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Geometry. — Configuration spaces of tqriby YOEL FELER, communicated by
F. Catanese.

ABSTRACT. — Then-point configuration spaces”(T?) = {(41, ..., an) € (TH"| q; # qj Vi # j}and
C"(T?) = {0 C Tzl #0 = n} of a complex torug? are complex manifolds. We prove that fer> 4 any
holomorphic self-magF of C*(T?) either carries the whole @ (T?) into an orbit of the diagonalAut T?)-
action inC"(T?) or is of the formF(Q) = T(Q)Q, whereT: C"(T?) — AutT? is a holomorphic map. We
also prove that forn > 4 any endomorphism of the torus braid gro&p(’ll‘z) =m (" (T?)) with a non-abelian
image preserves the pure torus braid gramﬁ]l‘z) =m(E" (T?)).
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1. INTRODUCTION

The configuration spacé”(X) of a complex spac& consists of alln-point subsets
(“configurations™) Q0 = {g1,...,49x} C X, #O = n. The automorphism group Aixt
acts inC"(X) by X > Q0 — AQ = {Aq1,...,Aq,}. If AutX is a complex Lie
group, any holomorphic map: C"(X) — Aut X produces the holomorphic self-map
(“endomorphism”) Fr of C"(X), Fr(Q) = T(Q)Q; such a mapFr is calledtame
Choosing a base poin@® e C"(X), define an endomorphisifi; o by Fr o(Q) =
T(Q) QY% it maps the whole configuration space into one ofBit X) 0° of the diagonal
(Aut X)-action inC" (X); maps that have the latter property are said toi-like.

V. Lin [L3} [15,[17] proved that when > 4 andX is C or CP!, an endomorphism
F of C"(X) is either tame or orbit-like. The latter happens if and onlyiis abelian,
i.e. the imageF, (71(C"(X))) under the induced endomorphisf of the fundamental
groupm1(C" (X)) is abelian. (Recall that,(C" (X)) is the braid groum, (X) of X; itis
non-abelian whenever > 3.) Similar results were obtained by V. Zinde (se€ [22—-26]) for
X =C*

Here we treat the endomorphisms of the configuration spaces of aTérughich
completes the story for all non-hyperbolic Riemann surfaces.

Throughout the paper, Ali? stands for the group of all biholomorphie piregular)
self-mappings off2.

DEFINITION 1.1. A group homomorphism: G — H is calledabelianif its image is
abelian. A continuous map: X — Y of path connected spaces is calledelianif the
induced homomorphisi, : 71(X) — m1(Y) is abelian.
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THEOREM1.2. Forn > 4, each holomorphic map: C*(T?) — C*(T?) is either tame
or orbit-like; the latter happens exactly whehis abelian. Any automorphism 6f (T?)
is tame.

COROLLARY 1.3. Forn > 4, the setH(C"(T?), C"(T?)) of all holomorphic homotopy
classes of non-abelian holomorphic endomorphismg€”@f?) is in natural one-to-one
correspondence with the s&t(C"(T?), Aut T2) of all holomorphic homotopy classes of
holomorphic maps”(T?) — Aut T2.

COROLLARY 1.4. For n > 4, the orbits of the naturalAutC"(T?))-action in C"(T?)
coincide with the orbits of the diagonéhut T2)-action inC" (T?).

Artin [1] proved that automorphisms of the braid groBp = B, (C) preserve the
pure braid groupP,. V. Lin [14+18] generalized this to non-abelian endomorphisms of
B, (C) andB, (CPY); the case oB, (C*) was handled by V. Zindé [25, 26]. N. lvandv [10]
proved an analogue of Artin’s theorem for automorphisms of braid groups of all Riemann
surfaces of finite type buP*. Our next theorem states an analogue of Lin’s theorem for
the torus braid grou, (T2) = 71(C"(T?)) and the pure torus braid groufy (T2), which
is the fundamental group of therderedconfiguration spacé€”(T2) = {(g1,...,qn) €
(T2 | i # gj Yi # j}. Part (b) of the next theorem is similar to results obtained in
[14-:26] for the braid groups @, CP* andC*.

THEOREM1.5. (a)Letn > 4 andg be a non-abelian endomorphism Bf(T?). Then
@(Py(T?)) C P, (T?).
(b) For n > max{m, 4}, any homomorphisma: B, (T?) — B,,(T?) is abelian.

Let us outline the plan of the proof of Theorém|1.2. By Thedrer 1.5(a), a non-abelian
holomorphic self-magF of C(T?) fits into a commutative diagram

en (']I*Z) 4f> en (TZ)

(1.1) pl l"

)

wherep: E"(T?) 5 g = (g1, ....qn) — {q1. ..., qn} = Q € C"(T?) is a Galois covering
with Galois groupS(n). The mapf is non-constant, holomorphic asttictly equivariant
with respect to the standard action of the symmetric gré@ in £”(T?), meaning that
there is an automorphism of S(n) such thatf(cq) = a(o)f(g) for all g € £"(T?)
ando € S(n). To study such mapg, we start with an explicit description of all non-
constant holomorphic maps £"(T2) — T2\ {0}. The setL of all such maps is finite
and separates points of a certain submanitld- £ (T?) with codimM = 1; we endow

L with a special simplicial structure. The action $f:) in £"(T?) induces a simplicial
S(n)-action in the complex; the orbits of this action may be exhibited explicitly. A map
f as above induces a simplicial self-mgp of L, defined byf*A = Lo f forix € L,
which carries important information aboyit Since f is strictly equivariant,f* is nicely
related to theS(n)-action onL. Studying all these things together, we come to the desired
conclusion.
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2. SOME ALGEBRAIC PROPERTIES OF TORUS BRAID GROUPS

The main goal of this section is to prove Theoienj 1.5.
By O. Zariski [21] (cf. J. Birman[[2]), the torus braid grouB,(T?) admits a

presentation witlh+ 1 generatorsy, . . ., 0,1, a1, az and the defining system of relations
(2.1) 0i0j = 0j0; forli—j|>2i,j=1...,n-3;

(2.2) 0i0j4+10; = 0;4+10;0;+1 fori=1,...,.n—2;

(2.3) oiay = ayo; fork=12andi =2,...,n—1;

(2.4) (o7 *an)? = (ako H? fork =1,2;

(2.5) o1-- ~0n,20nz_1an,2 ce01 = alaz_lal_laz;

(2.6) azol_lal_lolaz_lal_lalol = 012.

For (a1,...,a,) € &(T? andm = 1,...,n — 1, setE" ™(T2 \ {ay,...,an}) =
{(Gmi1 - qn) € (T2\{a1,...,am)"™ | qi # q;}. Form < n — 2, the maps

tm1: E"M(T2\ fat, ..., am)) 3 (Gmids -2 qn) F> Gmi1 € T2\ a1, ..., an} and
1n: ET?) 5 (q1, ..., qu) — q1 € T? define smooth locally trivial fibrings (se€l [6]) with
fibres isomorphic respectively ©'~1(T2 \ {a1}) and to&" " 1(T2\ {a1, ..., dms1}).

These spaces are aspherical and the final segments of the exact homotopy sequences of the
above fibrings look as &> P, 1.1 — P,(T?) — 72 — land 1= P, 141 —

Po—mm — B — 1, whereP, . = m1(E""(T? \ {a1, ..., an))) andF,, is a free

group of rankn. This leads to the following well-known statement.

PropPoOsITION2.1. The subgroups?,_;. fit into the normal serieg1} C Pi.,-1 C
- C Pn—m—l;m+1 C Pn—m;m c - C Pn—l;l C Pn;O = Pn(Tz) with Pl;n—l =
Fpo1,..., Pn—m;m/Pn—m—l;m+l =Fm, ..., Pn—l;l/Pn—Z;Z = T, Pn(TZ)/Pn—l;l = Zz-

COROLLARY 2.2. Any non-trivial subgroupd < P,(T?) admits non-trivial homomor-
phisms toZ. In particular, a groupG with the finite abelianizationG/ G’ = G/[G, G]
cannot have non-trivial homomorphismsRg(T?).

The exact homotopy sequence of the coverings™(T?) — C*(T?) looks as 1—
Py(T?) 2% B.(T? > S(n) — 1, wheres(o;) = (i + 1 fori = 1,...,n—1
andé(a1) = 8(a2) = 1. Leti be the homomorphism of the Artin braid groly =
1(C"(C)) to the torus braid group, (T?) sending the standard generateis. .., 0,1
to the eponymous generatorsgf(T?).

LEMMA 2.3. Letn > 4and lety: B,(T?) — B,,(T?) be a homomorphism such that the

compositiond = 8o g oi: By —s Bu(T?) -5 B, (T?) %, S(m) is abelian. Them is
abelian. In particulary is abelian whenevet o ¢ is.

PROOF Let @’: B, — S(m) be the restriction of® to the commutator subgroup
B, = [By, By]. Since @ is abelian,®’ is trivial and hencep(i(B))) < Kers =

P, (T?). By the Gorin-Lin theorem[[8]B, = [B., B/] for n > 4, and Corollary
shows thatp(i(B))) = 1. Henceg o i is abelian and[(2]2) implies that
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p(i(01)) = --- = @(i(0x-1)); thus, (@)p(o1) = --- = ¢(0,-1). By (2.8), (a) and
23), we obtain (bp(02)? = ¢(az) tp(a)g(a2)¢(a1)~ . By (a) and [25), we get
(©) (¢(02)2"D = p(a1)p(az) to(a1) " Le(az). Multiplying the relations (b) and (c) we
see thalg(02))%* = 1. SinceB,, (T?) is torsion free (seé¢ [6, Theorem 8})(o2) = 1 and,

by (a) and (b)y is abelian. O

PROOF OF THEOREM[L.H. Letrn > 4 and lety be a non-abelian endomorphism of
B,(T?). By Lemm, the homomorphisth = § o ¢ 0 i: B, — S(n) is non-abelian.
By V. Lin’s theorem (seel[17, Sec. 4] ar [15,]16.] 18, coincides with the standard
epimorphismB, — S(n) up to an automorphism dB(n); thus, the homomorphism
8 o ¢ is surjective. N. Ivanov (seé [10, Theorem 1]) proved that#foe 4 any non-
abelian homomorphisng, (T?) — S(z) whose image is a primitive permutation group
on n letters coincides with the standard epimorphismp to an automorphism @&(n).
Therefore, Kets o ¢) = P,(T?) = Kers, Ker(s o ¢) = Kers = P,(T?), which implies
thatp—1(P,(T?)) = P,(T?) and a fortiorig(P,(T?)) C P,(T?).

To prove (b), we use another theorem of Lin ([17, Theorem 4.4]), which says that for
n > max(m, 4) any homomorphisnB, — S(m) is abelian; thu® = §ogoi: B, — S(m)
is abelian. By Lemmpa 2| % is abelian. O

3. ORDERED CONFIGURATION SPACES

3.1. Holomorphic mapping§”(T?) — T2\ {0}

DEFINITION 3.1. We denote b§it the finite cyclic subgroup dfut T2 consisting oft id
and all automorphisms 6f2 induced by multiplication on the complex line by non-integral
complex humber$ht is isomorphic tdZy, Z4 or Zg. Let 9t consist of allm € 99t with
0<Argm < &, i.e.9, consists ofl, 2 or 3 elementgseel[7, Chap. V, Sec. V.4.7]).

Let 9 be a minimal generating set of ti#&module of group endomorphisms B#
(any endomorphism of the gro(§¥ is induced by multiplication on the complex line by
a complex numberd = 2 (seel[20, Chap. VI, Sec. 5] arld [12, Chap. 18preover,
either#9t, = 1 or we may assume that € 9t,..

THEOREM3.2. Any non-constant holomorphic map : £*(T?) — T2\ {0} is of the
form f(q1, ..., qu) = m(q; — g;) with certainm € 91, andi # j.

To prove the theorem we need some preparation.

DEFINITION 3.3. A configuration(az, ..., a,) € E"(T?) is calledexceptionaif there
existi # j and an endomorphisth of T? such thati(a;) = A(a;) and A~ 1(A(a;)) <
{ai, ..., ap}.

LEMMA 3.4. (a) The setd of all exceptional configurations € £ (T?) is contained in
a subvarietyM c £”(T?) of codimension.

(b) For any non-exceptional configuratioay, ..., a,) € £™(T?), every non-constant
holomorphic mapi: T? \ {a1,...,an} — T2\ {0} extends to a biregular
automorphism of? sending a certaim; to 0.
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PROOF (a) LetN denote the union of all finite subgroups of orderm in T?; this set
is finite. SetM = {(a1, ..., am) € E™(T?) | aj —a; € N forsomei # j}; thenM is a
subvariety i€ (T?) of codimension 1. We show that < M.

Leta = (a1....,an) € A and leti, j, and be as in Definitiof 3]3. Set(r) =
At + a;j) — Ma;), t € T2 Thenw(0) = 0 andy is a group homomorphism with finite
kernel Keru (see [[8, Chap. 3, Sec. 3.1]). Afe Kerpu, theni(t + a;) = A(a;), t + a;

e 2 Y0(a)) C {a1,...,an} ands € {a1 — aj,...,0,...,an — a;}, that is, Kequ C
{a1 —ai,...,0,...,a, — a;}. In particular, #Kejx < m and hence Kex C N. Since
w(aj —a;) =0, we haver; —a; € N anda € M.

(b) Leta = (a1, ...,an) ¢ A. The mapx extends to a holomorphic self-mapof
T? (see H. Huber[9, §6, Satz 2]; alo [11, Chap. VI, Sec. 2, remarks after Cor. 2.6]). By
the Riemann—Hurwitz relation (se€ [7, Chap. |, Sec. 1.2X]) an unbranched regular
covering map of degreé < oco. ClearlyA=1(0) C {a1, ..., an) andi(q;) = O for a
certaini. Sincea ¢ A, for all j # i we havei.(q;) # 0, i.e.A71(0) = {a;} and deg. = 1;
thus, is biregular. O

PrROOF OFTHEOREM[3.J. The proof is by induction om. Since any holomorphic map
EY(T?) = T? — T2\ {0} is constant, the base of induction is proved.

Assume that the assertion is already proved for seme- m — 1 > 1. For
a = (az,...,am) € E"L(T?), denote byr, = A(-, az,...,an) the restriction ofx
to the fibrep=1(a) = T2\ {az, ..., a,} of the mapp: £™(T?) > (41,92, ..., qm) >
(g2, ..., qgm) € EMX(T?). It is clear thatS = {a € E"XT?)| A, = cons} is an
analytic subset of”~1(T?), and either (i)s = £”~1(T?) or (ii) dimc S < m — 2. In case
@), » = A(q1, - .., qm) does not depend oy and may be considered as a holomorphic
map&”~1(T?) — T2\ {0}; by the induction hypothesis, is of the desired form. Let us
consider case (ii). By Lemn@A(a), the datdf all exceptional configurations is contained
in a subvarietyM c £"1(T?) of dimensionm — 2. Leta € £™1(T?) \ (S U M).
Theni,: T2\ {az, ..., ay,) is a non-constant map. By Lemrha [3.4(b), extends to an
automorphismi,, of T2. Clearly,A,(1) = m(t — a;) with somem = m, € M andi = i,
(seel[7, Chap. V, Sec. V.4.7]). Thus, foral= (g1, . . ., g») in the connected, everywhere
dense sef” (T?)\ p~1(SUM) we have(x) A(q) = m(q1—¢;) with certainm = m,, € M
andi = i,. SinceM is finite, m andi do not depend o, and () holds true for all
g € £™(T?), which completes the induction step, thus proving the theoremD

DEFINITION 3.5. Foranym € My andi # j € {1,...,n}, the mapey; ;: £(T?) >
1, -, qn) = m(qgi —qj) € T2 \ {0} is called adifference For u = em;,j,» the pair
{gi, q;} is called thesupportof 1 and the automorphismm € 9, is called themarker
of ... We denote them Buppu andm,, respectively.

By Theore, any non-constant holomorphic mapE” (T?) — T2\ {0} admits a
unique representation in the form of a difference ji.e< en; ; for some uniquely defined
meM, andi, j € {1,...,n}.

3.2. A simplicial structure on the set of differences

For any connected complex spakeV. Lin [17] introduced a natural simplicial structure
on the set of all non-constant holomorphic functidhs> C\ {0, 1}. He used this structure
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in order to studyS(n)-equivariant endomorphisms of the ordereghoint configuration
spaces of> andCP. We modify this idea and define a similar simplicial structure on the
set of all non-constant holomorphic maps— T2\ {0}. (V. Lin pointed out that the same
construction applies to the set of all non-constant holomorphic fiaps G \ {e}, where
eis the unity element of a complex Lie grodh)

DEFINITION 3.6. For a connected complex spage let L(Y) denote the set of all non-
constant holomorphic maps: ¥ — T2\ {0}. For u, v € L(Y), we say thav is aproper
reminderof u and writev | if © — v € L(Y). This relation is symmetric, i.e. | u is
equivalent tqu | v.

A subsetA™ = {uo, ..., un} S L(Y) is said to be ann-simplexif u; | u; for all
i # j.Since a subset of a simplex is also a simplex, we obtain a well-defined simplicial
complexL 5 (Y) with the set of vertices (Y).

LEMMA 3.7. Let f: Z — Y be a holomorphic map of connected complex spaces.

Suppose that for each € L(Y) the mapf*(L) == Ao f: Z N y 25 T2 \ {0} is

non-constant. Thefi*: L(Y) > A +— Lo f € L(Z) is a simplicial map and the restriction
of f*to A € LA(Y) is injective. In particulardim f*(A) = dim A.

PROOF For anyir € L(Y), the mapf*(x): Z — T2\ {0} is holomorphic and non-
constant; hencg*(A) € L(Z). If u,v € L(Y)andu |v, then. = u —v € L(Y) and

f*(w)— f*(v) = f*(u—v) = f*(1) € L(Z); consequentlyf*(u) | f*(v). This implies

that /* is simplicial and injective on any simplex. O

REMARK 3.8. Clearly, for any regular dominant maf: ¥ — Z of non-singular
irreducible algebraic varieties, we hayé&(,) # const for allx € L(Y).

Notice that by Theorefn 3.2,(£"(T?)) is the set of all differences aff* (T?).

LEMMA 3.9. Suppose that eithét9t, < 3ors > 1. Let{uo, ..., us} € LA(E"(T?)
be ans-simplex. Them,,, = m,,,, #(suppw; Nsuppu;) = 1forall i # j, and#(suppuon
<. Nsuppus) = 1.

PROOF Let#M, < 3,i # j and letu; = m;(¢g; — ¢;») andu; = m;(gjr — g;»). Since
wi | mj, we must haver; — uj = m(gr — gx») for somem e M andk’ # k”. Thus,
m; (g — gin) — mj(gjr — qj») = m(qr — qx»). Since #, < 3, the latter relation can be
fulfilled only if eitherm;g;; —m;q; = 0 orm;g;» —m;q;» = 0. This impliesm; = m; and
we have(x) eitheri’ = j' ori” = j”. If s = 1 we have finished the proof.d4f> 2, then the
property #suppu; Nsuppu;) = 1implies immediately that@uppuon- - -Nsuppu,) = 1.
Fors = 2 we haveuo = m(gir — i), h1 = m(gjr — q;») anduz = m(gr — gx»). Since
pol 1, | 2 anduz | o, we obtain #suppuo N suppui) = #(suppu1 N suppuz) =
#(suppuz N suppuro) = 1. Let N = #(suppuo N suppus N suppuz). Clearly N < 1; let
us show thatV # 0. Suppose to the contrary th&t = 0. Relations(x) apply toue and
u1, and without loss of generality we can assume that j’. For u; andu, the same
relations tell us that eithet = k' or j” = k”; sinceN = 0, the first case is impossible and
we are left withj” = k”. Finally, we apply(x) to o andu2 and see that eithét = &’ or
i” = k”, which leads to a contradiction and completes the proof in the c2e # 3. By
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similar straightforward combinatorial computations, one can prove the lemma in the case
#M, =3. O

TheS(n)-action in€” (T?) induces ars(n)-action inL (£"(T?)), defined byo A1) (¢g) =
A(o~1g), which, in turn, induces a simplici&(n)-action inL , (£"(T?)) which preserves
dimension of simplices; let us describe the orbits of this action.

DEFINITION 3.10. We define the followingiormal formsof simplices of dimension
s> 1 AY, ={em12, - .-, em1s+2} Vip = {em2.1, - - -, emys+2,1}, Wherem € 9 ; these
simplices are callediormal

LEMMA 3.11. Fors > 1, there are exactly9t orbits of theS(n)-action on the set of all
s-simplices. Every orbit contains exactly one normal simplex.

PROOF. Sinceem:qp { émp,, Lemmd 3.p shows that for anysimplex A e L (£"(T?))
there existm € M, and distinct indicesa, by, ..., by such thatA equals either
{emia.bos - - - » €miaby} O {€mibg.as - - - » €mibs.a}- AN appropriate permutation € S(n)
carriesA to anormal form. O

3.3. Regular mapping§” (T?) — T?

LEMMA 3.12. Any rational mapr: (T?)" — T2 is of the form

n
Myt qn) =) Y kimmgi +c,

i=1 meMN
wherek; m € Z andc € T2. In particular, it is regular.

PROOF The proof is by induction om. Letn = 1. Sincer: T? — T? is rational, it
extends to a regular map (s€el[19, Chap. Il, Sec. 3.1], Cor. 1). Any regular self-rfidp of
is of the desired form (see Definitipn B.1).

Assume that the theorem has already been proved for somen — 1 > 1. There is
a subsetr c (T?)™ of codimension 1 such thatis regular onT2)" \ X. Let (fg, z0) €
(T? x (T?™=1)\ ¥ and D be a small neighbourhood @f in (T?)”~1. Without loss
of generality, we may assume thgt= 0 and(0,z) ¢ X for all z € D. For (t,z) €
(T?x D)\ X, setu(r, z) = A(t, z)—A(0, z) andv(t, z) = u(t, z)—u(t, zo). Foranyz € D,
we havev(0, z) = 0 and the map — v(z, z) extends to a holomorphic endomorphism
of T2; moreovery,,(T?) = 0. One can find a neighbourhodd € D of zg and a compact
subsetk ¢ T2 x D such that for alk € D’ the setk N (T? x {z}) is a union of two loops
that do not meeE and generate1(T? x {z}). Moreover, since(T? x {zo}) = 0, we may
assume that(K) is contained in a small contractible neighbourhood af 02, Therefore
for anyz € D’ the mapv, is contractible and trivial. Thus.(z, z) — u(t, zo) = 0 and
At, z) = M0, 2) + A(t, zo) — A (0, zo) for all z € D’. By the uniqueness theorem, the latter
identity holds true for allz, z) € (T2 x (T?)”~1)\ ¥: the inductive hypothesis applies to
A(0, z) andA(z, zg), and completes the proof. O
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4. HOLOMORPHIC MAPPINGS OF CONFIGURATION SPACES
The main goal of this section is to prove Theolen] 1.2.

THEOREM4.1. (a)For n > 4 any non-abelian continuous map: C"(T?) — C"(T?)
admits a continuous lifting : £"(T?) — £"(T?) (see diagran{Z.1)).

(b) For n > 4 any continuous liftingf : £”(T?) — £"(T?) of a non-abelian continuous
mapF : C"(T?) — C"(T?) is strictly equivariant.

PrROOF By the covering mapping theorem, (a) follows from Theorem 1.5. Let us
prove (b). The diagranf (3.1) fof and F implies that there is an epimorphismof S(n)
such that o F, = « 0 8. Clearly, f(og) = (o) f(g) for all ¢ € £*(T?) ando € S(n);
moreover,a is an automorphism, otherwise its image is a non-trivial quotierts(af,
which must be abelian sinee> 4. Then the homomaorphisév F, = « 0§ is also abelian
and, by Lemm@ 2|3F is abelian, a contradiction. O

Let us show that every strictly equivariant map induces a simplicial map.

LEMMA 4.2. Letn > 2 and f = (fi. ..., fu): E(T? — E"(T?) be a strictly
equivariant holomorphic map. Thef*: L(E"(T?)) > A — Ao f € L(E(T?) is a
well-defined simplicial map; moreover, it preserves dimension of simplices.

PrOOF By Lemmd 3.F, we must only prove thato f # const for anyu € L(£"(T2)).
Suppose to the contrary thato f = ¢ € T2. Then(x o f)(oq) = ¢ for all o € S(n).
Sincef is strictly equivariant, there i8 € AutS(n) such thatf (og) = a(o) f(¢) for all
o € S(n) andg € £"(X); thusc = u(f(oq)) = u(a(o) f(g)). By Theoreu =
m(q; — g;) for some distinct, j andm € 9; hencec = (o f)(g) = m(fi(q) — fi(q)-
Sincew is an automorphism and > 2, there iss € S(n) such thatx (o ~1)(/) = i and
alc™(j) = k # j;thus,c = pu(a(o)f(g) = M(foo-1@ (@) — fa(g—l)(j)(q)) =
m(fi(q) — fi(g)). Thereforem(fi(q) — fj(q)) = ¢ = m(fi(q) — fi(¢)) and fj(q) =
fx(q), acontradiction. O

4.1. Proof of Theorerp 1|2
We shall prove two theorems, which together yield Thedrern 1.2.

THEOREM4.3. Forn > 4, any non-abelian endomorphisfof C” (T?) is tame.

ProoF By Theorem$ 1]5 ar[d 4.1, the maplifts to a strictly equivariant holomorphic
map f that fits into the commutative diagrafn ([1.1). lebe the automorphism @&(n)
corresponding to a strictly equivariant mgp

By Lemmf* is a dimension preserving simplicial self-maplof (£"(T?)). Let
A1 ={q1—q2,....,q91 — qu} @andA = f*(A1). By Lemmd3.1[L, there is € S(n) that
brings A to its normal form; without loss of generality, we may assume that this normal
form is Vi, = {m(g2 — q1), ..., m(g, — q1)}, wherem € 9. Setf = foo;then
() f; = fi+m(g1—q;)foranyj = 1,..., n. Define the holomorphic map: £ (T?) —
Aut(T?) by the conditionz (¢)(z) = (g1, ..., qn)(z) = —mz + (fi(q) + mq1), Where
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q = (q1,.-.,qs) € E"(T? andz e T2 Equations(x) imply thatt(q)g; = fi(oq)
forall j = 1,....,nandqg = (q1,....q,) € E"(T?); thereforet(q)g = f(ogq) =
a(0) f(g), or, what is the samef (q) = a(o ~Yt(g)q for all ¢ € £"(T?). To complete
the proof, we must check thatis S(n)-invariant; that is, we must prove thatsq) =
1(q) for all ¢ € £"(T?) and alls € S(n). For everys € S(n) and allg € £"(T?) we
haver(sq)sq = f(osq) = f(oso tog) = a(oso™Y) f(og) = a(osoY)t(g)q. Thus,
(%) [(t(s@) ™ - t(q9)]lg = a(os o sq, where((t(sq))~1 - 1(¢)) € AutT? is the
product in the group AUE2. Let us notice that for > 1 there is a non-empty Zariski open
subsetd c £"(T?) such that ifdg = pq for someg € A, 6 € AutT2 andp € S(n), then
6 = id andp = 1. Therefore, equatiofxx) impliest(sq) = t(¢g) anda(osto~1)s =1
forallg € A and alls € S(n). Clearly,a(s) = o ~1so and the continuity of implies that
7(sq) = t(g) holds true for aly € £"(T?) and alls € S(n). O

REMARK 4.4. Letn = 3 or 4. The statement of Theorém14.3 still holds trué ifs an
automorphism. The only changes we need to make in the proof are as follows: instead of
our Theoren) 4]1, we use Theorem 2 fram|[10], which statesRp@E?) is a characteristic
subgroup ofB, (T?); moreover, instead of Lemnha 4.2, we use Rerhark 3.8. The rest of the
proof is the same.

REMARK 4.5. (a)Letn > 2 and let F be a tame endomorphism 6f(T2). Then a
morphism? : C"(T?) — AutT? in the ‘tame representatior? = F7 of F is uniquely
determined byF. Indeed, if F; = Fp for two morphismsT, 77, thenT(Q)Q =
T'(Q)Q and () [T(Q)]1T'(Q)0 = Q for all Q € C*(T?). Furthermore, a torus
automorphism is uniquely determined by its values at a generic pair of distinct points;
sincen > 2, the identity(x) shows that T(Q)]~17’(Q) = id for any generic point
0 € C"(T?) and hencd = T'.

(b) In view of Theorenj 413, (a) shows thiar n > 4 any holomorphic non-abelian map
F: C"(T?) — C"(T?) admits a unique tame representatién= Fr and T is regular
wheneverF is. By Remark 4.4, the same statement still holds true wheneveB, 4
andF is a (biregular) automorphism.

DEFINITION 4.6. ThemapsC™(T?) 5 Q ={q1,...,qn} — S(Q) = (q1+ -+ qn) €
T2 is a locally trivial holomorphic fibring whose fibraZg = s~1(0) is an irreducible
quasiprojective variety. The presentationmfMo), found by O. Zariski[2l1], shows that
H1(Mo, Z) = Zan.

Lety: C — T2 be the universal covering; then there exists a holomorphic covering

h: Mox C3(Q,8) = hQ,0) ={g1+ (@), ..., qn +y(©)} € C"(T?).
The following theorem completes the classification of self-mapg'6T2).

THEOREM4.7. If m > 2, then a holomorphic map : C"*(T?) — C"(T?) is orbit-like if
and only if it is abelian.

PROOF. Let F be abelian. ClearlyH;(C"(T?), Z) = B,(T?)/B.(T?) = Zp ® 7?. As

B, (T?) has no elements of a finite order, the imageApof the induced homomorphism
F.: B,(T% — B, (T?) is a free abelian group. Since (Mo)/(n1(Mo)) = Z2,, any
homomorphismr1(Mg) — Im F, is trivial; in particular, the homomorphisiiF o i), is
trivial, whereh: Mo x C — C"(T?) is the above-defined covering. This implies that there
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is a holomorphic magf = (f1, ..., fm): Mg x C — £™(T?) suchthatF o h = p o f,
wherep: £™(T%) — C™(T?) is the standard projection. The induced homomorphism

fu: nl(Mo) — P,(T?) is trivial; thus, for anyj, the map(g; — q1) o f: Mo x C N

8’” (12) “~4* T2\ (0} is contractible and lifts to a holomorphic map: Mo x C —

= {z € C| |z|] < 1}. SinceMy x C is algebraic and irreducible, Liouville’s theorem
shows thalg; = const and, thereforef; — f1 = (g; — q1) o f = ¢; € T2\ {0}. Thus,
(@) = O+ fi(g),c2+ f1(q), ..., cm + f1(g)) andF is orbit-like.

Suppose now thaf' is orbit-like. To prove thatF is abelian, it suffices to show
that for any pointy € C”(T?), the fundamental group of any connected component of
the (Aut T?)-orbit O, = (AutT?)(q) is abelian. Form > 2, any component o0, is
diffeomorphic to the orbiO; of the action ofT? in C"(T?) by translations. The latter
orbit (9:; is a quotient group of2 by a finite subgroup and hence is homeomorphit4o

Thus,m(0)) =72 O
We skip the proof of the next result about abelian maps.

PROPOSITION4.8. (a) Any abelian mapf: C*(T?) — C™(T?) is homotopically
equivalent to a compositiog o s of the standard map: C"(T?) — T2 and an
appropriate continuous mag: T2 — C"(T?).

(b) Any holomorphic mag: T2 — C"(T?) is orbit-like.

5. BIREGULAR AUTOMORPHISMS

Here we describe all biregular automorphisms of the algebraic vatet?).
LEMMA 5.1. Any regular mapR: C"(T?) — T2 is of the form

RUq1, .. qn) = ) kmm(gr+ -+ +qn) +c,

meN
whereky, € Z andc € T2.

PROOF. Consider the map = R o p, wherep: £"(T?) — C"(T?) is the standard
projection. By Lemmd 3.12¢(q1.....q,) = >} 1Zmemk, mmg; + c¢. Sincer is
S(n)-invariant, it follows thatk1m = -+ = kym = km. Thus,r(g1,....qn) =
Y memkmm(git- - +gu)+candR({q1, . ... qu}) = Y pegrhkmm(qat - +gn)+c. O

THEOREMS5.2. For n > 2, any biregular automorphisn¥’ of C"(T?) is of the form
F(Q) = AQ, whereA € AutT?.

ProOF By Theorem[I.p and Remarks 4.4 gnd] 4.5, there is a unique regular map
T:C"(T?) — AutT? such thatF(Q) = T(Q)Q forall Q = {qa, ..., gu} € C"(T?).
SinceT (Q) € AutT?, there exist a regular map: C"(T?) — T2 andmg € M such
that 7(Q)z = moz + R(Q) for all z € T? (see[[7, Chap. V, Sec. V.4.7]). Together with
Lemmg 5.1, this implies that for anye T2 we haveT (Q)z = moz + 3 eqrkmm(q1 +
“+qn) + ¢, wheremg € M, ky € Z, ande € T2 do not depend onand Q. Recall that
s(Q) =q+---+aq.forQ=A{q,....qu}andseky =so F,i.e.51(Q) = (so F)(Q) =
s(T(Q)Q) = T(Q)q1 + --- + T(Q)g,. Using the explicit formula forT (Q)z for



CONFIGURATION SPACES OF TORI 149

2=4q1,...,qn, Weseethas (Q) = mos(Q)+n(}_ ey kmms(Q)+c). The latter implies
(*) $1(Q) = (Mo+1 Y egr kmm)s(Q) +nc. On the other hand; —1 is a regular self-map
as well. Similarly, there is a unique regul@f: C"(T?) — AutT? such thatF—1(Q) =
T'(0)Q for 0 € C*(T?); sincesi o F1 = 5, 5(Q) = si{T'(Q)q1, ..., T'(Q)gn})
and (x) implies (xx) S(Q) = (mo + n ) neqkmm)(T'(Q)q1 + -+ + T (Q)gn) + nc.
As above, we conclude thdt'(Q)z = myz + > eqkmms(Q) + ¢’ for any z € T2,
wheremy € M, ky, € Z andc’ € T2 do not depend or and Q. Thus, (xx) is
equivalent tos(Q) = (mo + n ) cpkmm)(mg + 1) o kpym)S(Q) + const. Since
Ims = T?, the latter shows that the compositibr= 1t o v = v o i of the endomorphisms
n:z = (Mg +n) eqkmm)z andv: z = (mg 4+ 1) mkym)z is the identity.
Hencep and v are group automorphisms andz) = mjz with mq € 9; clearly,
(mop—my+n) cpkmm)z=0,i.eemp—m1+n) opkmm = 0. Sincen > 2 and
elements ot are linearly independent ové}, the latter impliegk,, = O for allm € 9.
ThusT (Q)z = moz + ¢ for all Q andz. O

6. CONFIGURATION SPACES OF UNIVERSAL FAMILIES

Here we construct configuration spaces of the universal Taitemfamily of tori and
describe their holomorphic self-maps.

The Teichniiller spaceT (1, 1) of tori with one marked point is isomorphic to the
upper half plangd*. The groupH = Z x Z acts discontinuously and freely in the
spaceV = T(1,1) x C = HT x C by weighted translationgr, z) — (t,z + [ + m1),

(I,m) € H. LetV(1,1) = V/H; the mapy: V — V(1,1 is a covering, and the
holomorphic projectionr: V(1,1) — H' = T(1, 1) is called theuniversal Teichriller

family of tori with one marked point (se&l[4, Sec. 4.11]). All fibres(z) are tori; each

of them carries a natural group structure, marked points are neutral elements and they
form a holomorphic section of.

DEFINITION 6.1. LetCZ(V (1, 1)) be the complex subspace of the configuration space
C"(V(,1) of V(1,1) consisting of allQ = {g1,...,q9,} € C*"(V(,1)) such that
w(q1) = --- = mw(gy). Define the holomorphic projectiop: C2(V(1,1)) — T(1,1)

by p(Q) = n(q1) = -+ = 7wlqn), @ = {q1,....qx} € CR(V(L, 1); the triple
{p.C(V(1,1), TA 1)}, or simply p: CZ(V(1,1)) — T(11), is called thefibred
configuration space of the universal Teidhfer family =: V(1,1) — T7T(1,1) (cf.

M. Engber [5]).A fibred morphismof fibred configuration spaces is a holomorphic map
F:CL(V(1, 1) — CH(V(L 1)) which respects the projectign thatis,p o F = p. One

can easily check that’ (V (1, 1)) is a connected complex manifold.

DEFINITION 6.2. Let g: C2(V(1,1)) — V(1,1) be a fibred morphism. Any point
0 € CX(V(1,1)) belongs to a certain fibre—1(r), which is the configuration space
C"(m (1)) of the torusT? = =~1(r); so Q may be viewed as an-point subset
of T2. Sinceg is a fibred morphismg(Q) is a point of the same toru&?; thus,
0 + g(Q) and —Q + g(Q) are well-definedn-point subsets 0111‘3, or, which is the
same, points of” (Tf) C CX(V(1,1)). This provides us with two fibred mags. =
+£ld+g: CL(V(L 1) — Ci(V(L 1)) defined byQ +— +0 + g(Q). It can be easily
shown that the fibred mags.. are holomorphic.
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One can prove statements analogous to Theprem 1.2 for the case of fibred morphisms.
For instance, we sketch the proof of the following theorem.

THEOREM®6.3. Letn > 4and F: C2(V(L, 1)) — CZ(V(1, 1)) be a fibred non-abelian
morphism. There exists a fibred morphigmCZ (V (1, 1)) — V (1, 1) such thatF is either
Id+gor—Id+g.

SKETCH OF PROOF  According to Theorein 12, for anye 7'(1, 1) there exists a unique
holomorphic magl; : p~1(r) — Autz~1(r) such thatF(Q) = T.(Q)Q forany Q <

p (1) C CX(V(1,1)). There is no complex multiplication on a generic torus. Thus, for
any generia € T(1, 1) and anyQ € p~1(1), there existg; (Q) € = ~1(r) such that the
automorphisnt; (Q) maps a point € 7 ~1(r) either toz + ¢, (Q) or to —z + ¢ (Q).

Since the representation @f (Q) is unique,F is continuous and the fibred configuration
spaces are irreducible, it can be easily seen that fopak C.(V (1, 1)) only one of

the above-mentioned possibilities takes place; moreover, there exists a fibred morphism
g:CH(V(L, 1) — V(1,1 suchthat,(Q) = g(Q). O

REMARK 6.4. For an automorphisifi the above statement holds true foe 3, 4.
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