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ABSTRACT. — An extension of the Grötzsch problem to higher dimensions is considered. The problem is
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given. A conjecture about generalized distortion functions is stated.
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1. INTRODUCTION

The purpose of this paper is to extend the Grötzsch problem in the plane to higher
dimensions (see below or [2] for formulation of the problem). This generalization is
obtained for a wide class of polyconvex energy integrals under certain conditions imposed
on them. The motivation for our work comes from recent developments in the theory of
mappings with integrable distortion [3]—a promising, dynamically growing branch of the
calculus of variations.

The paper is organized as follows. In Section 2 we briefly recall the classical planar
Grötzsch problem of finding a nearly conformal map between two rectangles. This
classical framework employs the supremum norm of the distortion function.

Section 3 features new distortion functions inRn.
Section 4 is an epitomized survey of some of the recent developments in the theory of

extremal problems for mappings with integrable distortion. A definition of the Grötzsch
property is given. Roughly speaking, an energy integral has the Grötzsch property if its
minimum among admissible mappings is attained at a linear one. This property is very
much reminiscent of quasiconvexity, introduced by C. B. Morrey in 1952, [8].

Section 5 deals with the notion of polyconvex functions; some basic properties are
listed.

The purpose of Section 6 is to formulate and prove the main result of the paper,
Theorem 3 in Section 6.2. This is arranged in a chain of auxiliary theorems, corollaries
and technical details. It is shown that a large class of polyconvex functionals have the
Grötzsch property. However, we give several counterexamples to an analogous theorem in
a more general setting.

Section 7 is devoted to formulation and explanation of some open problems. We
raise a conjecture about the most general form of distortion functions. Also we pose a
question concerning relations between the Grötzsch property, quasiconvexity and rank-one
convexity.
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2. GRÖTZSCH PROBLEM IN THE PLANE

This introductory section is based on Ahlfors’ book [2], so the interested reader should
consult this excellent source for a more detailed exposition of the subject.

The following problem often appears in the course of Complex Analysis.

Consider two rectanglesR andR′ in the plane. When does there exist a conformal
mapping ofR ontoR′ which takes vertices to vertices?

A necessary and sufficient condition turns out to be that the rectangles are similar.
Moreover, the similarity map is the only such conformal equivalence betweenR andR′,
modulo orthogonal automorphisms of the rectangles.

In 1928 H. Gr̈otzsch [4] asked about more general homeomorphism (not necessarily
conformal) between two given rectangles which is nearly conformal. This led him to the
notion of quasiconformality; this name was coined by Ahlfors in 1935 [1]. It is also
worth mentioning the pioneering work of Teichmüller, 1937 [9], where this subject was
ingeniously explored. In order to be more precise we have to specify what it means for a
mapping to be nearly conformal. This is done via the concept of the distortion function.

DEFINITION 1. Letf be a sense preserving homeomorphism between two regions inR2

having partial derivatives defined almost everywhere. The following expression is called
thedistortion functionof f :

Df =
|fz| + |fz|

|fz| − |fz|
≥ 1.

Under suitable regularity assumptions the mappingf is conformal if and only ifDf ≡ 1
for almost all points in the domain off .

In the classical setting the mappingf is considerednearly conformalif it minimizes the
supremum norm ofDh over all sense preserving mappingsh between given two regions.
Recall that in the case of the Grötzsch problem the minimizer turns out to be an affine map
([2, Theorem 1, p. 8]).

3. DISTORTION FUNCTIONS AND EXTREMAL MAPPINGS

In higher dimensions we may measure the deviation from conformality in many different
ways. To this effect, we introduce variousdistortion functions.

DEFINITION 2. Consider a matrixA ∈ Rn×n with positive determinant. Denote by

Al×l, l = 1, . . . , n,

any
(
n
l

)
×

(
n
l

)
matrix whose entries arel×l subdeterminants ofA. The following expressions

will serve as building blocks ofdistortion functionsdefined on matrices (with positive
determinant):

Kl(A) =
‖Al×l

‖
n/(n−l)

(detA)l/(n−l)
, l = 1, . . . , n − 1.
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REMARK 1. In what follows we will apply these formulas to the Jacobian matrix of an
orientation preserving mappingf . Accordingly, we denote them by

Klf = Kl(x, f ) = Kl(Df (x)) =
‖Dl×lf (x)‖n/(n−l)

J (x, f )l/(n−l)
, l = 1, . . . , n − 1.

This formula is well defined at the points where the differentialDf (x) exists and has
positive determinant.

Let us point out that the distortion functions are here understood in a little bit more
general fashion than usually; that is, the symbol|| · || can be any norm inR(n

l)×(n
l).

However, in what follows we will only consider the Hilbert–Schmidt norm of matrices
(for the definition and motivation of such norm see [3, Theorems 6.2, 6.6])* .

REMARK 2. For further properties of distortion functions we refer to [5, Section 6.4].
Recently ([3], [6], [7]) there has been an increasing interest and substantial progress made
in the theory of extremal quasiconformal mappings. In this new development the proximity
to conformal mappings is measured by means of integral averages rather than of supremum
norm.

4. A BRIEF SURVEY OF RECENT RESULTS

Following the notation from [3] we consider the minimization problem

(4.1) min
f ∈F

−

∫
Q

Kl(x, f ) dx,

whereF consists of the homeomorphismsf : Q → Q′ of Sobolev classW1,p

loc (Q, Q′),
p > l, with integrable distortion and positive Jacobian determinant. HereQ andQ′ are
rectangular boxes,

Q = [0, a1] × · · · × [0, an] ⊂ Rn, Q′
= [0, a′

1] × · · · × [0, a′
n] ⊂ Rn.

We will also assume—in analogy to the original Grötzsch problem—thatf maps(n − 1)-
dimensional faces ofQ into corresponding faces ofQ′. This implies thatf also maps every
l-dimensional face,l = 0, 1, . . . , n − 1, of Q into the correspondingl-dimensional face
of Q′.

The simplest example of a mapping inF is the linear transformation

(4.2) g(x) = (λ1x1, . . . , λnxn) with λk =
a′

k

ak

.

The following result has recently been proven [3].

* Let A ∈ Rn×n be a matrix. Here the Hilbert–Schmidt norm ofA is defined as follows:

‖A‖
2

=
1

n
tr(AT A).

Usually the Hilbert–Schmidt norm is defined without the factor 1/n, but we introduce it to get simpler formulas
and to normalize the Hilbert–Schmidt norm of the identity matrix.
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THEOREM 1. For eachl = 1, . . . , n − 1 the minimization problem(4.1)has exactly one
solution, namely the linear mapg.

REMARK 3. From now on we are going to consider more general energy integrals, so the
definition of the class of admissible mappings has to be modified accordingly. First of all
the mappings inF have to possess sufficient degree of integrability of derivatives in order
to speak of their energy.

We shall take on stage rather general energy integrals, of the form

E (f ) = −

∫
Q

E(Df (x)) dx for f ∈ F .

HereE : Rn×n
→ [0, ∞) is a given stored energy integrand whose regularity will be

specified later on.

DEFINITION 3. We say that the energy integralE has theGrötzsch propertyif its
minimum value is assumed at the linear transformation(4.2).

5. POLYCONVEX, QUASICONVEX AND RANK-ONE CONVEX FUNCTIONS

One of the main goals of this paper is to investigate the Grötzsch problem for a wide class
of energy integrals, a subclass of the so called polyconvex energy integrals.

For a matrixA ∈ Rn×n we denote byA] the list of all l × l minors ofA with l =

1, . . . , n. The order in this list is immaterial for the subsequent discussion as long as it is
fixed once for all. We shall view this list as a point inRσ(n), where

(5.1) σ (n) =

n∑
i=1

(
n

i

)2

=

(
2n

n

)
− 1.

A matrix functionΨ = Ψ (A) is polyconvexif it can be expressed as a convex function of
the minors ofA; that is,

Ψ (A) =M(A]) for some convexM : Rσ(n)
→ R.

More precisely:

DEFINITION 4. A functionΨ : U ⊂ Rn×n
→ R is said to bepolyconvexif there is a

measurable mapM′ : U → Rσ(n) (a subgradient ofM) such that

Ψ (A) − Ψ (B) ≥ 〈M′(B), A]
− B]

〉 for all A, B ∈ U.

The notation〈 , 〉 stands for the usual inner product inRσ(n).

Polyconvex functions are a special case of null-Lagrangians, one of the fundamental
notions in the calculus of variations.
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DEFINITION 5. A functionΦ : Rn×n
→ R is said to be anull-Lagrangianif it is a linear

function of minors, meaning that

Φ(X) = 〈C, X]
〉

for all X ∈ Rn×n and someC ∈ Rσ(n).

One significant feature of polyconvex functions is that all distortion functionsKl with
l = 1, . . . , n − 1 are polyconvex on the set of matrices with positive determinant (see [5,
8.8]); also convex functions onRn×n are polyconvex, since the entries ofRn×n are none
other than the 1× 1 minors.

In Section 7 we will raise the question of relations between energy functionals with the
Grötzsch property and quasiconvex and rank-one convex functionals, therefore we recall
these concepts now.

DEFINITION 6. Let U ⊂ Rn×n be open. A functionE : U ⊂ Rn×n
→ R is said to

bequasiconvexif for every matrixA ∈ U ⊂ Rn×n and for everyΦ ∈ C1
0(Rn, Rn) with

sufficiently small derivatives, we have∫
Rn

(E(A + DΦ) − E(A)) ≥ 0.

A necessary condition for a function to be quasiconvex is rank-one convexity.

DEFINITION 7. A functionE : U ⊂ Rn×n
→ R is said to berank-one convexif for

every matrixA ∈ U and everya, b ∈ Rn the function

t 7→ E(A + ta ⊗ b) is convex.

6. RESULTS

We are now ready to formulate numerous generalizations of Theorem 1 of Section 4. We
will do it by gradually expanding the class of energy integrals with the Grötzsch property
(Definition 3).

First, we state an auxiliary observation. If we add to the definition of the classF the
assumption thatp ≥ n (cf. Remark 3) then

(∗) −

∫
Q

J (x, f ) dx = −

∫
Q

J (x, g) dx

for any mappingf ∈ F andg an affine map (in fact, for any two mappings fromF ). This
is an immediate consequence of the definition ofF .

REMARK 4. From now on we will use exchangeably the following notations for the
Jacobian determinant:Jf = J (x, f ).

LEMMA 1. The following inequality holds for mappingsf and g as above andl =

1, . . . , n − 1:

−

∫
Q

K2−2l/n
l (x, f )J 2l/n(x, f ) dx ≥ −

∫
Q

K2−2l/n
l (x, g)J 2l/n(x, g) dx.

Equality occurs if and only iff ≡ g.
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PROOF. Let us recall that

K2−2l/n
l (x, f )J 2l/n(x, f ) = ‖Dl×lf (x)‖2.

By Theorem 7.5 in [3] we have the so-calledL1-estimate

‖Dl×lg‖ = −

∫
Q

‖Dl×lg(x)‖ dx =

[(
n

l

)−1 ∑
1≤i1<···<il≤n

(λi1 · · · λil )
2
]1/2

≤ −

∫
Q

‖Dl×lf (x)‖ dx,

whereλi are the stretching factors as in the definition of the linear mappingg (Section
4). Since‖Dl×lg(x)‖ is actually independent ofx, with the aid of Ḧolder’s inequality, we
easily deduce theLp-estimate as well, forp ≥ 1:

−

∫
Q

‖Dl×lg‖
p

=

(
−

∫
Q

‖Dl×lg‖

)p

=

[(
n

l

)−1 ∑
1≤i1<···<il≤n

(λi1 · · · λil )
2
]p/2

≤

(
−

∫
Q

‖Dl×lf (x)‖ dx

)p

≤ −

∫
Q

‖Dl×lf (x)‖p dx.

Takingp = 2 gives the lemma.
The uniqueness part of Lemma 1 follows in much the same way as in [3, Theorem 7.6]

and is therefore omitted. 2

We are now in a position to formulate and prove:

THEOREM 2. Let Ψ : [1, ∞) → [1, ∞) be a strictly increasing convex function. Then
the statement of Theorem1 holds for the energy integrals of the form

E(Df (x)) = Ψ (Kl(x, f )), l = 1, . . . , n − 1,

for f ∈ F .

REMARK 5. In this paper the termconvex functionwill always meanconvex and
differentiable function.

PROOF. Fix l. Theorem 7.6 of [3] provides us with an explicit formula forKl(x, g);
namely,Kl is a constant function given by

Kl(x, g) = (λ1 · · · λn)
l/(n−l)

[(
n

l

)−1 ∑
1≤i1<···<il≤n

(λi1 · · · λil )
2
]n/(2n−2l)

,

whereλi are the stretching factors as in the definition ofg (Section 4).
We emphasize once again that thelth distortion ofg does not depend on a point in the

domainQ. This observation allows us to write

Ψ (Kl(x, g)) = −

∫
Q

Ψ (Kl(x, g)) dx.
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Hence

Ψ

(
−

∫
Q

Kl(x, g) dx

)
= −

∫
Q

Ψ (Kl(x, g)) dx.

Therefore, for eachf ∈ F , we obtain

−

∫
Q

Ψ (Kl(x, f )) dx ≥ Ψ

(
−

∫
Q

Kl(x, f ) dx

)
≥ Ψ

(
−

∫
Q

Kl(x, g) dx

)
= −

∫
Q

Ψ (Kl(x, g)) dx.

Here we have applied the monotonicity ofΨ (x), Theorem 1 and Jensen’s inequality for
convex functions. Obviously, this computation works on the assumption of integrability of
Kl(x, f ) in the definition of the classF .

As Ψ is increasing, the last inequality becomes an equality when

−

∫
Q

Kl(x, f ) dx = −

∫
Q

Kl(x, g) dx,

which in turn implies thatf = g [3, Theorem 7.6]. 2

Let us emphasize that the uniqueness statements below follow by the same type of
reasoning as we just presented.

As an immediate corollary we obtain the following result.

COROLLARY 1. The statement of Theorem2 holds for

E(Df ) = Ψ (K1f ) + · · · + Ψ (Kn−1f ) + Ψ (Jf ),

for Ψ as above and allf ∈ F .

PROOF. We apply linearity of the integral and Theorem 2 to each term of the sum.2

A comment on the regularity off is needed. In the formulation of the minimization
problem forKl (see formula (4.1) in Section 4) we assume thatp > l (Remark 3). In
Corollary 1 we use all distortion functionsKl, l = 1, . . . , n − 1, hence we requirep >

n − 1.
In addition we need integrability of the Jacobian determinant. This validates the

assumption thatf ∈ W
1,p

loc (Q, Q′) for all p ≥ n.
In the same fashion we may prove the following.

COROLLARY 2. The statement of Theorem 2 holds for

E(Df ) = Ψ1(K1f ) + · · · + Ψn−1(Kn−1f ) + Ψn(Jf ),

where eachΨi , i = 1, . . . , n, satisfies the assumptions of Theorem2.

Another corollary is a consequence of the several variable variant of Jensen’s
inequality.
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COROLLARY 3. The statement of Theorem2 holds for

E(Df ) = Ψ (K1f, . . . , Kn−1f, Jf ).

Here the functionΨ is strictly convex and increasing with respect to each of the firstn − 1
variables (that is, with the other variables fixed). The regularity assumption onf is the
same as in Corollaries1 and2.

PROOF. We will sketch only the proof of uniqueness, the rest is straightforward from the
variant of Jensen’s inequality and previous discussion. The details are the same as in the
proof of Theorem 2, and are therefore omitted.

Analytic formulation of convexity ofΨ reads as

Ψ (F) − Ψ (G) ≥ 〈∇Ψ (G), F − G〉 for any vectorsF, G in Rn.

Set
G = (K1g, . . . , Kn−1g, Jg), F = (K1f, . . . , Kn−1f, Jf ).

Passing to the integral averages we have

−

∫
Q

Ψ (F) − −

∫
Q

Ψ (G) ≥
∂Ψ

∂x1
(G) −

∫
Q

(F1 − G1) + · · · +
∂Ψ

∂xn

(G) −

∫
Q

(Fn − Gn) ≥ 0.

The reader may observe that all terms on the right hand side are nonnegative, by Theorem 1
and monotonicity ofΨ with respect to each variable.

Now assume that the integral averages on the left hand side are equal, to obtain

−

∫
Q

Kif = −

∫
Q

Kig, i = 1, . . . , n − 1.

Also note that the last term vanishes because of(∗). Uniqueness in Theorem 1 completes
the proof. 2

This corollary suggests that we should look for a similar result whenE is convex in the
minors. We are going to prove that under certain conditions onΨ the Gr̈otzsch property is
true for a subclass of polyconvex functionals.

Our first goal is to find algebraic relations between two vectors:

(K1f, K2f, . . . , Kn−1f, Jf ) ∈ Rn and (Df, D2×2f, . . . ,Dn×nf ) ∈ Rσ(n).

Let us recall thatDl×lf (x) stands for an ordered set ofl× l minors of the Jacobian matrix,
and in particularDn×nf = detDf = Jf .

The dimension ofRσ(n) can be explicitly computed (see formula (5.1)).
The definition ofKl implies that

(J
2/n
f K2−2/n

1 f, . . . , J
2l/n
f K2−2l/n

l f, . . . , J 2
f ) = (‖Df ‖

2, . . . , ‖Dl×lf ‖
2, . . . , J 2

f ).

The right hand side consists of the squares of the Hilbert–Schmidt norms of the matrices
of minors. Each‖Dl×lf ‖

2, l = 1, . . . , n, is the arithmetic average of the squares of the
l × l minors. We are going to relate this vector toD]f , the list of all minors.
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6.1. The relation

Let us introduce the squaring operation(·)2 : Rσ(n)
→ Rσ(n) defined for vectorsv =

(v1, . . . , vσ(n)) by the rule(v)2 := (v2
1, . . . , v2

σ(n)).

Thus forD]f (x) our formula reads

[D]f (x)]2 = ([D]f (x)]21, . . . , [D]f (x)]2σ(n)).

Next we compose the squaring operation with a linear mapΦ : Rσ(n)
→ Rn, whose

matrix representation is built of 0 and 1 in the following way:

(n
1)

2︷ ︸︸ ︷ (n
2)

2︷ ︸︸ ︷
. . .

(n
i)

2︷ ︸︸ ︷
. . .

(n
n)

2︷︸︸︷

M(Φ) =



1 . . . 1
1 . . . 1 0

. . .

1 . . . 1

0
. . .

1


The composition gives us a mappingΦ ◦ (·)2, which takesD]f into the vector of the
squares of the Hilbert–Schmidt norms of thelth-cofactor matricesDl×lf , with l =

1, . . . , n,
(‖Df ‖

2, ‖D2×2f ‖
2, . . . , ‖Dn×nf ‖

2).

6.2. The main theorem

THEOREM 3. Let an energy functional be defined on the set of mappingsf ∈ F by the
rule

E (f ) = −

∫
Q

E(Df (x)) dx.

As for the integrand we assume that there exists a strictly convex and increasing (with
respect to the firstn − 1 variables) functioñE : Rn

→ R such that

E(A) = Ẽ(Φ(A])2).

ThenE assumes its minimal value exactly at the linear mappingg.

REMARK 6. Notice that the integrand

E = Ẽ ◦ Φ ◦ (·)2 : Rn×n
→ R

is a convex function of minors of the matrixDf , hence is polyconvex. To see this, let us
observe that each coordinate function of(·)2 is convex. Obviously the composition with
the linear mappingΦ does not change convexity. These facts together with monotonicity
of Ẽ in each variable (when all other variables are held fixed) imply, after lengthy though
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elementary computation, thatE is polyconvex. We are now in a position to complete the
argument for Theorem 3.

PROOF OFTHEOREM 3. We have

−

∫
Q

E(Df (x)) dx = −

∫
Q

Ẽ(Φ(D]f )2)

≥ Ẽ

(
−

∫
Q

[Φ(D]f )2]1, . . . , −

∫
Q

[Φ(D]f )2]n−1, −

∫
Q

[Φ(D]f )2]n

)
= Ẽ

(
−

∫
Q

J
2/n
f K2−2/n

1 f, . . . , −

∫
Q

J
2−2/n
f K2/n

n−1f, −

∫
Q

J 2
f

)
≥ Ẽ

(
−

∫
Q

J
2/n
g K2−2/n

1 g, . . . , −

∫
Q

J
2−2/n
g K2/n

n−1g, −

∫
Q

J 2
g

)
(here we use Lemma 1 and the comment before Remark 4)

= Ẽ(J
2/n
g K2−2/n

1 g, . . . , J
2−2/n
g K2/n

n−1g, J 2
g )

= −

∫
Q

Ẽ(J
2/n
g K2−2/n

1 g, . . . , J
2−2/n
g K2/n

n−1g, J 2
g )

= −

∫
Q

Ẽ(Φ(D]g)2) = −

∫
Q

E(Dg).

All inequalities become equalities forf = g. This is due to the fact that all differential
expressions above which containg are constant.

A similar analysis to that in Corollary 3 along with Lemma 1 results in the uniqueness
statement. 2

REMARK 7. It is well known that convexity implies polyconvexity. Let us provide the
reader with an example of a polyconvex function which is not convex and still satisfies the
hypothesis and assertion of Theorem 3. This emphasizes the novelty of our result.

Considern ≥ 2, thusσ(n) =
(2n

n

)
− 1. The integrand in question takes the form

E(Df ) = [D]f ]21 + · · · + [D]f ]2σ(n) = [D]f ]21 + · · · + [D]f ]2σ(n)−1 + J 2
f .

This function, being convex in the minors, is polyconvex. However,E is not convex, largely
because determinant is not a convex function of the matrix. Nonetheless, taking

Ẽ(x1, . . . , xn) = x1 + · · · + xn

we find that Theorem 3 remains valid.

6.2.1. Examples of energies with the Grötzsch property. In this subsection we discuss
some examples of classical energy functionals which also share the Grötzsch property.

EXAMPLE 1. An interesting energy functional arises from considering expressions of
type

f (A) = |A|
p

+ h(detA), p > 2, h convex.
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As f (A) is a sum of two convex functions we immediately see from Theorem 3 thatf is
a function with the Gr̈otzsch property.

EXAMPLE 2. Let us take on stage the functional

f (A) = λ|A|
p

+ |A|
pK1(A)1−n for p ≥ n and for allA ∈ Rn×n,

whereλ > 0. It is worth mentioning that its two-dimensional analog is the subject of
intensive studies in harmonic analysis, probability theory, geometric function theory and
calculus of variations.

Conspicuously, the first term is a convex function. To see that so is the second, we
invoke Lemma 8.8.2 in [5]: a functionxa/yb of variablesx, y ∈ (0, ∞) is convex provided
thata ≥ b + 1 ≥ 1. Apply this fact to

x = |A|, y = K1(A), a = p, b = n − 1

to obtain convexity, completing the argument thatf shares the Grötzsch property.

6.2.2. Examples of nonuniqueness.In this section we are going to address the following
naturally arising question:

Does Theorem 3 hold for all polyconvex functions?

Unfortunately, the answer is no. Below we give examples of energy functionals without
the uniqueness property.

REMARK 8. The uniqueness is the real essence of the matter. To see it recall the
definition of quasiconvexity (Definition 6, Section 5). It says that affine transformations are
minimizers ofE among mappings with the same affine boundary values; whereas in our
case we do not impose boundary values and therefore the uniqueness property is delicate
and difficult to prove.

EXAMPLE 3. We start with a polyconvex function (in fact linear function of minors,
hence a null-Lagrangian) which does not enjoy the uniqueness property. We construct a
nonlinear mapping which belongs toF and has the same energy as the affine mappingg.
Let

Q = [0, 1] × [0, 1] × [0, 1] and Q′
= [0, 1] × [0, 1] × [0, 2]

be rectangles inR3. Theng(x, y, z) = (x, y, 2z) is the unique affine map in the familyF .
We then consider the polynomial map defined by

f (x, y, z) = (x2, y2, 2z).

It is easy to verify thatf lies in F . To this end we see thatf is a homeomorphism and
it mapsQ ontoQ′ so that the faces ofQ are mapped into the corresponding faces ofQ′.
Obviouslyf belongs toW1,p

loc (Q, Q′) for all p ≥ 2.
As n = 3, σ(3) = 19. Take

E(Df ) = [D]f ]1 + · · · + [D]f ]19.
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This is a sum of all minors of the Jacobian matrix. Indisputably,E(Df ) is polyconvex (the
inequality in Definition 4 is satisfied trivially, in fact it becomes an equality), actually a
null-Lagrangian. A straightforward calculation shows that∫

Q
E(Dg) = 11,

and also ∫
Q

E(Df ) =

∫
Q

(2 + 6x + 6y + 12xy) dx dy dz = 11,

so the uniqueness is lost (cf. Theorem 1).

REMARK 9. This counterexample may be easily generalized to any dimensionn ≥ 3 by
taking the rectangles

Q = [0, 1] × · · · × [0, 1]︸ ︷︷ ︸
n

and Q′
= [0, 1] × · · · × [0, 1]︸ ︷︷ ︸

n−1

×[0, 2]

and the mappings

f (x1, . . . , xn) = (x2
1, . . . , x2

n−1, 2xn), g(x1, . . . , xn) = (x1, . . . , xn−1, 2xn).

Elementary calculation reveals that∫
Q

E(Df ) =

∫
Q

E(Dg) = 3 · 2n−1
− 1.

The same holds for

f (x1, . . . , xn) = (x
α1
1 , . . . , x

αn−1
n−1 , 2xn), whereαi > 1, i = 1, . . . , n − 1.

EXAMPLE 4. The next example shows that the energy functional has to depend on all
squares of 1× 1 minors, otherwise uniqueness is lost.

ConsiderQ = Q′
= [0, 1]×· · ·× [0, 1] ⊂ Rn, and sog = Id. Definef (x1, . . . , xn) =

(x1, . . . , x
2
i , . . . , xn) ∈ F . Let now

E(Df ) =

n∑
k=1
k 6=i

(
∂fk

∂xk

)2

.

Then the mappingsf andg have the same energy. By permuting coordinates off we may
obtain examples of nonuniqueness for anyi.

EXAMPLE 5. Example below explains that dependence on squares is vital for
uniqueness. For the sake of simplicity we will restrict ourselves to the three-dimensional
case.

ConsiderQ = [0, 1] × [0, 1] × [0, 1] andQ′
= [0, 1] × [0, 1] × [0, 2], and thus

g(x, y, z) = (x, y, 2z). Define a mapping

f (x, y, z) = (x, yβ , 2zγ ),
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for positive numbersβ, γ to be found. Let the energy integrand be defined via the following
formula:

E(Df ) =

(
∂f1

∂x

)2

+

(
∂f2

∂y

)2

+

(
∂f3

∂z

)α

, 1 < α < 2,

for α close enough to 2 (see below). Then

−

∫
Q

E(Dg) = 2 + 2α and −

∫
Q

E(Df ) = 1 +
β2

2β − 1
+

2αγ α

α(γ − 1) + 1
.

In order to show the loss of uniqueness we need to findβ 6= 1,1/2, γ 6= 1 andα such that
the above integral mean values are equal, i.e.

2 + 2α
= 1 +

β2

2β − 1
+

2αγ α

α(γ − 1) + 1
.

Forγ = 2 the last equation reduces to

(∗) h(α) := 1 + 2α
−

22α

α + 1
=

β2

2β − 1
.

As 1 < α < 2, h(1) = 1, h(2) = −1/3. Using the intermediate value theorem we solve
the equation(∗) for 1 < α < 2.

For instance, to obtainh(α) = (1 −
√

2)/2 we takeβ = 1 − 1/
√

2. The mapping
f (x, y, z) = (x, y1−1/

√
2, 2z2) has the same energy asg.

7. OPEN PROBLEMS

To proceed further we will consider a functionΨ similar to one considered in Corollary 3
but with one distinction; namely, not depending explicitly on the Jacobian determinant
of f :

E(Df (x)) = Ψ (K1(x, f ), . . . , Kn−1(x, f )).

Conspicuously, this energy also satisfies the statement of Theorem 2.
We conveniently normalizeΨ as follows:

Ψ (1, . . . , 1) = 1.

Notice thatE has the following properties:

(1) E(A) = 1 for any conformal matrixA, that is, a multiple of an orthogonal matrix
having positive determinant (see e.g. [5] for details concerning conformal matrices).
The same property is shared by the distortion functions defined in Section 3.

(2) E(A) is 0-homogeneous, i.e.E(λA) = E(A) for anyλ > 0. Moreover,E is invariant
with respect to a conformal change of variables; preciselyE(UAV ) = E for conformal
matricesU andV. This follows from the same property for distortion functions and
the normalization we imposed onΨ .

(3) E(A) is polyconvex, just like the basic distortion functionsK1, . . . , Kn−1.
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These properties justify calling

K(f ) = Ψ (K1f, . . . , Kn−1f )

a generalized distortion function. A natural question arises as to whether the conditions
(1)–(3) are enough forE to become a generalized distortion function. We rephrase this
question as a conjecture.

CONJECTURE1. Let a functionE : Rn×n
→ [1, ∞] be strictly convex and satisfy the

conditions:

(1) E(A) = 1 ⇔ A is a conformal matrix, i.e.A ∈ λO(n) for someλ > 0.
(2) E(λO · A) = E(A · λO) = E(A) for anyλ > 0 andO ∈ O(n) (i.e.E is conformally

invariant in the domain and range ofA).
(3) E is polyconvex.

Does there exist a convex functionΨ which is non-decreasing with respect to each variable
such that

E(A) = Ψ (K1(A), . . . , Kn−1(A)) ?

The affirmative answer to this conjecture would provide us with a large class of
distortion functions and in this way we would gain a deeper insight into the geometric
function theory.

Another interesting question concerns the relations between the Grötzsch property and
quasiconvexity and rank-one convexity:

Assume that a functional has the Grötzsch property. Does it imply other convexity
properties?

We will state the problem in an abstract setting. LetF be a mapping family consisting
of homeomorphisms between rectangular boxesQ andQ′ in Rn. We assume the mappings
in F possess suitable degree of integrability of derivatives in order to be able to speak of
their energy. Denote byA = {Df : f ∈ F } the family of the Jacobian matrices ofF .

Let E : A ⊂ Rn×n
→ [1, ∞) satisfy conditions (1) and (2) of Conjecture 1, and

assume it has the Grötzsch property.

Under what additional assumptions imposed onE is this energy integrand
quasiconvex (rank-one convex)?
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[1] L. V. A HLFORS, Zur Theorie derÜberlagerungsfl̈achen, Acta Math. 65 (1935), 157–194.
[2] L. V. A HLFORS, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, NJ, 1966.
[3] K. A STALA - T. IWANIEC - G. MARTIN - J. ONNINEN, Extremal mappings of finite distortion,

Proc. London Math. Soc. (3) 91 (2005), 655–702.
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