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Partial differential equations. — On the regularity of weak solutions td-systemgsby
ROBERTA MUSINA.

ABSTRACT. — We prove that every weak solution to tiesurface equation is locally bounded, provided the
prescribed mean curvatuié satisfies a suitable condition at infinity. No smoothness assumption is required
on H. We also consider the Dirichlet problem for thesurface equation on a bounded regular domain Wwith
boundary data and th&-bubble problem. Under the same assumption&owe prove that every weak solution

is globally bounded.
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1. INTRODUCTION
In this paper we are concerned with tHesurface equation
(1.1 Au = 2Hu)uy Auy in$2,

whereH : R® — R is a given map and? is a domain inR?, and with the Dirichlet
problem
(1.2) { Au =2HW)uy Auy in$2,

U=y onas2,

wherey is a bounded regular datum.

Every smooth conformal solution tp (1.1) parameterizes a surface that has prescribed
mean curvaturél at each regular point (that is, apart from branch points). We refer to [16],
[17] and [13] for a detailed discussion of the main feature§ of (1.1) and its applications to
capillarity theory.

We are mainly concerned with{ -regularity of weak solutions t.l) and witl®
regularity of weak solutions t.2). Let us recall that HléC(SZ, RR3) is aweak solution
to (1.) if the map(H o u)u, A u, is locally integrable on2, and if equation[(1]1) is
satisfied in the sense of distributions, that is,

—/ Vu-Vvdxdy:Z/ H@W)v -ux Auydxdy VUECSO(Q,Rs).
2 2

As concerns the results available in the literature, we mention the pioneering papers
by Tomi [22], [23] and, among the most recent contributions, the paper [1], where Bethuel
takes advantage of some properties of Lorentz spaces in order to get the regularity under
the assumption that/ is C1, bounded and globally Lipschitz dR3. The same result is
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proved with a method based on the Hodge decomposition theorem and on some Morrey-
type estimates in the recent pager! [21] by Strzelecki. We also mention the papers [2] and
[3] by Bethuel and Ghidaglia, in which the smooth and bounded curvafudepends only

on two variables, or, more generally, it satisfies a suitable decay condition at infinity along
adirection inR3. The main tools in[2],[3] are the co-area formula and the theory of Hardy
spaces. The duality between the Hardy spdéend the space BMO of functions having
bounded mean oscillation is used in an essential way alsalin [21]. We also refer to this last
paper for a complete list of references.

With regard to boundary regularity for the Dirichlet problem, the only general result
known to us in the literature is due to Strzelecki, who proves in [21] that every weak
solution tol(l_f]&) is continuous up to the boundary, provigleid continuous ord§2 and
H e L™(R% R) is globally Lipschitz continuous oR?.

Finally, let us mention[[14], wheré& -regularity for conformal solutions t@.l) is
proved without assuming any regularity éh

We emphasize that, with the exception[ofl[14], in all the above mentioned results some
smoothness assumptions Hnare always required.

In this paper we prové > -regularity results without any smoothness and boundedness
hypothesis on the curvature function. On the other hand, we show that the behakfior of
at infinity may play a fundamental role.

Our assumptions on the curvature are the following.

ASSUMPTIONS ONH. There exist measurable maps, H1 and K onR3 such that
H=Ho+H1+K
and such that the following assumptions are satisfied:
(Ho) Ho is a continuous angular map, that ilp € CO(R3\ {0}) and
Ho(sp) = Ho(p) ~ for p e R®\ {0}, s > O;
(H1) Hj is continuously differentiable in the complement of a tbia;l;,l, and

C(H1) = sup (|Hi(p)|+ |VH1(p)||p|) < +o0;
IPI1=RH,

(K) K satisfies )
Mg = limsup|K(p)p| < 1.
|pl—+00

The main results in this paper are the following.

THEOREM1.1. Assume thalH = Hp + Hi + K satisfies the assumptioligly), (H1)
and(K). Then every weak solution (@.1)is locally bounded ir2.

THEOREM1.2. Assume thaH = Hp + Hj + K satisfies the assumptiotiglp), (H1)
and(K). Let$2 be a bounded domain with Lipschitz boundary, andilet H1($2, R3) be
a weak solution to the Dirichlet proble@)such that(H o u)uy Auy € L1(2,R3). If
y € L®(3£2,R3), thenu € L>(£2, R3).
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As concerns the regularity of wea-bubbles (see Sectign} 4 for the definition), our
result is the following.

THEOREM 1.3. Assume thall = Hp+ Hi+ K satisfies the assumptiotdp), (H;) and
(K). Then every weaK -bubble is bounded.

The main step in the proof of our regularity results is theegularity Lemmg 3]3,
whose proof was inspired byl[2]. However, our arguments are surprisingly simple; we do
not use any approximation argument, neither Hardy spaces, neither the co-area formula,
that were the key arguments [ [2]. In essence, the idea is that certain (weighted) volumes
“enclosed” byu, in the region where: is big, cannot be too large, thanks to the
isoperimetric inequalities proved by Wente|[inl[24] and by Steffef in [20].

Notice that thel *°-regularity results stated above seem to be new also in the case of
a smooth curvaturé!. Indeed, forH = K satisfying(K) and Lipschitz continuous the
regularity of weak solutions t¢ (1.1) has been known since the paper by Tomi [23]; for
H = H; € CYR3,R) satisfying(Hz), the regularity is due to Heinz ([15]; see al§o [2]
and [3] for an alternative proof). However, these two results cannot be interpolated in order
to cover (at least) the cage = H1+ K. Actually, unlike Theoremis 1.1 apd 1.2, the results
that have been available up to now in the literature are not satisfied in the settings of the
papers([7] and[[9], which are concerned with the existencé/ dfubbles (that is, with
problem ) for2 = R?), and in [10]-[12], which deal with the Dirichlet problem for
the H-surface equation.

Indeed, the crucial hypothesis in the above mentioned paperé/wag'* and

(1.3) My = sup|(VH(p)-p)p| < 1.
peR3

Notice that [(I.B) is incomparable to Heinz’s assumption [inl [15], and to Bethuel's
assumption in[[1]. On the other hand, it is easy to prove fhat (1.3) impliesHHas a
finite limit along radial directions ag| — oo, that is, for everyp € R3\ {0} the limit

SETOO H(sp) =: Ho(p)

exists. Clearly,Hp is an angular map, in the sense described above. Now, assume that
Ho € CO(R3\ {0}), and notice thaf (1|3) implies also

I(H(p) — Ho(p))pl < My <1 VpeR3

Thus, the above assumptions &h are satisfied, withH; = 0 and K = H — Hy.
Assumption[(I.B) is far from being purely technical; on the contrary, it prevents several
remarkable phenomena, like nonexistence results and blow-up of approximate solutions.
In particular, condition[(1]3) provides a positive lower bound for the energy-blibbles
(compare with[[7]), affects the geometry of the energy sublevels [[7], [10]), plays a crucial
role in existence-nonexistence phenomehna ([7]) [10]), in the behavior of Palais—Smale
sequences for the Dirichlet probleni ([11], [12]), and in several other questions related
to the H-surface equation.
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In caseHy = H1 = 0, that is, wherH satisfies

(1.4) limsup|H(p)p| < 1,
|pl—+o0

the regularity result we can prove is a little stronger.

THEOREM1.4. Assume that : R3 — R is a mesurable map satisfyir{g.4).
(i) If u e H.(£2, R®) is a weak solution t), thenu € L.(£2, R3).

loc
(i) Assume tha® is a bounded domain, and lete H($2, R®) be a weak solution to the
Dirichlet problem(L.d) such that(H o u)ux A uy € L*(2,R3). If y € L®(32, R®),

thenu is bounded inf2. If in addition

(1.5) Sup|H(p)p| < 1,
peR3

then
lull poo (2 m3) < 1Yl L0302 R3)-

Assertion (i) was already proved by Tomi ih_[23, Satz 2], under the additional
assumption tha# is Lipschitz continuous.

Since the proofs of Theorefis 1.1 1.4 are based on the same careful choice of test
functions, we first prove the simpler Theorem|1.4.

NOTATION. Throughout this workD, (z) denotes the open disk B? centered at € R?
and with radius: > 0, while By, is the ball inR3 centered at 0 and with radius > 0.

We denote byL?(A), H1(A) and H&(A) the usual Lebesgue and Sobolev spaces
of vector-valued functions : A — R3, while the notationd.? (A, R), H1(A, R) and
H&(A, R) will be used for scalar-valued functions. The normed.i(A) and inL° (A, R)
will be denoted with the same notatidin ||, if no confusion can arise.

2. PROOF OFTHEOREM[T.4

First we prove statement (ii) in Theor¢m|l1.4. Then a standard localization argument will
lead to the proof of (i).

Let H : R® — R be a curvature satisfyin (1.4), and lee H(£2) be as in (ii). Let
Ro > |7 leo be any positive number such that

(2.1) Mg, := sup |H(p)p| < 1.
|pI=Ro
Notice that we can tak&y = |y llL=@e) if the stronger assumptiom.S) is satisfied.

Assertion (ii) will be completely proved if we show thiai| ., < Ro. This is equivalent to
proving thatAr = O for everyR > Rp, where we have set

Ag = / |Vul|?.
{z€2 : |lu(z)|>R}
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To this end, fix any increasing ma@p € C°°([0, +o¢[, R) satisfying0< @ < 1,&(s) =0
if s < Rgpand®(s) = 1if s > R, and consider the composite ma&g|u(-)|)u(-). Sinced’
has compact suppof¥(® (|u])) = @'(lu|)V|u| a.e. ins2, and since? (Ju|) = 0 onds2,
we can conclude thak (Ju|)u belongs toH(}(.Q). Notice also thatH (1)@ (Ju|)u| < 1 a.e.

in £2, by {2.1), and therefor&l (u)® (|u)u - ux Auy, € L*(£2). Atthe end of this proof we
will check that the ma (|u|)u can be used as a test function[in {1.1) to obtain

(2.2) — / Vu - V(@ (u)hu) = 2/ Hu)®(uDu - uy Auydxdy.
2 2
We point out the identity: - Vit := (u - ux, u - uy) = |u|Vl]u|, which in particular implies
(- Vu) - V(@(ul)) = &' (ulul |V|ul|? > 0,
and we compute
[ v @i = [ ouiiva+ [ o Guptu viul? = | @quiiva?
2 2 fo) 2

Finally, from (2.1) we estimate the right hand side[in2.2) by

‘2/ Hu)®(Jul)u - uy Auydxdy §MRO/ @ (Ju)|Vul?,
2 2

and sinceM, < 1 we infer that

ARs/ & (|ul)|Vul? = O.
22

Statement (i) is completely proved.

PrROOF OF(2.2). First notice that, by a standard density argument,
(2.3) —/ Vqu:Z/ H@)w - ux Auy VweHolﬂLm(.Q).
2 2

For everyn large enough sep, = min{1, n|u|~1} andw” = p,®(Ju|)u. Using the
standard chain rule we first infer that’ < H& N L*°(£2). Thusw”" is an admissible
test function for[(2.8). To conclude, it suffices to notice tRat” — V(@ (ju|)u) in L2
andH (u)w" — H(u)® (Ju|)u weak in L>, because of (2]1).

ProoOF OF(i). It suffices to show that is bounded in every small disR,,(zo) CC $2.
By Fubini’s theorem, for a.e. small > rq the trace ofu on 3D, (zp) is bounded in
HY(3D,(z0)), hence inL>® (3 D, (zo)). Thus we can apply (i) to conclude. O

REMARK 2.1. Notice that The_ore@A can be easily combined with Strzelecki’s theorem
([21, Theorem 1.3)]) to ge€?($2, R®)-regularity, providedy is continuous and{ is a
locally Lipschitz map satisfying (1].4).
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3. PrRooOF oFTHEOREMSI I AND [1.2

In this section we first prove Theorgm JL.1. Then we indicate how our arguments can be
modified in order to prove Theorgm 1L..2.

Let us start with some preliminaries about isoperimetric inequalities. The first result is
needed in order to handle the term involviAg; it was proved by Wente in [24] (see also
[4 Lemma A.10]).

LEMMA 3.1. LetD be adisk inR2. There is a unique continuous map
R: H}(D) x HY(D) - R
such that
Ry, w) ::/ Y- wxy Awydxdy
D

for everyy € H} N L®(D), w € H(D). Moreover

1 2 1 1
[R(Y, w)| < EHVWHLZ(D)”VU)”LQD) V¢ € Hy(D), Yw € H(D).

In order to handle the term involving the homogeneous Haftve have to recall some
results by Stefferi [20].

Let D be a disk inR3, and letHy be a continuous angular map, as in assump(tids).
Notice thatHp € L>°(R?, R). Moreover, the vector field) : R® — R3 defined by

1
0(p) = éHo(p)p
is continuous ofik3 and it satisfies di¥) = Hyp in the sense of distributions. Set
1
3.1 Vhy(w) = :—%/ Ho(w)w - wy A wydxdy
D

for w € H3 N L>®(D). It turns out thatVy,(w) = Vi, (w, 0), whereVy,(w, 0) is the
Hp-volume functional introduced by Steffen in [20, Section 3Jwlis regular enough, it
measures the algebraic volume enclosed by the closed surface parameterizedthy
respect to the weighty.

By [20, Proposition 3.3], the functionaly, has a unique continuous extension to
Hol(D), and the following isoperimetric inequality holds true ([20, Theorem 2.10]):

| Hol
(3.2) Vil = - ZEZIVulEy p,  Vu € HYD).

Finally, we need a technical lemma. The proof is standard, and it is based on the general
chain rule for partial derivatives.

LEMMA 3.2. Assume thaf{; satisfies(H1). Let D be a bounded domain, and lete
H(D) be a given map, with a bounded trace ®p. Let® e C>®(R, R) be such that
@(s) = 0fors < maxRpy,, llullL~np)}, and assume that the maps— @ (s) and

s > ®'(s)s are bounded ofR. Theny := (Hy o u)®(Jul)u € H}(D) and
IVYll2 < C(HDUIV(@(uDu)ll2 + |1 (Ju) Vull2).
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The main step in the proof of Theor¢m|l.1 is the followimgrégularity lemma”.

LEMMA 3.3. Assume thatl = Ho+ H1 + K satisfies assumptiori$lo), (H1) and (K).
Then there existsy > 0 (depending only ot Hplleo, C(H1) and Mg) such that ifu €
HY(D) is a weak solution t)on a diskD, with (H o u)u, A uy € LY(D) and

/ IVul? <eo, upp € L¥@D),
D

thenu € L°°(D).
PROOF. Fix alargeRo > |lullL=(@p), Ro = Ry, such that

(3.3) Mg, = sup |[K(p)p|l <1,
IpI=Ro

and forR > Ry set, as in Sectidn 2,

Ag = f |Vul?.
{z:|lu(x)|=R}

We have to prove that there exists a laRyg such thatAg,, = 0. To this end, fixR > Ro
anda € (0, 1) small, and choose a map € CL(R, R) such that®(s) = 0 fors < R,
&(s) =1fors > R(1+ «), and

(3.4) O<d <1 @ >0,
(3.5) D(s) + D'(s)s < 2/a.

Asin Sectimﬂz we see that the maps|u|)3u, @ (Ju|)u are of classi} (D). At the end of
this proof we will show that (in essence) we can ds@u|)3u as a test function in

(3.6) Au =2HWw)uy ANuy onD
to obtain
(3.7) - /D Vi - V(@ (Ju)3u) = 6V (@ (lul)u) + 2R(Y, @ (|ul)u)

+2/ K@)®(u)3u - ux Auy,
where we have set
Y= (Hyou)®(Ju|u.
Notice thaty € H}(D) by Lemmd 3.. We can readily estimate, as in Se¢tjon 2,

/VuV<a><|u|>3u)z/  (ju))3|Vul?,
D D

’2/ K(u)¢(|u|)3u “ux ANuydxdy
D

< MRO/  (ju)¥|Vul?,
D
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and therefore, using also the isoperimetric inequdityj (3.2) and Lgmra 3.1,

Il Holl o 1
(1= Mgy) Ariia) < \/(;_71 IV (@ (|u)u) 13 + Enwnznvmmnu)n%
It remains to compute
4
(3.8) fD|V(<1>(|u|>u>|2sfD@/(|u|>|u|+a>(|u|)>2|W|2s —Ar

by (3.5). Also, from Lemmp 3|2 anfd (3.8) we get

1
IV ll2 < CCHD IV (@ ([ul)u) 12 + 1D (|ul) Vull2) < 3C<H1>5A}{2.
Thus 1
(3.9) AR(Lt+a) < Clﬁf\g]‘e/z’

whereC; depends only o Hy|l«, C(H1) and onMpg, (that is, onMg). Now we assume

thategg is so small that
Clsé/z < 1/4,

and we show that (3.9) leads to the conclusion. We define by recurrence a bounded
increasing sequend®, — R., < 400, by settingR1 = Ro(1+ 1) and

Ryt1 = Ry(1+27"73).

First notice that we can estimate, usipg[3.9),
12 1
AR, < C1eg "ARy < Zeo.
Next one proves by induction thatz, < sg4~". Therefore,
AROQ < lim AR,, =0,
n—oQ
and the lemma is completely proved. O

PROOF OF). For every: large enough set, as in Sect@noz,: min{1, n|u|~1} and
V" = p3® (|ul)3u. Asin Sectior[% notice that' € H3 N L>(D) andv" — @ (|u|)3u in
Hol(D). Moreover, from(Hp) and(H1) we infer that the map&Hp o u)v" and(H1 o u)v”"
are measurable and bounded@nTherefore, als§K o u)v" - u, Auy € L1(£2). Using
a standard density argument one can check that thevthapn be used as a test function

for (3.6) to get
—/ VuV(¢(|u|)3u) = 2/ Ho(u)v" - ux Auy + 2/ Hy(u)v" - ux Auy
D D D

+2/ K@)®(u)3u - ux Auy +o(1)
D
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asn — oo. Here we have used the facts tha” — V(@ (Ju|)3u) in L2 and K (u)v" —
K ()@ (|lu])3« weak in L>, because of (3]3). Next, notice that := & (|u|)p,u —
@ (lupu in H}(D) and

Ho(u)v" - uxy Auy = Ho(w™")w" - wi A w;f

a.e. inD, sinceHy is an angular map. Therefore,
/D Ho(u)v" -ty Aty = 3V (w") = 3Vo (@ (Ju)u) + o(1)
by ) and by the continuity of the volume functiongl, on H&(D). Finally,
Z/D Hi(u)v" - ux Auy = 2/Dan Swh A w;' = 2Ry, D(lu))u) + o(1),

sincep, ¥ — ¢ andw" — @(luu in H¥}(D). O

END OF PROOF OFTHEOREM[L.T. The argument is the same as in Sedtion 2. It suffices
to show that: is bounded in every small digR,,(z0) CC §2. By Fubini’s theorem, for a.e.
smallr > rgthe trace ofi ond D, (zg) is bounded irH (3 D, (z0)), hence inL> (3 D, (z)).
Thus, if r is small enough (in order to have a smaf norm of the gradient o> =

D, (z0)), we can apply Lemn{a 3.3 to conclude. O

PROOF OF THEOREM[L.Z. Leta € HY(R?) be any extension of. Choose a finite
coveringD,,(z;),i =1, ..., k, of 32 by small disks such that

/ |Vii|? < &0
Doy (zi)

wheresg is as in Lemm3. Since € Li%.(£2) by Theorel, we just have to check
thatu € L*°(D,(z;) N 2) for eachi = 1,...,k. Fix an indexi and choose a radius
r € (rg, 2rg) such that the trace @af on d D, (z;) is bounded inL*°. Define, as in the proof
of Lemm4 3.8, the map (i) for large R, «. Finally, repeat the arguments in the proof of

Lemmd 3.B withD = D, (z;), replacing® (|u|) with the function

_ _ @) inD,(z;) N2,
D (Jul) = {o inD,(zi) \ £2.

The conclusion can be achieved as in Lenimé 3.3.0

REMARK 3.4. The conditionH; € C! can be relaxed, since we just need thatis a

Lipschitz function on the complement of a ballli¥, that H satisfies(H1), and that the
Nemytski operatomn: — Hi o u maps continuously/1(D) into H1(D). However, this is
not generally true i1 is only Lipschitz continuous (cf. [18]).
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4. H-BUBBLES AND PROOF OFTHEOREM[1.3

In this section we deal with solutions fo (IL.1) on the whole pl&ReFor a discussion of
this problem we refer to the Appendix in [5] for the casegbtonstant, and td [7], [8]L]9],
[6], [19] for H variable.

Let us start by introducing a notation. We set

AYR?) = (U € HL(R?) : |VU|, |U|/(1+ |21 € LA(R?)).

Notice that H1(R2) can be identified withH(S?, R3) via composition with the
stereographic projection from the north pole. It is often convenient to identify a map
U e HYR?) with its composition with the stereographic projection, which is a map
defined orS2.
ForU : R? — R3 set
Uz) =U(/1zP).

ThenU e HY(R?) if and only if U € HY(R?). Let us say that/ is aweak H-bubbleif
U e HY(R?), (H o U)U, A Uy € LY(R?) andU is a weak solution to

AU =2H(U)Uy AU, onRZ

It turns out that every smootH -bubble is indeed a conformal map on the sphere that
parameterizes af?-type surface having mean curvatuteat each regular point (cf. for
example([7]).

TheorenT 1.8 is a simple corollary pf 1.1, which follows from the invariance of the
H-surface equation with respect to composition with the Kelvin transforfinVe omit
the simple proofs. O
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