  of  $z_0$  and a compact subset  $K \subset \mathbb{T}^2 \times D$  such that for all  $z \in D'$  the set  $K \cap (\mathbb{T}^2 \times \{z\})$  is a union of two loops that do not meet  $\Sigma$  and generate  $\pi_1(\mathbb{T}^2 \times \{z\})$ . Moreover, since  $\nu(\mathbb{T}^2 \times \{z_0\}) = 0$ , we may assume that  $\nu(K)$  is contained in a small contractible neighbourhood of  $0 \in \mathbb{T}^2$ . Therefore for any  $z \in D'$  the map  $\nu_z$  is contractible and trivial. Thus,  $\mu(t, z) - \mu(t, z_0) \equiv 0$  and  $\lambda(t, z) \equiv \lambda(0, z) + \lambda(t, z_0) - \lambda(0, z_0)$  for all  $z \in D'$ . By the uniqueness theorem, the latter identity holds true for all  $(t, z) \in (\mathbb{T}^2 \times (\mathbb{T}^2)^{m-1}) \setminus \Sigma$ ; the inductive hypothesis applies to  $\lambda(0, z)$  and  $\lambda(t, z_0)$ , and completes the proof.  $\Box$ 

#### 4. HOLOMORPHIC MAPPINGS OF CONFIGURATION SPACES

The main goal of this section is to prove Theorem 1.2.

- THEOREM 4.1. (a) For n > 4 any non-abelian continuous map  $F : \mathcal{C}^n(\mathbb{T}^2) \to \mathcal{C}^n(\mathbb{T}^2)$ admits a continuous lifting  $f : \mathcal{E}^n(\mathbb{T}^2) \to \mathcal{E}^n(\mathbb{T}^2)$  (see diagram (1.1)).
- (b) For n > 4 any continuous lifting f: E<sup>n</sup>(T<sup>2</sup>) → E<sup>n</sup>(T<sup>2</sup>) of a non-abelian continuous map F: C<sup>n</sup>(T<sup>2</sup>) → C<sup>n</sup>(T<sup>2</sup>) is strictly equivariant.

PROOF. By the covering mapping theorem, (a) follows from Theorem 1.5. Let us prove (b). The diagram (1.1) for f and F implies that there is an epimorphism  $\alpha$  of  $\mathbf{S}(n)$  such that  $\delta \circ F_* = \alpha \circ \delta$ . Clearly,  $f(\sigma q) = \alpha(\sigma) f(q)$  for all  $q \in \mathcal{E}^n(\mathbb{T}^2)$  and  $\sigma \in \mathbf{S}(n)$ ; moreover,  $\alpha$  is an automorphism, otherwise its image is a non-trivial quotient of  $\mathbf{S}(n)$ , which must be abelian since n > 4. Then the homomorphism  $\delta \circ F_* = \alpha \circ \delta$  is also abelian and, by Lemma 2.3,  $F_*$  is abelian, a contradiction.  $\Box$ 

Let us show that every strictly equivariant map induces a simplicial map.

LEMMA 4.2. Let n > 2 and  $f = (f_1, \ldots, f_n) \colon \mathcal{E}^n(\mathbb{T}^2) \to \mathcal{E}^n(\mathbb{T}^2)$  be a strictly equivariant holomorphic map. Then  $f^* \colon L(\mathcal{E}^n(\mathbb{T}^2)) \ni \lambda \mapsto \lambda \circ f \in L(\mathcal{E}^n(\mathbb{T}^2))$  is a well-defined simplicial map; moreover, it preserves dimension of simplices.

PROOF. By Lemma 3.7, we must only prove that  $\mu \circ f \neq \text{const}$  for any  $\mu \in L(\mathcal{E}^n(\mathbb{T}^2))$ . Suppose to the contrary that  $\mu \circ f = c \in \mathbb{T}^2$ . Then  $(\mu \circ f)(\sigma q) \equiv c$  for all  $\sigma \in \mathbf{S}(n)$ . Since *f* is strictly equivariant, there is  $\alpha \in \text{Aut} \mathbf{S}(n)$  such that  $f(\sigma q) = \alpha(\sigma) f(q)$  for all  $\sigma \in \mathbf{S}(n)$  and  $q \in \mathcal{E}^n(X)$ ; thus  $c \equiv \mu(f(\sigma q)) = \mu(\alpha(\sigma) f(q))$ . By Theorem 3.2,  $\mu = \mathfrak{m}(q_i - q_j)$  for some distinct *i*, *j* and  $\mathfrak{m} \in \mathfrak{M}$ ; hence  $c \equiv (\mu \circ f)(q) = \mathfrak{m}(f_i(q) - f_j(q))$ . Since  $\alpha$  is an automorphism and n > 2, there is  $\sigma \in \mathbf{S}(n)$  such that  $\alpha(\sigma^{-1})(i) = i$  and  $\alpha(\sigma^{-1})(j) = k \neq j$ ; thus,  $c \equiv \mu(\alpha(\sigma) f(q)) = \mathfrak{m}(f_{\alpha(\sigma^{-1})(i)}(q) - f_{\alpha(\sigma^{-1})(j)}(q)) = \mathfrak{m}(f_i(q) - f_k(q))$ . Therefore,  $\mathfrak{m}(f_i(q) - f_j(q)) = c = \mathfrak{m}(f_i(q) - f_k(q))$  and  $f_j(q) = f_k(q)$ , a contradiction.  $\Box$ 

#### 4.1. Proof of Theorem 1.2

We shall prove two theorems, which together yield Theorem 1.2.

THEOREM 4.3. For n > 4, any non-abelian endomorphism F of  $C^n(\mathbb{T}^2)$  is tame.

**PROOF.** By Theorems 1.5 and 4.1, the map *F* lifts to a strictly equivariant holomorphic map *f* that fits into the commutative diagram (1.1). Let  $\alpha$  be the automorphism of **S**(*n*) corresponding to a strictly equivariant map *f*.

By Lemma 4.2,  $f^*$  is a dimension preserving simplicial self-map of  $L_{\Delta}(\mathcal{E}^n(\mathbb{T}^2))$ . Let  $\Delta_1 = \{q_1 - q_2, \ldots, q_1 - q_n\}$  and  $\Delta = f^*(\Delta_1)$ . By Lemma 3.11, there is  $\sigma \in \mathbf{S}(n)$  that brings  $\Delta$  to its normal form; without loss of generality, we may assume that this normal form is  $\nabla_{\mathfrak{m}} = \{\mathfrak{m}(q_2 - q_1), \ldots, \mathfrak{m}(q_n - q_1)\}$ , where  $\mathfrak{m} \in \mathfrak{M}_+$ . Set  $\tilde{f} = f \circ \sigma$ ; then  $(*) \tilde{f_j} = \tilde{f_1} + \mathfrak{m}(q_1 - q_j)$  for any  $j = 1, \ldots, n$ . Define the holomorphic map  $\tau : \mathcal{E}^n(\mathbb{T}^2) \to \operatorname{Aut}(\mathbb{T}^2)$  by the condition  $\tau(q)(z) = \tau(q_1, \ldots, q_n)(z) = -\mathfrak{m}z + (\tilde{f_1}(q) + \mathfrak{m}q_1)$ , where

 $q = (q_1, \ldots, q_n) \in \mathcal{E}^n(\mathbb{T}^2)$  and  $z \in \mathbb{T}^2$ . Equations (\*) imply that  $\tau(q)q_j = f_j(\sigma q)$ for all  $j = 1, \ldots, n$  and  $q = (q_1, \ldots, q_n) \in \mathcal{E}^n(\mathbb{T}^2)$ ; therefore  $\tau(q)q = f(\sigma q) = \alpha(\sigma)f(q)$ , or, what is the same,  $f(q) = \alpha(\sigma^{-1})\tau(q)q$  for all  $q \in \mathcal{E}^n(\mathbb{T}^2)$ . To complete the proof, we must check that  $\tau$  is  $\mathbf{S}(n)$ -invariant; that is, we must prove that  $\tau(sq) = \tau(q)$  for all  $q \in \mathcal{E}^n(\mathbb{T}^2)$  and all  $s \in \mathbf{S}(n)$ . For every  $s \in \mathbf{S}(n)$  and all  $q \in \mathcal{E}^n(\mathbb{T}^2)$  we have  $\tau(sq)sq = f(\sigma sq) = f(\sigma s\sigma^{-1}\sigma q) = \alpha(\sigma s\sigma^{-1})f(\sigma q) = \alpha(\sigma s\sigma^{-1})\tau(q)q$ . Thus,  $(**) [(\tau(sq))^{-1} \cdot \tau(q)]q = \alpha(\sigma s^{-1}\sigma^{-1})sq$ , where  $((\tau(sq))^{-1} \cdot \tau(q)) \in \operatorname{Aut} \mathbb{T}^2$  is the product in the group  $\operatorname{Aut} \mathbb{T}^2$ . Let us notice that for n > 1 there is a non-empty Zariski open subset  $A \subset \mathcal{E}^n(\mathbb{T}^2)$  such that if  $\theta q = \rho q$  for some  $q \in A, \theta \in \operatorname{Aut} \mathbb{T}^2$  and  $\rho \in \mathbf{S}(n)$ , then  $\theta = \operatorname{id}$  and  $\rho = 1$ . Therefore, equation (\*\*) implies  $\tau(sq) = \tau(q)$  and  $\alpha(\sigma s^{-1}\sigma^{-1})s = 1$ for all  $q \in A$  and all  $s \in \mathbf{S}(n)$ . Clearly,  $\alpha(s) = \sigma^{-1}s\sigma$  and the continuity of  $\tau$  implies that  $\tau(sq) = \tau(q)$  holds true for all  $q \in \mathcal{E}^n(\mathbb{T}^2)$  and all  $s \in \mathbf{S}(n)$ .  $\Box$ 

REMARK 4.4. Let n = 3 or 4. The statement of Theorem 4.3 still holds true if F is an automorphism. The only changes we need to make in the proof are as follows: instead of our Theorem 4.1, we use Theorem 2 from [10], which states that  $P_n(\mathbb{T}^2)$  is a characteristic subgroup of  $B_n(\mathbb{T}^2)$ ; moreover, instead of Lemma 4.2, we use Remark 3.8. The rest of the proof is the same.

- REMARK 4.5. (a) Let  $n \ge 2$  and let F be a tame endomorphism of  $C^n(\mathbb{T}^2)$ . Then a morphism  $T: C^n(\mathbb{T}^2) \to \operatorname{Aut} \mathbb{T}^2$  in the 'tame representation'  $F = F_T$  of F is uniquely determined by F. Indeed, if  $F_T = F_{T'}$  for two morphisms T, T', then T(Q)Q =T'(Q)Q and (\*)  $[T(Q)]^{-1}T'(Q)Q = Q$  for all  $Q \in C^n(\mathbb{T}^2)$ . Furthermore, a torus automorphism is uniquely determined by its values at a generic pair of distinct points; since  $n \ge 2$ , the identity (\*) shows that  $[T(Q)]^{-1}T'(Q) =$  id for any generic point  $Q \in C^n(\mathbb{T}^2)$  and hence T = T'.
- (b) In view of Theorem 4.3, (a) shows that for n > 4 any holomorphic non-abelian map  $F: C^n(\mathbb{T}^2) \to C^n(\mathbb{T}^2)$  admits a unique tame representation  $F = F_T$  and T is regular whenever F is. By Remark 4.4, the same statement still holds true whenever n = 3, 4 and F is a (biregular) automorphism.

DEFINITION 4.6. The map  $s: C^n(\mathbb{T}^2) \ni Q = \{q_1, \ldots, q_n\} \mapsto s(Q) = (q_1 + \cdots + q_n) \in \mathbb{T}^2$  is a locally trivial holomorphic fibring whose fibre  $M_0 = s^{-1}(0)$  is an irreducible quasiprojective variety. The presentation of  $\pi_1(M_0)$ , found by O. Zariski [21], shows that  $H_1(M_0, \mathbb{Z}) = \mathbb{Z}_{2n}$ .

Let  $\gamma : \mathbb{C} \to \mathbb{T}^2$  be the universal covering; then there exists a holomorphic covering  $h: M_0 \times \mathbb{C} \ni (Q, \zeta) \mapsto h(Q, \zeta) = \{q_1 + \gamma(\zeta), \dots, q_n + \gamma(\zeta)\} \in \mathcal{C}^n(\mathbb{T}^2).$ 

The following theorem completes the classification of self-maps of  $\mathcal{C}^n(\mathbb{T}^2)$ .

THEOREM 4.7. If m > 2, then a holomorphic map  $F : C^n(\mathbb{T}^2) \to C^m(\mathbb{T}^2)$  is orbit-like if and only if it is abelian.

PROOF. Let *F* be abelian. Clearly,  $H_1(\mathcal{C}^n(\mathbb{T}^2), \mathbb{Z}) = B_n(\mathbb{T}^2)/B'_n(\mathbb{T}^2) = \mathbb{Z}_2 \oplus \mathbb{Z}^2$ . As  $B_m(\mathbb{T}^2)$  has no elements of a finite order, the image Im  $F_*$  of the induced homomorphism  $F_*: B_n(\mathbb{T}^2) \to B_m(\mathbb{T}^2)$  is a free abelian group. Since  $\pi_1(M_0)/(\pi_1(M_0))' = \mathbb{Z}_{2n}$ , any homomorphism  $\pi_1(M_0) \to \text{Im } F_*$  is trivial; in particular, the homomorphism  $(F \circ h)_*$  is trivial, where  $h: M_0 \times \mathbb{C} \to \mathcal{C}^n(\mathbb{T}^2)$  is the above-defined covering. This implies that there

is a holomorphic map  $f = (f_1, \ldots, f_m)$ :  $M_0 \times \mathbb{C} \to \mathcal{E}^m(\mathbb{T}^2)$  such that  $F \circ h = p \circ f$ , where  $p \colon \mathcal{E}^m(\mathbb{T}^2) \to \mathcal{C}^m(\mathbb{T}^2)$  is the standard projection. The induced homomorphism  $f_* \colon \pi_1(M_0) \to P_n(\mathbb{T}^2)$  is trivial; thus, for any j, the map  $(q_j - q_1) \circ f \colon M_0 \times \mathbb{C} \xrightarrow{f} \mathcal{E}^m(\mathbb{T}^2) \xrightarrow{q_j-q_1} \mathbb{T}^2 \setminus \{0\}$  is contractible and lifts to a holomorphic map  $g_j \colon M_0 \times \mathbb{C} \to \mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$ . Since  $M_0 \times \mathbb{C}$  is algebraic and irreducible, Liouville's theorem shows that  $g_j = \text{const}$  and, therefore,  $f_j - f_1 = (q_j - q_1) \circ f = c_j \in \mathbb{T}^2 \setminus \{0\}$ . Thus,  $f(q) = (0 + f_1(q), c_2 + f_1(q), \ldots, c_m + f_1(q))$  and F is orbit-like.

Suppose now that F is orbit-like. To prove that F is abelian, it suffices to show that for any point  $q \in C^m(\mathbb{T}^2)$ , the fundamental group of any connected component of the (Aut  $\mathbb{T}^2$ )-orbit  $\mathcal{O}_q = (Aut \mathbb{T}^2)(q)$  is abelian. For m > 2, any component of  $\mathcal{O}_q$  is diffeomorphic to the orbit  $\mathcal{O}_q^*$  of the action of  $\mathbb{T}^2$  in  $C^m(\mathbb{T}^2)$  by translations. The latter orbit  $\mathcal{O}_q^*$  is a quotient group of  $\mathbb{T}^2$  by a finite subgroup and hence is homeomorphic to  $\mathbb{T}^2$ . Thus,  $\pi_1(\mathcal{O}_q^*) = \mathbb{Z}^2$ .  $\Box$ 

We skip the proof of the next result about abelian maps.

- PROPOSITION 4.8. (a) Any abelian map  $f: \mathcal{C}^n(\mathbb{T}^2) \to \mathcal{C}^m(\mathbb{T}^2)$  is homotopically equivalent to a composition  $g \circ s$  of the standard map  $s: \mathcal{C}^n(\mathbb{T}^2) \to \mathbb{T}^2$  and an appropriate continuous map  $g: \mathbb{T}^2 \to \mathcal{C}^m(\mathbb{T}^2)$ .
- (b) Any holomorphic map  $F \colon \mathbb{T}^2 \to \mathcal{C}^n(\mathbb{T}^2)$  is orbit-like.

### 5. BIREGULAR AUTOMORPHISMS

Here we describe all biregular automorphisms of the algebraic variety  $C^n(\mathbb{T}^2)$ .

LEMMA 5.1. Any regular map  $R: \mathcal{C}^n(\mathbb{T}^2) \to \mathbb{T}^2$  is of the form

$$R(\{q_1,\ldots,q_n\}) = \sum_{\mathfrak{m}\in\mathfrak{N}} k_{\mathfrak{m}}\mathfrak{m}(q_1+\cdots+q_n) + c,$$

where  $k_{\mathfrak{m}} \in \mathbb{Z}$  and  $c \in \mathbb{T}^2$ .

PROOF. Consider the map  $r = R \circ p$ , where  $p: \mathcal{E}^n(\mathbb{T}^2) \to \mathcal{C}^n(\mathbb{T}^2)$  is the standard projection. By Lemma 3.12,  $r(q_1, \ldots, q_n) \equiv \sum_{i=1}^n \sum_{\mathfrak{m} \in \mathfrak{N}} k_{i,\mathfrak{m}}\mathfrak{m}q_i + c$ . Since r is  $\mathbf{S}(n)$ -invariant, it follows that  $k_{1,\mathfrak{m}} = \cdots = k_{n,\mathfrak{m}} = k_{\mathfrak{m}}$ . Thus,  $r(q_1, \ldots, q_n) \equiv \sum_{\mathfrak{m} \in \mathfrak{N}} k_{\mathfrak{m}}\mathfrak{m}(q_1 + \cdots + q_n) + c$  and  $R(\{q_1, \ldots, q_n\}) \equiv \sum_{\mathfrak{m} \in \mathfrak{N}} k_{\mathfrak{m}}\mathfrak{m}(q_1 + \cdots + q_n) + c$ .  $\Box$ 

THEOREM 5.2. For n > 2, any biregular automorphism F of  $C^n(\mathbb{T}^2)$  is of the form F(Q) = AQ, where  $A \in \operatorname{Aut} \mathbb{T}^2$ .

PROOF. By Theorem 1.2 and Remarks 4.4 and 4.5, there is a unique regular map  $T: \mathcal{C}^n(\mathbb{T}^2) \to \operatorname{Aut} \mathbb{T}^2$  such that F(Q) = T(Q)Q for all  $Q = \{q_1, \ldots, q_n\} \in \mathcal{C}^n(\mathbb{T}^2)$ . Since  $T(Q) \in \operatorname{Aut} \mathbb{T}^2$ , there exist a regular map  $R: \mathcal{C}^n(\mathbb{T}^2) \to \mathbb{T}^2$  and  $\mathfrak{m}_0 \in \mathfrak{M}$  such

Since  $T(Q) \in \operatorname{Aut} \mathbb{T}^2$ , there exist a regular map  $R : C^n(\mathbb{T}^2) \to \mathbb{T}^2$  and  $\mathfrak{m}_0 \in \mathfrak{M}$  such that  $T(Q)z = \mathfrak{m}_0 z + R(Q)$  for all  $z \in \mathbb{T}^2$  (see [7, Chap. V, Sec. V.4.7]). Together with Lemma 5.1, this implies that for any  $z \in \mathbb{T}^2$  we have  $T(Q)z = \mathfrak{m}_0 z + \sum_{\mathfrak{m} \in \mathfrak{N}} k_{\mathfrak{m}} \mathfrak{m}(q_1 + \cdots + q_n) + c$ , where  $\mathfrak{m}_0 \in \mathfrak{M}, k_{\mathfrak{m}} \in \mathbb{Z}$ , and  $c \in \mathbb{T}^2$  do not depend on z and Q. Recall that  $s(Q) = q_1 + \cdots + q_n$  for  $Q = \{q_1, \ldots, q_n\}$  and set  $s_1 = s \circ F$ , i.e.  $s_1(Q) = (s \circ F)(Q) = s(T(Q)Q) = T(Q)q_1 + \cdots + T(Q)q_n$ . Using the explicit formula for T(Q)z for

 $z = q_1, \ldots, q_n, \text{ we see that } s_1(Q) = \mathfrak{m}_0 s(Q) + n(\sum_{\mathfrak{m} \in \mathfrak{N}} k_\mathfrak{m} \mathfrak{m} s(Q) + c). \text{ The latter implies} (*) s_1(Q) = (\mathfrak{m}_0 + n \sum_{\mathfrak{m} \in \mathfrak{N}} k_\mathfrak{m} \mathfrak{m}) s(Q) + nc. \text{ On the other hand, } F^{-1} \text{ is a regular self-map} as well. Similarly, there is a unique regular <math>T': \mathcal{C}^n(\mathbb{T}^2) \to \operatorname{Aut} \mathbb{T}^2$  such that  $F^{-1}(Q) = T'(Q)Q$  for  $Q \in \mathcal{C}^n(\mathbb{T}^2)$ ; since  $s_1 \circ F^{-1} = s$ ,  $s(Q) = s_1(\{T'(Q)q_1, \ldots, T'(Q)q_n\})$  and (\*) implies (\*\*)  $s(Q) = (\mathfrak{m}_0 + n \sum_{\mathfrak{m} \in \mathfrak{N}} k_\mathfrak{m} \mathfrak{m})(T'(Q)q_1 + \cdots + T'(Q)q_n) + nc.$  As above, we conclude that  $T'(Q)z = \mathfrak{m}'_0 z + \sum_{\mathfrak{m} \in \mathfrak{N}} k'_\mathfrak{m} \mathfrak{m} s(Q) + c'$  for any  $z \in \mathbb{T}^2$ , where  $\mathfrak{m}'_0 \in \mathfrak{M}, k'_\mathfrak{m} \in \mathbb{Z}$  and  $c' \in \mathbb{T}^2$  do not depend on z and Q. Thus, (\*\*) is equivalent to  $s(Q) = (\mathfrak{m}_0 + n \sum_{\mathfrak{m} \in \mathfrak{N}} k_\mathfrak{m} \mathfrak{m})(\mathfrak{m}'_0 + n \sum_{\mathfrak{m} \in \mathfrak{N}} k'_\mathfrak{m} \mathfrak{m}) s(Q) + \text{ const. Since Im } s = \mathbb{T}^2$ , the latter shows that the composition  $\lambda = \mu \circ v = v \circ \mu$  of the endomorphisms  $\mu: z \mapsto (\mathfrak{m}_0 + n \sum_{\mathfrak{m} \in \mathfrak{N}} k_\mathfrak{m} \mathfrak{m}) z$  and  $v: z \mapsto (\mathfrak{m}'_0 + n \sum_{\mathfrak{m} \in \mathfrak{N}} k'_\mathfrak{m} \mathfrak{m}) z$  is the identity. Hence  $\mu$  and v are group automorphisms and  $\mu(z) \equiv \mathfrak{m}_1 z$  with  $\mathfrak{m}_1 \in \mathfrak{M}$ ; clearly,  $(\mathfrak{m}_0 - \mathfrak{m}_1 + n \sum_{\mathfrak{m} \in \mathfrak{N}} k_\mathfrak{m} \mathfrak{m}) z \equiv 0$ , i.e.  $\mathfrak{m}_0 - \mathfrak{m}_1 + n \sum_{\mathfrak{m} \in \mathfrak{N}} k_\mathfrak{m} \mathfrak{m} = 0$ . Since n > 2 and elements of  $\mathfrak{N}$  are linearly independent over  $\mathbb{Q}$ , the latter implies  $k_\mathfrak{m} = 0$  for all  $\mathfrak{m} \in \mathfrak{N}$ .

#### 6. CONFIGURATION SPACES OF UNIVERSAL FAMILIES

Here we construct configuration spaces of the universal Teichmüller family of tori and describe their holomorphic self-maps.

The Teichmüller space T(1, 1) of tori with one marked point is isomorphic to the upper half plane  $\mathbb{H}^+$ . The group  $H = \mathbb{Z} \times \mathbb{Z}$  acts discontinuously and freely in the space  $\mathcal{V} = T(1, 1) \times \mathbb{C} = \mathbb{H}^+ \times \mathbb{C}$  by weighted translations  $(\tau, z) \mapsto (\tau, z + l + m\tau)$ ,  $(l, m) \in H$ . Let  $V(1, 1) = \mathcal{V}/H$ ; the map  $\psi : \mathcal{V} \to V(1, 1)$  is a covering, and the holomorphic projection  $\pi : V(1, 1) \to \mathbb{H}^+ = T(1, 1)$  is called the *universal Teichmüller family* of tori with one marked point (see [4, Sec. 4.11]). All fibres  $\pi^{-1}(\tau)$  are tori; each of them carries a natural group structure, marked points are neutral elements and they form a holomorphic section of  $\pi$ .

DEFINITION 6.1. Let  $C_{\pi}^{n}(V(1, 1))$  be the complex subspace of the configuration space  $C^{n}(V(1, 1))$  of V(1, 1) consisting of all  $Q = \{q_{1}, \ldots, q_{n}\} \in C^{n}(V(1, 1))$  such that  $\pi(q_{1}) = \cdots = \pi(q_{n})$ . Define the holomorphic projection  $\rho: C_{\pi}^{n}(V(1, 1)) \to T(1, 1)$  by  $\rho(Q) = \pi(q_{1}) = \cdots = \pi(q_{n}), Q = \{q_{1}, \ldots, q_{n}\} \in C_{\pi}^{n}(V(1, 1));$  the triple  $\{\rho, C_{\pi}^{n}(V(1, 1)), T(1, 1)\}$ , or simply  $\rho: C_{\pi}^{n}(V(1, 1)) \to T(1, 1)$ , is called the fibred configuration space of the universal Teichmüller family  $\pi: V(1, 1) \to T(1, 1)$  (cf. M. Engber [5]). A fibred morphism of fibred configuration spaces is a holomorphic map  $F: C_{\pi}^{n}(V(1, 1)) \to C_{\pi}^{m}(V(1, 1))$  which respects the projection  $\rho$ , that is,  $\rho \circ F = \rho$ . One can easily check that  $C_{\pi}^{n}(V(1, 1))$  is a connected complex manifold.

DEFINITION 6.2. Let  $g: C^n_{\pi}(V(1,1)) \to V(1,1)$  be a fibred morphism. Any point  $Q \in C^n_{\pi}(V(1,1))$  belongs to a certain fibre  $\rho^{-1}(\tau)$ , which is the configuration space  $C^n(\pi^{-1}(\tau))$  of the torus  $\mathbb{T}^2_{\tau} = \pi^{-1}(\tau)$ ; so Q may be viewed as an n-point subset of  $\mathbb{T}^2_{\tau}$ . Since g is a fibred morphism, g(Q) is a point of the same torus  $\mathbb{T}^2_{\tau}$ ; thus, Q + g(Q) and -Q + g(Q) are well-defined n-point subsets of  $\mathbb{T}^2_{\tau}$ , or, which is the same, points of  $C^n(\mathbb{T}^2_{\tau}) \subset C^n_{\pi}(V(1,1))$ . This provides us with two fibred maps  $G_{\pm} = \pm \mathrm{Id} + g: C^n_{\pi}(V(1,1)) \to C^n_{\pi}(V(1,1))$  defined by  $Q \mapsto \pm Q + g(Q)$ . It can be easily shown that the fibred maps  $G_{\pm}$  are holomorphic.

One can prove statements analogous to Theorem 1.2 for the case of fibred morphisms. For instance, we sketch the proof of the following theorem.

THEOREM 6.3. Let n > 4 and  $F : C^n_{\pi}(V(1, 1)) \to C^n_{\pi}(V(1, 1))$  be a fibred non-abelian morphism. There exists a fibred morphism  $g : C^n_{\pi}(V(1, 1)) \to V(1, 1)$  such that F is either Id + g or -Id + g.

SKETCH OF PROOF. According to Theorem 1.2, for any  $\tau \in T(1, 1)$  there exists a unique holomorphic map  $T_{\tau}: \rho^{-1}(\tau) \to \operatorname{Aut} \pi^{-1}(\tau)$  such that  $F(Q) = T_{\tau}(Q)Q$  for any  $Q \in \rho^{-1}(\tau) \subset C_{\pi}^{n}(V(1, 1))$ . There is no complex multiplication on a generic torus. Thus, for any generic  $\tau \in T(1, 1)$  and any  $Q \in \rho^{-1}(\tau)$ , there exists  $c_{\tau}(Q) \in \pi^{-1}(\tau)$  such that the automorphism  $T_{\tau}(Q)$  maps a point  $z \in \pi^{-1}(\tau)$  either to  $z + c_{\tau}(Q)$  or to  $-z + c_{\tau}(Q)$ . Since the representation of  $T_{\tau}(Q)$  is unique, F is continuous and the fibred configuration spaces are irreducible, it can be easily seen that for all  $Q \in C_{\pi}^{n}(V(1, 1))$  only one of the above-mentioned possibilities takes place; moreover, there exists a fibred morphism  $g: C_{\pi}^{n}(V(1, 1)) \to V(1, 1)$  such that  $c_{\tau}(Q) = g(Q)$ .  $\Box$ 

REMARK 6.4. For an automorphism F the above statement holds true for n = 3, 4.

ACKNOWLEDGEMENTS. I wish to thank V. Lin who introduced me to the problem and encouraged me to work on it. This paper is based upon a PhD thesis supported by Technion.

#### References

- [1] E. ARTIN, Braids and permutations. Ann. of Math. 48 (1947), 643–649.
- [2] J. S. BIRMAN, On braid groups. Comm. Pure Appl. Math. 22 (1969), 41-72.
- [3] C. H. CLEMENS, A Scrapbook of Complex Curve Theory. Plenum Press, New York, 1980.
- [4] C. J. EARLE I. KRA, On holomorphic mappings between Teichmüller spaces. In: Contributions to Analysis, L. V. Ahlfors et al. (eds.), Academic Press, New York, 1974, 107– 124.
- [5] M. ENGBER, A strengthening of centerlessness in Teichmüller theory. Proc. Amer. Math. Soc. 60 (1976), 144–148.
- [6] E. FADELL L. NEUWIRTH, Configuration spaces. Math. Scand. 10 (1962), 111-118.
- [7] H. M. FARKASH I. KRA, Riemann Surfaces. Springer, 1991.
- [8] E. A. GORIN V. YA. LIN, Algebraic equations with continuous coefficients and some problems of the algebraic theory of braids. Mat. Sb. 78 (1969), 579–610 (in Russian); English transl.: Math. USSR-Sb. 7 (1969), 569–596.
- [9] H. HUBER, Über analytische Abbildungen Riemannscher Flächen in sich. Comment. Math. Helv. 27 (1953), 1–72.
- [10] N. V. IVANOV, Permutation representations of braid groups of surfaces. Math. USSR-Sb. 71 (1992), 309–318.
- [11] SH. KOBAYASHI, *Hyperbolic Manifolds and Holomorphic Mappings*. Dekker, New York, 1970.
- [12] S. LANG, Elliptic Functions. Springer, New York, 1987.
- [13] V. YA. LIN, Algebraic functions with universal discriminant manifolds. Funct. Anal. Appl. 6 (1972), 73–75.

#### CONFIGURATION SPACES OF TORI

- [14] V. YA. LIN, On superpositions of algebraic functions. Funktsional. Anal. i Prilozhen. 6 (1972), no. 3, 77–78 (in Russian); English transl.: Funct. Anal. Appl. 6 (1972), 240–241.
- [15] V. YA. LIN, Artin braids and the groups and spaces connected with them. Itogi Nauki i Tekhniki, Algebra, Topologiya, Geometriya 17, VINITI, Moscow, 1979, 159–227 (in Russian); English transl.: J. Soviet Math. 18 (1982), 736–788.
- [16] V. YA. LIN, Braids, permutations, polynomials-I. Preprint MPI 96-118, Max-Planck-Inst. Math. Bonn, 1996, 112 pp.
- [17] V. YA. LIN, Configuration spaces of C and CP<sup>1</sup>: some analytic properties. Max-Planck-Inst. Math. Preprint Ser. 2003 (98), Bonn, 2003, 80 pp. Revised electronic version arXiv:math.AG/0403120.
- [18] V. YA. LIN, Braids and permutations. arXiv:math.GR/0404528.
- [19] I. R. SHAFAREVICH, Basic Algebraic Geometry 1. Springer, 1994.
- [20] J. H. SILVERMAN, The Arithmetic of Elliptic Curves. Grad. Texts Math. 106, Springer, 1986.
- [21] O. ZARISKI, The topological discriminant group of a Riemann surface of genus p. Amer. J. Math. 59 (1937), 335–358.
- [22] V. M. ZINDE, Commutants of Artin groups. Uspekhi Mat. Nauk 30 (1975), no. 5, 207–208 (in Russian).
- [23] V. M. ZINDE, Analytic properties of the spaces of regular orbits of Coxeter groups of the series *B* and *D*. Funktsional. Anal. i Prilozhen. 11 (1977), no. 1, 69–70 (in Russian).
- [24] V. M. ZINDE, Holomorphic mappings of the spaces of regular orbits of Coxeter groups of series B and D. Sibirsk. Mat. Zh. 18 (1977), 1015–1026, 1205 (in Russian).
- [25] V. M. ZINDE, Some homomorphisms of the Artin groups of the series  $B_n$  and  $D_n$  into groups of the same series and into symmetric groups. Uspekhi Mat. Nauk 32 (1977), no. 1, 189–190 (in Russian).
- [26] V. M. ZINDE, Studies of homomorphisms of Artin groups. C. R. Math. Rep. Acad. Sci. Canada 1 (1978/79), 199–200.

Received 29 August 2006,

and in revised form 15 September 2006.

Department of Mathematics The Weizmann Institute of Science P.O.B. 26, REHOVOT 76100, Israel yoel.feler@weizmann.ac.il