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Partial differential equations. — On the regularity of weak solutions toH -systems, by
ROBERTA MUSINA.

ABSTRACT. — We prove that every weak solution to theH -surface equation is locally bounded, provided the
prescribed mean curvatureH satisfies a suitable condition at infinity. No smoothness assumption is required
onH . We also consider the Dirichlet problem for theH -surface equation on a bounded regular domain withL∞

boundary data and theH -bubble problem. Under the same assumptions onH , we prove that every weak solution
is globally bounded.
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1. INTRODUCTION

In this paper we are concerned with theH -surface equation

∆u = 2H(u)ux ∧ uy in Ω,(1.1)

whereH : R3
→ R is a given map andΩ is a domain inR2, and with the Dirichlet

problem {
∆u = 2H(u)ux ∧ uy in Ω,
u = γ on ∂Ω,

(1.2)

whereγ is a bounded regular datum.
Every smooth conformal solution to (1.1) parameterizes a surface that has prescribed

mean curvatureH at each regular point (that is, apart from branch points). We refer to [16],
[17] and [13] for a detailed discussion of the main features of (1.1) and its applications to
capillarity theory.

We are mainly concerned withL∞

loc-regularity of weak solutions to (1.1) and withL∞

regularity of weak solutions to (1.2). Let us recall thatu ∈ H 1
loc(Ω,R

3) is aweak solution
to (1.1) if the map(H ◦ u)ux ∧ uy is locally integrable onΩ, and if equation (1.1) is
satisfied in the sense of distributions, that is,

−

∫
Ω

∇u · ∇v dx dy = 2
∫
Ω

H(u)v · ux ∧ uy dx dy ∀v ∈ C∞

0 (Ω,R
3).

As concerns the results available in the literature, we mention the pioneering papers
by Tomi [22], [23] and, among the most recent contributions, the paper [1], where Bethuel
takes advantage of some properties of Lorentz spaces in order to get the regularity under
the assumption thatH is C1, bounded and globally Lipschitz onR3. The same result is
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proved with a method based on the Hodge decomposition theorem and on some Morrey-
type estimates in the recent paper [21] by Strzelecki. We also mention the papers [2] and
[3] by Bethuel and Ghidaglia, in which the smooth and bounded curvatureH depends only
on two variables, or, more generally, it satisfies a suitable decay condition at infinity along
a direction inR3. The main tools in [2], [3] are the co-area formula and the theory of Hardy
spaces. The duality between the Hardy spaceH1 and the space BMO of functions having
bounded mean oscillation is used in an essential way also in [21]. We also refer to this last
paper for a complete list of references.

With regard to boundary regularity for the Dirichlet problem, the only general result
known to us in the literature is due to Strzelecki, who proves in [21] that every weak
solution to (1.2) is continuous up to the boundary, providedγ is continuous on∂Ω and
H ∈ L∞(R3,R) is globally Lipschitz continuous onR3.

Finally, let us mention [14], whereC0-regularity for conformal solutions to (1.1) is
proved without assuming any regularity onH .

We emphasize that, with the exception of [14], in all the above mentioned results some
smoothness assumptions onH are always required.

In this paper we proveL∞

loc-regularity results without any smoothness and boundedness
hypothesis on the curvature function. On the other hand, we show that the behavior ofH

at infinity may play a fundamental role.
Our assumptions on the curvature are the following.

ASSUMPTIONS ONH . There exist measurable mapsH0,H1 andK onR3 such that

H = H0 +H1 +K

and such that the following assumptions are satisfied:

(H0) H0 is a continuous angular map, that is,H0 ∈ C0(R3
\ {0}) and

H0(sp) = H0(p) for p ∈ R3
\ {0}, s > 0;

(H1) H1 is continuously differentiable in the complement of a ballBRH1
, and

C(H1) := sup
|p|≥RH1

(|H1(p)| + |∇H1(p)| |p|) < +∞;

(K) K satisfies
M̄K := lim sup

|p|→+∞

|K(p)p| < 1.

The main results in this paper are the following.

THEOREM 1.1. Assume thatH = H0 + H1 + K satisfies the assumptions(H0), (H1)

and(K). Then every weak solution to(1.1) is locally bounded inΩ.

THEOREM 1.2. Assume thatH = H0 + H1 + K satisfies the assumptions(H0), (H1)

and(K). LetΩ be a bounded domain with Lipschitz boundary, and letu ∈ H 1(Ω,R3) be
a weak solution to the Dirichlet problem(1.2)such that(H ◦ u)ux ∧ uy ∈ L1(Ω,R3). If
γ ∈ L∞(∂Ω,R3), thenu ∈ L∞(Ω,R3).
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As concerns the regularity of weakH -bubbles (see Section 4 for the definition), our
result is the following.

THEOREM 1.3. Assume thatH = H0+H1+K satisfies the assumptions(H0), (H1) and
(K). Then every weakH -bubble is bounded.

The main step in the proof of our regularity results is theε-regularity Lemma 3.3,
whose proof was inspired by [2]. However, our arguments are surprisingly simple; we do
not use any approximation argument, neither Hardy spaces, neither the co-area formula,
that were the key arguments in [2]. In essence, the idea is that certain (weighted) volumes
“enclosed” by u, in the region whereu is big, cannot be too large, thanks to the
isoperimetric inequalities proved by Wente in [24] and by Steffen in [20].

Notice that theL∞-regularity results stated above seem to be new also in the case of
a smooth curvatureH . Indeed, forH ≡ K satisfying(K) and Lipschitz continuous the
regularity of weak solutions to (1.1) has been known since the paper by Tomi [23]; for
H ≡ H1 ∈ C1(R3,R) satisfying(H1), the regularity is due to Heinz ([15]; see also [2]
and [3] for an alternative proof). However, these two results cannot be interpolated in order
to cover (at least) the caseH = H1+K. Actually, unlike Theorems 1.1 and 1.2, the results
that have been available up to now in the literature are not satisfied in the settings of the
papers [7] and [9], which are concerned with the existence ofH -bubbles (that is, with
problem (1.1) forΩ = R2), and in [10]–[12], which deal with the Dirichlet problem for
theH -surface equation.

Indeed, the crucial hypothesis in the above mentioned papers wasH ∈ C1 and

MH = sup
p∈R3

|(∇H(p) · p)p| < 1.(1.3)

Notice that (1.3) is incomparable to Heinz’s assumption in [15], and to Bethuel’s
assumption in [1]. On the other hand, it is easy to prove that (1.3) implies thatH has a
finite limit along radial directions as|p| → ∞, that is, for everyp ∈ R3

\ {0} the limit

lim
s→+∞

H(sp) =: H0(p)

exists. Clearly,H0 is an angular map, in the sense described above. Now, assume that
H0 ∈ C0(R3

\ {0}), and notice that (1.3) implies also

|(H(p)−H0(p))p| ≤ MH < 1 ∀p ∈ R3.

Thus, the above assumptions onH are satisfied, withH1 ≡ 0 andK = H − H0.
Assumption (1.3) is far from being purely technical; on the contrary, it prevents several
remarkable phenomena, like nonexistence results and blow-up of approximate solutions.
In particular, condition (1.3) provides a positive lower bound for the energy ofH -bubbles
(compare with [7]), affects the geometry of the energy sublevels ([7], [10]), plays a crucial
role in existence-nonexistence phenomena ([7], [10]), in the behavior of Palais–Smale
sequences for the Dirichlet problem ([11], [12]), and in several other questions related
to theH -surface equation.



212 R. MUSINA

In caseH0 = H1 = 0, that is, whenH satisfies

lim sup
|p|→+∞

|H(p)p| < 1,(1.4)

the regularity result we can prove is a little stronger.

THEOREM 1.4. Assume thatH : R3
→ R is a mesurable map satisfying(1.4).

(i) If u ∈ H 1
loc(Ω,R

3) is a weak solution to(1.1), thenu ∈ L∞

loc(Ω,R
3).

(ii) Assume thatΩ is a bounded domain, and letu ∈ H 1(Ω,R3) be a weak solution to the
Dirichlet problem(1.2)such that(H ◦ u)ux ∧ uy ∈ L1(Ω,R3). If γ ∈ L∞(∂Ω,R3),
thenu is bounded inΩ. If in addition

(1.5) sup
p∈R3

|H(p)p| < 1,

then
‖u‖L∞(Ω,R3) ≤ ‖γ ‖L∞(∂Ω,R3).

Assertion (i) was already proved by Tomi in [23, Satz 2], under the additional
assumption thatH is Lipschitz continuous.

Since the proofs of Theorems 1.1 and 1.4 are based on the same careful choice of test
functions, we first prove the simpler Theorem 1.4.

NOTATION. Throughout this work,Dr(z) denotes the open disk inR2 centered atz ∈ R2

and with radiusr > 0, whileBR is the ball inR3 centered at 0 and with radiusR > 0.
We denote byLσ (A), H 1(A) andH 1

0 (A) the usual Lebesgue and Sobolev spaces
of vector-valued functionsu : A → R3, while the notationsLσ (A,R), H 1(A,R) and
H 1

0 (A,R) will be used for scalar-valued functions. The norms inLσ (A) and inLσ (A,R)
will be denoted with the same notation‖ · ‖σ if no confusion can arise.

2. PROOF OFTHEOREM 1.4

First we prove statement (ii) in Theorem 1.4. Then a standard localization argument will
lead to the proof of (i).

LetH : R3
→ R be a curvature satisfying (1.4), and letu ∈ H 1(Ω) be as in (ii). Let

R0 ≥ ‖γ ‖∞ be any positive number such that

MR0 := sup
|p|≥R0

|H(p)p| < 1.(2.1)

Notice that we can takeR0 = ‖γ ‖L∞(∂Ω) if the stronger assumption (1.5) is satisfied.
Assertion (ii) will be completely proved if we show that‖u‖∞ ≤ R0. This is equivalent to
proving thatΛR = 0 for everyR > R0, where we have set

ΛR :=
∫

{z∈Ω : |u(z)|≥R}

|∇u|2.
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To this end, fix any increasing mapΦ ∈ C∞([0,+∞[,R) satisfying 0≤ Φ ≤ 1,Φ(s) = 0
if s ≤ R0 andΦ(s) = 1 if s ≥ R, and consider the composite mapΦ(|u(·)|)u(·). SinceΦ ′

has compact support,∇(Φ(|u|)) = Φ ′(|u|)∇|u| a.e. inΩ, and sinceΦ(|u|) ≡ 0 on∂Ω,
we can conclude thatΦ(|u|)u belongs toH 1

0 (Ω). Notice also that|H(u)Φ(|u|)u| ≤ 1 a.e.
inΩ, by (2.1), and thereforeH(u)Φ(|u|)u · ux ∧ uy ∈ L1(Ω). At the end of this proof we
will check that the mapΦ(|u|)u can be used as a test function in (1.1) to obtain

−

∫
Ω

∇u · ∇(Φ(|u|)u) = 2
∫
Ω

H(u)Φ(|u|)u · ux ∧ uy dx dy.(2.2)

We point out the identityu · ∇u := (u · ux, u · uy) = |u|∇|u|, which in particular implies

(u · ∇u) · ∇(Φ(|u|)) = Φ ′(|u|)|u| |∇|u| |2 ≥ 0,

and we compute∫
Ω

∇u · ∇(Φ(|u|)u) =

∫
Ω

Φ(|u|)|∇u|2 +

∫
Ω

Φ ′(|u|)|u||∇|u||2 ≥

∫
Ω

Φ(|u|)|∇u|2.

Finally, from (2.1) we estimate the right hand side in (2.2) by∣∣∣∣2∫
Ω

H(u)Φ(|u|)u · ux ∧ uy dx dy

∣∣∣∣ ≤ MR0

∫
Ω

Φ(|u|)|∇u|2,

and sinceMR0 < 1 we infer that

ΛR ≤

∫
Ω

Φ(|u|)|∇u|2 = 0.

Statement (ii) is completely proved.

PROOF OF(2.2). First notice that, by a standard density argument,

−

∫
Ω

∇u∇w = 2
∫
Ω

H(u)w · ux ∧ uy ∀ w ∈ H 1
0 ∩ L∞(Ω).(2.3)

For everyn large enough setρn = min{1, n|u|−1
} andwn = ρnΦ(|u|)u. Using the

standard chain rule we first infer thatwn ∈ H 1
0 ∩ L∞(Ω). Thuswn is an admissible

test function for (2.3). To conclude, it suffices to notice that∇wn → ∇(Φ(|u|)u) in L2

andH(u)wn → H(u)Φ(|u|)u weak∗ in L∞, because of (2.1).

PROOF OF(i). It suffices to show thatu is bounded in every small diskDr0(z0) ⊂⊂ Ω.
By Fubini’s theorem, for a.e. smallr > r0 the trace ofu on ∂Dr(z0) is bounded in
H 1(∂Dr(z0)), hence inL∞(∂Dr(z0)). Thus we can apply (ii) to conclude. 2

REMARK 2.1. Notice that Theorem 1.4 can be easily combined with Strzelecki’s theorem
([21, Theorem 1.3]) to getC0(Ω̄,R3)-regularity, providedγ is continuous andH is a
locally Lipschitz map satisfying (1.4).
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3. PROOF OFTHEOREMS1.1 AND 1.2

In this section we first prove Theorem 1.1. Then we indicate how our arguments can be
modified in order to prove Theorem 1.2.

Let us start with some preliminaries about isoperimetric inequalities. The first result is
needed in order to handle the term involvingH1; it was proved by Wente in [24] (see also
[4, Lemma A.10]).

LEMMA 3.1. LetD be a disk inR2. There is a unique continuous map

R : H 1
0 (D)×H 1(D) → R

such that

R(ψ,w) :=
∫
D

ψ · wx ∧ wy dx dy

for everyψ ∈ H 1
0 ∩ L∞(D), w ∈ H 1(D). Moreover

|R(ψ,w)| ≤
1

2
√

8π
‖∇ψ‖L2(D)‖∇w‖

2
L2(D)

∀ψ ∈ H 1
0 (D), ∀w ∈ H 1(D).

In order to handle the term involving the homogeneous partH0, we have to recall some
results by Steffen [20].

LetD be a disk inR3, and letH0 be a continuous angular map, as in assumption(H0).
Notice thatH0 ∈ L∞(R2,R). Moreover, the vector fieldQ : R3

→ R3 defined by

Q(p) :=
1

3
H0(p)p

is continuous onR3 and it satisfies divQ = H0 in the sense of distributions. Set

VH0(w) :=
1

3

∫
D

H0(w)w · wx ∧ wy dx dy(3.1)

for w ∈ H 1
0 ∩ L∞(D). It turns out thatVH0(w) = V̄H0(w,0), whereV̄H0(w,0) is the

H0-volume functional introduced by Steffen in [20, Section 3]. Ifw is regular enough, it
measures the algebraic volume enclosed by the closed surface parameterized byw with
respect to the weightH0.

By [20, Proposition 3.3], the functionalVH0 has a unique continuous extension to
H 1

0 (D), and the following isoperimetric inequality holds true ([20, Theorem 2.10]):

|VH0(w)| ≤
‖H0‖∞

6
√

8π
‖∇w‖

3
L2(D)

∀w ∈ H 1
0 (D).(3.2)

Finally, we need a technical lemma. The proof is standard, and it is based on the general
chain rule for partial derivatives.

LEMMA 3.2. Assume thatH1 satisfies(H1). LetD be a bounded domain, and letu ∈

H 1(D) be a given map, with a bounded trace on∂D. LetΦ ∈ C∞(R,R) be such that
Φ(s) = 0 for s ≤ max{RH1, ‖u‖L∞(∂D)}, and assume that the mapss 7→ Φ(s) and
s 7→ Φ ′(s)s are bounded onR. Thenψ := (H1 ◦ u)Φ(|u|)u ∈ H 1

0 (D) and

‖∇ψ‖2 ≤ C(H1)(‖∇(Φ(|u|)u)‖2 + ‖Φ(|u|)∇u‖2).
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The main step in the proof of Theorem 1.1 is the following “ε-regularity lemma”.

LEMMA 3.3. Assume thatH = H0 +H1 +K satisfies assumptions(H0), (H1) and(K).
Then there existsε0 > 0 (depending only on‖H0‖∞, C(H1) and M̄K ) such that ifu ∈

H 1(D) is a weak solution to(1.1)on a diskD, with (H ◦ u)ux ∧ uy ∈ L1(D) and∫
D

|∇u|2 < ε0, u|∂D ∈ L∞(∂D),

thenu ∈ L∞(D).

PROOF. Fix a largeR0 ≥ ‖u‖L∞(∂D), R0 ≥ RH1, such that

MR0 = sup
|p|≥R0

|K(p)p| < 1,(3.3)

and forR ≥ R0 set, as in Section 2,

ΛR =

∫
{z : |u(z)|≥R}

|∇u|2.

We have to prove that there exists a largeR∞ such thatΛR∞
= 0. To this end, fixR ≥ R0

andα ∈ (0,1) small, and choose a mapΦ ∈ C1(R,R) such thatΦ(s) = 0 for s ≤ R,
Φ(s) = 1 for s ≥ R(1 + α), and

0 ≤ Φ ≤ 1, Φ ′
≥ 0,(3.4)

Φ(s)+Φ ′(s)s ≤ 2/α.(3.5)

As in Section 2 we see that the mapsΦ(|u|)3u,Φ(|u|)u are of classH 1
0 (D). At the end of

this proof we will show that (in essence) we can useΦ(|u|)3u as a test function in

∆u = 2H(u)ux ∧ uy onD(3.6)

to obtain

−

∫
D

∇u · ∇(Φ(|u|)3u) = 6VH0(Φ(|u|)u)+ 2R(ψ,Φ(|u|)u)(3.7)

+ 2
∫
K(u)Φ(|u|)3u · ux ∧ uy,

where we have set
ψ := (H1 ◦ u)Φ(|u|)u.

Notice thatψ ∈ H 1
0 (D) by Lemma 3.2. We can readily estimate, as in Section 2,∫

D

∇u∇(Φ(|u|)3u) ≥

∫
D

Φ(|u|)3|∇u|2,∣∣∣∣2∫
D

K(u)Φ(|u|)3u · ux ∧ uy dx dy

∣∣∣∣ ≤ MR0

∫
D

Φ(|u|)3|∇u|2,
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and therefore, using also the isoperimetric inequality (3.2) and Lemma 3.1,

(1 −MR0)ΛR(1+α) ≤
‖H0‖∞
√

8π
‖∇(Φ(|u|)u)‖3

2 +
1

√
8π

‖∇ψ‖2‖∇(Φ(|u|)u)‖
2
2.

It remains to compute∫
D

|∇(Φ(|u|)u)|2 ≤

∫
D

(Φ ′(|u|)|u| +Φ(|u|))2|∇u|2 ≤
4

α2
ΛR(3.8)

by (3.5). Also, from Lemma 3.2 and (3.8) we get

‖∇ψ‖2 ≤ C(H1)(‖∇(Φ(|u|)u)‖2 + ‖Φ(|u|)∇u‖2) ≤ 3C(H1)
1

α
Λ

1/2
R .

Thus

ΛR(1+α) ≤ C1
1

α3
Λ

3/2
R ,(3.9)

whereC1 depends only on‖H0‖∞, C(H1) and onMR0 (that is, onM̄K ). Now we assume
thatε0 is so small that

C1ε
1/2
0 < 1/4,

and we show that (3.9) leads to the conclusion. We define by recurrence a bounded
increasing sequenceRn → R∞ < +∞, by settingR1 = R0(1 + 1) and

Rn+1 := Rn(1 + 2−n/3).

First notice that we can estimate, using (3.9),

ΛR1 ≤ C1ε
1/2
0 ΛR0 <

1

4
ε0.

Next one proves by induction thatΛRn < ε04−n. Therefore,

ΛR∞
≤ lim
n→∞

ΛRn = 0,

and the lemma is completely proved. 2

PROOF OF(3.7). For everyn large enough set, as in Section 2,ρn = min{1, n|u|−1
} and

vn = ρ3
nΦ(|u|)

3u. As in Section 2 notice thatvn ∈ H 1
0 ∩ L∞(D) andvn → Φ(|u|)3u in

H 1
0 (D). Moreover, from(H0) and(H1) we infer that the maps(H0 ◦ u)vn and(H1 ◦ u)vn

are measurable and bounded onD. Therefore, also(K ◦ u)vn · ux ∧ uy ∈ L1(Ω). Using
a standard density argument one can check that the mapvn can be used as a test function
for (3.6) to get

−

∫
D

∇u∇(Φ(|u|)3u) = 2
∫
D

H0(u)v
n

· ux ∧ uy + 2
∫
D

H1(u)v
n

· ux ∧ uy

+ 2
∫
D

K(u)Φ(|u|)3u · ux ∧ uy + o(1)
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asn → ∞. Here we have used the facts that∇vn → ∇(Φ(|u|)3u) in L2 andK(u)vn →

K(u)Φ(|u|)3u weak∗ in L∞, because of (3.3). Next, notice thatwn := Φ(|u|)ρnu →

Φ(|u|)u in H 1
0 (D) and

H0(u)v
n

· ux ∧ uy = H0(w
n)wn · wnx ∧ wny

a.e. inD, sinceH0 is an angular map. Therefore,∫
D

H0(u)v
n

· ux ∧ uy = 3VH0(w
n) = 3VH0(Φ(|u|)u)+ o(1)

by (3.1) and by the continuity of the volume functionalVH0 onH 1
0 (D). Finally,

2
∫
D

H1(u)v
n

· ux ∧ uy = 2
∫
D

ρnψ · wnx ∧ wny = 2R(ψ,Φ(|u|)u)+ o(1),

sinceρnψ → ψ andwn → Φ(|u|)u in H 1
0 (D). 2

END OF PROOF OFTHEOREM 1.1. The argument is the same as in Section 2. It suffices
to show thatu is bounded in every small diskDr0(z0) ⊂⊂ Ω. By Fubini’s theorem, for a.e.
smallr > r0 the trace ofu on∂Dr(z0) is bounded inH 1(∂Dr(z0)), hence inL∞(∂Dr(z0)).
Thus, if r is small enough (in order to have a smallL2 norm of the gradient onD =

Dr(z0)), we can apply Lemma 3.3 to conclude. 2

PROOF OF THEOREM 1.2. Let ū ∈ H 1(R2) be any extension ofu. Choose a finite
coveringDr0(zi), i = 1, . . . , k, of ∂Ω by small disks such that∫

D2r0(zi )

|∇ū|2 < ε0

whereε0 is as in Lemma 3.3. Sinceu ∈ L∞

loc(Ω) by Theorem 1.1, we just have to check
that u ∈ L∞(Dr(zi) ∩ Ω) for eachi = 1, . . . , k. Fix an indexi and choose a radius
r ∈ (r0,2r0) such that the trace of̄u on∂Dr(zi) is bounded inL∞. Define, as in the proof
of Lemma 3.3, the mapΦ(ū) for largeR, α. Finally, repeat the arguments in the proof of
Lemma 3.3 withD = Dr(zi), replacingΦ(|u|) with the function

Φ̄(|u|) =

{
Φ(u) in Dr(zi) ∩Ω,
0 inDr(zi) \Ω.

The conclusion can be achieved as in Lemma 3.3.2

REMARK 3.4. The conditionH1 ∈ C1 can be relaxed, since we just need thatH1 is a
Lipschitz function on the complement of a ball inR3, thatH1 satisfies(H1), and that the
Nemytskĭı operatoru 7→ H1 ◦ u maps continuouslyH 1(D) intoH 1(D). However, this is
not generally true ifH1 is only Lipschitz continuous (cf. [18]).
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4. H -BUBBLES AND PROOF OFTHEOREM 1.3

In this section we deal with solutions to (1.1) on the whole planeR2. For a discussion of
this problem we refer to the Appendix in [5] for the case ofH constant, and to [7], [8], [9],
[6], [19] for H variable.

Let us start by introducing a notation. We set

Ĥ 1(R2) = {U ∈ H 1
loc(R

2) : |∇U |, |U |/(1 + |z|2) ∈ L2(R2)}.

Notice that Ĥ 1(R2) can be identified withH 1(S2,R3) via composition with the
stereographic projection from the north pole. It is often convenient to identify a map
U ∈ Ĥ 1(R2) with its composition with the stereographic projection, which is a map
defined onS2.

ForU : R2
→ R3 set

Û (z) = U(z/|z|2).

ThenU ∈ Ĥ 1(R2) if and only if Û ∈ Ĥ 1(R2). Let us say thatU is aweakH -bubbleif
U ∈ Ĥ 1(R2), (H ◦ U)Ux ∧ Uy ∈ L1(R2) andU is a weak solution to

∆U = 2H(U)Ux ∧ Uy onR2.

It turns out that every smoothH -bubble is indeed a conformal map on the sphere that
parameterizes anS2-type surface having mean curvatureH at each regular point (cf. for
example [7]).

Theorem 1.3 is a simple corollary of 1.1, which follows from the invariance of the
H -surface equation with respect to composition with the Kelvin transform inR2. We omit
the simple proofs. 2
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