Rend. Lincei Mat. Appl. 18 (2007), 179-208

Probability theory. — Modified log-Sobolev inequalities and isoperimetsy ALEXAN -
DER V. KOLESNIKOV, communicated by G. Da Prato on 9 February 2007.

ABSTRACT. — We find sufficient conditions for a probability measuréo satisfy an inequality of the type

2 12 )d 2*(@>d 2,
/RdfF<f]Rdf2dM- MSC-/Rdfc il M+B/Rdf -

where F is concave and (a cost function) is convex. We show that under broad assumptionsaod F' the
above inequality holds if for some> 0 ande > 0 one has

/8 ¢<8c|:tF(l/t):|> dt < o0
0 Zyu()

whereZ,, is the isoperimetric function qf and® = (yF(y) — y)*. In the particular case when

Tu(0) = ke Y /1),

whereg is a concave function growing not faster than Ibg; 0, 1 < & < 2 andr < 1/2, we establish a family
of tight inequalities interpolating between tiieSobolev and modified inequalities of log-Sobolev type. A basic
example is given by convex measures satisfying certain integrability assumptions.
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1. INTRODUCTION

The celebratetbgarithmic Sobolev inequality

2
(1) Ent, f2:= /Rd f2|0g<f§—2d’u> dp <2C /Rd|Vf|2du,
R4

wherep = e~V dx is a probability measure, has numerous applications in probability
theory, mathematical physics, and geometry. It appeared first in the work of Gross [19],
where he establishefl](1) for the standard Gaussian measure. Gross discovefgd that (1)
implies hypercontractivity of the semigrouff generated by. = A — (VV, V).

Necessary and sufficient conditions fpf (1) have been intensively studied by many
authors (see [1]). It is well-known that for every probability measure satisfing (1) there
existse > 0 such that

) WP e L),

It has been shown by Wang [26] that this assumption is sufficient proyidedonvex, i.e.,
has the formu = ¢~V dx, whereV is a convex function (in the literature convex measures
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are also called log-concave). Wang's proof employs the associated diffusion semigroup.
Bobkov [€] gave another proof of this result by applying thekeipa—Leindler theorem and
isoperimetric inequalities. There exist non-convex measures satisfyjing (1). For example,
according to a result of Holley and Stroock fsatisfies[([L), every probability measure
e? - with a < ¢ < b satisfies the logarithmic Sobolev inequality with = ¢20=4)C.

Recall that[(IL) implies th@oincat inequality

2
©)) Var, f = Aéd fPdu— </];§¢1de> =< CfRd IVfPPdu.

The log-Sobolev inequality can be considered as a Pdiriyae inequality for the
L?log L-Orlicz norm. By using this observation and some classical results on Hardy's
inequality with weights, Bobkov and @ze [7] established necessary and sufficient
conditions for[(1) on the real line. Namely,= p dx satisfies|([L) if and only if

1 m-dx
SupF (x)'°g<%>/ o -

1 X odx
sup(l — F(x)) Iog(l_ F(x))/ ) <0

whereF (x) = u((—oo, x]) andm is the median ofx.

It is well-known that[(1) (as well as the classical Sobolev inequalities) is closely related
to the isoperimetric inequalities. For every Borelz R? we denote by: (A) the surface
measure of the boundafy:

Al — (A
M+(A) — ||_m M,
h—0 h
whereA" = {x : dist(x, A) < h} is theh-neighborhood ofd. It was proved by Ledoux
[23] that the isoperimetric inequality of the Gaussian type

(A > cp(@(u(A))

implies (3). Here

X

e_"z/z, d(x) :/ (s)ds.

—00

1
p(x) = N

Some sufficient conditions fof (1) can be obtained by perturbation methods. For
example, Carlen and Loss appliedlin][12] the log-Sobolev inequality

1
/leogfzdxs—zf IV f1? dx, /fzdx:l,
R4 e R4 R4

for Lebesgue measure. In particular, they proved that ¢~V dx satisfies) provided
that

1|VV|2 Lav 2y
- -z —Te
4 2

is bounded from below and satisfies[(B) (see alsol[3] arid [13]).
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It follows from (2) thatu has a very fast decay. However, many distributions exhibit
some weaker, yet useful properties. Below we consider the following generalizatipps of (1):

1) Thedefective log-Sobolev inequality

Ent, f2§2C/ |Vf|2d,u+B/ f2du.
Rd R4

2) TheF-Sobolev inequality

2 f? )d 5 2, 2,
L (e e

whereF is a concave function.
3) Themodified log-Sobolev inequality

(4) Ent, f2 < c/ f2c* (@) du
Rd |f]
for some convex : Rt — R*. Herec*(x) = sup,cgr+({x, y) —c(y).

Inequality of type 1) implies the hyperboundedness of the associated semigroups (see
[15]). A basic example for 2) and 3) is given by the following measure on the real line:

Mo = Zocei‘xla dx,

where 1< « < 2. It was proved in[16] that,, satisfies[(}#) with

2

al if x| < A
x” o < A,
5) W=caw=12
AZ‘“—+A22— if x| > A,
o o

for every A > 0. By the tensorization argument the result holds also in the
multidimensional case for the product mea:qur[é=l e (dx;) and the cost function

Cd.Aa(x) = Z;’zl ca.«(xi). On the other hand, by a result from [g], satisfies
[ stk oy~ ( [ £2an) o (1+ [ sau) < ¢ [ 19 2an

where Yo + 1/8 = 1. One can easily verify that; , = ca g.
The caser > 2 has been considered in [9]. In this case the measure

d
p— .|
W ="Zyd 1_[6 il dx;
i=1

onR¢ satisfies the inequality

©) Eng 1" = ¢ [ 10 11 du.
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Among other generalizations df|(1) let us mention an important result from [22] on
a family of inequalities interpolating between log-Sobolev and Poindéarl < o < 2,
1 < p < 2, then for every smootlf one has

2/p
/ fzdua—(f Ifl”dua> sc<2—p>2<1—1/a>f IV P dpa.
Re Re RA

Inequalities of this type were first proved by Becknerlih [5] for Gaussian measures. For
further development and connections with fi&Sobolev inequality, see|[3],/[4], and [27].
Inequality [4) is closely related to thealagrand transportation inequality

(7) Welp, f-n) <Ent, f,

where f - u is another probability measure afi. is the minimum of the Kantorovich
functional for the cost function (see [25] for details). In fact, under broad assumptions
onc, inequality [4) is stronger thafl](7). This was shown(in [24] for the case of quadratic
cost function. It was proved in[14] by the optimal transportation method[that (4) holds for
measures of the type = ¢~V dx, whereV satisfies

V(b) — V(a) > (VV(a),b —a) +aclb — a)

for somex > 0 and a proper choice of For recent progress in transportation inequalities,
including some exponential- and power-type estimates| sée[10],[[11],[[17],[18], [21], and
the references therein.

In this paper we obtain sufficient conditions which guarantee inequalities of the
following type:

(L) (1) )
® /RdfF<fRdf2dM du«SC/Rdfc - dM+B/Rdfdu,

whereF is concave and : Rt — RT is convex (Theore.l). This inequality unifies
the defective modified log-Sobolev inequalities andEk8obolev inequalities. Obviously,
the tight F-Sobolev inequality corresponds to the case |x|4, B = 0, and the modified
Sobolev inequality corresponds to the c&se- log, B = 0.

An important assumption oa which we use below (though not everywhere) is the
following:

(H) for anyk > 0 there isn(k) > 0 such that
clkx) <nlk)c(x), c*(kx) < n(k)c*(x).
Our estimate is based on the use of a special isoperimetric function

_ p(A)F(1/1(A))
Ip(r) = Ail/J\Pl, A

Here M, = {A : u(A) = u({x : |x| > r})}. Assume that (H) holds. The main result
(Theorenj 2.]1, Remafk 3.4) can be roughly formulated in the following way:

Integrability of @ (5c¢(1r)) for somes > 0, where® = (yF(y) — y)*, implies(8).
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Let us give some important examples of the functign In the case of a convex
measureu and F = log, the function/g(r) can be estimated for large valuesroby
Cr with someC > 0. This follows from an estimate obtained in [8] (see Lenim& 4.1). In
the case of an entropy function&l growing as log(x), T < 1, and under the additional
assumption that expx|*) € L(u), this result combined with Chebyshev's inequality
yields Ir(r) < Cri=1-7) (see Lemmé 4]2 for a precise result).

The integrability assumption can be rewritten in an even more elegant way if we
employ the classical isoperimetric functi@p of u defined by

9) (1) = inf wt(A).
ACRA : (A=t

Assume that satisfies (H). It turns out th&ft](8) holds for a broad clas# afndc if for
somes > 0, K > 1 one has

K tF(1/1)
(20) /0 (D<<Sc|: 7.0 :|> dt < oo

(see Theorern 2.3 and Remark]2.4).
Let us list our main assumptions on the entropy functibwhich will be used below.
A typical example is given by = log.

Al. Fis concave, increasing arfi(1) = 0.

A2. limy_oyF(y) =0, limy_ F(y) = oo.

A3. yF(y)isconvexon [01+ A] for someA > O.

A4. There existgp > 1 such thaty F’(y) is non-increasing andF’(y) < 1 on [yg, 00).

REMARK. Assumptions Al and A2 will be used throughout the paper. Assumptions A3
and A4 will be used for tight estimates.

In Section 3 we obtain sufficient conditions for the related tight inequalities. The case
of the F-inequality follows immediately from the main result (Theorlem 2.5) without any
further assumptions. In the case of modified log-Sobolev inequalities we restrict ourselves
to a special choice of a cost function. Namely, we consider for every Ixr < 2
the corresponding family of cost functiors ., given by [$). Under some additional
assumptions on the entropy, we prove a modificatiovﬂof (8), wy‘@refz du is replaced
by Var, f (Theorenj 3.6). In the proof we use techniques developed In [16].

Before we give the precise formulation of the main result of Sections 3 and 4, let
us briefly explain the relationships between the functiéhs:, andZ,, leading to tight
inequalities. We want to prove ([L0). It turns out that under assumptions Al—g&4euary
entropy functionF such thatF ~ AgT™, t < 1, satisfies

1/t
(11) D(x) < Fll+x) ~ <pl<[)%l} )

Assume, in addition, thaf, (t) > ktp'~/%(t) for some 1< « < 2. Now take a cost
functionc such that ~ B|x|?. We set
T

q=T_1+1/a.
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Then

tF(1/t) 1
¢<8C[ 7.0) ]) < F "1+ ¢e(6)F(1/1)),

where limy_,0e(§) = 0. Taking into account property A4, one can easily show that
F~Y1+¢F(1/1)) < ar~P for somep < 1 and sufficiently smak. Hence[(1p) holds.
We consider the generalized entropies defined by

f
(L) au.
gy SR (u(ﬂ) o

where
o(x) if0 <x < xo,
F(x)=11
i [T S SE R ey
T

¢ satisfies A1-Adr < 1 andxg is chosen in such a way thatxg) = 1.
Recall thatny = inf{r : u(f > t) < 1/2} is called themedianof f. Throughout the
paper we assume thathas convex support.

THEOREM1.1. Letg satisfyAl-A4 and letZ, satisfy

1 1—1/0[
Zu(t) = knp(?)

forsomek > 0,1 < o« < 2and alltr < 1/2. Then for ever(1 — 1/a) < t < 1lthere
existsC; > 0depending on, a, k, A2, A such that for every smootfi one has

2 12 2 V]
A;adf Ft(fw fzdu)d“ =G /Rdf CA’”’”“’”(W) an

In particular,
2

/Rd f2F2(11/a)<fRdJ}—2dM) du < Coa-1/a) /Rd IV f12dpu,
2 [ F? ) - <m>
/Raf"’(fwfzdu d“fclfwfc“ AG

Vv
=C /Rd fZCA,a/(a—l)<||TJ|C|) du.

In particular, the result holds ifx is convex and; : Rt — R is increasing such that
Jga € dp = 1 and for some > 0 one has

8(r)
(pl_l/a (eg(r)) z Cr.

Obviously, if u is convex,p = log and

(12) / M dp < 0o
R4
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for somee > 0, we obtain

Ent, % < Cl/ feraj@-n <m) dp.
R Lf]
In particular, we generalize Wang’s criterion for convex measures as well as the result
of [16]. Note that unlike([16] we deal directly with multidimensional distributions and
use a slightly different cost function fat > 2. We also apply the method developed in
Theoren{ 2] to establish the following result (Theofenj 4.4)ulée a convex measure
satisfying (1) for some > 1. Then

Ent, | f1# < c[fd IV 1P du + Var, |f|ﬂ/z]
R

This inequality is weaker thaf|(6) but unliKg (6) it is established for an arbitrary convex
measure.

During the preparation of the paper the author learned from Franck Barthe that
modified Sobolev inequalities for convex measures can be obtained by using the transfer
principle method (see [2]) and the results fram![16]. However, this requires proving first
inequalities on the real line by different methods. Another achievement in this direction
has been obtained by Nathael Golzan|[18], who proved a criterion for transportation
inequalities of Talagrand type for the real line. In particular, his result implies modified
Sobolev inequalities for convex measures on the real line, since they are known to be
equivalent to transportation inequalities in the log-concave case.

2. MAIN RESULT

Consider a probability measuge = pdx on R?. We assume throughout that :=
supfw) is convex. In addition, without loss of generality we assume that0 Set

B, ={x|x| <r}.

We denote byR(X) € (0, oo] the smallest number such th&it C Bg(x). Recall that for
every measurable mappirfy: X — Y the image measuner onY is defined by

nr(A) = p(fx : F(x) € A}

for every Borel setA C Y. For every non-negative functiofi we denote byf the
corresponding spherical rearrangement, i.e., the function of the faxn = g(|x|) such
thatg is increasing and 5
po ft=po fh

This can be rewritten as

pp=prog !
whereur = p o f~1andu, is the image ofx underx — |x|. For a probability measure
v onR™ set

F,(t) =v(0,7)) and G,u) ={infs: F,(s) > u}.



186 A. V. KOLESNIKOV

Theng has the form

(13) g =Gy, oFy,.

We denote byB¢ the complement oB, and byR, > 0 the number such that
u(xl < R)=t, Ri=R(X).

SinceX is convex and & X, R; is well-defined.
For everyF : RT — R we define the corresponding isoperimetric functign First
we set Fs)
S N
JF(S) = .
Zﬁ(s)

Equivalently,
sF(1/s)

Jr(s) = sup [ }
AR s L 1T (A)

Then we define
Ir(r) = Jr(1 = n(By)).
This is equivalent to

Ir(r) = sup n(A)F(1/1(A))

Sup Ty where My = (A p(A) =1 - u(B).

We follow the convention thatg (R(X)) = 0.
In what follows we consider a convex cost functionR*™ — R*. Let

c*(x) = sup({x, y) —c(y))-
yeR+t
We recall thatc is calledsuperlinearif lim ,_ » c(|x])/|x] = oo. In what follows, for
simplicity we setu(f?) = [pa f2dp.
THEOREM2.1. Letc : RT — R be a convex superlinear function such théd) = 0

and letF be a function oiR* satisfying assumptions1 andA2. LetK > 1. Assume that
for R = R(x_1)/k one has

(14) | oteotriaydn <o,

R

where

P(x) = S%p(m V)= YF) +y)=OFY) — " ®).
yeR+

Then there exisB, C > 0 such that for every smootfi the following estimates hold:

(15) / fZF(f—z) dp < 4/ fzc*(m) du + B/ f2dpu,
R4 Jra [2du = Jik [ f2ap [f] Rd

2
16 2 f—> - 2*<Lf|> Vi :
4o /RdfF(fRdfzdu anzc [ =mnie (2 ans svan s
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PROOF Let us fix some Lipschitz functiorf. Without loss of generality we may assume
thatf > & > 0. Setv := g - u, whereg = F(f?/ [ f?dp). By a well-known result from
measure theory one has

/Rdsz<fRdf2du> /fg"“ /fdv—/omv<f2<x>>z>dz
2/0 (/{x:fz(x)>t}gdu>dt.

We split this integral into the following two parts:

Ku(f?) oo
11=/ (/ gdu)dt, 12=/ (f gdu)dt.
0 {x: f2(x)>1} Ku(f2) \J{x: f2(x)>1}

The following proof will be divided into several steps.
STeP 1 (Estimation off;). We show that for somé€(K) > 0 one has

I, < C(K)Var, f.

This part is quite elementary. By the concavityfobne has

f2
F'(1 : —1).
§= ()<M(f2) )

Lo __1 / (2= u(f?) / o, dz)du
F'(1) — M(fz) {x: fe(x)>t} :

/ (f? = n(fH)ymin(f2, Ku(f?)du

Hence

u(fz)

. f (F2 = n(rAImin(2, Ku(f2) - n(fAdp.
T u(/?

The latter equals
1
w(f? Jipe<kpr2)

+(K -1 / (f2 = n(f?)dp.
f2>Kup(f2)}

(f2 = n(fH)%du

The first term can be estimated in the following way:
1

2 2\\2
— - d
D) {fzsku(fz)}(f u(f)N"du

(f2 = u(f)®%du + ——-[Var, f1?

2
= /{fstu(fZ)} (f u(fd
< AK +1) /Rd(f —u(f)2du+2Var, f

= (4K 4 1)+ 2) Var, f.
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Further we get

f (F2 - u(fP)dp < / (2 - n(fdp.
(f22Ku(f2) (f22Ku(f2)
One can easily check that
I+l < ff 1 = )]
on{f2> Ku(f?}. Hence
VK +
(17) / (f2 - u(f2) du < var, f
{f2=Ku(f2) g o VK — “

Finally, we obtain
I1 < [(4K +6) + (WK + D F'(1) Var, f.

STEP2. Here we estimaté by a quantity depending on the isoperimetric functign
Set

={x: f2(x) > t}.
By the concavity ofF one has

I = dud
2 /Ku(fz)/Rd (fRdedM> et
f2
A —————— )du|d
S/Kmﬂ)u( Z)[ (/A, w(Ar) fpa fzdll«) M:| t

o0 1
ANF d
= /KM(fZ)M( 2 (M(Az)> '

:/ n(x: f2(x) > l})F<

Ku(f?)

- )dl
p(x : f2(x) > 1})

Sincef is continuous and is convex, the function — (A,) is strictly decreasing on

[lnf F2(x), sup f2(x)].

xeX

Hence one can find a nondecreasing functiptts) such that
n(As) = /L(Brcfz(s))
andr2(0) = 0,72(s) = R(X) if s > supf?. Set

fu(x) = sup f(y).

{lx—y|=h}



MODIFIED LOG-SOBOLEV INEQUALITIES AND ISOPERIMETRY 189

By the definition oflz we have

00 - 0 APy (A
e[ npowtandis im [ g M g
Kﬂ(fz) h—0+ KM(/'Z) h

where{x € R? : f2(x) > 1} = {x € R? : f2(x) > 1}# = Al. Assume for a while that
s > Ip(re2(s)) is locally integrable and define

t
| s, 1= Kn(r?)

Ku(f?)
0, t < Kp(f?).

Z(t) =

Applying the formula

f (12 dpu = fo &' (1) u(Ar) dt,

which holds for every increasing such tha (0) = 0, we get

7 2y _ 7 2
L < lim / Mdu < 2/ Ip(rp2(fP)IFIIV fld .
h—0t JRI h (f2=Kpu(f2)

It remains to note that this estimate still holds eveiifr,2) is not locally integrable.
Indeed, approximatingr by Iy = Iy A N, we find in the same way as above that

| oot aar=2 1Y G2 (PDIFIIV Flde
Ku(f?) ’ {(f2=Ku(f?)} '

< 2/ IrGp2(fO)IF1 IV fldp.
{(f2=Ku(f?)}

We apply the monotone convergence theorem

o0

o0
L 5/ IF(V/'Z(t))M+(At)dt =|im/ Iév(rfz(t))u*(At)dt,
Ku(f? ' N Jku(f? '

and obtain the claim.

STEP3. We now estimate

/ 1512 (F2)1 £119 f 1 d.
{f2=Kun(f2)}

We complete the desired estimate by using the Young inequality. In this part rearrangement
techniques will be employed. Namely, in the estimate below we redang(fz)) by
Ir(rs2(f?) and take into account that2(/%(x)) = |x| on the setx : |V f (x)| # O}.

LetRs = {r : wo (f5~1(t) > 0} be the set of atoms of the measwre (f2)~1.
Note that|V f| = 0 almost everywhere ob = {x : f2(x) € Rs}. Hence by the Young
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inequality we find

(18 2 / IF(rp(f)If1IV fldu < 2 / fzc*(M) i
{fZZKH(fZ)} {fZZKI»L(fZ)} |f|

2| F2lc o Ir(ra(F2)] dp.
{f2=Ku(f?)INDe

Let Ox = {x: f2(x) > Ku(f?} N D°. One has
Tog = Iiy2 ku(r2y - Irs (f?)
and by the Young inequality

2 /o FPeUp(rp(f2)) du =2 /R [ SPloeeUr Gy (£7)) dp

1 12
= Eu(fz) /Rd[M(—fz)}[4Ich(IF(|rfz(f2)l))] du

1 2 f? 1 5 )
=< E/Rd f [F(M(f2)> - 1} dp+ Su(f )/quﬁ(MOKC(IF(rfz(f M) du.

Since f and f have the same laws considered as random variables on the probability space
(R4, 1), one has

/R | P@loge(r(rya(f2) du = fR @@l cUprp(f2)) du

whereOg = {x : f2(x) = Ku(fA)) N {x : f2(x) € RS). Letx € Ok. By the definition
of f we have

pdy 2 > 2@ = ndy 1 F20) > 20D,
Then for every such by the definition of-;> we have

(B ) =nly: f2() > FP0D = uly : Iyl > IxI).

¢
rfz(fz)

Indeed, otherwise there exist < r» such thatf (z) = f(x) for everyz with r < |z| < ra.
But this implies thap({y : f(y) = f(x)}) > 0. This contradicts the choice of Hence
rr2(f3)(x) = |x| on Og. Moreover, ifx € {f2 > Ku(f?)}, then by the Chebyshev
inequality 3 ~
WB) = u(B | o) < u(f? = Kn(fA) < 1/K.
rp2(f9)
Hencelx| = rp2(f2(x)) = Rix—1yk if x € {f2 = Ku(f?)}. Thus

Ok C {x: x| = Rik—1k}-

Hence

/R [P @l cUpGp(F2))du < @0 + / o @UeUr(xD)du =B <.

BR<K—1>/K
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Finally,

1 ) 12 1(f?) 2

| r3lF —1|du+ <D(410Kc(IF(rfz(f ) dp
R4 2

2 w(f?)
1 2 fz) B-1
SZ/Wf ((f?) i+ /f "

1 2 < 12 > / 2 *<|Vf|>
- F 2 —— |d
2 fRd ! w )M (22K u(f2) I i)

Combining all the inequalities obtained above, we (15).
The proof of [16) is similar and we just briefly describe the main difference. Instead of

(18) we use

and

2 / Ir G (F)IFIIV fldp
F2=Ku(f?) ‘

[V £
< C/ o 2 *(_)d
: /{f2>1<u(f2)}(f e If = ()l H

+c /O (f = (e o Trrra(fA)] de.
K
This follows from the Young inequality and the observation that

f?< (f — n(f)?

__k
WK — 1)2

on{f? > Ku(f?)}. Inthe same way as above we estimate the second term hyf\and
Jra F2F(f?/ Jga f?dp) dp, wheref = f — u(f). Finally, by ) one has

/RdfF(fRdfz )d“<4/ (e (|f—u<f)|>d“+Bvar"f'

The proof is complete. O

EXAMPLE 2.2. Assume that is a convex superlinear function satisfyi(ig). Letu be a
convex measure such thit, e*“") du < oo for somes > 0. Then for everk there exist

B, C > Osuch that
(29) Enps2<c [ f2 ('Vf')d B / f2du.
122K [ f2dp) | f]

PROOFE Let F = log. It will be shown below that SURR, liog(r)/r < oo for every
convexu (Lemmg4.1). The result then follows |mmed|ately from Theoferh 2.1.0
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THEOREM2.3. Letc : Rt — R* be a convex superlinear function such taéd) = O.
Assume thaF satisfies assumptiomsl-A2 and there existX > 1 such that

1K
(20) / q><4c[t§(l/”]) dt < oo
0 u(t)

Then inequalitieg15) and (1§) hold.

PROOF By the definition of/r one has

(L= n(B))F (1=5555)
Iu(l — u(B))

Ip(r) =
It suffices to show that
_ @ (4c o Ip(|x]) du < oo.
B5*<K—1)/K

The mappingR? > x — 1 — u(y : |y| < |x|) =t € [0, 1] transformsu into Lebesgue
measure on [01]. Hence the integrability ofb (4c(IF)) is equivalent to[(20) for some
e>0. ]

REMARK 2.4. Note that the constant 4 [n {14) ahd]|(20) yields the term

4 / f%*(Lf') du
(22K [ f2dup) [f]

in (I5). However, ifc satisfies (H), it is more convenient to assume that

1/K
/ ¢(8c|:tF(1/t)j|> dt < oo
0 Ly (1)
for somes > 0 andK > 1. Itis easy to check (just apply Theorems| 2.1 23B+0ec

with appropriates) that [1%), [(If) still hold (possibly with some other constant in place
of 4).

The following theorem is a direct corollary ¢f (16).

THEOREM2.5. Let F and u satisfy the assumptions of Theofgrd with ¢ = §|x|2 and
somed > 0. Then for every smootfi one has

2 f—z)d 24 V.
/RdfF<fRdf2du W= C [ VP aVer,

In particular, the result holds if assumptiodd—A2 are satisfied and there exigt > 1,
3 > Osuch that

UK 2
1) / ¢<3[IF(1/’)] )dt < .
0 Z,(1)
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EXAMPLE 2.6 (d = 1). Consider a probability measure on the real fine- e~V ® dt. In
the one-dimensional case the proof can be simplified. We omit the details and just briefly
explain the main ideas. Instead of using the coarea inequality one can apply the Newton—

Leibniz formula B

FG) = fm) + / F(s) ds,

m
wherem € R. It is convenient to take fom the median ofu. The use of the Newton—
Leibniz formula allows one to apply the simplified analog of the isoperimetric function
Z,. Let0<t < 1/2. Defineu(r) < m andv(t) > m as follows:

p((=o0, u(®)]) = n([v(r), 00) =1.

Then
jﬂ(t) = min{eV(“(’)), eV(”(’))}t.

One can get the following analog of Theorgm|2.5:
Let assumption81—A2 be satisfied and lek > 2 andé$ > 0 be such that

1/K 2
22) / qb(s[”f(lm] )dt<oo.
0 Z,@)

Then

2 12 ) /"2 _ B »
(23) /RfF<fRf2dM du=C [ 7Pt [ (= o

for someB, C > 0 and every smootlf.
If, in addition, 11 satisfies the Poincérinequality, then the ternfi, (f — fm)2du
can be estimated by’ fi, | f'|2du (see[9])and be omitted irf23):

2 f? > /"2
(24 [ (g )an = [ 17 2an

As an example consider the following measure on the line:

o= Zef|x||og(l+x2) dox.

It can be easily verified that as— oo one has
Ze~lsl10g(1+s)
p((—00, =s]) = u([s, 00)) ~ Tlog11s9)
Sincep™ ([, 00)) = Ze~s11090+5?) \ve get
Z,.(t) = C'tlog(log(1/1))

for someC’ and everyr < ¢ with some sufficiently smalkt. Let us choose a functiof
satisfying assumptions A1-A2 of Theorgm|2.1 such that

F(x) ~ log?(logx)
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for large values ok. In this case
P (y) ~ expleV”)
for largey. Hence for any sufficiently smadland allz € [0, 1/2] one has

;F(l/t)T)
D8 — < exp(log? (1/1)),
( [ (1) g™t/

wherep can be taken arbitrarily small. Since

1/2
/ exp(log? (1/1)) dt < oo
0

for p < 1, we obtain[(Z}4).

3. TIGHT ESTIMATES

In this section we establish sontight estimatesi.e., estimates whose right-hand sides
vanish on constant functions. The case of fiSobolev inequality has already been
considered in Theorefn 2.5. Unlike teSobolev inequality, the case of tight modified
log-Sobolev inequalities is more difficult. We use an idea from [16] and consider two
cases: of large and small entropy. The large entropy case follows immediately from our
main result. In the case of small entropy we reduce the problem tB-hequality.

In what follows we assume that there exisgs> 0 such that for every smootfi one
has

(25) L =mpn<ia [ 195

Rd Rd
Since fpa (f — [ga fdw)2dp < [ga(f — mp)?dp, this inequality is stronger than the
classicalL?-Poincaé inequality.

DEFINITION 3.1. We say that a probability measusesatisfies th&€heeger isoperimetric
inequalityif there exists.1 > 0 such that for every Borel set one has

(26) min(w(A), 1 — u(A)) < aap™ (A).

Inequality ) is equivalent to the following!-Poincaé-type inequality:

(27) fRdf—/Rdfdu

It was shown in[8] thaf (26) implie§ (25). It is known that every convex measure satisfies
(27) with somers (see[20] and[8]).
We start this section with several lemmas.

du < M/ IV fldp.
Rd

LEMMA 3.2. Let F satisfy assumptiond1, A2 and A4. Then for everyy € (0, 1/2],
there existd” depending o and yp such that for any > T one has

DBF(y) < y?.
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PROOF.  SinceF is increasing and ligL, o, F(y) = oo, the supremum ofy — y F(y) +y
is attained at some*. Moreover, there existgy such thaty* > yg if x > xg. In this case
one has

(28) x=FQy)+y'F(H-1

and by the properties df,
F(y") —1<x < F(y").

Consequentlyy* < F~1(1 + x) and by[(28) we find

®(x) = xy* — y*F(y") + y* = ()°F'(3").
Hence for any > xp one has
(29) o(x) <y* < FYl+x).

Next, for anyy > yp, we have

)7
F(y®) — F(y?) = 23[ sP1F (s%) ds.
Yo

Taking into account that?® < s, by A4 we get

- ———ds =25(F(y) — F(y0)).

y 28F/ 28 Y gF’
wm%/ SEs)
¥ N

F(y%) - F2) =25 /

Yo 0

Finally,
1 1
SF(y) < 8F(yo) — §F<y£5) + 5F<y25>.

Thus, if F(y) > xo/8, by (29) we obtain
DBF(y)) < F—1<1+ 8F(yo) — %F(yé% + %F@%)).

ChoosingT > F~1(xo/8) such thaty F(y?) > 1+ 8F(yo) — 3F(y&®) fory > T, we
obtain

1 1
DSF(y)) < F—1(1+ 8F(y0) — §F<y33> + EF(yZ‘%) <FYFG®)<y?. O

LEMMA 3.3. Letu be a probability measure and Iét satisfy assumption&l, A2, and
A4. Then there exist§ > 0 such that for allf, g € L2(u) one has

2 2

2 g 2 f ) 2
——\)d 2 ——)d C du.
/Rt’f F(fRdgsz> "= [l;idf F(fRd f2du nr /Rdf o
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2 2 2
g g . g
= F F -
! <M(82)> * n(g?) (M(82)>

SinceF’ > 0, one has

/Rdf2F<M( 2)) / fudu—i—/ f?dpu.

By the Young inequality

2
du = ud
/f” W= /f /Rdmﬂ) "
([ [ () - ks o)
SZ/Rdf au </Rd[u(f2)F<u(f2) w2 |

+2/ fzd,u/ @u/2)dpu.
Rd ]Rd

PROOFE Set

Hence

2 2 2 2
2 8 ) f <f > f } )
d 2 d — d
/Rdf F(M(g2)> = /Rdf o </Ra[u<f2>F w(fd)  w(d )t

+2/ fsz/ <1§(u/2)du+/ f2du
R4 R4

2
=2 2<f) 2d< 2 2—1d>.
/RdfFMZ) /édf u/Rd<¢><u/> ydu

Using the estimat@ (x) < F~1(1 + x) obtained in the proof of Lem@.Z for large
values ofx, we find that for sufficiently large values of /1 (g?),

2 2 2
own =r (1) <15 (L05)) < (r(16s) ) = it
w/2) = 2)= T2 n(g? = n(g?) n(g?

Henced (1/2) is bounded by?/u(g?) + B for a sufficiently large numbeB depending
only onF and [ (2@ (1/2) — 1) dp < 2B + 1. This completes the proof. O

In the following lemma we prove some simple estimates which will be used below.

LEMMA 3.4. Suppose thaf satisfies assumptionsl-A3. For everyK > 1 there exist
a numberB depending orK and a humbelC depending orK and A such that for every
f € L?w) one has

/ fZF( f* )du<CVar f+/ f2F< i ) w,
(22K u(f?) n(f?) - a Rd 1(f?)

/Rd f2F<M{fZ?))dM < BVaerJrZIRd(f(X) —m)i ( f;2)> W.
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PROOF To prove the first estimate l& = min(K, 1+ A). SinceF(y) > 0 fory > 1,
one has

_/ f2F< f? >d/1,<_/ sz( V& )du
{f2<Ku(f2) 1(f?)  Ji2=R () n(f?) '

By the concavity of~y F(y) on [0, 1 + A] one has

—YF() = (=YF()yz1 (v =D = F/(DH(A - y).

Hence

2 2
— 2F< f )d < F'(Du(f? (1——f >d
/{f2<16u<f2>} ! w(ry) = W [f2<Ru(f2) w(ry )"

2
= F'(Du(f? (f— — 1) du.
Do (2=Ru(ry \1(f?) g

The desired estimate now follows from{17).
Let us prove the second estimate. Siftg) > 0 fory > K > 1 and

72 2 2Ku(r) +2(f —Kn(r2)’

one has
2
ZF( f )d
/Rdf u(r2)
2 2
2F<f)d—|—/ ZF(f>d.
S/{fstu(fZ)}f w(ra) " {fzzKu(fz)}f w(ry )"
<f min( Ku(fz))F< /* )d,u—i—ZK,u(fz) F(f—2>dM
~ JRre ' n(f?) (f2=kur2y \m(f?)

+ 2/Rd (r- \/Ku<f2>)2+F<M{—;2)) du.

The first term on the right-hand side does not exceed

. f?
F/(l)/ min( £2, K u( 2))( —1) du.
Rd / / n(f?)
This can be estimated Wy(K) Var, f (see Step 1 in the proof of Theor2.1). Applying
(I7) and concavity ofF we get a similar estimate of the second term. The proof is
complete. O

Now we are ready to prove the main result on the tight inequalities. Following an idea
from [16] we reduce the problem #-Sobolev inequalities. S& = «/(a — 1). For every
T > 2/B, we consider the following perturbation &f.

Ft,ﬂ = WT,ﬂ(F),
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where
x <1

X,
Vep) = { B+t —DZF - +1 x>1

Note thaty; g(x) is a concave increasing function such thiatg(x) < x. Obviously,
Y2/p.8(x) = x.

REMARK 3.5. It can be easily verified that this perturbation preserves functions
satisfying assumptions A1-A4.

THEOREM3.6. Leta > landl > t > 2/p. Consider the cost functian= c7 wt/(—1)’
whereA, ¢ > 0. Assume thaF, ¢, u, and K satisfy the assumptions of Theorrd for
someK > 2. Assume in addition that

1) F satisfies assumptiods3—A4,
2) there exist$ > 0 such that forR = R(x_1),x one has

[ eepitr P <.

By

where

D p(x) = {Sug}ﬂx, V) = YFeg(y0)+y) = (yFrp(y) — »)* (),

3) w satisfieg[25) for somei.s.
Then there exisB, C > 0 such that the following modifiefl-Sobolev inequality holds:

(30) f f2F<f—2) du < C/ fzc*(m) du + B Var, f.
R4 Jra f2dp Sk [ f2du) [f]

PrROOF We follow the arguments from [16]. The case= 2/p follows from Theoren 2]5
and Remark 2]4. Let > 2/8. Consider a smooth functiofi. Without loss of generality
one can assume that jpfy f(x) > 0. If f satisfies the inequality

2 1 2 ( f? >
d — —— |du,
/Rdf =28 /Rdf g )™

whereB = B(K) is as in [I5), ther{ (30) follows directly from Theorém]2.1. Hence one
can assume that

2 fz 2

Note that if sup.y f2 < Ku(f?), then by the concavity of ,

2p( S
/Rdf F(fRd fzcm)d“ = cuovans
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(see the reasoning of Theorém]2.1, Step 1). Hence without loss of generality one can
assume that there existg such thatf (xg) = /K u(f2). Set

f2
n(f?)

P(x) = F(x) _ F(x)
OV Fepx) | Yo p(F(x)

Obviously,g > f, sincex — x/vyg(x) is increasing. In addition, sincé¢. g is

increasing, we get
T ))
T F e T FK
v”“( <M(f2) z Vep(FR)

if f(x)> f(xo). Hence by the Cauchy inequality we get

2
[ tan < cr( [ r2au [ ror (L))
R¢ R¢ (F2=Ku(f2) 1(f9)

for someC1(K). By Lemmd 3.4,

2 2
32 2F<f )d f 2F<f )d K
= '/{fZEK/A(fZ)} ! 17D M= f ()t 2(K) Var, f

Hence by|[(3]1) there existd = M (K) such that

/ gdu < M/ F2dp.
Rd R4

Taking into account that > f, one gets

g(x) = f(xo) + (f(x) — f(XO))+P( )/P(K),

where

2 2
2 g 2 f
/R (g — G0l Freg (—M (gz)) du > /R (8~ 801 Fr (—MM fz)) dp
1 2 ( f? ) Fep(f2/Mu(f?)
= — — F d
P2(K) /Rd([f FEOLOF\ 2 ) s (a1

By the concavity off; g one has inf-oy Fr g(x/M)/F: g(x) = a > 0. Hence

2
- 2F, <—g >d
/Rd([g 8(x0)] ) Frp & )

a

Z

2
— ZF( f )d
P2K) {f232Mu(f2)}([f fxo)l+) (72 s
Frg(t/M)

— Su
Pl Fep®)

K=<t<2M

F(t)‘ f (f = fx0)]+)?dpu.
Rd
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Thus for someA1 = A1(K) > 0 one has

f (f — fao)] >2F< f* )du
R (2

2
< [ (e~ g(xo)]+)2Fr.ﬂ(g_2) dut s [ QF = S0l
Rd n(gs) Rd

We observe that the second term on the right-hand side can be estimated, fy Sace
(f = f@o)+ < |f — u(f)]. By Lemme[ 3B we obtain

2
- 2F, <—g )d
/Rd([g 8(x0)] ) Frp @) )M

(g — 8(x0)]1)?
2 - 2F, (
= /Rd([g 800D Fes| e~ sGol

) du+ ¢ / (g — gxol)2d.
Rd

Since

NI =

=

==

pr(fx 1 g(x) > gxo)}) = u({x : f(x) > f(x0)}) =
0 is the median ofg — g(x0))+. Hence by[(Zp),
[ te = ston?du <2 [ 19elan.
R4 R4
By assumption 2) and Theor;ﬁsatisfies ther; g-Sobolev inequality, hence

2
_ 25 <([g—g(xo)]+) )d A / Vol duL.
/Rd([g g(x0) ) Frp (e — ool 2 ) =42 ), IVgl“du

Combining the estimates obtained above, we get

2
/Rd([f - f(xo)]+)2F<M{f2)> dp < U(AW \Vgl2du +Varuf>.

Let us estimat&/g. Seth = f2/u(f?). One has

_ [(f— f(xo))+< Fo Fw;,ﬁ(F)F’> ot

P(h)
+ [l{.fz.f(xo)}%]vfo

b

Let us show that for somB; = B1(K) > 0 one has
IVg|? < BLP?(W)|V fI2.
It is sufficient to verify that

(f = fxo)+ ( F’ Fy, o(F >F/> f
2 - 2 (h) 2
P2y \Vep(F)  y2,(F) 1(f?)
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is bounded. Sincg (f — f (x0))+/1(f?) < h and P? = F/y; g(F), we have to show

that

xdfr,ﬁ(F)< F Fl/f;,,g(F)F’> _xF XYy g(OF x_F’(l_ F%”é,,s(“)
F o \Yep(F)  y2,/) ) F Yep(F) — F Ve p(F)

is uniformly bounded onK, co). Indeed, it can be verified directly that

0 < M <
Wt,ﬂ(x)
The boundedness afF’/ F is obvious. Finally, we obtain
F(h)
(Uf = ol PPt du < C [ vip— Wy,

[ 0F = £Go1?Fhydn e VP i

The right-hand side can be estimated by
VP F(hy |2
CNﬂf/ 2|~ d,uﬂl——*/ 2 du
(F2=Ku(f?) aw; NBSD" 2oy ™ (Ve p(F ()

for arbitraryN. Here

g = at B\" at
T a1 2) " 24a(r—2)
We note that there exists’ = C’(K) such that forx > K one has

at
2Fa(t—2) 2(a—1)
( x ) < 2GR _ oy

wr,ﬂ(x)

Hence for arbitrary > 0 and all sufficiently largeV, [pa([f — f(x0)]+)?F (h) du does
not exceed

CNF- / f?
(22K pn(r?)

We recall that

Pr cc’

A+ ——r f fPF(h)dp.
NEID* [ 25 ke up2))

v/
f

c*(xX) = CAgr/@—1) (x) < Alx[*T/@D,

for |x] > 1 and some. = A(A, «, 7). Obviously, there exists a numbe(A, «, K) > 0
such that
lxPe < a(A, a, K)c*(x)

for x > K. Hence by[(3R) there exis® = C(a, A, K) such that

2 f2 d
. Fl—L
/Rd(f Fxo)? (Wz)) "

, IVf|> / , ( 2 )
C 2ex( ) g+ C V. F du,
= /{fzzKu(fz)}f ‘ ( )t eV te IR Ly )
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wheree can be chosen arbitrarily small. It remains to estimate the last term on the right-
hand side by Lemnfa 3.4:

f sz( /* )du<B<K>~Varf+2f f - Ku(fz))zF( /* )du
Rd w(f?) - " RY A\ n(r?)

and choose a sufficiently small The proof is complete. O

Now let us apply this result in the case of a special lower bound for the isoperimetric
function.

THEOREM3.7. Letg be a function satisfying assumptioA$—A4 such thatp(xg) = 1.
For everyr < 1 define the corresponding generalized entropy

o(x) if 0<x < xop,

F()C) = FT(X) = : %((pr(x) _ 1)+1 if x > X0.

Assume that

1 1-1/a
(33) Zu(t) = Ctgo(;)

forsomel < o < 2andt < 1/2. Then, whenever > t > 2/8 = 2(1—1/a), there exists
C; > Osuch that for every smootfione has

2
2, f—)d C: 2k e <m>d
/Rdf (fRdedM w= /Rdch, fen| 5 ) dm

PrROOF The result follows from Theorefm 3.6. Obvioushy, satisfies A1-A4. Let us show
thaty satisfies[(Zp). Indeed, it suffices to show thatatisfies[(26). Buf (36) easily follows
from (33), sincep is increasing. Note that

Fr,ﬁ = I/II,ﬂ(Fr) = FZ/ﬂ-

So it suffices to check that

@ (8|IF, 5% dp < oo, @, (8c(If,)) dp < 00

BY,

.
B Rk-1)/K

Rk-1/K
for § sufficiently small and& sufficiently large. Here

O =F ()= Prpg=OF Q) =y =GFys0») -y
Recall that the cost function is given by

*
c=c =Cp. —T2___.
A, rrf(l A’a(f—1)+l

By the definition of/r, andZ, for all » > Ry,> we have

Fr(%)

Col =Y (izy)

Ip, (r) <




MODIFIED LOG-SOBOLEV INEQUALITIES AND ISOPERIMETRY 203

Hence
1—1+1/a 1
(34) Ir,(r) < c19™ Y <m)
and
c(Ip (r)) < €1¢I<;)-
! 1— p(By)
Analogously,
1
Iy = T (L)
oY () 1= nB)
and L
If () < CFE/(;_”T? L c5p™/” (—_ - )
¥ (1—u(B,<)) 1-n(Br)
Hence by Lemmp 3|2 for son&,, Ro > 0 and sufficiently small one has
Pe(3ellp, () < ——— 2 ifr > Ro.
i (1 — u(By))%
In the same way we obtain
BepIZ (M) < —— 2 itr>Ro.
M (1= p(By))%2d

Hence fors sufficiently small andk large the functiong, (8¢(Ir,)) andq),,ﬁ(SI%T ﬂ)) are
dominated by /(1 — w(B,))? with somep < 1 andN > 0. Since the mapping

x> 1-py:y =<Ixlp
transformsu into Lebesgue measure on [[J, we obtain

/ 1/K dt
B

D (8c(IF, (r))du < N/ — < 0.
o P

The same estimate holds de,,,g((SI,%Tﬂ). Hence the assumptions of Theor 3.6 are

satisfied. Thus, by Theorgm B.6 we have

2
°F f—)d c 2 *<Lf|>d B Var, f.
Ayf (fRd FZdn ) M= /{fzz,(fwfzdmf AT AR

By the Poincak inequality Vay, f < [pa |V f12du (note that the Poincarinequality is
valid since[(25) holds). One can easily verify the? < Bc*(x) for someB > 0. Hence

2 D 2 % M)
V£l SBfC(|f|

2
°F f—>d C EB/ 2-*<m>d .
/Rdf <fRdf2du w=(CHBB) | T\ ) e

The proof is complete. O

Rk-1/K

and
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4. APPLICATION TO CONVEX MEASURES
LEMMA 4.1. Letu be a convex measure. Themp,ZRl/2 liog(r)/r < o0.

PROOFE We apply the following estimate frorn|[6]:

" L oia- 1 _
(85) 2ru"(A) = u(A)log ) T HA) Iogl_M(A)Jrlogu{lx xol <},

which holds for every convex measyte every setd, every pointxg, and anyr > 0. Let
n(A) <1/2 — ¢, wheree > 0. Choose in such a way thaf(A) = w(Bf). Then

1 .
(36) (1—p(A))log T a2d) +logu(By) = n(By) log u(By).
Pick§ = §(¢) such that
1 1/(1-9) 1

(E =+ 8) > E — €&.
Then

1 1 =

w(By) = <§ +e> > (5 —g) > u 0 (BY).

Therefore,

(1—8)u(A)log

B,
+M(Bf)|09M(Br)=M(A)< w(B,) )zo

log ———
1(A) )
Hence by|[(3p) we obtain

1 1
(1-38)n(A) |09m + (11— pn(A) |091_—M(A) +loguflx —xol <7} >0

andZ ut(A) > u(A)log ﬁ. It remains to show that

1
Iog(”) < 00

R1p<r<Rip+e T

But this follows easily from5). One has to choose a sufficiently large nuRtsrch
that

+logu(ix : |x| < R}) > 0.

inf (1/2+ 7)1
ot (G2t olog 5

Thenlgg(r) < R.The proof is complete. O

COROLLARY 4.2. Let u be a convex measure and lgtsatisfy assumptiond1-A4.
Suppose thag : Rt — R is increasing and

/]1‘@’ 2D dp = 1.
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If for someC > 0andl < o < 2one has

g(r)
ST (atyy = €T

1\ 1~ V/e
(@) > ktﬁ”(?)

37)

then

with somek > Qandr < 1/2.

PROOF By the previous lemma

1wt (A) > ko

1(A)log(1/u(A))
r

if £(A) =1— u(B,) andr > Ry/,. By the Chebyshev inequality

fRd e80XD d () 1
eg(r) o gg(r) ’

log 1 . C
o\ (BS) ) = r

for anyr > R1/2. Consequently,

w(By) <

Hence by|[(3]7) one has

wt(A) > ko

u(A)log(1/u(A)) 1-1af 1
p > Ckou(A)gp (m)

The proof is complete. O

ProoF oFTHEOREM[L.]]. Follows from Theorein 3.7 and Corollary}4.2. O
EXAMPLE 4.3. Letu = Ze~V dx be a convex probability measure & such that
V(x) ~ |x|log? |x| with p > 0 as|x| — oo. Suppose thaf satisfies A1-A4 and” ~

log*?/@=1 Jog |x| as|x| — oo. Applying Theorem 1/1 one sees that for evary O there
existsC > 0 such that for every smooth functighone has

2 r? 2 V£
Joror () an = [ Pencan (57 )

Finally, we prove an inequality of the type (6).

THEOREM4.4. Letu be a convex measure such tff@b " dp < oo for somex > 1
ande > 0. Then

Ent, | f1# < c[/R IV f1P du + Var, |f|ﬁ/z}-
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PROOF. Setg? = |f|f. Apply Theorenj 21 t@? in place of 2. Following the proof of
that theorem we get

Ent, | £1¥ < CVar, |fIf +C / Tog(ry s (PPN FIPHV fldpe
[F1B=Ku(lf18)

with someK > 1. By the Hlder inequality for every > 0 there existsV(C, §) > 0 such
that

c / Tog(ry s (SN FIPHY fldm
|f1B=K (| 1)

-1
st |Vf|ﬂdu+8f 1D 0 (P11 d.
R4 [fIB=Ku(lf1#)

Since|f| < C(K, B)If — n(H)l on{lfIF > Ku(fI#)}, we get, by the same arguments
as in Theorerp 2]1,

3/ Iﬂ/(ﬁ*l)( ( ﬁ))| |ﬁd
IfIB=Ku(fIB) log ripp (FENIIP du
<d4C(K, B) ./Rd Ilgé(ﬁfl)(rlflﬁ(fﬂ))lf _ l/-(f)lﬁ du

1
< C/Rd = (P da+ SENG 1 f = w(HIP,
whereC < oo whenever

-1
/ exp Il PP (x ) dp < o0
BL

R

with R = Rx—1y/x. By Corollary one haﬁ‘zé(ﬁ_l)qxn < C'|x|P/B=D = C’|x|e.
Hence, choosing sufficiently small; we obtain

-1
/ exp)(éll’gé(ﬁ )(1x]) dp < oo.
By

Sinceu is convey, it satisfies the Cheeger inequality, hence there ex{gtssuch that for
every f one has

/ = n(HIF dp < C(ﬁ)/ IV £1P dp
R4 R4
(seel[8] for the proof). Finally, we arrive at the estimate
(38)  Enj,|f1” < CVar, |f1P/2+ N’ fR IVf1Fdp+ % Ent, |/ = u(DIF.
In particular, applying[(38) to — n(f), we get
Ent, | — n(H)IF < zc/ = uHIF + 2N’/ V1P due
R4 R4
< (2CC(B) +2N") /R VP dp.

Combining this estimate again with (38) we get the claim. D
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