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ABSTRACT. — An extension of the @rtzsch problem to higher dimensions is considered. The problem is
formulated and solved for a subclass of polyconvex energy integrals and counterexamples in the general case are
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1. INTRODUCTION

The purpose of this paper is to extend thedtasch problem in the plane to higher
dimensions (see below orl[2] for formulation of the problem). This generalization is
obtained for a wide class of polyconvex energy integrals under certain conditions imposed
on them. The motivation for our work comes from recent developments in the theory of
mappings with integrable distortion|[3]—a promising, dynamically growing branch of the
calculus of variations.

The paper is organized as follows. In Section 2 we briefly recall the classical planar
Grotzsch problem of finding a nearly conformal map between two rectangles. This
classical framework employs the supremum norm of the distortion function.

Section 3 features new distortion functiongR.

Section 4 is an epitomized survey of some of the recent developments in the theory of
extremal problems for mappings with integrable distortion. A definition of th&ZSch
property is given. Roughly speaking, an energy integral has tkéz&h property if its
minimum among admissible mappings is attained at a linear one. This property is very
much reminiscent of quasiconvexity, introduced by C. B. Morrey in 1952, [8].

Section 5 deals with the notion of polyconvex functions; some basic properties are
listed.

The purpose of Section 6 is to formulate and prove the main result of the paper,
Theorem 3 in Section 6.2. This is arranged in a chain of auxiliary theorems, corollaries
and technical details. It is shown that a large class of polyconvex functionals have the
Grotzsch property. However, we give several counterexamples to an analogous theorem in
a more general setting.

Section 7 is devoted to formulation and explanation of some open problems. We
raise a conjecture about the most general form of distortion functions. Also we pose a
guestion concerning relations between thét@sch property, quasiconvexity and rank-one
convexity.
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2. GROTZSCH PROBLEM IN THE PLANE

This introductory section is based on Ahlfors’ book [2], so the interested reader should
consult this excellent source for a more detailed exposition of the subject.
The following problem often appears in the course of Complex Analysis.

Consider two rectangleR and R’ in the plane. When does there exist a conformal
mapping ofR onto R’ which takes vertices to vertices?

A necessary and sufficient condition turns out to be that the rectangles are similar.
Moreover, the similarity map is the only such conformal equivalence bet&esmd R,
modulo orthogonal automorphisms of the rectangles.

In 1928 H. Gbtzsch [4] asked about more general homeomorphism (not necessarily
conformal) between two given rectangles which is nearly conformal. This led him to the
notion of quasiconformality; this name was coined by Ahlfors in 1935 [1]. It is also
worth mentioning the pioneering work of Teicliiter, 1937 [9], where this subject was
ingeniously explored. In order to be more precise we have to specify what it means for a
mapping to be nearly conformal. This is done via the concept of the distortion function.

DEFINITION 1. Let f be a sense preserving homeomorphism between two regi®?s in
having partial derivatives defined almost everywhere. The following expression is called
thedistortion functionof f:

_ A
= >
[fz] = | fz]
Under suitable regularity assumptions the mappifigs conformal if and only itDy = 1
for almost all points in the domain of.

In the classical setting the mappirfds considerediearly conformaif it minimizes the
supremum norm oD, over all sense preserving mappingbetween given two regions.
Recall that in the case of the @esch problem the minimizer turns out to be an affine map
(2} Theorem 1, p. 8]).

3. DISTORTION FUNCTIONS AND EXTREMAL MAPPINGS

In higher dimensions we may measure the deviation from conformality in many different
ways. To this effect, we introduce variodistortion functions

DEFINITION 2. Consider a matrixA € R"*" with positive determinant. Denote by
AL =1, o,

any(’;) X (’]) matrix whose entries aiiex ! subdeterminants of. The following expressions
will serve as building blocks distortion functionsdefined on matrices (with positive
determinant):

”Alxl”n/(n—l)

I=1,...,n—1
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REMARK 1. In what follows we will apply these formulas to the Jacobian matrix of an
orientation preserving mapping Accordingly, we denote them by

|0 f (D
JCx, 7D

Kif =Ki(x, f) = Ki(Df (x)) = , I1=1...,n—-1
This formula is well defined at the points where the differentigl(x) exists and has
positive determinant.

Let us point out that the distortion functions are here understood in a little bit more
general fashion than usually; that is, the symhbol || can be any norm iR (1)* ().
However, in what follows we will only consider the Hilbert—Schmidt norm of matrices
(for the definition and motivation of such norm sge [3, Theorems 6.2[*_-}3.6])

REMARK 2. For further properties of distortion functions we refer[tb [5, Section 6.4].
Recently ([3], [6], [7]) there has been an increasing interest and substantial progress made
in the theory of extremal quasiconformal mappings. In this new development the proximity
to conformal mappings is measured by means of integral averages rather than of supremum
norm.

4. A BRIEF SURVEY OF RECENT RESULTS

Following the notation fron1 3] we consider the minimization problem
4.1 min ][ K;(x, f)dx,
feZ JQ

where.Z consists of the homeomorphisnfs: Q — Q' of Sobolev cIaszlo’é’(Q, Q"H,
p > I, with integrable distortion and positive Jacobian determinant. ieesnd Q' are
rectangular boxes,

Q=[0,a1] x---x[0,a,] CR", Q =[0,a]] x---x[0,qa,] CR"

We will also assume—in analogy to the originald®&sch problem—thaf maps(n — 1)-
dimensional faces dp into corresponding faces &F . This implies thatf also maps every

[-dimensional facel, = 0,1, ...,n — 1, of Q into the correspondingrdimensional face
of Q.
The simplest example of a mapping.4a is the linear transformation
a/
4.2) g(x) = (A1x1, ..., Anxp)  With Ap = —£.
ay

The following result has recently been proveh [3].

* LetA e R"*" pe a matrix. Here the Hilbert—Schmidt norm.fis defined as follows:
1
IAIZ = ~traT A).

Usually the Hilbert—Schmidt norm is defined without the factgu,lbut we introduce it to get simpler formulas
and to normalize the Hilbert—Schmidt norm of the identity matrix.
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THEOREM1. Foreachl =1,...,n — 1the minimization problerfd.]) has exactly one
solution, namely the linear map

REMARK 3. From now on we are going to consider more general energy integrals, so the
definition of the class of admissible mappings has to be modified accordingly. First of all
the mappings i have to possess sufficient degree of integrability of derivatives in order
to speak of their energy.

We shall take on stage rather general energy integrals, of the form

E(f) = ][ E(Df(x))dx for f € Z.
Q

HereE : R™" — [0, 0c0) is a given stored energy integrand whose regularity will be
specified later on.

DEFINITION 3. We say that the energy integral has theGrotzsch propertyif its
minimum value is assumed at the linear transformagfg).

5. POLYCONVEX, QUASICONVEX AND RANK-ONE CONVEX FUNCTIONS

One of the main goals of this paper is to investigate th&tzach problem for a wide class
of energy integrals, a subclass of the so called polyconvex energy integrals.

For a matrixA € R"™*" we denote byA" the list of all/ x / minors of A with [ =
1,...,n. The order in this list is immaterial for the subsequent discussion as long as it is
fixed once for all. We shall view this list as a pointRf ™, where

n 2 on
(5.1) a(n):Z(’:> =(n)—1.
i=1

A matrix function¥ = W (A) is polyconvef it can be expressed as a convex function of
the minors ofA; that is,

W (A) = M(A¥) for some convex\ : R™ — R,
More precisely:

DEFINITION 4. A function¥ : U c R"™" — R is said to bepolyconvexif there is a
measurable mapA’ : U — R?™ (a subgradient of\M) such that

W(A)—W¥(B) > (M'(B), A" — BY) forall A, B € U.
The notationy , ) stands for the usual inner product & ™.

Polyconvex functions are a special case of null-Lagrangians, one of the fundamental
notions in the calculus of variations.
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DEerINITION 5. Afunction® : R™" — R is said to be anull-Lagrangiarif it is a linear
function of minors, meaning that
®(X) = (C, XF)

forall X € R™” and some_ € R°™,

One significant feature of polyconvex functions is that all distortion functinaith
[ =1,...,n—1 are polyconvex on the set of matrices with positive determinant|(see [5,
8.8]); also convex functions oR"*"* are polyconvex, since the entriesiRt*" are none
other than the X 1 minors.

In Section 7 we will raise the question of relations between energy functionals with the

Grotzsch property and quasiconvex and rank-one convex functionals, therefore we recall
these concepts now.

DEFINITION 6. LetU < R™*" be open. A functioft : U ¢ R"*" — R is said to
be quasiconvexf for every matrixA € U c R"*" and for every® € C&(R", R™) with
sufficiently small derivatives, we have

/ (E(A + D®) — E(A)) > 0.
Rn

A necessary condition for a function to be quasiconvex is rank-one convexity.

DEFINITION 7. A functionE : U ¢ R™" — R is said to berank-one convexf for
every matrixA € U and every, b € R" the function

t— E(A+ta®b) isconvex

6. RESULTS

We are now ready to formulate numerous generalizations of Theorem 1 of Section 4. We
will do it by gradually expanding the class of energy integrals with th&%sch property
(Definition 3).

First, we state an auxiliary observation. If we add to the definition of the clagise
assumption thap > n (cf. Remark 3) then

(%) ][ J(x, fdx = ][ J(x,g)dx
Q Q

for any mappingf € .% andg an affine map (in fact, for any two mappings fraf). This
is an immediate consequence of the definitioaf

REMARK 4. From now on we will use exchangeably the following notations for the
Jacobian determinanty = J(x, f).

LEmMMA 1. The following inequality holds for mappings and ¢ as above and =
1,....n—1:

]{@Kf‘”/"(x,fwz’/”(x,f)dx > éK?‘”/”(x,ng’/"(x,g)dx.

Equality occurs if and only if = g.
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PROOF Let us recall that

KP4 @, 12, £) = 107 F o))l
By Theorem 7.5 in[[3] we have the so-callgd-estimate

Ix1 Ix1 m\ Y2
1D ) = ]([QHD g dx = [(1) > (A,-l---xi,)}

1<iy<--<ij<n
< ]é 1D £ () dx,

where); are the stretching factors as in the definition of the linear mappif8ection
4). Since|| D'*!g(x)|| is actually independent of, with the aid of Holder’s inequality, we
easily deduce th&”-estimate as well, fop > 1:

g = (f o) <[ (") Do Cayd)? "
Q g - Q g - l 1 1

1<iy<--<ij<n
p
< (][ 1D ()l dx) < ][ 1D £ (0)|IP dx.
Q Q
Taking p = 2 gives the lemma.

The uniqueness part of Lemma 1 follows in much the same way a5k in [3, Theorem 7.6]
and is therefore omitted. O

We are now in a position to formulate and prove:

THEOREM2. Let¥ : [1,00) — [1, o0) be a strictly increasing convex function. Then
the statement of Theoretrholds for the energy integrals of the form

E(Df(x) =¥ Ki(x, f)), I=1...,n—-1,
for f e £#.

REMARK 5. In this paper the terntonvex functionwill always meanconvex and
differentiable function

PROOFE Fix [. Theorem 7.6 of [3] provides us with an explicit formula & (x, g);
namely,KK; is a constant function given by

—1
K (x, g) = ()Ll s )\n)l/(n_l) |:<,Z> Z ()Lil tee )Liz)z

1<iy<--<ij<n

)

]n/(ZnZI)

wherej; are the stretching factors as in the definitiorgSection 4).
We emphasize once again that ttiedistortion ofg does not depend on a point in the
domain@. This observation allows us to write

W (K (x, g)) = ]{QMK,(x,g))dx.
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Hence

lI/<][ Ki(x, g) dx) = ][ U (Ky(x, g))dx.
Q Q
Therefore, for eaclf € .%#, we obtain

fWKMJ»MzW(f&@JMQ
Q Q

> lll(][ ]Kl(x,g)dx> = ][ Y (Ki(x, g))dx.
Q Q

Here we have applied the monotonicity ¥f(x), Theorem 1 and Jensen’s inequality for
convex functions. Obviously, this computation works on the assumption of integrability of
K;(x, f) in the definition of the class”.

As ¥ is increasing, the last inequality becomes an equality when

f&WﬂM=f&w@m
Q Q

which in turn implies thaif = g [3, Theorem 7.6]. O

Let us emphasize that the uniqueness statements below follow by the same type of
reasoning as we just presented.
As an immediate corollary we obtain the following result.

COROLLARY 1. The statement of Theorerholds for
E(Df) =¥ Kaf) + - + ¥ (Ky—1/) + ¥ (Jy),
for ¥ as above and alf € #.
PrROOF We apply linearity of the integral and Theorem 2 to each term of the sum

A comment on the regularity of is needed. In the formulation of the minimization
problem forK; (see formula (4.1) in Section 4) we assume that [ (Remark 3). In
Corollary 1 we use all distortion functiords;,/ = 1,...,n — 1, hence we requirg >
n— 1.

In addition we need integrability of the Jacobian determinant. This validates the
assumption thaf e Wlé’cp((@, Q) forall p > n.

In the same fashion we may prove the following.

COROLLARY 2. The statement of Theorem 2 holds for
EMDf) =¥1Kif) + -+ ¥ 1K1 f) + ¥ (Jy),
where eachV;,i =1, ..., n, satisfies the assumptions of Theo2zm

Another corollary is a consequence of the several variable variant of Jensen’s
inequality.



170 T. ADAMOWICZ

COROLLARY 3. The statement of Theorezrholds for
E(Df) =W (Kaf, ..., Ku-af, Jp).

Here the function? is strictly convex and increasing with respect to each of thedirstl
variables (that is, with the other variables fixed). The regularity assumptioi anthe
same as in Corollarie¢ and 2.

PrRoOF We will sketch only the proof of uniqueness, the rest is straightforward from the
variant of Jensen’s inequality and previous discussion. The details are the same as in the
proof of Theorem 2, and are therefore omitted.

Analytic formulation of convexity ofV' reads as

U(F)—W¥(G) > (V¥(G), F — G) foranyvectorsF, G in R".

Set
G:(Klgv-"sKH—lgng)9 Fz(Klfvan—lf»]f)

Passing to the integral averages we have

][W(m— ][ W<G)28—W<G)][(F1—Gl>+~-+
Q Q dx1 Jo 9

v
© § (£, -G =0
Xn Q
The reader may observe that all terms on the right hand side are nonnegative, by Theorem 1
and monotonicity ofs with respect to each variable.
Now assume that the integral averages on the left hand side are equal, to obtain

][Kif=][Kig, i=1,...,n—1
Q Q

Also note that the last term vanishes becausgpfUniqueness in Theorem 1 completes
the proof. O

This corollary suggests that we should look for a similar result wihenconvex in the
minors. We are going to prove that under certain condition dhe Gibtzsch property is
true for a subclass of polyconvex functionals.

Our first goal is to find algebraic relations between two vectors:

(Kif,Kaof,...,Ku_1f, Jp) €R" and (Df, DP2f,..., D" f) e R°™.

Let us recall thaD'*! f (x) stands for an ordered setio I minors of the Jacobian matrix,
and in particulaD™*" f = detDf = J;.

The dimension oR? ™ can be explicitly computed (see form5.1)).

The definition ofK; implies that

2/n,2—2 2 /np,2—21/r

PR IR IR = (DI ID IR TR,
The right hand side consists of the squares of the Hilbert—Schmidt norms of the matrices
of minors. Each| D' f||2,1 = 1, ..., n, is the arithmetic average of the squares of the
I x I minors. We are going to relate this vector f, the list of all minors.
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6.1. The relation

Let us introduce the squaring operatiop? : R°™ — R defined for vectors =
V1, ..., Vo) by the rule()? := V2, .. ., vg(n)>.
Thus for D* £ (x) our formula reads

[D* f(0)]? = (D*f)]5. ... [D*FO)I2 )

Next we compose the squaring operation with a linear mtap R°® — R”, whose
matrix representation is built of 0 and 1 in the following way:
@ e’ MmO’
—_—— —_—— —~ =

1...1
1...1 0

M(P) =

1

The composition gives us a mappidgo (-)2, which takesD?! f into the vector of the
squares of the Hilbert—-Schmidt norms of tha-cofactor matricesD!>! f, with I =
1,....n,

(IDFIZNDZ2 I, D™ F11P).

6.2. The main theorem

THEOREM3. Let an energy functional be defined on the set of mappjhgs.# by the
rule

E(f) = ]é E(Df (x)) dx.

As for the integrand we assume that there exists a strictly convex and increasing (with
respect to the first — 1 variables) functiont : R" — R such that

E(A) = E(®(AH)?).
Thend& assumes its minimal value exactly at the linear mapging
REMARK 6. Notice that the integrand
E=Eo®o()2: R 5 R

is a convex function of minors of the matri2f, hence is polyconvex. To see this, let us
observe that each coordinate function(of is convex. Obviously the composition with
the linear mappingp does not change convexity. These facts together with monotonicity
of E in each variable (when all other variables are held fixed) imply, after lengthy though
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elementary computation, thitis polyconvex. We are now in a position to complete the
argument for Theorem 3.

PROOF OFTHEOREM 3. We have

][ E(Df (x)) dx ][ E@ P f)?)
Q Q

n £ 2 g2 B o2
E(é[ebw . ][[QD(D et ][[qb(D £) 1n>

E(][ Jf?/nKi—Z/nf"u’f J2-2n Z/nf ][ Jf)

Q

> B(f a2 f P 22)
Q Q Q

(here we use Lemma 1 and the comment before Remark 4)

= BT, 3K g, T2

]{QE(JZ/n K22/ ’.”,JgZ—Z/nKi/nl .. 2)

v

- ][ E(®(D'g)?) = ][ E(Dg).
Q Q

All inequalities become equalities fgf = g. This is due to the fact that all differential
expressions above which contgirare constant.

A similar analysis to that in Corollary 3 along with Lemma 1 results in the uniqueness
statement. O

REMARK 7. It is well known that convexity implies polyconvexity. Let us provide the

reader with an example of a polyconvex function which is not convex and still satisfies the

hypothesis and assertion of Theorem 3. This emphasizes the novelty of our result.
Considem > 2, thuso (n) = ( ) — 1. The integrand in question takes the form

E(Df) = [DFfli+ -+ [D*f12 () = [D*fLe+ - + [D* f12 -1 + IF-

This function, being convex in the minors, is polyconvex. Howeilés,not convex, largely
because determinant is not a convex function of the matrix. Nonetheless, taking

E(xlw-~,xn)=)€1+'~~+xn

we find that Theorem 3 remains valid.

6.2.1. Examples of energies with the @zsch property. In this subsection we discuss
some examples of classical energy functionals which also share thesGn property.

ExAMPLE 1. An interesting energy functional arises from considering expressions of

type
f(A) = |A|? + h(detA), p > 2, h convex.
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As f(A) is a sum of two convex functions we immediately see from Theorem 3ftlgt
a function with the Gitzsch property.

EXAMPLE 2. Letus take on stage the functional
F(A) = AAIP +|AIPK1(A)Y™"  for p > nand for allA € R"™*",

wherei > 0. It is worth mentioning that its two-dimensional analog is the subject of
intensive studies in harmonic analysis, probability theory, geometric function theory and
calculus of variations.

Conspicuously, the first term is a convex function. To see that so is the second, we
invoke Lemma 8.8.2 ir |5]: a functiarf /y? of variablesy, y € (0, oo) is convex provided
thata > b+ 1 > 1. Apply this fact to

x=|Al, y=Ki(A), a=p, b=n-1

to obtain convexity, completing the argument tifaghares the @tzsch property.

6.2.2. Examples of nonuniqguenesdn this section we are going to address the following
naturally arising question:

Does Theorem 3 hold for all polyconvex functions?

Unfortunately, the answer is no. Below we give examples of energy functionals without
the unigueness property.

REMARK 8. The uniqueness is the real essence of the matter. To see it recall the
definition of quasiconvexity (Definition 6, Section 5). It says that affine transformations are
minimizers ofE among mappings with the same affine boundary values; whereas in our
case we do not impose boundary values and therefore the uniqueness property is delicate
and difficult to prove.

ExamPLE 3. We start with a polyconvex function (in fact linear function of minors,
hence a null-Lagrangian) which does not enjoy the uniqueness property. We construct a
nonlinear mapping which belongs # and has the same energy as the affine mapging
Let

Q=1[0,1]x[0,1] x[0,1] and Q =[0,1] x [0, 1] x [0, 2]

be rectangles iiR3. Theng(x, y, z) = (x, y, 2z) is the unique affine map in the famils.
We then consider the polynomial map defined by

flx,y,2) = (x%,y% 22).

It is easy to verify thatf lies in .%. To this end we see that is a homeomorphism and
it mapsQ onto @’ so that the faces d) are mapped into the corresponding face§)of
Obviously f belongs tdwﬁ;é’((@, Q) forall p > 2.

Asn = 3,0(3) = 19. Take

E(Df) = [D*fl1+--- +[D* fl1o.
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This is a sum of all minors of the Jacobian matrix. IndisputdB(ypf) is polyconvex (the
inequality in Definition 4 is satisfied trivially, in fact it becomes an equality), actually a
null-Lagrangian. A straightforward calculation shows that

Q
and also
/ E(Df) = / (24 6x + 6y +12xy)dxdydz = 11,
Q Q

so the uniqueness is lost (cf. Theorem 1).

REMARK 9. This counterexample may be easily generalized to any dimensio8 by
taking the rectangles

Q=[0,1]x---x[0,1] and Q =[0,1] x --- x [0, 1] x[0, 2]

n n—1

and the mappings

f(-xlv L] xl’l) = (-sz_v LR ) x;gf]_» an)3 g(-xla LR ] xn) = (xlv AR ] xnfls an)

Elementary calculation reveals that
/ E(Df) = / E(Dg)=3-2""1_—-1.
Q Q

The same holds for
fx1, ..., x) = (xi‘l,...,xnai_ll,ZX,,), whereq; > 1,i=1,...,n— 1

EXAMPLE 4. The next example shows that the energy functional has to depend on all
squares of x 1 minors, otherwise uniqueness is lost.

ConsideQ = Q' =[0, 1] x---x [0, 1] ¢ R", and sog = Id. Define f (x1, ..., x,) =
(x1,...,xi2,...,x,,) € . Let now

n afk 2
E = -— .
(Df)y =Y ( (,m)
k=1
ki
Then the mappingg andg have the same energy. By permuting coordinates vk may
obtain examples of nonuniqueness for any

ExampLE 5. Example below explains that dependence on squares is vital for
unigueness. For the sake of simplicity we will restrict ourselves to the three-dimensional
case.

ConsiderQ = [0, 1] x [0,1] x [0,1]andQ" = [0, 1] x [0, 1] x [0, 2], and thus
g(x,y,2) = (x,y,27). Define a mapping

fx,y,2) = (x,yP,227),
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for positive numberg, y to be found. Let the energy integrand be defined via the following
formula: 5 X
0 d af3\“
Eof) = (P2) 4 (22) 4 (B), 1<a<2
0x ay 9z
for a close enough to 2 (see below). Then

’32 N 2047/05
286—1 a(y—1+1

][E(Dg)=2+2“ and ][IE(Df)=1+
Q Q

In order to show the loss of uniqueness we need toginél1,1/2, y # 1 anda such that
the above integral mean values are equal, i.e.
/32 2ayot

2+2* =1 .
+ +2,3—1+a(y—1)+1

Fory = 2 the last equation reduces to

22(1 ,32
hia) :=1+2% — = .
(*) (o) + a1l 251
Asl<a < 2,h(1) =1,h(2 = —1/3. Using the intermediate value theorem we solve

the equation(x) for1 < o < 2.
For instance, to obtaih(a) = (1 —+/2)/2 we takef = 1 — 1/+/2. The mapping
fx,y,2) = (x, yI"Y¥2 2;2) has the same energy gs

7. OPEN PROBLEMS

To proceed further we will consider a functi@nsimilar to one considered in Corollary 3
but with one distinction; namely, not depending explicitly on the Jacobian determinant
of f:

E(Df(x)) =¥ Kilx, f), ..., Kp_1(x, f)).

Conspicuously, this energy also satisfies the statement of Theorem 2.
We conveniently normaliz#& as follows:

v, ..., )=1

Notice thatE has the following properties:

(1) E(A) = 1 for any conformal matrix4, that is, a multiple of an orthogonal matrix
having positive determinant (see eld. [5] for details concerning conformal matrices).
The same property is shared by the distortion functions defined in Section 3.

(2) E(A) is 0-homogeneous, i.&(LA) = E(A) for anyA > 0. Moreover[E is invariant
with respect to a conformal change of variables; preciBelyAV) = E for conformal
matricesU and V. This follows from the same property for distortion functions and
the normalization we imposed ah.

(3) E(A) is polyconvex, just like the basic distortion functidls, . . ., K, _1.
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These properties justify calling

K =¥ &Eaf,....Kp1f)

a generalized distortion functiorA natural question arises as to whether the conditions
(1)—(3) are enough foE to become a generalized distortion function. We rephrase this
question as a conjecture.

CONJECTUREL. Let a functionE : R**" — [1, oo] be strictly convex and satisfy the
conditions:

(1) E(A) =1« Ais aconformal matrix, i.eA € 10 (n) for somex > 0.

(2) ELO-A) =E(A-10) =E(A) foranyxr > 0and O € O(n) (i.e. E is conformally
invariant in the domain and range o).

(3) E is polyconvex.

Does there exist a convex functignwhich is non-decreasing with respect to each variable
such that
E(A) = ¥ (Ki1(A), ..., Ky—1(A)?

The affirmative answer to this conjecture would provide us with a large class of
distortion functions and in this way we would gain a deeper insight into the geometric
function theory.

Another interesting question concerns the relations between titessh property and
quasiconvexity and rank-one convexity:

Assume that a functional has thed®zsch property. Does it imply other convexity
properties?

We will state the problem in an abstract setting. Zebe a mapping family consisting
of homeomorphisms between rectangular bd@esdQ’ in R". We assume the mappings
in .# possess suitable degree of integrability of derivatives in order to be able to speak of
their energy. Denote by = {Df : f € %} the family of the Jacobian matrices &1.

LetE : & Cc R"™™" — [1, 0c0) satisfy conditions (1) and (2) of Conjecture 1, and
assume it has the Gtzsch property.

Under what additional assumptions imposed Bnis this energy integrand
guasiconvex (rank-one convéx)
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