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ABSTRACT. — Linear isometries of a class of logmodular algebras which are generated by unimodular functions
are represented by Holszigki-type weighted composition operators. The description of these operators leads—
among other things—to a description of a class of linear isometries of the disc algebra and of the Hardy space
of all bounded holomorphic functions on the open unit dis€ oEpectral properties of these isometries are also
investigated.
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Linear isometries of Hardy spacés” (1 < p < oo, p # 2) on the open unit diseA
of C have been described by F. Forelli i [8], and surjective linear isometriés*ofby
N. Nagasawa in [16] and by K. DeLeeuw, W. Rudin and J. Wermerlin [6] (seelalso [11]).

A different approach to the linear isometriesfd? and of the disc algebra is motivated
by two facts. First of all, they are both logmodular algebras; secondly, their closed unit balls
are the closed convex hulls of their inner functions, as was provéd in [2].and [3].

Starting from these facts, a theorem established in the first two sections of this article
describes the linear isometries of a uniform algeldranto a uniform function algebr#
under the hypotheses thdtis generated by its unimodular functions and every character
of B has a unique representing measure supported by the Shilov boundary of

Among other things, this theorem yields a new proof of Holsgky's extension of the
classical Banach—Stone theorem, a characterization of those self-isometries of the Hardy
spaceH *° and of the disc algebra mapping the sets of all inner functions into themselves,
showing incidentally that, as for any Hardy spaki¢ (1 < p < oo, p # 2), these
isometries are represented by weighted composition operators.

The final section summarizes and completes some results established in [23] for
strongly continuous semigroups of linear isometrie#/6f.

1. CONTINUOUS LINEAR FORMS ON SOME UNIFORM ALGEBRAS

Let m be a positive regular Borel measure on a compact Hausdorff spaceith
m(M) < 1, and letv € Ly (M, m) = L (M) be such thatv| < 1 almost everywhere
onM and

() / vdm =1,

That implies, first of all, that > 0 a.e. onM and thatn(M) = 1.
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Let N C M be the measurable set
2) N={xeM:vkx)#£1}.
We will show that
(3) m(N) = 0.
Letw(x) =1—v(x). Then
4 w(x) >0
and [1),[(2) become

(®) /wdm:O,
(6) N={xeM:wk)>0}L

Supposen(N) > 0. By the Lusin theorem (see, e.d., [18, Theorem 2.23]), for any
€ € (0, 1/2) there exists a real-valued, continuous functioon M such that

supw(x) :x € M} <sup|w(x)|:x € M} <sufw(x)| :x € M};

and
m(L(€)) < em(N),

whereL(¢) is the measurable set
Le)={xeM:wkx)#£wkx)}.
Hence,

m(N\L(€)) = m(N) —m(N N L(€)) = m(N) —m(L(¢))
> (1—e)m(N) > 0.

The positive Borel measure being regular, there exists a compact Ketc N\L(¢)
such that

7 m(K) > (1—2¢)m(N) > 0.

Sincew is continuous ork, (@) and [(§) imply that there is a positive constarguch
thatw(x) > k for all x € K. Thus, by([(}),

/wdm:/ u)dm—i—/u)dmz/wdm
M M\K K K
zk/ dm =km(K) > (1 —2¢)km(N) > 0,
K

contradicting|(b) and thereby proving the (3) holds.
In conclusion, the following lemma has been established.
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LEMMA 1. If f € LY(M,m) = LY(M) is such that /| < 1 almost everywhere o,

[m| < land
o

then|m|| =m(M) =1, ||f|| =1, and f = ¢!” a.e. for somes € R.

=1,

Let. A be a uniform algebra on a compact Hausdorff specevhose Shilov boundary
d.A coincides withX. Any continuous linear formi. on A is represented by a complex,
regular Borel measurg on X such that|u| = |1l

If

dp = hd|ul

is the polar representation pf(see, e.g./[18]), wherk is a complex-valued, measurable
function with|a| = 1 a.e.|u| on X, then for anyf € A,

(= [ fan=[ fhdiul

X X

Suppose now thdiu|| = ||| < 1, and letx € A be such that
lull = [{u, 2)| = 1.

Then

1:|<u,x>|:‘f uhdlul sf ul il = Jull = 1.
X X
As a consequencéu| = |u|(X) =1 and

WORG) = (, 1) aelul.

By Lemmg ] :u must be constant on the support.of

2. LINEAR ISOMETRIES BETWEEN TWO UNIFORM ALGEBRAS

Let A, B be uniform algebras on two compact Hausdorff spa€eB, and let¥' (A), X (B)
anddA = X, 9B = Y be the spaces of maximal ideals and the Shilov boundarigs Bf
Let A € L(A, B) be a linear isometry ofl into 55.

For anyx € X, let

L)y={feAlfGI=I1f1=1

Since A contains the constant& (x) # ¢ forall x € X.
Following an idea of W. Holszfyski [13], we now prove

LEMMA 2. Foranyx € X the set
Yx)={yeY: [(AHMI=1Vf € 2(x)}

is closed and not empty.
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PROOF Letn be a positive integer and let, .. ., u, be elements afd such that
(8) ujCox = lujll =1, j=1....n.

The function .
U= Zmu/ eA
j=1
is such that .
@] <> luj ()] <
j=1

n
lujll =n VteX
J =1

J
and

u(x) =y uj(x)? =n.
j=1
Thereforg|u| = n.
SinceA is an isometry, there is somee Y for which [(Au)(y)| = n. As

(Au)(y) = ) uj(x)(Au;)(y),

j=1
we have

n=(An))| < > 1A < Y [Auj| = n,
j=1 j=1

showing that(Au;)(y)| =1forj=1,...,n,i.e.

9) yeY: l(Auj)MI=1 j=1....n} #0
for every choice ofq, ..., u, in A satisfying [8). The conclusion follows from the fact

thatY is compact and the s¢f|(9) is closed. O

An elementu € A such thatu(x)| = 1 for all x € X is called aunimodular(or
unitary) function
Letil = $4(A) be the set of all unitary functions id. Clearly,

P+ U= :xe M)
Let O be the closed set of ajl € Y such that(Au)(y)| = 1 for allu € U(A). Since

YyET ) & [(Af YW =1Vf € 2(x)
= [(Au)(Y)|=1Vu el & ye Q,

it follows that
(10) Yx)CQ VxelX,

and therefore) # 0.
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Let y € Y. Denoting by the continuous linear form ad defined by

(fL2)=(ANG) VfeA

let u be the complex regular Borel measureXnvhich represents. Then, for any € U
and ally € Q,
(Au)(y) = u(t)h(t) a.e.in Suppu).
If, given any two distinct points’ and:” of X, there isu € 4 such that (') # u(r”),
then Suppw) is reduced to one point, and the following lemma holds.
LEmMA 3. If the setil separates points iiX, then there isa mag : Q — X such that

11) (Au)(y) = (ADWMu@@(y)) VYuel, ye Q.

It has been shown by A. Bernard [([2].! [3]._]10, pp. 195-196]) that if theifet
generatesd, then the closed unit ball od is the closed convex hull df.

Thus, ifU generatesd, then for everyf € A and for everye > 0 there are a positive
integern, positive numbersy, ..., 7, with > 7_;#, = 1 and functionsuq, ..., u, € U

such that
n
H f - Z iy
v=1

Choosey € Q. Since|(A1)(y)| = 1, (1) yields

<e€.

AN — ADE)FBON = | (£ = 3t )|+ | (£ = S mn Yo
v=1 v=1

n
= 2”f — Ztvuv
v=1

Furthermore, sincel separates points, if generatesd then alsal separates points. All
that yields the first part of the following theorem.

< 2e.

THEOREM 1. If A is alinear isometry of4 into 3, and ifU(A) generatesA4, then there
are a closed subse® of Y and a continuous surjective map: Q — X such that

12) AN =ADM W) VfeA yeQ.

PrROOF. To establish the continuity of, let{y;} be a netinQ converging toy € Q, and
suppose that there are two subnpts and{y,} such that the netg/(y,)} and{y (ys)}
converge to two distinct elementsands” of X. Then, for anyf € A, the nets

{(f W} ={ANH ) (AD G}
and
{f(W ()} = {(A)(s) (AD)(ys)}

converge to
f@) = (AN ADG) = f17),
contradicting the fact that, sineé+ ¢”, there is som¢g € A such thatf (t') # f ().
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All that is left to prove is the surjectivity ofy. Sincey is continuousy(Q) is a
compact subset of. If ¥ (Q) # X, the open seX \ ¥ (Q) is non-empty. LeV andW be
two open sets ik such thatV £ ¢ and

VcWcX\v().

Since the open sét contains some strong boundary pointf A, there existg € A with
k]l <1and
lh(x)| > 3/4 and |h(t)| <1/4 Ve X\V.

Lets € X be such thath(s)| = ||k||. Then
Al = [h(s)| > 3/4.

Set
1

= —nh.
! 171l

Since Y ||| < 4/3, we have

o= BOL L Ll vy
Rl k4 T3 '

Thus,
1=JJAfIl < supl(ADWILIS WOy € O} < 1/3,

a contradiction. O
If A maps all unimodular functions axi to unimodular functions o, thenQ =Y,

(13) I(ADI=1 Vyey,
(14) AN =AY W) VfeA yey,

and the following proposition holds.

PropPoOsSITIONL. If (A) generatesA and is mapped byl into 4(53), then (13) is
satisfied, and there is a continuous surjective ngapY — X for which (14) holds.

Conversely, ifl(A) andil(B) satisfy the above hypotheses, thetu)(y)| = 1 for all
uei(A)yandallyevY,ie.Q =Y.

In particular, if A is an isometric homomorphism of the algebtanto the algebrds,
thenQ = Y if, and only if, there is a continuous surjective mgp ¥ — X such that

Af = foy VfeA.
Going back to the linear isometry in Theorenj [L, for allf € A and anyy € 0,
(A YW= 1F @I
Sinceyr (Q) = X, thisimplies that ifAf € t(B), then f € LU(A), i.e.
ATHU(B) N A(A)) C U(A).
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Hence, ifA is surjective, thernl(B) ¢ A((A)) and alsatl(A4) ¢ A~1(U(B)). Proposi-
tion 1 yields

COROLLARY 1. If U(A) generatesd and if the isometr is surjective, them (U(A)) =
4U(B), and A is expressed bfi4), whereys is now a homeomorphism &fonto X

If X =Y, A= B and if the isometnA is not surjective, then its spectrunfA) is the
closed unit discA and A is contained in the residual spectrum. As a consequeticé) is
contained in a proper closed subspacegloThus, denoting byd~1 the set of all invertible
elements of4, we have proved

LEMMA 4. If X = Y, A = Band if A(A~1) contains a non-empty open set, then the
isometryA is surjective.

Let X (A) and X (B) be the sets of all characters dfand, i.e. all homomorphisms
of the abelian Banach algebrasandB into C. Let P C X' (B) be the setof ally € X (B)
having a representing measurg (i.e. a regular probability measure which represerts
whose support is contained @. Obviously,Q c P and, ifQ = Y, thenP = X(B).

Let.A andB satisfy the hypotheses of Theorgin 1. oe P letm, be arepresenting

measure ofy whose support is contained .
Foranyf € A,

(Af.x) = / (AP () dm g (y) = / (AD)(y) dm,y () f FWO) dmy ()
— (AL y) / FOO) dm ()

becausen, is multiplicative. Since furthermorg¢ (y) € 3.4, we have

/(flfz)(l/f(y))dmx(y) = /fl(lﬁ(y))fz(lﬂ(y))dmx(y)
= /fl(l/f(y))dmx(y)/fz(lﬂ(y))dmx(y)

forall f1, f2 € A. Hence, there exists a characig(y) of A such that

/f(w(y))dmx(y) = (f, o(x)).

Assuming that every € P has a unique representing measurge whose support is
contained inQ, x — w(x) definesamap : P — X (A) such that

(15) (Af.x) = (AL X)(fio(x)) VYfeAxeP.

The same kind of argument as in the proof of Theofém 1 shows that thevnisp
continuous, and, in conclusion, the following theorem holds.



242 E. VESENTINI

THEOREM 2. LetA be alinearisometry of the algebrdinto B. If everyy € X (B) hasa
unique representing measure and if thessef all unimodular functions it generates4,
then there is a subse® of X (B) containing the closed subsé of 98 = Y, and a
continuous map : P — X (A) such thaiw|p = ¥ (Whencew(P) D dA = w(Q) = X)
and (I5) holds.

Furthermore, ifQ = Y, thenP = X (B) and(@5) holds for allx € X (B).

If A, AandB are as in Theorefn 2 and if moreover
(16) AA™YH cBY

then by the Gleason—Kaharigelazko theorem (see, e.d., [22]) there exists a continuous
mapy : X (B) — X (A) such that

(Af, x) = (AL X)(f,e(x)) VfeA xeXDB).
Comparison of the last equation wifh {15) shows that, sidde x) # Oforall x € O,
(fioO0) =(fio(x)) VfeA xe0;

since.A separates points i@, it follows thaty = w on Q, i.e. ¢ is a continuous extension
of wjp, and therefore (d5) O 9.A.
If furthermore

17) (A =dA=X,

and if A1 € {(B), then for any: € U(A) and anyy € 3B,
[{Au, )l = l{u, 9OO)| = 1.

ThusQ = Y and the following proposition holds:

PROPOSITION2. If A, A, B satisfy the hypotheses of Theof@nand if furthermore(16)
and (I7) hold and A1 is a unimodular function i3, then A(U(A)) c U(B), and (15)
holds for allxy € X (B).

COROLLARY 2. If A is an isometric homomorphism gf into 5 and if (17) holds, then
there is a continuous surjective map X' (5) — X such that

(Af, x) =(fie(x)) YfeA xeXDB.

We point out for future reference that¥ = ¥, A = BandQ = Y, then for any
positive integen,

(18) A"l = Al- (Alow)--- (Alo " D)
and
(19) Anszn].'foa)on er.A,

where, for any positive integer, A” = Ao --- o A (n times) andw®” is then-th iterate
of w.
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3. GLEASON PARTS

Let now(C be a uniform algebra on a compact Hausdorff spcé\ccording to Bishop’s
theorem (see, e.gl [19, Theorem 16.6])xif, x> are two characters af which are
contained in the same Gleason parofindui1, uo are representing measuresyaf x»,

then w1, 2 are mutually absolutely continuous (and the Radon—Nikodym derivatives
du1/dua, duz/dug are both bounded). Therefore,

Supp(p1) = Supfpz)

and, as a consequence, we have

LEMMA 5. Under the hypotheses of Theorghiet IT be a Gleason part oB. If ITN P
# @, thenll C P.

Let IT be a Gleason part @f and letF : A — IT be a continuous one-to-one map
such that the function

A

foF 1z (f F(2)
is holomorphic onA for all f € C. Since for every continuous linear forknonC,
[All=sugl(f, A : feC, Ifll =1},

C is a determining manifold for the topological dulof C. By Dunford’s theorem (see,
e.g., [9, Theorem I1.3.10]) is a holomorphic map aft into C’.

LetnowF : A — C’ be a holomorphic map such th&fA) c X (C). For every; € A,
we have| F(z)|| = 1, and therefore, fory, z2 € A,

[F(z1) = F22)ll = [F DIl + [ F(z2)ll = 2.

F(z1) — F(z2)ll =2

for somezy, z2 € A, then by the maximum principle
IF(z1) — F(2)l =2 VzeA.

On the other hand,
ZILrT;1 |F(z1) — F(2)ll =0

becauséd is continuous. This contradiction shows that
| F(z1) — F(z2)ll <2
forall z1, z2 € A, proving

PROPOSITIONS. LetF : A — X(C) be a continuous map such that> (f, F(z)) is
holomorphic inA for all f € C. ThenF is a holomorphic map oft into C’, and F (A) is
contained in a Gleason part ¢f.
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COROLLARY 3. If F is as in Propositiof8, and if F(z) is a one-point Gleason part af
for somez € A, thenF is constant.

Let A, B andA be as in Theorefn| 2 and I&f be a Gleason part contained i If 17
contains more than one point, thenWermer’'s embedding theorem (Theorem 17.1 of [19])
and Proposition|3 show that there is a holomorphic fiapA — B’ such thatF (A) = IT
and

(20) (Af, F(z)) = (AL FQ){f,w(F(z))) VYfeA zeA.

Since the functions — (Af, F(z)) andz — (A1, F(z)) are holomorphic om, so are
7z (f, w(F(z))) forall f € A, and therefore alsp+— o (F(z)).
Hence:

THEOREM3. If A, B and the linear isometryA satisfy the hypotheses of Theof@nand
if IT is a Gleason part oB which contains more than one point and is containe# jithen
there is a holomorphic map : A — B’ mappingA one-to-one ontdI such thatw o F is
holomorphic onA, w (F(A)) is contained in a Gleason part of, and(20) holds.

4. EXAMPLES

|. By a theorem of R. Phelps ([IL7], see alsb [5]), the closed unit ball of the uniform algebra
C (M) of all complex-valued, continuous functions on any compact Hausdorff saise
the closed convex hull of the set of all the unitary function€'{ia1).

Let X andY be compact Hausdorff spaces, anddet £(C(X), C(Y)) be anisometry
of C(X) into C(Y). Since all characters @ (Y) are point evaluations, the seflsand O
coincide, and Theoreft 2 yields W. Holsaski’s theorem[[13]:

THEOREM4. There exists a closed subgetC Y and a continuous surjective map:
P — X for which

(21) (AN () = (AD () f(@(y)
forall f e C(X)andally € P.

The setQ = P consists of all pointy € Y such thatf(Au)(y)| = 1 for all unitary
functionsu € C(X). Thus, if A maps all unitary functions to unitary functions, thBn=
Q =Y, and Theorerp]4 yields Theorem 1 bf[20] (see al$o [7]).

Corollary[2 yields

COROLLARY 4. If A is an isometric homomorphism 6f(X) into C(Y), then there is a
continuous surjective map: Y — X such that

(AfY(Y) = flp(y)) VYfeCX),yeY.

Let now X = Y and suppose that the linear self-isometrpf C(X) mapsi(C (X))
into itself and that the sequen¢a”} of the iterates ofA converges to the identity for the
weak operator topology:

(22) im (A" )(») = f(5)  ¥f €C(M), y € X.
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In particular,
(23) lim (A"1)(y) =1 VyelX.
n—oo

If [(A”1)(y)| <1 for somey € X and some positive integer, then, by[(1B)|(A"1)(y)| <1
foralln > p, contradicting[(2B). Thus,

(24) [((A"D)(y)=1 VrneN, yeX,
and [I9) yields
A" YN =1f (@™ VfeCX), yeX, neN,
and, by[(2R),
(25) nﬂ[golf(w""(y))l =1fl.

SinceX is compact, for any € X, there are an increasing sequence of positive integers
{no, n1, ...} and a pointy’ € X such that

lim o (y) =y,
j—oo
and therefore, by (25),
WG] =jimoo |f @™ D= 1)

forall f € C(X). This implies thaty = y’, i.e.
(26) lim 0o*(y) =y VyelX.
n—oo
Hence, for any € X,
o(y) = lim o”(@y) = lIm () =y,
n—oo n—oo

showing that the map is the identity, and therefor is a surjective isometry represented

by
Af =Al- f VfeCX).

In particular,
(27) A"l = (AD)" forn=0,1,2,....
Since|(Al)(y)| = 1 forall y € X, we deduce that

lim (A"D( =1 VyeX

if, and only if, A1 = 1.
Thus:

ProPOSITION4. If the isometryA € L(C(X)) maps all unitary functions to unitary
functions, and if the sequendel”} converges to the identity for the weak operator
topology, them is the identity.
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Il. By a theorem of R. Phelps[([17]), if the function algeb#as logmodular and if there
is a Gleason parkt of X (A) which is total overA, then the closed unit ball ofl is the
closed convex hull of its exposed points.

Examples of such algebras are the disc alge#ifai.e., the uniform algebra of all
complex-valued, continuous functions on the closdref A whose restrictions ta\ are
holomorphic, and the uniform algebf&™> of all bounded holomorphic functions at.

As is well known, A is a Dirichlet algebra whose set of maximal ideals and the Shilov
boundary are respectively and the unit circled A.

As a consequence of atheorem by A. Bernard (see, e.@., [10, Corollary 2.4]), the closed
unit ball of A° is the closed convex hull of the set of all finite Blaschke products. By
Proposition 1, ifA € £(A°) is an isometry for which

(28) AE(AY) C LAY,
thenA1l e 11(A% and there is a surjective continuous mapdA — dA such that

(Af)(@) = (AD@)(f, @(52))

forall f € A%and allz € A. B
If . € AYis the “coordinate function’,: A > z — z, then

(A)(2) = (AD @)@ (2),

wherew (z) = (1, w(8;)). As a consequencey is holomorphic at al; € A where
(A1)(z) # 0. Hence it is holomorphic o, that is, an inner function contained if.

If f is the restriction toA of an analytic polynomia[:f,\’:0 ay!" for some positive
integerN anda, € C, then

N N
(29) (AN =) (A R) = (AD)(2) Y apt (@ (2))
n=0

n=0

N
= (AD(2) Zan(w(Z))" = (AD(2) f (@ (2))
n=0

forall z € A.

Since analytic polynomials are denseAf, ) holds for allf € A%and allz € A
and therefore for alt € A. Furthermore, the fact tha = 9 A entails thai(A1)(z)| = 1
forallz € 9A.

Conversely, ifA is a linear isometry 0fA° expressed b9) for alf € A% and all
z € A, wherew is an inner function contained i, then|A1| = 1 at all points o0fd A,
because if the set

V =1{0 €[0,27) : (A ()] < 1}

is not empty, then choosingl € A%, with | f|| = 1, peaking only at a point af (V) we
have||Af| < 1= | f|l, contradicting the fact that is an isometry.
In conclusion, the following theorem holds.
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THEOREMS5. For any isometryA e £(A% satisfying), Al is an inner function
contained in4°, and there is a non-constant inner functien < A° such that

Af =Al- fow VfeA

Conversely, ifA1 € A9 is an inner function ands € A° is a non-constant inner
function, then the operata# represented by the last equation is a linear isometryBf
into itself.

If the isometryA is surjective, them ~1 is represented by
AT Yf=A"11. foc V[ e A,
wherec € A% is a non-constant inner function. Fér= 1, the condition
(30) A oAf=AcAf=Ff
is equivalent to
(AT'D@OAD((@) = AD@A D@ @) =1 Vze A

The fact that] A1|| = ||[A~11]| = 1 and the maximum principle imply thaitl is constant:
Al=c € 34, and thereforet 11 = ¢. Thus, by[(3D),

f@ (@) = flc@ @) = f(z) VYzeA, feA,

i.e. w is a holomorphic automorphism af and¢ = & 1.

Thus, the following theorem holds:

THEOREM®6. The operatord € £(A°) is a bijective isometry ofA? into itself if, and
only if, there exist a constante dA and a Mdbius transformatioro of A such that

(31) Af =c-fow VfeA

We will now see how this result and the Wolff-Denjoy theorem [4] yield some
information on the point spectrum of a surjective linear isomgtiyf A°.

Note first that if, and only ifA1 is constant41 = ¢1 for somec € dA), then 1 is an
eigenvector ofA (with eigenvalue).

Let nowA be a surjective isometry expressed[by] (31), whéssa unimodular constant
ande is a Mobius transformation with no fixed point ia.

By the Wolff—Denjoy theorem, for any € A the sequencér*(z) :n=0,1,2,...}
converges to a point € 3 A. Since, for anyf € A% and any; € A,

lim_f (@) = £),

by 33),
(32) Nim A"H@I=1f@)] VfeAzeA
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If « is an eigenvalue of the isometny, then|«| = 1 and, by|[(3]L), iff is any one of its
eigenvectors, then

If@I=k"f@|=I|c"f(@ ()| = |f(@" ()l
forallz e Aandn =1,2,.... Thus, by[(3D),

If@I=1f()] VzeA.

The maximum principle then implies thdtis constant and@ = ¢, proving the following
proposition.

PROPOSITIONS. If A € £(A) is a surjective isometry and if thedius transformation
@ has no fixed points i, then the complex line spanned by the constant fundtierthe
only eigenspace of.

Thusk is the only eigenvalue of, and its geometric multiplicity is one.
A direct computation yields

PROPOSITIONG. If the linear isometryA e L£(A9) is surjective and if the Kbius
transformationz in (37)) fixes one point inA, then there i® € [0, 27) such that the
point spectrunpo (A) of A is given by

po(A) ={ce" :n=0,1,...).

Hence, if the Mdbius transformationo is not periodic, then the spectrum contains
densely the point spectrum dfand coincides witld A. If @ is periodic, then

po(A) = {1, eZ N 2T IN=DI/Ny

for some positive integey¥ .

lll. Let H*° be the vector space of all bounded holomorphic functions on the open unit disc
A of C. Uniform norm and pointwise composition mak&® a uniform function algebra
on the compact Hausdorff spage = 0 H°.

Fora € A let X, be the “fiber” overx ([11), p. 161],[10, p 190]):

Ta={x € ZHX) () =a), IHY = | (Zan0H>),
acdA

and letr be the continuous map & (H°°) onto A mappings, ontoz for all z € A and
7(Xy) = {a}foralla € 0A. -

If A, is the restriction toX, of the algebraH>° of the Gelfand transforms of the
elements off*°, then ([11, p. 192]¥, and X, N3 H> are respectively the maximal ideal
space and the Shilov boundary.4f,.

For anyd € R the “rotation”z — ¢'?z maps bijectivelyX,, onto X
boundary ofA, onto the Shilov boundary oA, .

By D. J. Newman's characterization of the Shilov boundaryt6f (see, e.g.,[[11,
Theorem, pp. 179-180]){u, x)| = 1 for all inner functionsu and all characterg in
dH®, i.e.,u is unimodular.

and the Shilov

eifa
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Conversely, le: € H* be unimodular. Ifx is not inner, there is a Borel s€tc A
with positive Lebesgue measure such that

Irlel|u(r§)| <1 VceC.

By the Lusin theorem, there is a Borel detc C with positive Lebesgue measure such
thatu is continuously extendable t6 U E. As a consequence ([12, Theorem, p. 164Jx
constant on the fibeE;, and therefore has modulus less than one&lgnand in particular
on X, NoH®, for any¢ € E, contradicting the hypothesis thatis unimodular. This
proves

LEMMA 6. The setl(H°) consists of all inner functions if *°.

SinceH ™ is alogmodular algebra[12], any characteH® has a unique representing
measure. Since moreover the closed unit balféf is the closed convex hull of the set of
all inner functions ([10, p. 196]), Theordm 2 yields the following result.

LEMMA 7. For any isometryA € L£(H®) of H* into itself there exist a subsét of
X (H®°) and a continuous map : P — X (H®) such that

(33) (Af. x) = (AL X)(f. 0 (O)

forall f € H*® and all x € P. Moreover,Q = P N 3dH is non-empty and closed in
dH>, andw(Q) = dH™.

Similar arguments to those developed ftft yield
LEMMA 8. For any isometrydA € £(H®°) such that
(34) AMH®™)) C U(H™)
there is a continuous map : X (H*°) — X (H®) such that
(35) (Af, x) = (AL, X)(f, @ (0)

forall f € H® and all x € Y (H). Moreover,Al is an inner function and» maps
9 H®° onto itself.

By (35), for everyz € A,
(36) (Af) (@) = (AD()(f, ®(3;))
forall f € H* and allz € A. Choosing ag the coordinate functionyields
(Ae, x) = (AL ), ()
forall x € X (H®). In particular ify = §,, then

(A (2) = (AL, 8:) (1, @(8;)) = (AD ()@ (),
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wherew (z) = (1, w(3;)). As a consequencey is holomorphic at all; € A where
(A1)(z) # 0, and therefore it is holomorphic in; sow € H. The fact thatw maps
9 H®° into itself shows thato is an inner function.

If pis an analytic polynomial of degreé,

N
p(z) = Zanzn (a, € C),
n=0

then
N
(37) (Ap)(@) = (AD@)(p, 0(8)) = (AD(D) ) an{t", @(8,))
n=0
N N
= (ADR) ) axlt, 0(8))" = (AD@) Y @@ ()"
n=0 n=0
= (AD@)p(@ (2))
forall z € A.

If f e H*, thenfor O< r < 1thefunctionf, : A > z — f(rz) can be approximated
pointwise by the sequendeypy : N =0, 1, ...}, wherepy is the Taylor polynomial of
degreeN of f, and

A

N = .
Ilpnll

Thus, by [(37),
(Afr)(2) = (AD(2) fr( (2)),

and because
IAfr = AfI = IA(fr = DI =1fr — fIl =0
asr 1 1, we have
(Af)(2) = lri?"ll(Afr)(z) = (AD(2) m fr(@(2)
= (AD(@) f(w(z)) VzeA.
In conclusion, the following theorem holds.

THEOREM7. Any linear isometryA of H* into itself satisfying(34) is a weighted
composition operator represented by

(38) Af =Al- fow VfeH™,
whereAl is an inner function ands is a non-constant inner function.

Conversely, ifu andz are inner functions aner is not constant, then the weighted
composition operator
H®> fr>u-fow

is a linear isometry off°°.
A similar argument to that leading to Theorgin 6 yields the following theorem ([16],
[6] and [11, Corollary, p. 147]).
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THEOREM8. The operatorA € L(H®) is a surjective isometry if, and only if, there
exist a constant € dA and a Mbbius transformationo of A such thai(31) holds for all
feH™.

The Gleason—KahanZelazko theoreni[22] then yields

COROLLARY 5. AnisometryA € L(H®) satisfying(34) is surjective if, and only if, it
maps onto itself the séf°°~* of all invertible elements of the Banach algel#a®.

Let A1 € H*™ L. Since anyf € H* is invertible in H* if, and only if, | f(z)| > a
for somea > 0 and allz € A, Theorenﬂ? implies that if € H* ™%, then there i$ > 0
such that

(AN @D = (AD@)| - | f(@ @) = b

forall z € A. That implies
PROPOSITION7. The isometryA € L(H™) satisfying) mapsH>* ! into itself if,
and only if, A1 ¢ H>®~1,

5. PERIODIC LINEAR ISOMETRIES OFH®®

Let A € L(H*) be an isometry satisfyin§ (B4) for which there exists an integerl and
somez € A such that

(39) A"f)x) = f(@) VfeH™.
By Theorenj V A is represented by
A f— Al. fow,

whereAl € Y{(H*®) andw : A — A is a non-constant inner function.
Equations[(18) and (19) imply that

(40) (A"D(z) =1,
andw °"(z) = z. Hence, eitheto (z) = z or
Cardz, @ (2), ..., o°" V()} > 1,

in which case (see [21}p is a holomorphic automorphism of fixing a pointa € A.
Thus, if there is an infinite seE C A with a cluster point inA such that[(39) holds
whenever; € E, thenw is a holomorphic periodic automorphism df fixing a point
a € A, whose period is a divisor of.

Since

(41) (o) = a,

we have
1=(A"D(@) = (AD(a))".
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Thus, the maximum principle implies that the functiat is constantAl = « for some
k € A, which, by [39), isc = ¢%"//". HenceA is represented by

(42) A(f) =7 fow VfeH®,
and the following theorem holds:

THEOREMO. If the linear isometryA € £(H) satisfying(34) is such that(39) holds
for some integen > 1, any f € H*°, and allz € E, whereE C A is an infinite set with
a cluster point inA, thenA is periodic with period:, and is represented bi#2), wherew
is a periodic Mdbius transformation ofA.

Conversely, for any Bbius transformations of A such thatw*" = id, (4J) defines
ann-periodic surjective isometry af *°.

We will now show that if the iterates of the linear isomettyof H>° satisfying [34)
converge to the identity for the weak operator topology, thdtself is the identity.
The hypothesis implies that

(43) lim (A" f,6.) = lm (A"f)@) = f(z) VfeH zeA

If [(A™1)(z)| < a for somez € A, a € (0,1) andm > 1, then, by[(IB)|(A"1)(z)| <
a < 1 whenn >> 1, contradicting[(4B3). ThugA1)(z)| = 1 for allz € A, and therefore,
by the maximum principle, there is some constaatd A such that

(AD(z) =c VzeA.

Since, by[(4B)¢" — 1 asn — oo, it follows thatc = 1 and [(38) yields
(44) Af = fow.
Thus, again by[(43),

lim @ (z) = lim «(@°"(2)) =z

n—oo n—o00
for all z € A. The Wolff—Denjoy theoreni [4] then implies that

w(z) =z VzeA,

proving the following theorem.
THEOREM10. The identity operator is the only linear isometyof H > into itself which
satisfieq[34), and whose iterates converge to the identity for the weak operator topology.

6. CONTINUOUS SEMIGROUPS OF LINEAR ISOMETRIES OH

We will now investigate strongly continuous semigroups of linear isometriés°of

LetT : Ry — L(H®) be astrongly continuous semigroup of linear isometried &f
into itself. According to a result by H. P. Lotz [14], [15];,, as any strongly continuous
semigroup of linear operators acting &ff°, is uniformly continuous. Hence, it is the
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restriction toR,. of a uniformly continuous group oR, with values inL(H°), which
will be denoted by the same symlibl
Since for any < 0 and anyf € H*,

1A= 1TE0TOfI = 1T @ f

T : R — H is a group of surjective isometries. According to Theofém 8, there are a
functionc : R — 9A and a family{p, : ¢t € R} of holomorphic automorphisms af such
that

(45) T f=ct)fop VteR, feH™,

Asc(t) = T(t)1, c is a continuous homomorphism &finto d A. Therefore there i8 € R
such that

(46) c(t) =% Vi eR.

Furthermore
Ps4t =psopr Vs, teR

and the map — p;(z) is continuous for every € A; thus, p is a continuous flow of
holomorphic automorphisms af (which is called theonformal flowof 7).
Hence the following theorem holds:

THEOREM11. Any strongly continuous semigroup of linear isometriesHoF is the
restriction toR of a uniformly continuous group of surjective isometries.

The continuous flowp is defined by a one-parameter subgraup—> expr® of
SU(1, 1) defined by a 2x 2 matrix

@:(7 ?)
c —iy

with y € R ande € C. As was shown in[[23], ify2 — |c|? is positive, negative or zero,
thenp, (z) is expressed respectively by:

(cos(rt) +iL sin(rt))z + < sin(rt)
€sin(rt)z + cosrt) — i £ sin(rt)

pr(2) =

with r = /y2 — |c|2;

(coshist) + i L sinh(st))z + < sinh(st)
€ sinh(st)z + coshst) — i £ sinh(st)

p:(2) =

with s = /|c|2 — y2;

@ = A+ity)z+tc
priz) = tcz+1—ity
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In the first case, the flow is elliptic, i.e. fixes one point im and is periodic with period
27 /r. Inthe second and third cases, the flovs respectively hyperbolic and parabolic and
has no fixed point imA.

In the elliptic case, the periodicity gf and [4§) show that the group is almost
periodic.

It was shown in[[2B] that if the flow is not elliptic, then there is somie> 0 such that

IT ()]l >1/2 Vi > k.
In conclusion, the following theorem holds (seel[23]).

THEOREM12. The groupT is almost periodic if, and only if, its conformal flow is
elliptic.

Furthermore, the group is periodic if, and only if§ and the period op are linearly
dependent ovep).

Letnow 7 : R — L(A% be a strongly continuous group of (surjective) linear
isometries of4%. Arguing as in the case di ™ one shows thar is represented by

T(t)f =€ fop

forallr e Randallf € A% wheres € R andp : t — p; is a continuous flow of Nibius
transformations ofA.

As before we see that if the continuous fl@ws elliptic, then the grouf is almost
periodic (periodic wheid and the period op are linearly dependent ové)).

On the other hand, if the flow is hyperbolic or parabolic, then by Propositign 5 the
only eigenspace df (1) is the complex line’%'C. Theorem 2 of([1] then shows that the
group T is not almost periodic, thus extending Theorem 12 to the strongly continuous
groups of linear isometries acting off.
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