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ABSTRACT. — We compare various notions of solutions of Monge—Ampeére equations with discontinuous
functions on the right hand side. Precisely, we show that the weak solutions defined by Trudinger can be obtained
by the vanishing viscosity approximation method. Moreover, we investigate existence and uniqueh@ss of
viscosity solutions.

KEY WORDS:  Viscosity solutions; weak solutions; Monge—Ampére equations.

MATHEMATICS SUBJECT CLASSIFICATION (2000): 35365, 49L.25.

1. INTRODUCTION

Let £2 be a uniformly convex bounded domain®RF (N > 2) and letf be a nonnegative
function in £2. It is well-known that the homogeneous Dirichlet problem for the Monge—
Ampére equation

(1.1) detD%u) = f ing,
(1.2) u=0 o0nasg,

has a classical convex solution € C2(£2) N C(£2) when f is strictly positive and
sufficiently smooth, that isf € C*(£2) for some O0< « < 1 (seel[4] 5, 16]). When these
assumptions fail, various notions of solutions have been proposed and related results
have been obtained. If is continuous the problem can be settled in the framework of
C-viscosity solutions[[12]. Iff is not continuous, however, the problem should be treated
within the theory ofL?-viscosity solutions (se€][7] 8]). Unfortunately, the present stage
of this theory requires strong ellipticity and, therefore, it does not apply to the Monge—
Ampere equatior] (I}1). On the other hand, one can deal with a broader set of data on the
right hand side, namely bounded measures. This is easily done by taking into account weak
solutions in the sense of measures, for which we refér ta [19, 20]. Moreover Trudinger [18]
has given arad hocnotion of weak solutions foL.” data. As far as we know, the relation
between weak solutions and those obtained by the vanishing viscosity approximation
method has not been investigated. Both the viscosity and weak solutions rely on
approximation arguments. While the viscosity method is based on strong ellipticity of
det(D?u) on a given solution, the approximation method is focused on the regularjty of

In this paper we show that the weak solution accordind to [18] is actually/an
viscosity solution, and it is the limit of the vanishing viscosity method. We also deal with
unigueness questions in the clasd.8fviscosity solutions. To the authors’ knowledge, the



222 A.L.AMADORI - B. BRANDOLINI - C. TROMBETTI

question of uniqueness &f’-viscosity solutions has not found an ultimate answerl._In [8]
Caffarelli, Crandall, Kocan an8wiech have shown that the existence of an a.e. solution
with W2 P regularity guarantees uniquenesg.fviscosity solutions. The papér[14] gives
a remarkable contribution to the uniqueness issue. The authors @téveegularity of
the viscosity solutions under a certain structure condition. Seemingly, all these available
technigues cannot be used for the Monge—Ampeére equation because of a lack of regularity:
it is well-known that in general equatiop (1.1) cannot be solve /v nor inC1* (see
[21],[22]). We establish here uniqueness fGf-viscosity solutions wherf € L. Our
proof makes use of the existence of weak solutions in the sensel of [18] but is independent
of the uniqueness of weak solutions. In fact, the uniqueness of weak solutions could be
inferred at once. Our technique does not apply to the case of unbounded data. Concerning
the datainL?, g < oo, we show that the weak solution (equivalently, the solution produced
by vanishing viscosity) is the maximal’-viscosity solution forp = Ng.

Let us say a few words on the vanishing viscosity approximation method. We
approximate equatiof (1.1) by adding a vanishing viscosity term to gain strong ellipticity.
In view of homogeneity, we actually study the following equation:

Ts) (det DZu)¥N + cAu = YN in g,

where fYN e LP(2), p = Ng. For everys > 0 equationk.) has a strong solution

u, € W2P(£2) N C($2) satisfying the boundary conditiop (1.2). Moreower.turns out to

be the uniqud.”-viscosity solution. The main purpose of this paper is to pass to the limit
in equations[(1]x) and show that:

(i) u. converges to ah”-viscosity solution of[(TJ1)}{(T]2),

(ii) such a solution coincides with the weak solution introduced by Trudingér [18],
(iii) possibly, that solution is the uniqui”-viscosity solution, or at least,
(iv) itis a “special” viscosity solution.

Another feasible approximation ¢f (1.1) could be
(1.3¢) detD?u +eAul) = f in 2,
which was suggested by Trudinger in[16]. Since for &Ryonvex functioru we have
max{(det D2u))YN, e Au} < (det D%u)YN + e Au
< (det(D%u + e Aul )N < (1/N + &) Au,

it is not hard to believe thaf (Jd)] and [1-3) are very close to each other. Therefore, it
seems that our method would equally work for (d)3.

2. PRELIMINARIES

First of all we settle some assumptions and notation that will be in force throughout the
paper. The se® is a uniformly convex, bounded domain®f (N > 2), f is a nonnegative
function belonging ta.?(£2) with 1 < ¢ < 400 and bounded in some neighbourhood of
982, sayN. We also sep = Ng.
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It is well-known that the Monge—Ampére operator is elliptic with respect to convex
functions. According to[[12], viscosity theory recovers ellipticity by introducing the
function

F(X) :=sug—tr(BX): Be M", B >0, detB = 1/N"}

[ —detx)N if X >0,
] 40 otherwise,

for any symmetriov x N matrix X. HereMN denotes the set of x N matrices, and from
now onSM will stand for its subset of symmetric matrices. Thus we rgad (1.1) as

F(D’u)+ f'N =0 ing,

with fYN e LP(£2). We explicitly observe that, sincg is the upper envelope of linear
functions, it is subadditive, convex and lower semicontinuous.

The aim of this paper is to compare various notions of solution known in the literature.
Thus we briefly review definitions and first properties. We start by recalling the definition
of C-viscosity sub/super/solutions due to Crandall, Ishii and Lions. We cite here the paper
[10] for a detailed exposition of this theory, and|[12] for a particular mention of the Monge—
Ampere equation.

DEFINITION 2.1. Letu be an u.s.c. (respectively, I.s.c.) function; we say thas a
C-viscosity subsolutiofresp.supersolutiopof (I-3) or, equivalently, that (D?u) + f/N
< 0 (resp.,> 0) in C-viscosity senseif the following holds. For every test function
¢ € CX(Q),

F(D%p(x)) + ()™ <0 (resp.> 0)

for everyx € £2 whereu — ¢ attains a local maximum (resp., minimum).

A C-viscosity solutionis any continuous function which is, at the same time, &
viscosity supersolution and @viscosity subsolution. We shall also say tetD?%u) +
fYN = 0in C-viscosity sense

In [21] it has been proved that a classical solution és\d@scosity solution if and only
if it is convex, and that conversely a smodaihviscosity solution is a classical convex
solution.

A more restrictive notion of solution can be given by increasing the set of test functions
from C2(2) to W2P(£2). We refer the reader t¢[8] for a detailed account of fHe
viscosity theory; here we briefly recall the basic definitions.

DEFINITION 2.2. Letu be an u.s.c. (respectively, I.s.c.) function; we say tha an
LP-viscosity subsolutiorfresp.,supersolutiopof (T.1) or, equivalently, thatF (D?u) +
fYN < 0(resp.,> 0) in LP-viscosity sensdf one of the following items holds.

(i) If ¢ € W2P () ands > 0 are such that” (D%p) + f/N > § > 0 (resp.,< —8 < 0)
almost everywhere in an open subsefotthenu — ¢ cannot achieve a local maximum
(resp., minimum) inside that set.
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(i) For every test functiop € W27 (£2) and for everyx € 2 whereu — ¢ achieves a
local maximum (resp., minimum), we have

(2.4) esslimintr (D%p(x)) + (f ()" <0

(resp., ess lim supF (D2 (x)) + (f(x) YN > 0),

xX—>X

whereess liminf(ess lim supmeans, as usual, the essential inferior (superior) limit.

An LP-viscosity solutionis any continuous functiom which is, at the same time, dt¥-
viscosity supersolution and aty’-viscosity subsolution. We shall also say tWatD%u) +
fYN = 0in LP-viscosity sense

C- and L?-viscosity sub/super/solutions of equati¢n [2)lare defined in the same
way, after replacing” (X) + fYN by F(X) — etr X + fYN.

We explicitly mention that anL?-viscosity sub/super/solution is &-viscosity
sub/super/solution.

REMARK 2.3. AnyLP-viscosity subsolution of (T.1) satisfiesD?x > 0 in L”-viscosity
sense. This means that,gf € W27(£2) is such thatD?¢ is not nonnegative almost
everywhere in an open subset @f, thenu — ¢ cannot achieve a maximum inside that
set. To prove this, assume towards a contradiction that there @xist# %7 (2) such that
D?¢ is not nonnegative for a.e.in a ball B contained in2 and that — ¢ has a maximum
pointx inside B. Then by definitionF (D%p) = +oc nearx, contrary to[(Z.4).

A well-known notion of solution is the one introduced by Trudingerlinl [18], which
coincides with that given by Aleksandray [1] and Bakelmian [2] for measure data.

DEFINITION 2.4. Letu be a continuous function; we say thats aweak subsolutiof
(7)) if there exist sequencés,,} C C2(£2) and{fn} C Llloc(sz) such thatu,, is convex,
um — u uniformly in$2, f,, > 0, f, — fin L (£2), anddetD?u,,) > fin.

Letu be a continuous function; we say thats aweak supersolutioof (L)) if there
exist sequences:,,} C C2(£2) and{f,} C L%C(Q) such thatu,, — u uniformly in £2,

fm =0, f > finLL (£2), anddet(D?u,,) < f,, whenevew,, is convex.
A weak solutionis a continuous function for which there exists a sequenfig,} C
C2(£2) of convex functions such thaf, — « uniformly in 2 and detD%u,,) — £ in

LL (92).

To relate our work to the rest of the literature, we have to mention the notion of
good solution which was proposed by Cerutti, Escauriaza and Fabes| in [9] for linear
equations with discontinuous coefficients and was extended to fully nonlinear, strongly
elliptic equations by Jensen, Kocan a8diech in [13]. The obvious adaptation of that
definition to the Monge—Ampére equation (which is merely degenerate elliptic) reads as
follows.

DEFINITION 2.5. Letu be a continuous function; we say thatis a good solutionof
(I0)if there exist a sequence of degenerate elliptic operathys 2 x SN — R, with

Gn(x,X) <G,(,Y) wheneverX —Y >0,
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forall x € 2 andX, Y € SV, and a sequence of functiofs,} C W,f)’[f’(!z) N C(§2) with

Gm(x, D°u,) =0 a.e.in®

so thatu,, — u uniformly in2 andG,,(x, X) — F(X) + f/N for a.e.x € £2 and all
X e SN,

It is easily seen that a weak solution according to Definifion 2.4 is a good solution
according to Definitiof 2]5. In[13], the authors show that the notions of goodL&nd
viscosity solution are equivalent for strongly elliptic equations, but their proof does not
carry over to merely degenerate elliptic equations. If we adopt their point of view, our
Theoren{ 4.]1 states that any weak (good) solution i% &wviscosity solution; moreover,
Theorem[ 4.4 says that the two notions are equivalent when the fdare essentially
bounded.

3. LP-VISCOSITY SOLUTIONS THE VANISHING VISCOSITY METHOD
In this section we approximate equatipn {1.1) by means of

Te) (detD2u))YN + eAu = fYN in g2,

for ¢ > 0. We observe that the operataet D2u))YN + ¢ Au is concave with respect to
D?u and satisfies the following structure condition:

eAu < (det(D?u))N + eAu < (¢ + 1/N) Au

for anyC? convex function.

Let us mention some fundamental facts about the uniformly elliptic equétiopz)1.1.
for the reader’s convenience. In the following we will denote dyypositive constants
whose values may change from line to line.

PrRoPOSITION3.1. Let$2 and f satisfy the standing assumptions set in Section 2. Then
for everye > 0:

(i) there exists a unique?-viscosity solution:, of (1.1s)~L.2).
(i) u. is a convex function belonging W27 (£2) and satisfying equatio@g) a.e.;
(iii) wu. € C%L(£2) and
(3.5) lueliLe < C1,  [[DuellL~ < C2,
with c1, C2 independent oa.

In order to prove the proposition above we need the following

LEMMA 3.2. Let 2 and f satisfy the standing assumptions set in Secfiohetu €
C%1(2) N C?(£2) be a supersolution of the problem

detD%v) = f in &2,
(3:6) {v =0 onas.
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Then
(3.7) lullLe < C3, [|Dullr> =< Ca,
wherecs, C4 are positive constants depending ®n\, 2, || £ La-

PROOF Sinceu is convex ing2, by the classical comparison principle (se€l [15]) [17]) we
have

(3.8) lull= < csl fll}q. Cs>0.
Moreover, since: is a smooth convex function, we get

(3.9 sup Du| = sup|Du|.
Il 92

Combining [3:8) and (3]9). in order to obtain (3.7) it suffices to prove

(3.10) supDu| < Cg,
952

with cg depending om, A, £2 and||u|| .<, and this can be done arguing asin/[11, Theorem
17.21].

PROOF OFPROPOSITION3.1. Let us consider a sequer{gg} C C®(£2), f, > 0, with
fa = finL1(2)asn — oo, Ifully < C7llflly and| fullL~ < Cgin N. By classical
results, for every:, the equation

(detD%u)™N + eAu = (f,)*"

has a unique classical convex nonpositive solutigp € C*(£2) N Cc%1(2) satisfying
the homogeneous boundary conditipn1.2). Moreover,thjsturns out to be the unique
C-viscosity solution (see [12]) and the unigLié-viscosity solution (see [8]).

For everyn ande > 0, u, , is a supersolution of

detD?w) = f, in$2,
w=0~0 onos2;

hence by Lemma 3.2 we have
llg,nllLe < Cg, |Dug pllLe < Cio,

for some positive constantsy, C1o whose value depends on N, £2, || fllLe, but not
onn ande. The Ascoli-Arzela theorem ensures that, up to subsequemncgsonverges
uniformly in £2, asn — oo, to a functionu, which satisfies[(3]5). By the stability result
[8, Theorem 3.8], the limit function, is anL?-viscosity solution of[(1]t)—(1.2), hence
by [4], u. hasW?2? regularity and satisfies equati]s.)]a.e.; finally, [8, Theorem 2.10]
applies and consequently is the uniquel.”-viscosity solution.

The main result of this section is the following.
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THEOREM3.3. Let2 and f satisfy the standing assumptions set in Section 2. Then the
solutionsu, of e)—@)converge inC(£2) to a Lipschitz continuous functianwhich

is an L?-viscosity solution of L.I)T.2).

ProoF By (3.5) and the Ascoli-Arzela theorem, has a subsequence that converges in
C(£2) to a Lipschitz continuous functiom. Let us show that is anL?-viscosity solution

of (L.7)). We only check the subsolution part, since the other assertion relies on the same
arguments. Suppose by contradiction thas not anL”-viscosity subsolution; then, by
definition, there exist a poink in £, a test functiony in W27 (£2) and two positive
parameters andr such that

o F(D?p) + fYN > s a.e.inthe open balk := {x : |x — X| < r},
e the functioru — ¢ restricted taB := {x : |[x — x| < r} has a global strict maximum &t

We get a contradiction by building a test function fQr, sayg., in such a way that

(3.11) F(D%p,) —eAps + fYN =5 ae.inB forall smalle > 0,
(3.12) @e — ¢ uniformlyin B ase — 0.

Indeed, asi. is anL”-viscosity solution of[(T]E]} the inequality[(3:1]1) prevents — ¢,
from achieving a maximum inside the ball. On the other hand, — ¢, does have a
maximum point in the closed ball, sayx,, by the Weierstrass theorem. Singe— ¢, —
u — ¢ uniformly in £2, we havex, — x up to a subsequence. In particularbelongs to
the open ballB for smalle, a contradiction.

What is left is to construct the auxiliary functiagn which does the job; we take it
in the formg, = ¢ — ¥, wherey, is a function to be determined. By subadditivity we
compute

F(D%p.) — eAge + YN > F(D%p) + YN — F(D*y) + e Ay, — £ Ag
> 8 — F(D?Y,) + e A, — eAg

for a.e.x € B. Hence [(3.I]1) is attained if we choose as the a.e. solution of
det D2y)YN + e Ay = e(Ap), in B, with ¢ = 0 ond B, produced in Propositidn 3.1.
Eventuallyy, also satisfieq (3.12) by virtue of estimdte [3.5).

The proof is completed by checking that the limit functiomloes not depend on the
subsequence. Lgt,} and{e,’} be two vanishing sequences of parameters southat>

u"andugr — u” in C(2) asn — oo. Up to subsequences, we may suppose that the
parameters are ordered as follows:

'<8//

=&41=¢€

58;1/58 <.

/ /!

n n—1
To prove thatw = ey —Ugr > 0, we show thaF(DZw)—s;,Aw > 0inC-viscosity sense

and then use a standard comparison principle (see, for instance, [12]). Suppose, contrary
to our claim, that there exist a poiit € £2, a test functionp € C? and two positive

parameters andr such that

o F(D?p) —¢g,Ap < —8iNB:={x:|x—X| <r},
e w — ¢ restricted toB has a global strict minimum &t
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Then the function) = ¢ + Uer hasW?? regularity and touches,, from below at the
point x. By the subadditivity ofF we get

F(D*Y) — e, Ay + [N < F(D%9) + €, Ap + F(D?u,r )

" 1/N / "
- 871+1Au€;[+1 +f — (&, — 8n+l) Aus;:Jrl =4

sinceug//+l is a convex a.e. solution. This contradicts the fact thatis an L”-viscosity
n
solution, hencer,; — Ugr = 0 and, finally, letting: — oo givesu’ > u”.
7 n
Completely similar arguments yield — u,/ , =0, and sa/’ = u”.
n—

4. COMPARISON WITH WEAK SOLUTIONS

This section establishes the relation between weaklahsliscosity solutions. The first
theorem shows that the limit function obtained with the vanishing viscosity method is
actually the weak solution produced by Trudingerlinl [18]. Moreover, we prove that the
weak solution is maximal among?-viscosity solutions and that, whenever the datum is
bounded, itis, in fact, unique.

THEOREM4.1. Let 2 and f satisfy the standing assumptions set in Section 2. The
solutionsu, of (1.1¢)—(T.2) converge inC(£2) to the weak solution of A)(L.2). In

particular, the weak solution is ah”-viscosity solution.

PROOF Letv be the weak solution of (1].1J—(1.2); this means that there exists a sequence
vm Of C2 convex functions such that, — v uniformly in £2 and detD?v,,) — f in
Llloc(.Q). Let thenu be the uniform limit ofu, obtained in Theore@.& we prove that
u="2.

To prove thatw = u — v > 0, it suffices to check thaf (D?w) > 0 in C-viscosity
sense inf2 and then invoke the standard comparison principle. Assume by contradiction
that w is not a supersolution; then there exist a paint £2, a test functionp € C? and
two positive parametesandr such that

o F(D%p) < —8inB:={x:|x—X| <r},
e w — @ restricted toB has a global strict minimum at

This step of the proof is completed by contradicting the fact thaits an L?-viscosity
supersolution of (Z]Z)} To this end we take an auxiliary function in the form

Gem =@ + Uy + Ve m,

wherey, ,, will be chosen later ifW2 7 (£2) in such a way tha ,, — O uniformly in B.
The functionu, — ¢, , approachesw — ¢ uniformly, therefore it achieves a minimum
inside the ballB, at least for smalt and largen. Moreover, by the subadditivity of and
the convexity ofv,, we get

F(D2¢s,m) - SAﬁas,m + fl/N
< F(D%9) — eAvy + F(D*Yre 1) — €AV — £Ag + F(D?v,,) + fUN
< =8+ F(D%Y, ) — €AY — eAp — (detD%y,)YN 4 fUN,
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Choosingy . », as the convex a.e. solution of

(detD?yre )N + e APy = (—eAg — (detD?v, )N + fYN), in B,
Yem =0 onoB,

produced in Proposition 3.1, ensures thaD?p; ) — £Age . + fYN < —§ a.e. inB.
Moreover the estimaté (3.5) implies that,, — 0 uniformly in B, as required.

We next apply this argument again, with= v — u, to obtainv > u and finally the
conclusion.

4.1. TheL® case: comparison and uniqueness

We now establish at the same time two relevant results concerning bounded data: there
exists only ond.*°-viscosity solution, and the solution coincides with the weak solution.
It is worth mentioning that our proof is independent of the uniqueness of weak solutions,
which was already proved in_[18]. Indeed, the uniqueness of weak solutions could be
inferred at once.

The core of our argument is that weak abt?-viscosity sub/supersolutions compare,
in the following sense.

THEOREM4.2. Letu andu be respectively a sub- and supersolutionZifP-viscosity
sense, ang andv be respectively a sub- and supersolution in weak sengg.@jj. Then
v<wuandu <vin £.

In order to prove the above theorem, we need the following

LEMMA 4.3. Let B be an open t@ll and € L*°(B), h > 0 a.e. Then there exists a
convex functiony € W2°°(B) N C(B) which satisfies in the almost-everywhere sense the
following problem:

detD?y) > h, x € B,

4.13) {w:o, x €9B.

Moreover, there exists a constantndependent of so that

(4.14) [V lloo < ClliAll1.

PROOF. Let us choosé € C*(£2) such that: > h a.e. in2 and|hll;1 < 2||hll,z.
Denote byy the classical solution of

detD?y) =h, xe€B,
¥ =0, x € dB.

Theny satisfies|(4.1]3) andl (4.]14) by classical estimates (see, for example, [15, 17]).

PROOF OFTHEOREM[4.J. We first sew := u — v and provew > 0 by checking that
F(D?w) > 0 in C-viscosity sense if2. Assume by contradiction that there exist a point
¥ € £2 and a test functiop € C? such that
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o F(D%p) < —8inB:={x:|x—X| <r},
e w — @ restricted toB has a global strict minimum at,

for suitables, r > 0. We will follow the line of the proof of Theorem 4.1, actually we will
refute thatF (D%i) + fYN > 0 in LP-viscosity sense.

We denote by,, and f,, the sequences of functions involved in the definition of weak
subsolution, namely,, are convex functions i2(£2) which tend tov uniformly in 2, £,
are nonnegative functions iy .(£2) which tend tof in L (£2), and detD?v,,) > f in
£2. Next, we set

hym = (fl/N _fml/N)[\:.v Om =@ + Vi + VY

where,, is the convex function i (B) satisfying [@.IB) and (4.14) for = h,,.
Note thath,, — 0in L1(B), hence[(4.14) implies that,, — O uniformly in B.

Becausei — ¢, — w — ¢ uniformly, the functionz — ¢, achieves its minimum inside
the ball B, at least for largen. Finally, we compute

F(D?py) + fYN < F(D?%p) + F(D%v,) + F(D%y) + YN
< F(D?%9) — fu/™ — (detD?y, )Y/ + fYN < —s,
which is impossible.

The other assertion, i.&.> u, follows similarly by showing tha¥ (D?(v — u)) > 0
in C-viscosity sense.

For L°° data, our plan is completed.

THEOREM4.4. Let f € L*®(£2), f > 0 a.e. Then problenfI.I)«I.9) has a unique
L*°-viscosity solution and a unique weak solution. These two solutions coincide and they
are the limit inC(£2) of the solutions of the vanishing viscosity probl@g)—@).

PROOF. Letu be theL-viscosity solution produced in Theordm [3.3, andny weak
solution. Since solutions are at the same time sub- and supersolutions, by Thedrem 4.2 we
getu < v < u. Therefore any weak solution coincides with the limit of the vanishing
viscosity procedure, and uniqueness follows. Next; is anotherL *°-viscosity solution,
comparison again shows that< w < u. So, also thd.*-viscosity solution is unique.

4.2. The general case: unilateral estimate

We next show that, for generdl! data, the weak solution is the maximaf-viscosity
solution.

THEOREM4.5. The weak solutiom of problem(T.A){(T.2) is the maximalL?-viscosity
solution, in the following sense:ifis any L?-viscosity subsolution, then< v pointwise
in £2.

PROOFE Take two sequences, andh,, in C*°(£2) with

fm=1m, fu— f inL?asm — oo,
hm > max{l/m, f, — f}, hm — 0 inL?asm — co.
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Note thatf + h,, > fu. Since f,, andh,, are smooth and strictly positive, there exist
two classical solutions,, and w,, of detD?v,,) = f, and detD?w,,) = h,, in £2,
respectively, with homogeneous boundary condition. By [18, Lemma &,1hnd w,,

tend uniformly tov and 0, respectively. Therefore the assertion follows by checking that
Um — Wy, > u in §2 for all m. This, in turns, is implied by

(4.15) F(D?(y —wpm —u)) >0 inQ2

in C-viscosity sense. In order to prove the differential inequafity (4.15), suppose that, on
the contrary, there are an integer a pointx € £2, and a test functiop € C%(£2) such
that

o F(D%p) <—8inB:={x:|x—X| <r},
e v, —w, — u — ¢ restricted toB has a global strict minimum at,

for suitable positive parametessandr. In particular,v,, — w,, — ¢ is a test function
for u, because it i€£2 and touches the graph affrom above atc. We thus come to a
contradiction by showing that

F(D?(vyy —wpm — @) + fYN>5 ae.inB.
This is easily seen as follows:
F(D?(vy = wp — @) + [N = F(D?v) = F(D?wy) — F(D%p) + f/"
= —fu N+ N = F(DP0) + [N 28 — fu N 4 (i + YN 2 6.

Comments

As a motivation for usingL?-viscosity solutions in this framework, we mention that

obtaining stability for a numerical scheme is straightforward, by adapting the reasoning

of [3] according to the proofs of Theoreins|3.3 4.1.

Moreover, the arguments we use here could carry over to more general equations

F(D?u) + g(x,u, Du) =0

provided that at least the following structure conditions hold true:

a) F is a continuous, degenerate elliptic, subadditive second order operator, satisfying

Atr(D%u)_) > F(D?u) > —Atr(D%u)y) if u € W2P(Q),

possibly in a subset 027 (£2) closed with respect to uniform convergence, as for
instance the set of conve?? functions; here(D?u), and (D?u)_ stand for the
positive and negative parts of the Hessian mafrf, i.e. D?u = (D%u)4 — (D?%u)_;

b) the functiong is jointly measurable in all variablgs, u, Du) with

x+— g(x,0,0) € LP(2) forp>N;

moreover g is continuous inu, Du (uniformly with respect tox), “proper”,
i.e. nondecreasing with respectitpand Lipschitz continuous i®u (uniformly with
respect tox, u).

In particular various (homogeneous) combinations of Hessian operators, and many Hessian
equations with lower order terms can be dealt with by our approach.
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