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ABSTRACT. — We compare various notions of solutions of Monge–Ampère equations with discontinuous
functions on the right hand side. Precisely, we show that the weak solutions defined by Trudinger can be obtained
by the vanishing viscosity approximation method. Moreover, we investigate existence and uniqueness ofLp-
viscosity solutions.
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1. INTRODUCTION

LetΩ be a uniformly convex bounded domain ofRN (N ≥ 2) and letf be a nonnegative
function inΩ. It is well-known that the homogeneous Dirichlet problem for the Monge–
Ampère equation

det(D2u) = f in Ω,(1.1)

u = 0 on∂Ω,(1.2)

has a classical convex solutionu ∈ C2(Ω) ∩ C(Ω) when f is strictly positive and
sufficiently smooth, that is,f ∈ Cα(Ω) for some 0< α < 1 (see [4, 5, 6]). When these
assumptions fail, various notions of solutions have been proposed and related results
have been obtained. Iff is continuous the problem can be settled in the framework of
C-viscosity solutions [12]. Iff is not continuous, however, the problem should be treated
within the theory ofLp-viscosity solutions (see [7, 8]). Unfortunately, the present stage
of this theory requires strong ellipticity and, therefore, it does not apply to the Monge–
Ampère equation (1.1). On the other hand, one can deal with a broader set of data on the
right hand side, namely bounded measures. This is easily done by taking into account weak
solutions in the sense of measures, for which we refer to [19, 20]. Moreover Trudinger [18]
has given anad hocnotion of weak solutions forLp data. As far as we know, the relation
between weak solutions and those obtained by the vanishing viscosity approximation
method has not been investigated. Both the viscosity and weak solutions rely on
approximation arguments. While the viscosity method is based on strong ellipticity of
det(D2u) on a given solution, the approximation method is focused on the regularity off .

In this paper we show that the weak solution according to [18] is actually anLp-
viscosity solution, and it is the limit of the vanishing viscosity method. We also deal with
uniqueness questions in the class ofLp-viscosity solutions. To the authors’ knowledge, the
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question of uniqueness ofLp-viscosity solutions has not found an ultimate answer. In [8]
Caffarelli, Crandall, Kocan and́Swięch have shown that the existence of an a.e. solution
withW2,p regularity guarantees uniqueness ofLp-viscosity solutions. The paper [14] gives
a remarkable contribution to the uniqueness issue. The authors proveC1,α regularity of
the viscosity solutions under a certain structure condition. Seemingly, all these available
techniques cannot be used for the Monge–Ampère equation because of a lack of regularity:
it is well-known that in general equation (1.1) cannot be solved inW2,p nor in C1,α (see
[21, 22]). We establish here uniqueness forL∞-viscosity solutions whenf ∈ L∞. Our
proof makes use of the existence of weak solutions in the sense of [18] but is independent
of the uniqueness of weak solutions. In fact, the uniqueness of weak solutions could be
inferred at once. Our technique does not apply to the case of unbounded data. Concerning
the data inLq , q < ∞, we show that the weak solution (equivalently, the solution produced
by vanishing viscosity) is the maximalLp-viscosity solution forp = Nq.

Let us say a few words on the vanishing viscosity approximation method. We
approximate equation (1.1) by adding a vanishing viscosity term to gain strong ellipticity.
In view of homogeneity, we actually study the following equation:

(1.1.ε) (det(D2u))1/N
+ ε∆u = f 1/N in Ω,

wheref 1/N
∈ Lp(Ω), p = Nq. For everyε > 0 equation (1.1.ε) has a strong solution

uε ∈ W2,p(Ω) ∩ C(Ω) satisfying the boundary condition (1.2). Moreover,uε turns out to
be the uniqueLp-viscosity solution. The main purpose of this paper is to pass to the limit
in equations (1.1.ε) and show that:

(i) uε converges to anLp-viscosity solution of (1.1)–(1.2),
(ii) such a solution coincides with the weak solution introduced by Trudinger [18],

(iii) possibly, that solution is the uniqueLp-viscosity solution, or at least,
(iv) it is a “special” viscosity solution.

Another feasible approximation of (1.1) could be

(1.3.ε) det(D2u+ ε∆u I) = f in Ω,

which was suggested by Trudinger in [16]. Since for anyC2 convex functionu we have

max{(det(D2u))1/N, ε∆u} ≤ (det(D2u))1/N
+ ε∆u

≤ (det(D2u+ ε∆uI))1/N
≤ (1/N + ε)∆u,

it is not hard to believe that (1.1.ε) and (1.3.ε) are very close to each other. Therefore, it
seems that our method would equally work for (1.3.ε).

2. PRELIMINARIES

First of all we settle some assumptions and notation that will be in force throughout the
paper. The setΩ is a uniformly convex, bounded domain ofRN (N ≥ 2),f is a nonnegative
function belonging toLq(Ω) with 1 ≤ q ≤ +∞ and bounded in some neighbourhood of
∂Ω, sayN . We also setp = Nq.
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It is well-known that the Monge–Ampère operator is elliptic with respect to convex
functions. According to [12], viscosity theory recovers ellipticity by introducing the
function

F(X) := sup{− tr(BX) : B ∈ MN, B ≥ 0, detB = 1/NN
}

=

{
−(detX)1/N if X ≥ 0,
+∞ otherwise,

for any symmetricN × N matrixX. HereMN denotes the set ofN × N matrices, and from
now onSN will stand for its subset of symmetric matrices. Thus we read (1.1) as

F(D2u)+ f 1/N
= 0 inΩ,

with f 1/N
∈ Lp(Ω). We explicitly observe that, sinceF is the upper envelope of linear

functions, it is subadditive, convex and lower semicontinuous.
The aim of this paper is to compare various notions of solution known in the literature.

Thus we briefly review definitions and first properties. We start by recalling the definition
of C-viscosity sub/super/solutions due to Crandall, Ishii and Lions. We cite here the paper
[10] for a detailed exposition of this theory, and [12] for a particular mention of the Monge–
Ampère equation.

DEFINITION 2.1. Let u be an u.s.c. (respectively, l.s.c.) function; we say thatu is a
C-viscosity subsolution(resp.supersolution) of (1.1)or, equivalently, thatF(D2u)+f 1/N

≤ 0 (resp.,≥ 0) in C-viscosity sense, if the following holds. For every test function
ϕ ∈ C2(Ω),

F(D2ϕ(x))+ (f (x))1/N
≤ 0 (resp.,≥ 0)

for everyx ∈ Ω whereu− ϕ attains a local maximum (resp., minimum).
A C-viscosity solutionis any continuous functionu which is, at the same time, aC-

viscosity supersolution and aC-viscosity subsolution. We shall also say thatF(D2u) +

f 1/N
= 0 in C-viscosity sense.

In [21] it has been proved that a classical solution is aC-viscosity solution if and only
if it is convex, and that conversely a smoothC-viscosity solution is a classical convex
solution.

A more restrictive notion of solution can be given by increasing the set of test functions
from C2(Ω) to W2,p(Ω). We refer the reader to [8] for a detailed account of theLp-
viscosity theory; here we briefly recall the basic definitions.

DEFINITION 2.2. Let u be an u.s.c. (respectively, l.s.c.) function; we say thatu is an
Lp-viscosity subsolution(resp.,supersolution) of (1.1) or, equivalently, thatF(D2u) +

f 1/N
≤ 0 (resp.,≥ 0) in Lp-viscosity sense, if one of the following items holds.

(i) If ϕ ∈ W2,p(Ω) andδ > 0 are such thatF(D2ϕ)+ f 1/N
≥ δ > 0 (resp.,≤ −δ < 0)

almost everywhere in an open subset ofΩ, thenu−ϕ cannot achieve a local maximum
(resp., minimum) inside that set.
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(ii) For every test functionϕ ∈ W2,p(Ω) and for everyx̄ ∈ Ω whereu − ϕ achieves a
local maximum (resp., minimum), we have

(2.4) ess lim inf
x→x̄

F(D2ϕ(x))+ (f (x))1/N
≤ 0

(resp., ess lim sup
x→x̄

F(D2ϕ(x))+ (f (x))1/N
≥ 0),

whereess lim inf(ess lim sup) means, as usual, the essential inferior (superior) limit.

AnLp-viscosity solutionis any continuous functionu which is, at the same time, anLp-
viscosity supersolution and anLp-viscosity subsolution. We shall also say thatF(D2u)+

f 1/N
= 0 inLp-viscosity sense.

C- andLp-viscosity sub/super/solutions of equation (1.1.ε) are defined in the same
way, after replacingF(X)+ f 1/N by F(X)− ε trX + f 1/N.

We explicitly mention that anLp-viscosity sub/super/solution is aC-viscosity
sub/super/solution.

REMARK 2.3. AnyLp-viscosity subsolutionu of (1.1) satisfiesD2u ≥ 0 inLp-viscosity
sense. This means that, ifϕ ∈ W2,p(Ω) is such thatD2ϕ is not nonnegative almost
everywhere in an open subset ofΩ, thenu − ϕ cannot achieve a maximum inside that
set. To prove this, assume towards a contradiction that there existsϕ ∈ W2,p(Ω) such that
D2ϕ is not nonnegative for a.e.x in a ballB contained inΩ and thatu−ϕ has a maximum
point x̄ insideB. Then by definitionF(D2ϕ) ≡ +∞ nearx̄, contrary to (2.4).

A well-known notion of solution is the one introduced by Trudinger in [18], which
coincides with that given by Aleksandrov [1] and Bakelman [2] for measure data.

DEFINITION 2.4. Letu be a continuous function; we say thatu is a weak subsolutionof
(1.1) if there exist sequences{um} ⊂ C2(Ω) and{fm} ⊂ L1

loc(Ω) such thatum is convex,
um → u uniformly inΩ, fm ≥ 0, fm → f in L1

loc(Ω), anddet(D2um) ≥ fm.
Letu be a continuous function; we say thatu is a weak supersolutionof (1.1) if there

exist sequences{um} ⊂ C2(Ω) and {fm} ⊂ L1
loc(Ω) such thatum → u uniformly inΩ,

fm ≥ 0, fm → f in L1
loc(Ω), anddet(D2um) ≤ fm wheneverum is convex.

A weak solutionis a continuous functionu for which there exists a sequence{um} ⊂

C2(Ω) of convex functions such thatum → u uniformly inΩ and det(D2um) → f in
L1

loc(Ω).

To relate our work to the rest of the literature, we have to mention the notion of
good solution, which was proposed by Cerutti, Escauriaza and Fabes in [9] for linear
equations with discontinuous coefficients and was extended to fully nonlinear, strongly
elliptic equations by Jensen, Kocan andŚwięch in [13]. The obvious adaptation of that
definition to the Monge–Ampère equation (which is merely degenerate elliptic) reads as
follows.

DEFINITION 2.5. Let u be a continuous function; we say thatu is a good solutionof
(1.1) if there exist a sequence of degenerate elliptic operatorsGm : Ω × SN

→ R, with

Gm(x,X) ≤ Gm(x, Y ) wheneverX − Y ≥ 0,
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for all x ∈ Ω andX, Y ∈ SN, and a sequence of functions{um} ⊂ W
2,p
loc (Ω) ∩ C(Ω) with

Gm(x,D
2um) = 0 a.e. inΩ

so thatum → u uniformly inΩ andGm(x,X) → F(X) + f 1/N for a.e.x ∈ Ω and all
X ∈ SN.

It is easily seen that a weak solution according to Definition 2.4 is a good solution
according to Definition 2.5. In [13], the authors show that the notions of good andLp-
viscosity solution are equivalent for strongly elliptic equations, but their proof does not
carry over to merely degenerate elliptic equations. If we adopt their point of view, our
Theorem 4.1 states that any weak (good) solution is anLp-viscosity solution; moreover,
Theorem 4.4 says that the two notions are equivalent when the dataf are essentially
bounded.

3. Lp-VISCOSITY SOLUTIONS: THE VANISHING VISCOSITY METHOD

In this section we approximate equation (1.1) by means of

(1.1.ε) (det(D2u))1/N
+ ε∆u = f 1/N in Ω,

for ε > 0. We observe that the operator(det(D2u))1/N
+ ε∆u is concave with respect to

D2u and satisfies the following structure condition:

ε∆u ≤ (det(D2u))1/N
+ ε∆u ≤ (ε + 1/N)∆u

for anyC2 convex functionu.
Let us mention some fundamental facts about the uniformly elliptic equation (1.1.ε),

for the reader’s convenience. In the following we will denote byCi positive constants
whose values may change from line to line.

PROPOSITION3.1. LetΩ andf satisfy the standing assumptions set in Section 2. Then
for everyε > 0:

(i) there exists a uniqueLp-viscosity solutionuε of (1.1.ε)–(1.2);
(ii) uε is a convex function belonging toW2,p(Ω) and satisfying equation(1.1.ε) a.e.;

(iii) uε ∈ C0,1(Ω) and

(3.5) ‖uε‖L∞ ≤ C1, ‖Duε‖L∞ ≤ C2,

with C1, C2 independent onε.

In order to prove the proposition above we need the following

LEMMA 3.2. Let Ω and f satisfy the standing assumptions set in Section2. Let u ∈

C0,1(Ω) ∩ C2(Ω) be a supersolution of the problem

(3.6)

{
det(D2v) = f in Ω,
v = 0 on ∂Ω.
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Then

(3.7) ‖u‖L∞ ≤ C3, ‖Du‖L∞ ≤ C4,

whereC3, C4 are positive constants depending onN,N ,Ω, ‖f ‖Lq .

PROOF. Sinceu is convex inΩ, by the classical comparison principle (see [15], [17]) we
have

(3.8) ‖u‖L∞ ≤ C5‖f ‖
N
Lq , C5 > 0.

Moreover, sinceu is a smooth convex function, we get

(3.9) sup
Ω

|Du| = sup
∂Ω

|Du|.

Combining (3.8) and (3.9), in order to obtain (3.7) it suffices to prove

(3.10) sup
∂Ω

|Du| ≤ C6,

with C6 depending onN,N ,Ω and‖u‖L∞ , and this can be done arguing as in [11, Theorem
17.21].

PROOF OFPROPOSITION3.1. Let us consider a sequence{fn} ⊂ C∞(Ω), fn > 0, with
fn → f in Lq(Ω) asn → ∞, ‖fn‖q ≤ C7‖f ‖q and‖fn‖L∞ ≤ C8 in N . By classical
results, for everyn, the equation

(det(D2u))1/N
+ ε∆u = (fn)

1/N

has a unique classical convex nonpositive solutionuε,n ∈ C∞(Ω) ∩ C0,1(Ω) satisfying
the homogeneous boundary condition (1.2). Moreover, thisuε,n turns out to be the unique
C-viscosity solution (see [12]) and the uniqueLp-viscosity solution (see [8]).

For everyn andε > 0, uε,n is a supersolution of{
det(D2w) = fn in Ω,
w = 0 on∂Ω;

hence by Lemma 3.2 we have

‖uε,n‖L∞ ≤ C9, ‖Duε,n‖L∞ ≤ C10,

for some positive constantsC9, C10 whose value depends onN, N , Ω, ‖f ‖Lq , but not
on n andε. The Ascoli–Arzelà theorem ensures that, up to subsequences,uε,n converges
uniformly inΩ, asn → ∞, to a functionuε which satisfies (3.5). By the stability result
[8, Theorem 3.8], the limit functionuε is anLp-viscosity solution of (1.1.ε)–(1.2), hence
by [4], uε hasW2,p regularity and satisfies equation (1.1.ε) a.e.; finally, [8, Theorem 2.10]
applies and consequentlyuε is the uniqueLp-viscosity solution.

The main result of this section is the following.



VISCOSITY SOLUTIONS OF THE MONGE–AMPÈRE EQUATION 227

THEOREM 3.3. LetΩ andf satisfy the standing assumptions set in Section 2. Then the
solutionsuε of (1.1.ε)–(1.2)converge inC(Ω) to a Lipschitz continuous functionu which
is anLp-viscosity solution of(1.1)–(1.2).

PROOF. By (3.5) and the Ascoli–Arzelà theorem,uε has a subsequence that converges in
C(Ω) to a Lipschitz continuous functionu. Let us show thatu is anLp-viscosity solution
of (1.1). We only check the subsolution part, since the other assertion relies on the same
arguments. Suppose by contradiction thatu is not anLp-viscosity subsolution; then, by
definition, there exist a point̄x in Ω, a test functionϕ in W2,p(Ω) and two positive
parametersδ andr such that

• F(D2ϕ)+ f 1/N
≥ δ a.e. in the open ballB := {x : |x − x̄| < r},

• the functionu−ϕ restricted toB := {x : |x− x̄| ≤ r} has a global strict maximum atx̄.

We get a contradiction by building a test function foruε, sayϕε, in such a way that

F(D2ϕε)− ε∆ϕε + f 1/N
≥ δ a.e. inB for all smallε > 0,(3.11)

ϕε → ϕ uniformly inB asε → 0.(3.12)

Indeed, asuε is anLp-viscosity solution of (1.1.ε), the inequality (3.11) preventsuε − ϕε
from achieving a maximum inside the ballB. On the other handuε − ϕε does have a
maximum point in the closed ballB, sayxε, by the Weierstrass theorem. Sinceuε −ϕε →

u − ϕ uniformly inΩ, we havexε → x̄ up to a subsequence. In particularxε belongs to
the open ballB for smallε, a contradiction.

What is left is to construct the auxiliary functionϕε which does the job; we take it
in the formϕε = ϕ − ψε, whereψε is a function to be determined. By subadditivity we
compute

F(D2ϕε)− ε∆ϕε + f 1/N
≥ F(D2ϕ)+ f 1/N

− F(D2ψε)+ ε∆ψε − ε∆ϕ

≥ δ − F(D2ψε)+ ε∆ψε − ε∆ϕ

for a.e. x ∈ B. Hence (3.11) is attained if we chooseψε as the a.e. solution of
det(D2ψ)1/N

+ ε∆ψ = ε(∆ϕ)+ in B, with ψ = 0 on∂B, produced in Proposition 3.1.
Eventuallyϕε also satisfies (3.12) by virtue of estimate (3.5).

The proof is completed by checking that the limit functionu does not depend on the
subsequence. Let{ε′n} and{ε′′n} be two vanishing sequences of parameters so thatuε′n →

u′ anduε′′n → u′′ in C(Ω) asn → ∞. Up to subsequences, we may suppose that the
parameters are ordered as follows:

· · · ≤ ε′′n+1 ≤ ε′n ≤ ε′′n ≤ ε′n−1 ≤ · · · .

To prove thatw = uε′n−uε′′n+1
≥ 0, we show thatF(D2w)−ε′n∆w ≥ 0 inC-viscosity sense

and then use a standard comparison principle (see, for instance, [12]). Suppose, contrary
to our claim, that there exist a pointx̄ ∈ Ω, a test functionϕ ∈ C2 and two positive
parametersδ andr such that

• F(D2ϕ)− ε′n∆ϕ ≤ −δ in B := {x : |x − x̄| < r},
• w − ϕ restricted toB has a global strict minimum at̄x.
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Then the functionψ = ϕ + uε′′
n+1

hasW2,p regularity and touchesuε′n from below at the
point x̄. By the subadditivity ofF we get

F(D2ψ)− ε′n∆ψ + f 1/N
≤ F(D2ϕ)+ ε′n∆ϕ + F(D2uε′′

n+1
)

− ε′′n+1∆uε′′n+1
+ f 1/N

− (ε′n − ε′′n+1)∆uε′′n+1
≤ −δ

sinceuε′′
n+1

is a convex a.e. solution. This contradicts the fact thatuε′n is anLp-viscosity

solution, henceuε′n − uε′′
n+1

≥ 0 and, finally, lettingn → ∞ givesu′
≥ u′′.

Completely similar arguments yielduε′′n − uε′
n−1

≥ 0, and sou′
= u′′.

4. COMPARISON WITH WEAK SOLUTIONS

This section establishes the relation between weak andLp-viscosity solutions. The first
theorem shows that the limit function obtained with the vanishing viscosity method is
actually the weak solution produced by Trudinger in [18]. Moreover, we prove that the
weak solution is maximal amongLp-viscosity solutions and that, whenever the datum is
bounded, it is, in fact, unique.

THEOREM 4.1. Let Ω and f satisfy the standing assumptions set in Section 2. The
solutionsuε of (1.1.ε)–(1.2) converge inC(Ω) to the weak solution of(1.1)–(1.2). In
particular, the weak solution is anLp-viscosity solution.

PROOF. Let v be the weak solution of (1.1)–(1.2); this means that there exists a sequence
vm of C2 convex functions such thatvm → v uniformly in Ω and det(D2vm) → f in
L1

loc(Ω). Let thenu be the uniform limit ofuε obtained in Theorem 3.3; we prove that
u = v.

To prove thatw = u − v ≥ 0, it suffices to check thatF(D2w) ≥ 0 in C-viscosity
sense inΩ and then invoke the standard comparison principle. Assume by contradiction
thatw is not a supersolution; then there exist a pointx̄ ∈ Ω, a test functionϕ ∈ C2 and
two positive parametersδ andr such that

• F(D2ϕ) ≤ −δ in B := {x : |x − x̄| < r},
• w − ϕ restricted toB has a global strict minimum at̄x.

This step of the proof is completed by contradicting the fact thatuε is anLp-viscosity
supersolution of (1.1.ε). To this end we take an auxiliary function in the form

ϕε,m := ϕ + vm + ψε,m,

whereψε,m will be chosen later inW2,p(Ω) in such a way thatψε,m → 0 uniformly inB.
The functionuε − ϕε,m approachesw − ϕ uniformly, therefore it achieves a minimum
inside the ballB, at least for smallε and largem. Moreover, by the subadditivity ofF and
the convexity ofvm we get

F(D2ϕε,m)− ε∆ϕε,m + f 1/N

≤ F(D2ϕ)− ε∆vm + F(D2ψε,m)− ε∆ψε,m − ε∆ϕ + F(D2vm)+ f 1/N

≤ −δ + F(D2ψε,m)− ε∆ψε,m − ε∆ϕ − (detD2vm)
1/N

+ f 1/N.
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Choosingψε,m as the convex a.e. solution of{
(detD2ψε,m)

1/N
+ ε∆ψε,m = (−ε∆ϕ − (detD2vm)

1/N
+ f 1/N)+ in B,

ψε,m = 0 on∂B,

produced in Proposition 3.1, ensures thatF(D2ϕε,m) − ε∆ϕε,m + f 1/N
≤ −δ a.e. inB.

Moreover the estimate (3.5) implies thatψε,m → 0 uniformly inB, as required.
We next apply this argument again, withw = v − u, to obtainv ≥ u and finally the

conclusion.

4.1. TheL∞ case: comparison and uniqueness

We now establish at the same time two relevant results concerning bounded data: there
exists only oneL∞-viscosity solution, and the solution coincides with the weak solution.
It is worth mentioning that our proof is independent of the uniqueness of weak solutions,
which was already proved in [18]. Indeed, the uniqueness of weak solutions could be
inferred at once.

The core of our argument is that weak andL∞-viscosity sub/supersolutions compare,
in the following sense.

THEOREM 4.2. Let u and u be respectively a sub- and supersolution inL∞-viscosity
sense, andv andv be respectively a sub- and supersolution in weak sense of(1.1). Then
v ≤ u andu ≤ v in Ω.

In order to prove the above theorem, we need the following

LEMMA 4.3. Let B be an open ball andh ∈ L∞(B), h ≥ 0 a.e. Then there exists a
convex functionψ ∈ W2,∞(B) ∩ C(B) which satisfies in the almost-everywhere sense the
following problem:

(4.13)

{
det(D2ψ) ≥ h, x ∈ B,

ψ = 0, x ∈ ∂B.

Moreover, there exists a constantC independent ofh so that

(4.14) ‖ψ‖∞ ≤ C‖h‖1.

PROOF. Let us choosēh ∈ C∞(Ω) such thath̄ ≥ h a.e. inΩ and‖h̄‖L1 ≤ 2‖h‖L1.
Denote byψ the classical solution of{

det(D2ψ) = h̄, x ∈ B,

ψ = 0, x ∈ ∂B.

Thenψ satisfies (4.13) and (4.14) by classical estimates (see, for example, [15, 17]).

PROOF OFTHEOREM 4.2. We first setw := u − v and provew ≥ 0 by checking that
F(D2w) ≥ 0 in C-viscosity sense inΩ. Assume by contradiction that there exist a point
x̄ ∈ Ω and a test functionϕ ∈ C2 such that
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• F(D2ϕ) ≤ −δ in B := {x : |x − x̄| < r},
• w − ϕ restricted toB has a global strict minimum at̄x,

for suitableδ, r > 0. We will follow the line of the proof of Theorem 4.1, actually we will
refute thatF(D2ū)+ f 1/N

≥ 0 inLp-viscosity sense.
We denote byvm andfm the sequences of functions involved in the definition of weak

subsolution, namelyvm are convex functions inC2(Ω)which tend tov uniformly inΩ, fm
are nonnegative functions inL1

loc(Ω) which tend tof in L1
loc(Ω), and det(D2vm) ≥ fm in

Ω. Next, we set

hm = (f 1/N
− fm

1/N)N
+, ϕm = ϕ + vm + ψm

whereψm is the convex function inW2,∞(B) satisfying (4.13) and (4.14) forh = hm.
Note thathm → 0 inL1(B), hence (4.14) implies thatψm → 0 uniformly inB.

Becausēu−ϕm → w−ϕ uniformly, the functionū−ϕm achieves its minimum inside
the ballB, at least for largem. Finally, we compute

F(D2ϕm)+ f 1/N
≤ F(D2ϕ)+ F(D2vm)+ F(D2ψm)+ f 1/N

≤ F(D2ϕ)− f
1/N
m − (detD2ψm)

1/N
+ f 1/N

≤ −δ,

which is impossible.
The other assertion, i.e.v ≥ u, follows similarly by showing thatF(D2(v − u)) ≥ 0

in C-viscosity sense.

ForL∞ data, our plan is completed.

THEOREM 4.4. Let f ∈ L∞(Ω), f ≥ 0 a.e. Then problem(1.1)–(1.2) has a unique
L∞-viscosity solution and a unique weak solution. These two solutions coincide and they
are the limit inC(Ω) of the solutions of the vanishing viscosity problems(1.1.ε)–(1.2).

PROOF. Let u be theL∞-viscosity solution produced in Theorem 3.3, andv any weak
solution. Since solutions are at the same time sub- and supersolutions, by Theorem 4.2 we
get u ≤ v ≤ u. Therefore any weak solution coincides with the limit of the vanishing
viscosity procedure, and uniqueness follows. Next, ifw is anotherL∞-viscosity solution,
comparison again shows thatu ≤ w ≤ u. So, also theL∞-viscosity solution is unique.

4.2. The general case: unilateral estimate

We next show that, for generalLq data, the weak solution is the maximalLp-viscosity
solution.

THEOREM 4.5. The weak solutionv of problem(1.1)–(1.2) is the maximalLp-viscosity
solution, in the following sense: ifu is anyLp-viscosity subsolution, thenu ≤ v pointwise
in Ω.

PROOF. Take two sequencesfm andhm in C∞(Ω) with

fm ≥ 1/m, fm → f in Lq asm → ∞,

hm ≥ max{1/m, fm − f }, hm → 0 inLq asm → ∞.
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Note thatf + hm ≥ fm. Sincefm andhm are smooth and strictly positive, there exist
two classical solutionsvm andwm of det(D2vm) = fm and det(D2wm) = hm in Ω,
respectively, with homogeneous boundary condition. By [18, Lemma 2.1],vm andwm
tend uniformly tov and 0, respectively. Therefore the assertion follows by checking that
vm − wm ≥ u in Ω for all m. This, in turns, is implied by

(4.15) F(D2(vm − wm − u)) ≥ 0 inΩ

in C-viscosity sense. In order to prove the differential inequality (4.15), suppose that, on
the contrary, there are an integerm, a pointx̄ ∈ Ω, and a test functionϕ ∈ C2(Ω) such
that

• F(D2ϕ) ≤ −δ in B := {x : |x − x̄| < r},
• vm − wm − u− ϕ restricted toB has a global strict minimum at̄x,

for suitable positive parametersδ and r. In particular,vm − wm − ϕ is a test function
for u, because it isC2 and touches the graph ofu from above atx̄. We thus come to a
contradiction by showing that

F(D2(vm − wm − ϕ))+ f 1/N
≥ δ a.e. inB.

This is easily seen as follows:

F(D2(vm − wm − ϕ))+ f 1/N
≥ F(D2vm)− F(D2wm)− F(D2ϕ)+ f 1/N

= −fm
1/N

+ hm
1/N

− F(D2ϕ)+ f 1/N
≥ δ − fm

1/N
+ (hm + f )1/N

≥ δ.

Comments

As a motivation for usingLp-viscosity solutions in this framework, we mention that
obtaining stability for a numerical scheme is straightforward, by adapting the reasoning
of [3] according to the proofs of Theorems 3.3 and 4.1.

Moreover, the arguments we use here could carry over to more general equations

F(D2u)+ g(x, u,Du) = 0

provided that at least the following structure conditions hold true:

a) F is a continuous, degenerate elliptic, subadditive second order operator, satisfying

Λ tr((D2u)−) ≥ F(D2u) ≥ −Λ tr((D2u)+) if u ∈ W2,p(Ω),

possibly in a subset ofW2,p(Ω) closed with respect to uniform convergence, as for
instance the set of convexW2,p functions; here(D2u)+ and (D2u)− stand for the
positive and negative parts of the Hessian matrixD2u, i.e.D2u = (D2u)+ − (D2u)−;

b) the functiong is jointly measurable in all variables(x, u,Du) with

x 7→ g(x,0,0) ∈ Lp(Ω) for p ≥ N;

moreover g is continuous in u,Du (uniformly with respect tox), “proper”,
i.e. nondecreasing with respect tou, and Lipschitz continuous inDu (uniformly with
respect tox, u).

In particular various (homogeneous) combinations of Hessian operators, and many Hessian
equations with lower order terms can be dealt with by our approach.
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