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ABSTRACT. — Then-point configuration spacesEn(T2) = {(q1, . . . , qn) ∈ (T2)n | qi 6= qj ∀ i 6= j} and

Cn(T2) = {Q ⊂ T2
| #Q = n} of a complex torusT2 are complex manifolds. We prove that forn > 4 any

holomorphic self-mapF of Cn(T2) either carries the whole ofCn(T2) into an orbit of the diagonal(Aut T2)-
action inCn(T2) or is of the formF(Q) = T (Q)Q, whereT : Cn(T2) → Aut T2 is a holomorphic map. We
also prove that forn > 4 any endomorphism of the torus braid groupBn(T2) = π1(Cn(T2)) with a non-abelian
image preserves the pure torus braid groupPn(T2) = π1(En(T2)).
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1. INTRODUCTION

The configuration spaceCn(X) of a complex spaceX consists of alln-point subsets
(“configurations”)Q = {q1, . . . , qn} ⊂ X, #Q = n. The automorphism group AutX
acts in Cn(X) by X ⊃ Q 7→ AQ = {Aq1, . . . , Aqn}. If Aut X is a complex Lie
group, any holomorphic mapT : Cn(X) → AutX produces the holomorphic self-map
(“endomorphism”)FT of Cn(X), FT (Q) = T (Q)Q; such a mapFT is called tame.
Choosing a base pointQ0

∈ Cn(X), define an endomorphismFT ,Q0 by FT ,Q0(Q) =

T (Q)Q0; it maps the whole configuration space into one orbit(AutX)Q0 of the diagonal
(AutX)-action inCn(X); maps that have the latter property are said to beorbit-like.

V. Lin [13, 15, 17] proved that whenn > 4 andX is C or CP1, an endomorphism
F of Cn(X) is either tame or orbit-like. The latter happens if and only ifF is abelian,
i.e. the imageF∗(π1(Cn(X))) under the induced endomorphismF∗ of the fundamental
groupπ1(Cn(X)) is abelian. (Recall thatπ1(Cn(X)) is the braid groupBn(X) of X; it is
non-abelian whenevern ≥ 3.) Similar results were obtained by V. Zinde (see [22–26]) for
X = C∗.

Here we treat the endomorphisms of the configuration spaces of a torusT2, which
completes the story for all non-hyperbolic Riemann surfaces.

Throughout the paper, AutT2 stands for the group of all biholomorphic (≡ biregular)
self-mappings ofT2.

DEFINITION 1.1. A group homomorphismϕ : G → H is calledabelianif its image is
abelian. A continuous mapF : X → Y of path connected spaces is calledabelianif the
induced homomorphismF∗ : π1(X) → π1(Y ) is abelian.
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THEOREM 1.2. For n > 4, each holomorphic mapF : Cn(T2) → Cn(T2) is either tame
or orbit-like; the latter happens exactly whenF is abelian. Any automorphism ofCn(T2)

is tame.

COROLLARY 1.3. For n > 4, the setH(Cn(T2), Cn(T2)) of all holomorphic homotopy
classes of non-abelian holomorphic endomorphisms ofCn(T2) is in natural one-to-one
correspondence with the setH(Cn(T2),Aut T2) of all holomorphic homotopy classes of
holomorphic mapsCn(T2) → Aut T2.

COROLLARY 1.4. For n > 4, the orbits of the natural(Aut Cn(T2))-action in Cn(T2)

coincide with the orbits of the diagonal(Aut T2)-action inCn(T2).

Artin [1] proved that automorphisms of the braid groupBn = Bn(C) preserve the
pure braid groupPn. V. Lin [14–18] generalized this to non-abelian endomorphisms of
Bn(C) andBn(CP1); the case ofBn(C∗) was handled by V. Zinde [25, 26]. N. Ivanov [10]
proved an analogue of Artin’s theorem for automorphisms of braid groups of all Riemann
surfaces of finite type butCP1. Our next theorem states an analogue of Lin’s theorem for
the torus braid groupBn(T2) = π1(Cn(T2)) and the pure torus braid groupPn(T2), which
is the fundamental group of theorderedconfiguration spaceEn(T2) = {(q1, . . . , qn) ∈

(T2)n | qi 6= qj ∀ i 6= j}. Part (b) of the next theorem is similar to results obtained in
[14–26] for the braid groups ofC, CP1 andC∗.

THEOREM 1.5. (a) Let n > 4 andϕ be a non-abelian endomorphism ofBn(T2). Then
ϕ(Pn(T2)) ⊆ Pn(T2).

(b) For n>max{m,4}, any homomorphismϕ : Bn(T2) → Bm(T2) is abelian.

Let us outline the plan of the proof of Theorem 1.2. By Theorem 1.5(a), a non-abelian
holomorphic self-mapF of Cn(T2) fits into a commutative diagram

(1.1)

En(T2)
f //

p

��

En(T2)

p

��
Cn(T2)

F // Cn(T2)

wherep : En(T2) 3 q = (q1, . . . , qn) 7→ {q1, . . . , qn} = Q ∈ Cn(T2) is a Galois covering
with Galois groupS(n). The mapf is non-constant, holomorphic andstrictly equivariant
with respect to the standard action of the symmetric groupS(n) in En(T2), meaning that
there is an automorphismα of S(n) such thatf (σq) = α(σ)f (q) for all q ∈ En(T2)

andσ ∈ S(n). To study such mapsf , we start with an explicit description of all non-
constant holomorphic mapsλ : En(T2) → T2

\ {0}. The setL of all such maps is finite
and separates points of a certain submanifoldM ⊂ En(T2) with codimM = 1; we endow
L with a special simplicial structure. The action ofS(n) in En(T2) induces a simplicial
S(n)-action in the complexL; the orbits of this action may be exhibited explicitly. A map
f as above induces a simplicial self-mapf ∗ of L, defined byf ∗λ = λ ◦ f for λ ∈ L,
which carries important information aboutf . Sincef is strictly equivariant,f ∗ is nicely
related to theS(n)-action onL. Studying all these things together, we come to the desired
conclusion.
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2. SOME ALGEBRAIC PROPERTIES OF TORUS BRAID GROUPS

The main goal of this section is to prove Theorem 1.5.
By O. Zariski [21] (cf. J. Birman [2]), the torus braid groupBn(T2) admits a

presentation withn+1 generatorsσ1, . . . , σn−1, a1, a2 and the defining system of relations

σiσj = σjσi for |i − j | ≥ 2, i, j = 1, . . . , n− 3;(2.1)

σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n− 2;(2.2)

σiak = akσi for k = 1,2 andi = 2, . . . , n− 1;(2.3)

(σ−1
1 ak)

2
= (akσ

−1
1 )2 for k = 1,2;(2.4)

σ1 · · · σn−2σ
2
n−1σn−2 · · · σ1 = a1a

−1
2 a−1

1 a2;(2.5)

a2σ
−1
1 a−1

1 σ1a
−1
2 σ−1

1 a1σ1 = σ 2
1 .(2.6)

For (a1, . . . , an) ∈ En(T2) andm = 1, . . . , n − 1, setEn−m(T2
\ {a1, . . . , am}) =

{(qm+1, . . . , qn) ∈ (T2
\ {a1, . . . , am})n−m | qi 6= qj }. For m ≤ n − 2, the maps

tm+1 : En−m(T2
\ {a1, . . . , am}) 3 (qm+1, . . . , qn) 7→ qm+1 ∈ T2

\ {a1, . . . , am} and
t1 : En(T2) 3 (q1, . . . , qn) 7→ q1 ∈ T2 define smooth locally trivial fibrings (see [6]) with
fibres isomorphic respectively toEn−1(T2

\ {a1}) and toEn−m−1(T2
\ {a1, . . . , am+1}).

These spaces are aspherical and the final segments of the exact homotopy sequences of the
above fibrings look as 1→ Pn−1;1 → Pn(T2) → Z2

→ 1 and 1→ Pn−m−1;m+1 →

Pn−m;m → Fm → 1, wherePn−m;m = π1(En−m(T2
\ {a1, . . . , am})) andFm is a free

group of rankm. This leads to the following well-known statement.

PROPOSITION2.1. The subgroupsPn−s;s fit into the normal series{1} ⊂ P1;n−1 ⊂

· · · ⊂ Pn−m−1;m+1 ⊂ Pn−m;m ⊂ · · · ⊂ Pn−1;1 ⊂ Pn;0 = Pn(T2) with P1;n−1 ∼=

Fn−1, . . . , Pn−m;m/Pn−m−1;m+1 ∼= Fm, . . . , Pn−1;1/Pn−2;2 ∼= F2, Pn(T2)/Pn−1;1 ∼= Z2.

COROLLARY 2.2. Any non-trivial subgroupH ⊆ Pn(T2) admits non-trivial homomor-
phisms toZ. In particular, a groupG with the finite abelianizationG/G′

= G/[G,G]
cannot have non-trivial homomorphisms toPn(T2).

The exact homotopy sequence of the coveringp : En(T2) → Cn(T2) looks as 1→

Pn(T2)
p∗

−→ Bn(T2)
δ

−→ S(n) → 1, whereδ(σi) = (i, i + 1) for i = 1, . . . , n − 1
and δ(a1) = δ(a2) = 1. Let i be the homomorphism of the Artin braid groupBn =

π1(Cn(C)) to the torus braid groupBn(T2) sending the standard generatorsσ1, . . . , σn−1
to the eponymous generators ofBn(T2).

LEMMA 2.3. Letn > 4 and letϕ : Bn(T2) → Bm(T2) be a homomorphism such that the

compositionΦ = δ ◦ ϕ ◦ i : Bn
i

−→ Bn(T2)
ϕ

−→ Bm(T2)
δ

−→ S(m) is abelian. Thenϕ is
abelian. In particular,ϕ is abelian wheneverδ ◦ ϕ is.

PROOF. Let Φ ′ : B ′
n → S(m) be the restriction ofΦ to the commutator subgroup

B ′
n = [Bn, Bn]. SinceΦ is abelian,Φ ′ is trivial and henceϕ(i(B ′

n)) ⊆ Kerδ =

Pm(T2). By the Gorin–Lin theorem [8],B ′
n = [B ′

n, B
′
n] for n > 4, and Corollary

2.2 shows thatϕ(i(B ′
n)) = 1. Hence ϕ ◦ i is abelian and (2.2) implies that
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ϕ(i(σ1)) = · · · = ϕ(i(σn−1)); thus, (a)ϕ(σ1) = · · · = ϕ(σn−1). By (2.6), (a) and
(2.3), we obtain (b)ϕ(σ2)

2
= ϕ(a2)

−1ϕ(a1)ϕ(a2)ϕ(a1)
−1. By (a) and (2.5), we get

(c) (ϕ(σ2))
2(n−1)

= ϕ(a1)ϕ(a2)
−1ϕ(a1)

−1ϕ(a2). Multiplying the relations (b) and (c) we
see that(ϕ(σ2))

2n
= 1. SinceBm(T2) is torsion free (see [6, Theorem 8]),ϕ(σ2) = 1 and,

by (a) and (b),ϕ is abelian. 2

PROOF OF THEOREM 1.5. Let n > 4 and letϕ be a non-abelian endomorphism of
Bn(T2). By Lemma 2.3, the homomorphismΦ = δ ◦ ϕ ◦ i : Bn → S(n) is non-abelian.
By V. Lin’s theorem (see [17, Sec. 4] or [15, 16, 18]),Φ coincides with the standard
epimorphismBn → S(n) up to an automorphism ofS(n); thus, the homomorphism
δ ◦ ϕ is surjective. N. Ivanov (see [10, Theorem 1]) proved that forn > 4 any non-
abelian homomorphismBn(T2) → S(n) whose image is a primitive permutation group
on n letters coincides with the standard epimorphismδ up to an automorphism ofS(n).
Therefore, Ker(δ ◦ ϕ) = Pn(T2) = Kerδ, Ker(δ ◦ ϕ) = Kerδ = Pn(T2), which implies
thatϕ−1(Pn(T2)) = Pn(T2) and a fortioriϕ(Pn(T2)) ⊆ Pn(T2).

To prove (b), we use another theorem of Lin ([17, Theorem 4.4]), which says that for
n > max(m,4) any homomorphismBn → S(m) is abelian; thusΦ = δ◦ϕ◦i : Bn → S(m)
is abelian. By Lemma 2.3,ϕ is abelian. 2

3. ORDERED CONFIGURATION SPACES

3.1. Holomorphic mappingsEn(T2) → T2
\ {0}

DEFINITION 3.1. We denote byM the finite cyclic subgroup ofAut T2 consisting of± id
and all automorphisms ofT2 induced by multiplication on the complex line by non-integral
complex numbers.M is isomorphic toZ2, Z4 or Z6. Let M+ consist of allm ∈ M with
0 ≤ Arg m < π , i.e.M+ consists of1, 2 or 3 elements(see [7, Chap. V, Sec. V.4.7]).

Let N be a minimal generating set of theZ-module of group endomorphisms ofT2

(any endomorphism of the groupT2 is induced by multiplication on the complex line by
a complex number);#N = 2 (see [20, Chap. VI, Sec. 5] and [12, Chap. 10]).Moreover,
either#M+ = 1 or we may assume thatN ⊆ M+.

THEOREM 3.2. Any non-constant holomorphic mapf : En(T2) → T2
\ {0} is of the

formf (q1, . . . , qn) = m(qi − qj ) with certainm ∈ M+ andi 6= j .

To prove the theorem we need some preparation.

DEFINITION 3.3. A configuration(a1, . . . , am) ∈ Em(T2) is calledexceptionalif there
exist i 6= j and an endomorphismλ of T2 such thatλ(ai) = λ(aj ) and λ−1(λ(ai)) ⊆

{a1, . . . , am}.

LEMMA 3.4. (a) The setA of all exceptional configurationsa ∈ Em(T2) is contained in
a subvarietyM ⊂ Em(T2) of codimension1.

(b) For any non-exceptional configuration(a1, . . . , am) ∈ Em(T2), every non-constant
holomorphic mapλ : T2

\ {a1, . . . , am} → T2
\ {0} extends to a biregular

automorphism ofT2 sending a certainai to 0.
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PROOF. (a) LetN denote the union of all finite subgroups of order≤ m in T2; this set
is finite. SetM = {(a1, . . . , am) ∈ Em(T2) | aj − ai ∈ N for somei 6= j}; thenM is a
subvariety inEm(T2) of codimension 1. We show thatA ⊆ M.

Let a = (a1, . . . , am) ∈ A and leti, j , andλ be as in Definition 3.3. Setµ(t) =

λ(t + ai) − λ(ai), t ∈ T2. Thenµ(0) = 0 andµ is a group homomorphism with finite
kernel Kerµ (see [3, Chap. 3, Sec. 3.1]). Ift ∈ Kerµ, thenλ(t + ai) = λ(ai), t + ai
∈ λ−1(λ(ai)) ⊆ {a1, . . . , am} and t ∈ {a1 − ai, . . . ,0, . . . , am − ai}, that is, Kerµ ⊆

{a1 − ai, . . . ,0, . . . , am − ai}. In particular, # Kerµ ≤ m and hence Kerµ ⊆ N . Since
µ(aj − ai) = 0, we haveaj − ai ∈ N anda ∈ M.

(b) Let a = (a1, . . . , am) /∈ A. The mapλ extends to a holomorphic self-mapλ̃ of
T2 (see H. Huber [9, §6, Satz 2]; also [11, Chap. VI, Sec. 2, remarks after Cor. 2.6]). By
the Riemann–Hurwitz relation (see [7, Chap. I, Sec. I.2.7]),λ̃ is an unbranched regular
covering map of degreek < ∞. Clearly λ̃−1(0) ⊆ {a1, . . . , am} and λ̃(ai) = 0 for a
certaini. Sincea /∈ A, for all j 6= i we haveλ̃(aj ) 6= 0, i.e.λ̃−1(0) = {ai} and deg̃λ = 1;
thus,λ̃ is biregular. 2

PROOF OFTHEOREM 3.2. The proof is by induction onn. Since any holomorphic map
E1(T2) ∼= T2

→ T2
\ {0} is constant, the base of induction is proved.

Assume that the assertion is already proved for somen = m − 1 ≥ 1. For
a = (a2, . . . , am) ∈ Em−1(T2), denote byλa = λ(·, a2, . . . , am) the restriction ofλ
to the fibrep−1(a) = T2

\ {a2, . . . , am} of the mapp : Em(T2) 3 (q1, q2, . . . , qm) 7→

(q2, . . . , qm) ∈ Em−1(T2). It is clear thatS := {a ∈ Em−1(T2) | λa = const} is an
analytic subset ofEm−1(T2), and either (i)S = Em−1(T2) or (ii) dimC S ≤ m− 2. In case
(i), λ = λ(q1, . . . , qm) does not depend onq1 and may be considered as a holomorphic
mapEm−1(T2) → T2

\ {0}; by the induction hypothesis,λ is of the desired form. Let us
consider case (ii). By Lemma 3.4(a), the setA of all exceptional configurations is contained
in a subvarietyM ⊂ Em−1(T2) of dimensionm − 2. Let a ∈ Em−1(T2) \ (S ∪ M).
Thenλa : T2

\ {a2, . . . , am} is a non-constant map. By Lemma 3.4(b),λa extends to an
automorphism̃λa of T2. Clearly,λ̃a(t) = m(t − ai) with somem = ma ∈ M andi = ia
(see [7, Chap. V, Sec. V.4.7]). Thus, for allq = (q1, . . . , qm) in the connected, everywhere
dense setEm(T2)\p−1(S∪M) we have(∗) λ(q) = m(q1−qi) with certainm = mq ∈ M
and i = iq . SinceM is finite, m and i do not depend onq, and (∗) holds true for all
q ∈ Em(T2), which completes the induction step, thus proving the theorem.2

DEFINITION 3.5. For anym ∈ M+ and i 6= j ∈ {1, . . . , n}, the mapem;i,j : En(T2) 3

(q1, . . . , qn) 7→ m(qi − qj ) ∈ T2
\ {0} is called adifference. For µ = em;i,j , the pair

{qi, qj } is called thesupportof µ and the automorphismm ∈ M+ is called themarker
ofµ. We denote them bysuppµ andmµ respectively.

By Theorem 3.2, any non-constant holomorphic mapµ : En(T2) → T2
\ {0} admits a

unique representation in the form of a difference, i.e.µ = em;i,j for some uniquely defined
m ∈ M+ andi, j ∈ {1, . . . , n}.

3.2. A simplicial structure on the set of differences

For any connected complex spaceY , V. Lin [17] introduced a natural simplicial structure
on the set of all non-constant holomorphic functionsY → C\{0,1}. He used this structure
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in order to studyS(n)-equivariant endomorphisms of the orderedn-point configuration
spaces ofC andCP1. We modify this idea and define a similar simplicial structure on the
set of all non-constant holomorphic mapsY → T2

\ {0}. (V. Lin pointed out that the same
construction applies to the set of all non-constant holomorphic mapsY → G \ {e}, where
e is the unity element of a complex Lie groupG.)

DEFINITION 3.6. For a connected complex spaceY , let L(Y ) denote the set of all non-
constant holomorphic mapsµ : Y → T2

\ {0}. For µ, ν ∈ L(Y ), we say thatν is a proper
reminderof µ and writeν |µ if µ − ν ∈ L(Y ). This relation is symmetric, i.e.ν | µ is
equivalent toµ | ν.

A subset∆m = {µ0, . . . , µm} ⊆ L(Y ) is said to be anm-simplex if µi | µj for all
i 6= j . Since a subset of a simplex is also a simplex, we obtain a well-defined simplicial
complexLM(Y ) with the set of verticesL(Y ).

LEMMA 3.7. Let f : Z → Y be a holomorphic map of connected complex spaces.

Suppose that for eachλ ∈ L(Y ) the mapf ∗(λ) := λ ◦ f : Z
f

−→ Y
λ

−→ T2
\ {0} is

non-constant. Thenf ∗ : L(Y ) 3 λ 7→ λ◦f ∈ L(Z) is a simplicial map and the restriction
of f ∗ to∆ ∈ LM(Y ) is injective. In particular,dimf ∗(∆) = dim∆.

PROOF. For anyλ ∈ L(Y ), the mapf ∗(λ) : Z → T2
\ {0} is holomorphic and non-

constant; hencef ∗(λ) ∈ L(Z). If µ, ν ∈ L(Y ) andµ | ν, thenλ = µ − ν ∈ L(Y ) and
f ∗(µ)−f ∗(ν) = f ∗(µ−ν) = f ∗(λ) ∈ L(Z); consequently,f ∗(µ) | f ∗(ν). This implies
thatf ∗ is simplicial and injective on any simplex. 2

REMARK 3.8. Clearly, for any regular dominant mapf : Y → Z of non-singular
irreducible algebraic varieties, we havef ∗(λ) 6= const for allλ ∈ L(Y ).

Notice that by Theorem 3.2,L(En(T2)) is the set of all differences onEn(T2).

LEMMA 3.9. Suppose that either#M+ < 3 or s > 1. Let {µ0, . . . , µs} ∈ LM(En(T2))

be ans-simplex. Thenmµi = mµj , #(suppµi∩suppµj ) = 1 for all i 6= j , and#(suppµ0∩

· · · ∩ suppµs) = 1.

PROOF. Let #M+ < 3, i 6= j and letµi = mi(qi′ − qi′′) andµj = mj (qj ′ − qj ′′). Since
µi |µj , we must haveµi − µj = m(qk′ − qk′′) for somem ∈ M+ andk′

6= k′′. Thus,
mi(qi′ − qi′′)− mj (qj ′ − qj ′′) = m(qk′ − qk′′). Since #M+ < 3, the latter relation can be
fulfilled only if eithermiqi′ −mjqj ′ = 0 ormiqi′′ −mjqj ′′ = 0. This impliesmi = mj and
we have(∗) eitheri′ = j ′ or i′′ = j ′′. If s = 1 we have finished the proof. Ifs > 2, then the
property #(suppµi∩suppµj ) = 1 implies immediately that #(suppµ0∩· · ·∩suppµs) = 1.
For s = 2 we haveµ0 = m(qi′ − qi′′), µ1 = m(qj ′ − qj ′′) andµ2 = m(qk′ − qk′′). Since
µ0 |µ1, µ1 |µ2 andµ2 |µ0, we obtain #(suppµ0 ∩ suppµ1) = #(suppµ1 ∩ suppµ2) =

#(suppµ2 ∩ suppµ0) = 1. LetN = #(suppµ0 ∩ suppµ1 ∩ suppµ2). ClearlyN ≤ 1; let
us show thatN 6= 0. Suppose to the contrary thatN = 0. Relations(∗) apply toµ0 and
µ1, and without loss of generality we can assume thati′ = j ′. Forµ1 andµ2 the same
relations tell us that eitherj ′

= k′ or j ′′
= k′′; sinceN = 0, the first case is impossible and

we are left withj ′′
= k′′. Finally, we apply(∗) toµ0 andµ2 and see that eitheri′ = k′ or

i′′ = k′′, which leads to a contradiction and completes the proof in the case #M+ < 3. By
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similar straightforward combinatorial computations, one can prove the lemma in the case
#M+ = 3. 2

TheS(n)-action inEn(T2) induces anS(n)-action inL(En(T2)), defined by(σλ)(q) =

λ(σ−1q), which, in turn, induces a simplicialS(n)-action inLM(En(T2)) which preserves
dimension of simplices; let us describe the orbits of this action.

DEFINITION 3.10. We define the followingnormal formsof simplices of dimension
s > 1: ∆sm = {em;1,2, . . . , em;1,s+2}, ∇

s
m = {em;2,1, . . . , em;s+2,1}, wherem ∈ M+; these

simplices are callednormal.

LEMMA 3.11. For s > 1, there are exactly#M orbits of theS(n)-action on the set of all
s-simplices. Every orbit contains exactly one normal simplex.

PROOF. Sinceem;a,b - em;b,c, Lemma 3.9 shows that for anys-simplex∆ ∈LM(En(T2))

there existm ∈ M+ and distinct indicesa, b0, . . . , bs such that∆ equals either
{em;a,b0, . . . , em;a,bs } or {em;b0,a, . . . , em;bs ,a}. An appropriate permutationσ ∈ S(n)
carries∆ to a normal form. 2

3.3. Regular mappingsEn(T2) → T2

LEMMA 3.12. Any rational mapλ : (T2)n → T2 is of the form

λ(q1, . . . , qn) =

n∑
i=1

∑
m∈N

ki,mmqi + c,

whereki,m ∈ Z andc ∈ T2. In particular, it is regular.

PROOF. The proof is by induction onn. Let n = 1. Sinceλ : T2
→ T2 is rational, it

extends to a regular map (see [19, Chap. II, Sec. 3.1], Cor. 1). Any regular self-map ofT2

is of the desired form (see Definition 3.1).
Assume that the theorem has already been proved for somen = m − 1 ≥ 1. There is

a subsetΣ ⊂ (T2)m of codimension 1 such thatλ is regular on(T2)m \Σ . Let (t0, z0) ∈

(T2
× (T2)m−1) \ Σ andD be a small neighbourhood ofz0 in (T2)m−1. Without loss

of generality, we may assume thatt0 = 0 and(0, z) /∈ Σ for all z ∈ D. For (t, z) ∈

(T2
×D)\Σ , setµ(t, z) = λ(t, z)−λ(0, z) andν(t, z) = µ(t, z)−µ(t, z0). For anyz ∈ D,

we haveν(0, z) = 0 and the mapt 7→ ν(t, z) extends to a holomorphic endomorphismνz
of T2; moreover,νz0(T2) = 0. One can find a neighbourhoodD′ b D of z0 and a compact
subsetK ⊂ T2

×D such that for allz ∈ D′ the setK ∩ (T2
× {z}) is a union of two loops

that do not meetΣ and generateπ1(T2
×{z}). Moreover, sinceν(T2

×{z0}) = 0, we may
assume thatν(K) is contained in a small contractible neighbourhood of 0∈ T2. Therefore
for any z ∈ D′ the mapνz is contractible and trivial. Thus,µ(t, z) − µ(t, z0) ≡ 0 and
λ(t, z) ≡ λ(0, z)+λ(t, z0)−λ(0, z0) for all z ∈ D′. By the uniqueness theorem, the latter
identity holds true for all(t, z) ∈ (T2

× (T2)m−1) \Σ ; the inductive hypothesis applies to
λ(0, z) andλ(t, z0), and completes the proof. 2
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4. HOLOMORPHIC MAPPINGS OF CONFIGURATION SPACES

The main goal of this section is to prove Theorem 1.2.

THEOREM 4.1. (a) For n > 4 any non-abelian continuous mapF : Cn(T2) → Cn(T2)

admits a continuous liftingf : En(T2) → En(T2) (see diagram(1.1)).
(b) For n > 4 any continuous liftingf : En(T2) → En(T2) of a non-abelian continuous

mapF : Cn(T2) → Cn(T2) is strictly equivariant.

PROOF. By the covering mapping theorem, (a) follows from Theorem 1.5. Let us
prove (b). The diagram (1.1) forf andF implies that there is an epimorphismα of S(n)
such thatδ ◦ F∗ = α ◦ δ. Clearly,f (σq) = α(σ)f (q) for all q ∈ En(T2) andσ ∈ S(n);
moreover,α is an automorphism, otherwise its image is a non-trivial quotient ofS(n),
which must be abelian sincen > 4. Then the homomorphismδ ◦F∗ = α ◦ δ is also abelian
and, by Lemma 2.3,F∗ is abelian, a contradiction. 2

Let us show that every strictly equivariant map induces a simplicial map.

LEMMA 4.2. Let n > 2 and f = (f1, . . . , fn) : En(T2) → En(T2) be a strictly
equivariant holomorphic map. Thenf ∗ : L(En(T2)) 3 λ 7→ λ ◦ f ∈ L(En(T2)) is a
well-defined simplicial map; moreover, it preserves dimension of simplices.

PROOF. By Lemma 3.7, we must only prove thatµ ◦ f 6= const for anyµ ∈ L(En(T2)).
Suppose to the contrary thatµ ◦ f = c ∈ T2. Then(µ ◦ f )(σq) ≡ c for all σ ∈ S(n).
Sincef is strictly equivariant, there isα ∈ Aut S(n) such thatf (σq) = α(σ)f (q) for all
σ ∈ S(n) andq ∈ En(X); thusc ≡ µ(f (σq)) = µ(α(σ)f (q)). By Theorem 3.2,µ =

m(qi − qj ) for some distincti, j andm ∈ M; hencec ≡ (µ ◦ f )(q) = m(fi(q)− fj (q)).
Sinceα is an automorphism andn > 2, there isσ ∈ S(n) such thatα(σ−1)(i) = i and
α(σ−1)(j) = k 6= j ; thus,c ≡ µ(α(σ)f (q)) = m(fα(σ−1)(i)(q) − fα(σ−1)(j)(q)) =

m(fi(q) − fk(q)). Therefore,m(fi(q) − fj (q)) = c = m(fi(q) − fk(q)) andfj (q) =

fk(q), a contradiction. 2

4.1. Proof of Theorem 1.2

We shall prove two theorems, which together yield Theorem 1.2.

THEOREM 4.3. For n > 4, any non-abelian endomorphismF of Cn(T2) is tame.

PROOF. By Theorems 1.5 and 4.1, the mapF lifts to a strictly equivariant holomorphic
mapf that fits into the commutative diagram (1.1). Letα be the automorphism ofS(n)
corresponding to a strictly equivariant mapf .

By Lemma 4.2,f ∗ is a dimension preserving simplicial self-map ofL∆(En(T2)). Let
∆1 = {q1 − q2, . . . , q1 − qn} and∆ = f ∗(∆1). By Lemma 3.11, there isσ ∈ S(n) that
brings∆ to its normal form; without loss of generality, we may assume that this normal
form is ∇m = {m(q2 − q1), . . . ,m(qn − q1)}, wherem ∈ M+. Set f̃ = f ◦ σ ; then
(∗) f̃j = f̃1+m(q1−qj ) for anyj = 1, . . . , n. Define the holomorphic mapτ : En(T2) →

Aut(T2) by the conditionτ(q)(z) = τ(q1, . . . , qn)(z) = −mz + (f̃1(q) + mq1), where
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q = (q1, . . . , qn) ∈ En(T2) and z ∈ T2. Equations(∗) imply that τ(q)qj = fj (σq)

for all j = 1, . . . , n and q = (q1, . . . , qn) ∈ En(T2); thereforeτ(q)q = f (σq) =

α(σ)f (q), or, what is the same,f (q) = α(σ−1)τ (q)q for all q ∈ En(T2). To complete
the proof, we must check thatτ is S(n)-invariant; that is, we must prove thatτ(sq) =

τ(q) for all q ∈ En(T2) and alls ∈ S(n). For everys ∈ S(n) and allq ∈ En(T2) we
haveτ(sq)sq = f (σsq) = f (σsσ−1σq) = α(σsσ−1)f (σq) = α(σsσ−1)τ (q)q. Thus,
(∗∗) [(τ (sq))−1

· τ(q)]q = α(σs−1σ−1)sq, where((τ (sq))−1
· τ(q)) ∈ Aut T2 is the

product in the group AutT2. Let us notice that forn > 1 there is a non-empty Zariski open
subsetA ⊂ En(T2) such that ifθq = ρq for someq ∈ A, θ ∈ Aut T2 andρ ∈ S(n), then
θ = id andρ = 1. Therefore, equation(∗∗) impliesτ(sq) = τ(q) andα(σs−1σ−1)s = 1
for all q ∈ A and alls ∈ S(n). Clearly,α(s) = σ−1sσ and the continuity ofτ implies that
τ(sq) = τ(q) holds true for allq ∈ En(T2) and alls ∈ S(n). 2

REMARK 4.4. Letn = 3 or 4. The statement of Theorem 4.3 still holds true ifF is an
automorphism. The only changes we need to make in the proof are as follows: instead of
our Theorem 4.1, we use Theorem 2 from [10], which states thatPn(T2) is a characteristic
subgroup ofBn(T2); moreover, instead of Lemma 4.2, we use Remark 3.8. The rest of the
proof is the same.

REMARK 4.5. (a) Let n ≥ 2 and letF be a tame endomorphism ofCn(T2). Then a
morphismT : Cn(T2) → Aut T2 in the ‘tame representation’F = FT ofF is uniquely
determined byF . Indeed, ifFT = FT ′ for two morphismsT , T ′, thenT (Q)Q =

T ′(Q)Q and(∗) [T (Q)]−1T ′(Q)Q = Q for all Q ∈ Cn(T2). Furthermore, a torus
automorphism is uniquely determined by its values at a generic pair of distinct points;
sincen ≥ 2, the identity(∗) shows that [T (Q)]−1T ′(Q) = id for any generic point
Q ∈ Cn(T2) and henceT = T ′.

(b) In view of Theorem 4.3, (a) shows thatfor n > 4 any holomorphic non-abelian map
F : Cn(T2) → Cn(T2) admits a unique tame representationF = FT andT is regular
wheneverF is. By Remark 4.4, the same statement still holds true whenevern = 3,4
andF is a (biregular) automorphism.

DEFINITION 4.6. The map s: Cn(T2) 3 Q = {q1, . . . , qn} 7→ s(Q) = (q1 + · · · + qn) ∈

T2 is a locally trivial holomorphic fibring whose fibreM0 = s−1(0) is an irreducible
quasiprojective variety. The presentation ofπ1(M0), found by O. Zariski [21], shows that
H1(M0,Z) = Z2n.

Let γ : C → T2 be the universal covering; then there exists a holomorphic covering
h: M0 × C 3 (Q, ζ ) 7→ h(Q, ζ ) = {q1 + γ (ζ ), . . . , qn + γ (ζ )} ∈ Cn(T2).

The following theorem completes the classification of self-maps ofCn(T2).

THEOREM 4.7. If m > 2, then a holomorphic mapF : Cn(T2) → Cm(T2) is orbit-like if
and only if it is abelian.

PROOF. Let F be abelian. Clearly,H1(Cn(T2),Z) = Bn(T2)/B ′
n(T2) = Z2 ⊕ Z2. As

Bm(T2) has no elements of a finite order, the image ImF∗ of the induced homomorphism
F∗ : Bn(T2) → Bm(T2) is a free abelian group. Sinceπ1(M0)/(π1(M0))

′
= Z2n, any

homomorphismπ1(M0) → ImF∗ is trivial; in particular, the homomorphism(F ◦ h)∗ is
trivial, whereh : M0 × C → Cn(T2) is the above-defined covering. This implies that there
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is a holomorphic mapf = (f1, . . . , fm) : M0 × C → Em(T2) such thatF ◦ h = p ◦ f ,
wherep : Em(T2) → Cm(T2) is the standard projection. The induced homomorphism

f∗ : π1(M0) → Pn(T2) is trivial; thus, for anyj , the map(qj − q1) ◦ f : M0 × C
f

−→

Em(T2)
qj−q1
−→ T2

\ {0} is contractible and lifts to a holomorphic mapgj : M0 × C →

D = {z ∈ C | |z| < 1}. SinceM0 × C is algebraic and irreducible, Liouville’s theorem
shows thatgj = const and, therefore,fj − f1 = (qj − q1) ◦ f = cj ∈ T2

\ {0}. Thus,
f (q) = (0 + f1(q), c2 + f1(q), . . . , cm + f1(q)) andF is orbit-like.

Suppose now thatF is orbit-like. To prove thatF is abelian, it suffices to show
that for any pointq ∈ Cm(T2), the fundamental group of any connected component of
the (Aut T2)-orbit Oq = (Aut T2)(q) is abelian. Form > 2, any component ofOq is
diffeomorphic to the orbitO∗

q of the action ofT2 in Cm(T2) by translations. The latter

orbitO∗
q is a quotient group ofT2 by a finite subgroup and hence is homeomorphic toT2.

Thus,π1(O∗
q) = Z2. 2

We skip the proof of the next result about abelian maps.

PROPOSITION4.8. (a) Any abelian mapf : Cn(T2) → Cm(T2) is homotopically
equivalent to a compositiong ◦ s of the standard maps : Cn(T2) → T2 and an
appropriate continuous mapg : T2

→ Cm(T2).
(b) Any holomorphic mapF : T2

→ Cn(T2) is orbit-like.

5. BIREGULAR AUTOMORPHISMS

Here we describe all biregular automorphisms of the algebraic varietyCn(T2).

LEMMA 5.1. Any regular mapR : Cn(T2) → T2 is of the form

R({q1, . . . , qn}) =

∑
m∈N

kmm(q1 + · · · + qn)+ c,

wherekm ∈ Z andc ∈ T2.

PROOF. Consider the mapr = R ◦ p, wherep : En(T2) → Cn(T2) is the standard
projection. By Lemma 3.12,r(q1, . . . , qn) ≡

∑n
i=1

∑
m∈N ki,mmqi + c. Since r is

S(n)-invariant, it follows thatk1,m = · · · = kn,m = km. Thus, r(q1, . . . , qn) ≡∑
m∈N kmm(q1+· · ·+qn)+c andR({q1, . . . , qn}) ≡

∑
m∈N kmm(q1+· · ·+qn)+c. 2

THEOREM 5.2. For n > 2, any biregular automorphismF of Cn(T2) is of the form
F(Q) = AQ, whereA ∈ Aut T2.

PROOF. By Theorem 1.2 and Remarks 4.4 and 4.5, there is a unique regular map
T : Cn(T2) → Aut T2 such thatF(Q) = T (Q)Q for all Q = {q1, . . . , qn} ∈ Cn(T2).

SinceT (Q) ∈ Aut T2, there exist a regular mapR : Cn(T2) → T2 andm0 ∈ M such
thatT (Q)z = m0z + R(Q) for all z ∈ T2 (see [7, Chap. V, Sec. V.4.7]). Together with
Lemma 5.1, this implies that for anyz ∈ T2 we haveT (Q)z = m0z +

∑
m∈N kmm(q1 +

· · · + qn)+ c, wherem0 ∈ M, km ∈ Z, andc ∈ T2 do not depend onz andQ. Recall that
s(Q) = q1 +· · ·+ qn forQ = {q1, . . . , qn} and sets1 = s ◦F , i.e.s1(Q) = (s ◦F)(Q) =

s(T (Q)Q) = T (Q)q1 + · · · + T (Q)qn. Using the explicit formula forT (Q)z for
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z = q1, . . . , qn, we see thats1(Q) = m0s(Q)+n(
∑

m∈N kmms(Q)+c). The latter implies
(∗) s1(Q) = (m0+n

∑
m∈N kmm)s(Q)+nc. On the other hand,F−1 is a regular self-map

as well. Similarly, there is a unique regularT ′ : Cn(T2) → Aut T2 such thatF−1(Q) =

T ′(Q)Q for Q ∈ Cn(T2); sinces1 ◦ F−1
= s, s(Q) = s1({T

′(Q)q1, . . . , T
′(Q)qn})

and (∗) implies (∗∗) s(Q) = (m0 + n
∑

m∈N kmm)(T ′(Q)q1 + · · · + T ′(Q)qn) + nc.
As above, we conclude thatT ′(Q)z = m′

0z +
∑

m∈N k
′
mms(Q) + c′ for any z ∈ T2,

where m′

0 ∈ M, k′
m ∈ Z and c′ ∈ T2 do not depend onz andQ. Thus, (∗∗) is

equivalent tos(Q) = (m0 + n
∑

m∈N kmm)(m′

0 + n
∑

m∈N k
′
mm)s(Q) + const. Since

Im s = T2, the latter shows that the compositionλ = µ ◦ ν = ν ◦µ of the endomorphisms
µ : z 7→ (m0 + n

∑
m∈N kmm)z and ν : z 7→ (m′

0 + n
∑

m∈N k
′
mm)z is the identity.

Henceµ and ν are group automorphisms andµ(z) ≡ m1z with m1 ∈ M; clearly,
(m0 − m1 + n

∑
m∈N kmm)z ≡ 0, i.e.m0 − m1 + n

∑
m∈N kmm = 0. Sincen > 2 and

elements ofN are linearly independent overQ, the latter implieskm = 0 for all m ∈ N.
ThusT (Q)z = m0z+ c for all Q andz. 2

6. CONFIGURATION SPACES OF UNIVERSAL FAMILIES

Here we construct configuration spaces of the universal Teichmüller family of tori and
describe their holomorphic self-maps.

The Teichm̈uller spaceT (1,1) of tori with one marked point is isomorphic to the
upper half planeH+. The groupH = Z × Z acts discontinuously and freely in the
spaceV = T (1,1) × C = H+

× C by weighted translations(τ, z) 7→ (τ, z + l + mτ),
(l, m) ∈ H . Let V (1,1) = V/H ; the mapψ : V → V (1,1) is a covering, and the
holomorphic projectionπ : V (1,1) → H+

= T (1,1) is called theuniversal Teichm̈uller
family of tori with one marked point (see [4, Sec. 4.11]). All fibresπ−1(τ ) are tori; each
of them carries a natural group structure, marked points are neutral elements and they
form a holomorphic section ofπ .

DEFINITION 6.1. Let Cnπ (V (1,1)) be the complex subspace of the configuration space
Cn(V (1,1)) of V (1,1) consisting of allQ = {q1, . . . , qn} ∈ Cn(V (1,1)) such that
π(q1) = · · · = π(qn). Define the holomorphic projectionρ : Cnπ (V (1,1)) → T (1,1)
by ρ(Q) = π(q1) = · · · = π(qn), Q = {q1, . . . , qn} ∈ Cnπ (V (1,1)); the triple
{ρ, Cnπ (V (1,1)), T (1,1)}, or simply ρ : Cnπ (V (1,1)) → T (1,1), is called thefibred
configuration space of the universal Teichmüller family π : V (1,1) → T (1,1) (cf.
M. Engber [5]).A fibred morphismof fibred configuration spaces is a holomorphic map
F : Cnπ (V (1,1)) → Cmπ (V (1,1)) which respects the projectionρ, that is,ρ ◦ F = ρ. One
can easily check thatCnπ (V (1,1)) is a connected complex manifold.

DEFINITION 6.2. Let g : Cnπ (V (1,1)) → V (1,1) be a fibred morphism. Any point
Q ∈ Cnπ (V (1,1)) belongs to a certain fibreρ−1(τ ), which is the configuration space
Cn(π−1(τ )) of the torusT2

τ = π−1(τ ); so Q may be viewed as ann-point subset
of T2

τ . Sinceg is a fibred morphism,g(Q) is a point of the same torusT2
τ ; thus,

Q + g(Q) and −Q + g(Q) are well-definedn-point subsets ofT2
τ , or, which is the

same, points ofCn(T2
τ ) ⊂ Cnπ (V (1,1)). This provides us with two fibred mapsG± =

± Id +g : Cnπ (V (1,1)) → Cnπ (V (1,1)) defined byQ 7→ ±Q + g(Q). It can be easily
shown that the fibred mapsG± are holomorphic.
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One can prove statements analogous to Theorem 1.2 for the case of fibred morphisms.
For instance, we sketch the proof of the following theorem.

THEOREM 6.3. Let n > 4 andF : Cnπ (V (1,1)) → Cnπ (V (1,1)) be a fibred non-abelian
morphism. There exists a fibred morphismg : Cnπ (V (1,1)) → V (1,1) such thatF is either
Id + g or −Id + g.

SKETCH OF PROOF. According to Theorem 1.2, for anyτ ∈ T (1,1) there exists a unique
holomorphic mapTτ : ρ−1(τ ) → Autπ−1(τ ) such thatF(Q) = Tτ (Q)Q for anyQ ∈

ρ−1(τ ) ⊂ Cnπ (V (1,1)). There is no complex multiplication on a generic torus. Thus, for
any genericτ ∈ T (1,1) and anyQ ∈ ρ−1(τ ), there existscτ (Q) ∈ π−1(τ ) such that the
automorphismTτ (Q) maps a pointz ∈ π−1(τ ) either toz + cτ (Q) or to −z + cτ (Q).
Since the representation ofTτ (Q) is unique,F is continuous and the fibred configuration
spaces are irreducible, it can be easily seen that for allQ ∈ Cnπ (V (1,1)) only one of
the above-mentioned possibilities takes place; moreover, there exists a fibred morphism
g : Cnπ (V (1,1)) → V (1,1) such thatcτ (Q) = g(Q). 2

REMARK 6.4. For an automorphismF the above statement holds true forn = 3,4.
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