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ABSTRACT. — Linear isometries of a class of logmodular algebras which are generated by unimodular functions
are represented by Holsztyński-type weighted composition operators. The description of these operators leads—
among other things—to a description of a class of linear isometries of the disc algebra and of the Hardy space
of all bounded holomorphic functions on the open unit disc ofC. Spectral properties of these isometries are also
investigated.
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Linear isometries of Hardy spacesHp (1 ≤ p < ∞, p 6= 2) on the open unit disc∆
of C have been described by F. Forelli in [8], and surjective linear isometries ofH∞ by
N. Nagasawa in [16] and by K. DeLeeuw, W. Rudin and J. Wermer in [6] (see also [11]).

A different approach to the linear isometries ofH∞ and of the disc algebra is motivated
by two facts. First of all, they are both logmodular algebras; secondly, their closed unit balls
are the closed convex hulls of their inner functions, as was proved in [2] and [3].

Starting from these facts, a theorem established in the first two sections of this article
describes the linear isometries of a uniform algebraA into a uniform function algebraB
under the hypotheses thatA is generated by its unimodular functions and every character
of B has a unique representing measure supported by the Shilov boundary ofB.

Among other things, this theorem yields a new proof of Holsztyński’s extension of the
classical Banach–Stone theorem, a characterization of those self-isometries of the Hardy
spaceH∞ and of the disc algebra mapping the sets of all inner functions into themselves,
showing incidentally that, as for any Hardy spaceHp (1 ≤ p < ∞, p 6= 2), these
isometries are represented by weighted composition operators.

The final section summarizes and completes some results established in [23] for
strongly continuous semigroups of linear isometries ofH∞.

1. CONTINUOUS LINEAR FORMS ON SOME UNIFORM ALGEBRAS

Let m be a positive regular Borel measure on a compact Hausdorff spaceM with
m(M) ≤ 1, and letv ∈ L1

R(M,m) = L1
R(M) be such that|v| ≤ 1 almost everywhere

onM and

(1)
∫
v dm = 1.

That implies, first of all, thatv ≥ 0 a.e. onM and thatm(M) = 1.
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LetN ⊂ M be the measurable set

(2) N = {x ∈ M : v(x) 6= 1}.

We will show that

(3) m(N) = 0.

Letw(x) = 1 − v(x). Then

(4) w(x) ≥ 0

and (1), (2) become ∫
w dm = 0,(5)

N = {x ∈ M : w(x) > 0}.(6)

Supposem(N) > 0. By the Lusin theorem (see, e.g., [18, Theorem 2.23]), for any
ε ∈ (0,1/2) there exists a real-valued, continuous functionw̃ onM such that

sup{w̃(x) : x ∈ M} ≤ sup{|w̃(x)| : x ∈ M} ≤ sup{|w(x)| : x ∈ M};

and
m(L(ε)) < εm(N),

whereL(ε) is the measurable set

L(ε) = {x ∈ M : w̃(x) 6= w(x)}.

Hence,

m(N\L(ε)) = m(N)−m(N ∩ L(ε)) ≥ m(N)−m(L(ε))

> (1 − ε)m(N) > 0.

The positive Borel measurem being regular, there exists a compact setK ⊂ N\L(ε)

such that

(7) m(K) > (1 − 2ε)m(N) > 0.

Sincew is continuous onK, (4) and (6) imply that there is a positive constantk such
thatw(x) ≥ k for all x ∈ K. Thus, by (7),∫

M

w dm =

∫
M\K

w dm+

∫
K

w dm ≥

∫
K

w dm

≥ k

∫
K

dm = km(K) > (1 − 2ε)km(N) > 0,

contradicting (5) and thereby proving that (3) holds.
In conclusion, the following lemma has been established.
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LEMMA 1. If f ∈ L1(M,m) = L1(M) is such that|f | ≤ 1 almost everywhere onM,
‖m‖ ≤ 1 and ∣∣∣∣∫ f dm

∣∣∣∣ = 1,

then‖m‖ = m(M) = 1, ‖f ‖ = 1, andf = eiϑ a.e. for someϑ ∈ R.

LetA be a uniform algebra on a compact Hausdorff spaceX, whose Shilov boundary
∂A coincides withX. Any continuous linear formλ onA is represented by a complex,
regular Borel measureµ onX such that‖µ‖ = ‖λ‖.

If
dµ = h d|µ|

is the polar representation ofµ (see, e.g., [18]), whereh is a complex-valued, measurable
function with|h| = 1 a.e.|µ| onX, then for anyf ∈ A,

〈f, λ〉 =

∫
X

f dµ =

∫
X

f h d|µ|.

Suppose now that‖µ‖ = ‖λ‖ ≤ 1, and letu ∈ A be such that

‖u‖ = |〈u, λ〉| = 1.

Then

1 = |〈u, λ〉| =

∣∣∣∣∫
X

uh d|µ|

∣∣∣∣ ≤

∫
X

|u| d|µ| = ‖u‖ = 1.

As a consequence,‖µ‖ = |µ|(X) = 1 and

u(x)h(x) = 〈u, λ〉 a.e.|µ|.

By Lemma 1,hu must be constant on the support ofµ.

2. LINEAR ISOMETRIES BETWEEN TWO UNIFORM ALGEBRAS

LetA,B be uniform algebras on two compact Hausdorff spacesX, Y , and letΣ(A),Σ(B)
and∂A = X, ∂B = Y be the spaces of maximal ideals and the Shilov boundaries ofA, B.
LetA ∈ L(A,B) be a linear isometry ofA intoB.

For anyx ∈ X, let

Ω(x) = {f ∈ A : |f (x)| = ‖f ‖ = 1}

SinceA contains the constants,Ω(x) 6= ∅ for all x ∈ X.
Following an idea of W. Holsztýnski [13], we now prove

LEMMA 2. For anyx ∈ X the set

Υ (x) = {y ∈ Y : |(Af )(y)| = 1 ∀f ∈ Ω(x)}

is closed and not empty.
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PROOF. Let n be a positive integer and letu1, . . . , un be elements ofA such that

(8) |uj (x)x| = ‖uj‖ = 1, j = 1, . . . , n.

The function

u =

n∑
j=1

uj (x) uj ∈ A

is such that

|u(t)| ≤

n∑
j=1

|uj (t)| ≤

n∑
j=1

‖uj‖ = n ∀t ∈ X

and

u(x) =

n∑
j=1

|uj (x)|
2

= n.

Therefore‖u‖ = n.
SinceA is an isometry, there is somey ∈ Y for which |(Au)(y)| = n. As

(Au)(y) =

n∑
j=1

uj (x)(Auj )(y),

we have

n = |(Au)(y)| ≤

n∑
j=1

|(Auj )(y)| ≤

n∑
j=1

‖Auj‖ = n,

showing that|(Auj )(y)| = 1 for j = 1, . . . , n, i.e.

(9) {y ∈ Y : |(Auj )(y)| = 1, j = 1, . . . , n} 6= ∅

for every choice ofu1, . . . , un in A satisfying (8). The conclusion follows from the fact
thatY is compact and the set (9) is closed. 2

An elementu ∈ A such that|u(x)| = 1 for all x ∈ X is called aunimodular(or
unitary) function.

Let U = U(A) be the set of all unitary functions inA. Clearly,

∅ 6= U =

⋂
{Ω(x) : x ∈ M}.

LetQ be the closed set of ally ∈ Y such that|(Au)(y)| = 1 for all u ∈ U(A). Since

y ∈ Υ (x) ⇔ |(Af )(y)| = 1 ∀f ∈ Ω(x)

⇒ |(Au)(y)| = 1 ∀u ∈ U ⇔ y ∈ Q,

it follows that

(10) Υ (x) ⊂ Q ∀x ∈ X,

and thereforeQ 6= ∅.



LINEAR ISOMETRIES OF SOME FUNCTION ALGEBRAS 239

Let y ∈ Y . Denoting byλ the continuous linear form onA defined by

〈f, λ〉 = (Af )(y) ∀f ∈ A,

letµ be the complex regular Borel measure onX which representsλ. Then, for anyu ∈ U
and ally ∈ Q,

(Au)(y) = u(t)h(t) a.e. in Supp(µ).

If, given any two distinct pointst ′ andt ′′ of X, there isu ∈ U such thatu(t ′) 6= u(t ′′),
then Supp(µ) is reduced to one point, and the following lemma holds.

LEMMA 3. If the setU separates points inX, then there is a mapψ : Q → X such that

(11) (Au)(y) = (A1)(y)u(ψ(y)) ∀u ∈ U, y ∈ Q.

It has been shown by A. Bernard ([2], [3], [10, pp. 195–196]) that if the setU
generatesA, then the closed unit ball ofA is the closed convex hull ofU.

Thus, ifU generatesA, then for everyf ∈ A and for everyε > 0 there are a positive
integern, positive numberst1, . . . , tn with

∑n
ν=1 tν = 1 and functionsu1, . . . , un ∈ U

such that ∥∥∥f −

n∑
ν=1

tνuν

∥∥∥ ≤ ε.

Choosey ∈ Q. Since|(A1)(y)| = 1, (11) yields

|(Af )(y)− (A1)(y)f (ψ(y))| ≤

∣∣∣(f −

n∑
ν=1

tνuν

)
(y)

∣∣∣ +

∣∣∣(f −

n∑
ν=1

tνuν

)
(ψ(y))

∣∣∣
= 2

∥∥∥f −

n∑
ν=1

tνuν

∥∥∥ ≤ 2ε.

Furthermore, sinceA separates points, ifU generatesA then alsoU separates points. All
that yields the first part of the following theorem.

THEOREM 1. If A is a linear isometry ofA into B, and ifU(A) generatesA, then there
are a closed subsetQ of Y and a continuous surjective mapψ : Q → X such that

(12) (Af )(y) = (A1)(y)f (ψ(y)) ∀f ∈ A, y ∈ Q.

PROOF. To establish the continuity ofψ , let {yj } be a net inQ converging toy ∈ Q, and
suppose that there are two subnets{yr} and{ys} such that the nets{ψ(yr)} and{ψ(ys)}

converge to two distinct elementst ′ andt ′′ of X. Then, for anyf ∈ A, the nets

{f (ψ(yr))} = {(Af )(yr) (A1)(yr)}

and
{f (ψ(ys))} = {(Af )(ys) (A1)(ys)}

converge to
f (t ′) = (Af )(y) (A1)(y) = f (t ′′),

contradicting the fact that, sincet ′ 6= t ′′, there is somef ∈ A such thatf (t ′) 6= f (t ′′).
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All that is left to prove is the surjectivity ofψ . Sinceψ is continuous,ψ(Q) is a
compact subset ofX. If ψ(Q) 6= X, the open setX \ψ(Q) is non-empty. LetV andW be
two open sets inX such thatV 6= ∅ and

V ⊂ W ⊂ X \ ψ(Q).

Since the open setV contains some strong boundary pointx of A, there existsh ∈ A with
‖h‖ ≤ 1 and

|h(x)| > 3/4 and |h(t)| < 1/4 ∀t ∈ X \ V.

Let s ∈ X be such that|h(s)| = ‖h‖. Then

‖h‖ = |h(s)| > 3/4.

Set

f =
1

‖h‖
h.

Since 1/‖h‖ < 4/3, we have

|f (t)| =
|h(t)|

‖h‖
<

1

‖h‖

1

4
<

1

3
∀t ∈ X \ V.

Thus,
1 = ‖Af ‖ ≤ sup{|(A1)(y)|.|(f (ψ(y))| : y ∈ Q} < 1/3,

a contradiction. 2

If A maps all unimodular functions onX to unimodular functions onY , thenQ = Y ,

|(A1)(y)| = 1 ∀y ∈ Y,(13)

(Af )(y) = (A1)(y)f (ψ(y)) ∀f ∈ A, y ∈ Y,(14)

and the following proposition holds.

PROPOSITION1. If U(A) generatesA and is mapped byA into U(B), then (13) is
satisfied, and there is a continuous surjective mapψ : Y → X for which(14)holds.

Conversely, ifU(A) andU(B) satisfy the above hypotheses, then|(Au)(y)| = 1 for all
u ∈ U(A) and ally ∈ Y , i.e.Q = Y .

In particular, ifA is an isometric homomorphism of the algebraA into the algebraB,
thenQ = Y if, and only if, there is a continuous surjective mapψ : Y → X such that

Af = f ◦ ψ ∀f ∈ A.

Going back to the linear isometryA in Theorem 1, for allf ∈ A and anyy ∈ Q,

|(Af )(y)| = |f (ψ(y))|.

Sinceψ(Q) = X, this implies that ifAf ∈ U(B), thenf ∈ U(A), i.e.

A−1(U(B) ∩ A(A)) ⊂ U(A).
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Hence, ifA is surjective, thenU(B) ⊂ A(U(A)) and alsoU(A) ⊂ A−1(U(B)). Proposi-
tion 1 yields

COROLLARY 1. If U(A) generatesA and if the isometryA is surjective, thenA(U(A)) =

U(B), andA is expressed by(14), whereψ is now a homeomorphism ofY ontoX.

If X = Y ,A = B and if the isometryA is not surjective, then its spectrumσ(A) is the
closed unit disc∆ and∆ is contained in the residual spectrum. As a consequence,A(A) is
contained in a proper closed subspace ofA. Thus, denoting byA−1 the set of all invertible
elements ofA, we have proved

LEMMA 4. If X = Y , A = B and ifA(A−1) contains a non-empty open set, then the
isometryA is surjective.

LetΣ(A) andΣ(B) be the sets of all characters ofA andB, i.e. all homomorphisms
of the abelian Banach algebrasA andB into C. LetP ⊂ Σ(B) be the set of allχ ∈ Σ(B)
having a representing measuremχ (i.e. a regular probability measure which representsχ )
whose support is contained inQ. Obviously,Q ⊂ P and, ifQ = Y , thenP = Σ(B).

LetA andB satisfy the hypotheses of Theorem 1. Forχ ∈ P letmχ be a representing
measure ofχ whose support is contained inQ.

For anyf ∈ A,

〈Af, χ〉 =

∫
(Af )(y) dmχ (y) =

∫
(A1)(y) dmχ (y)

∫
f (ψ(y)) dmχ (y)

= 〈A1, χ〉

∫
f (ψ(y)) dmχ (y)

becausemχ is multiplicative. Since furthermoreψ(y) ∈ ∂A, we have∫
(f1f2)(ψ(y)) dmχ (y) =

∫
f1(ψ(y))f2(ψ(y)) dmχ (y)

=

∫
f1(ψ(y)) dmχ (y)

∫
f2(ψ(y)) dmχ (y)

for all f1, f2 ∈ A. Hence, there exists a characterω(χ) of A such that∫
f (ψ(y)) dmχ (y) = 〈f, ω(χ)〉.

Assuming that everyχ ∈ P has a unique representing measuremχ whose support is
contained inQ, χ 7→ ω(χ) defines a mapω : P → Σ(A) such that

(15) 〈Af, χ〉 = 〈A1, χ〉〈f, ω(χ)〉 ∀f ∈ A, χ ∈ P.

The same kind of argument as in the proof of Theorem 1 shows that the mapω is
continuous, and, in conclusion, the following theorem holds.
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THEOREM 2. LetA be a linear isometry of the algebraA intoB. If everyχ ∈ Σ(B) has a
unique representing measure and if the setU of all unimodular functions inA generatesA,
then there is a subsetP of Σ(B) containing the closed subsetQ of ∂B = Y , and a
continuous mapω : P → Σ(A) such thatω|Q = ψ (whenceω(P ) ⊃ ∂A = ω(Q) = X)
and(15)holds.

Furthermore, ifQ = Y , thenP = Σ(B) and(15)holds for allχ ∈ Σ(B).

If A,A andB are as in Theorem 2 and if moreover

(16) A(A−1) ⊂ B−1,

then by the Gleason–Kahane–Żelazko theorem (see, e.g., [22]) there exists a continuous
mapϕ : Σ(B) → Σ(A) such that

〈Af, χ〉 = 〈A1, χ〉〈f, ϕ(χ)〉 ∀f ∈ A, χ ∈ Σ(B).

Comparison of the last equation with (15) shows that, since〈A1, χ〉 6= 0 for allχ ∈ Q,

〈f, ϕ(χ)〉 = 〈f, ω(χ)〉 ∀f ∈ A, χ ∈ Q;

sinceA separates points inQ, it follows thatϕ = ω onQ, i.e.ϕ is a continuous extension
of ω|Q, and thereforeϕ(∂B) ⊃ ∂A.

If furthermore

(17) Σ(A) = ∂A = X,

and ifA1 ∈ U(B), then for anyu ∈ U(A) and anyχ ∈ ∂B,

|〈Au, χ〉| = |〈u, ϕ(χ)〉| = 1.

ThusQ = Y and the following proposition holds:

PROPOSITION2. If A,A, B satisfy the hypotheses of Theorem2, and if furthermore(16)
and (17) hold andA1 is a unimodular function inB, thenA(U(A)) ⊂ U(B), and (15)
holds for allχ ∈ Σ(B).

COROLLARY 2. If A is an isometric homomorphism ofA into B and if (17) holds, then
there is a continuous surjective mapϕ : Σ(B) → X such that

〈Af, χ〉 = 〈f, ϕ(χ)〉 ∀f ∈ A, χ ∈ Σ(B).

We point out for future reference that ifX = Y , A = B andQ = Y , then for any
positive integern,

(18) An1 = A1 · (A1 ◦ ω) · · · (A1 ◦ ω◦(n−1))

and

(19) Anf = An1 · f ◦ ω◦n
∀f ∈ A,

where, for any positive integern, An = A ◦ · · · ◦ A (n times) andω◦n is then-th iterate
of ω.
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3. GLEASON PARTS

Let nowC be a uniform algebra on a compact Hausdorff spaceM. According to Bishop’s
theorem (see, e.g., [19, Theorem 16.6]), ifχ1, χ2 are two characters ofC which are
contained in the same Gleason part ofC, andµ1, µ2 are representing measures ofχ1, χ2,
thenµ1, µ2 are mutually absolutely continuous (and the Radon–Nikodym derivatives
dµ1/dµ2, dµ2/dµ1 are both bounded). Therefore,

Supp(µ1) = Supp(µ2)

and, as a consequence, we have

LEMMA 5. Under the hypotheses of Theorem2, letΠ be a Gleason part ofB. If Π ∩ P

6= ∅, thenΠ ⊂ P .

Let Π be a Gleason part ofC and letF : ∆ → Π be a continuous one-to-one map
such that the function

f̂ ◦ F : z 7→ 〈f, F (z)〉

is holomorphic on∆ for all f ∈ C. Since for every continuous linear formλ onC,

‖λ‖ = sup{|〈f, λ〉| : f ∈ C, ‖f ‖ ≤ 1},

C is a determining manifold for the topological dualC′ of C. By Dunford’s theorem (see,
e.g., [9, Theorem II.3.10]),F is a holomorphic map of∆ into C′.

Let nowF : ∆ → C′ be a holomorphic map such thatF(∆) ⊂ Σ(C). For everyz ∈ ∆,
we have‖F(z)‖ = 1, and therefore, forz1, z2 ∈ ∆,

‖F(z1)− F(z2)‖ ≤ ‖F(z1)‖ + ‖F(z2)‖ = 2.

If
‖F(z1)− F(z2)‖ = 2

for somez1, z2 ∈ ∆, then by the maximum principle

‖F(z1)− F(z)‖ = 2 ∀z ∈ ∆.

On the other hand,
lim
z→z1

‖F(z1)− F(z)‖ = 0

becauseF is continuous. This contradiction shows that

‖F(z1)− F(z2)‖ < 2

for all z1, z2 ∈ ∆, proving

PROPOSITION3. LetF : ∆ → Σ(C) be a continuous map such thatz 7→ 〈f, F (z)〉 is
holomorphic in∆ for all f ∈ C. ThenF is a holomorphic map of∆ into C′, andF(∆) is
contained in a Gleason part ofC.
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COROLLARY 3. If F is as in Proposition3, and ifF(z) is a one-point Gleason part ofC
for somez ∈ ∆, thenF is constant.

LetA, B andA be as in Theorem 2 and letΠ be a Gleason part contained inP . If Π
contains more than one point, thenWermer’s embedding theorem (Theorem 17.1 of [19])
and Proposition 3 show that there is a holomorphic mapF : ∆ → B′ such thatF(∆) = Π

and

(20) 〈Af,F (z)〉 = 〈A1, F (z)〉〈f, ω(F (z))〉 ∀f ∈ A, z ∈ ∆.

Since the functionsz 7→ 〈Af,F (z)〉 andz 7→ 〈A1, F (z)〉 are holomorphic on∆, so are
z 7→ 〈f, ω(F (z))〉 for all f ∈ A, and therefore alsoz 7→ ω(F(z)).

Hence:

THEOREM 3. If A, B and the linear isometryA satisfy the hypotheses of Theorem2, and
if Π is a Gleason part ofB which contains more than one point and is contained inP , then
there is a holomorphic mapF : ∆ → B′ mapping∆ one-to-one ontoΠ such thatω ◦F is
holomorphic on∆, ω(F(∆)) is contained in a Gleason part ofA, and(20)holds.

4. EXAMPLES

I. By a theorem of R. Phelps ([17], see also [5]), the closed unit ball of the uniform algebra
C(M) of all complex-valued, continuous functions on any compact Hausdorff spaceM is
the closed convex hull of the set of all the unitary functions inC(M).

LetX andY be compact Hausdorff spaces, and letA ∈ L(C(X), C(Y )) be an isometry
of C(X) into C(Y ). Since all characters ofC(Y ) are point evaluations, the setsP andQ
coincide, and Theorem 2 yields W. Holsztyński’s theorem [13]:

THEOREM 4. There exists a closed subsetP ⊂ Y and a continuous surjective mapω :
P → X for which

(21) (Af )(y) = (A1)(y)f (ω(y))

for all f ∈ C(X) and ally ∈ P .

The setQ = P consists of all pointsy ∈ Y such that|(Au)(y)| = 1 for all unitary
functionsu ∈ C(X). Thus, ifA maps all unitary functions to unitary functions, thenP =

Q = Y , and Theorem 4 yields Theorem 1 of [20] (see also [7]).
Corollary 2 yields

COROLLARY 4. If A is an isometric homomorphism ofC(X) into C(Y ), then there is a
continuous surjective mapϕ : Y → X such that

(Af )(y) = f (ϕ(y)) ∀f ∈ C(X), y ∈ Y.

Let nowX = Y and suppose that the linear self-isometryA of C(X) mapsU(C(X))
into itself and that the sequence{An} of the iterates ofA converges to the identity for the
weak operator topology:

(22) lim
n→∞

(Anf )(y) = f (y) ∀f ∈ C(M), y ∈ X.
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In particular,

(23) lim
n→∞

(An1)(y) = 1 ∀y ∈ X.

If |(Ap1)(y)|<1 for somey∈X and some positive integerp, then, by (18),|(An1)(y)|<1
for all n ≥ p, contradicting (23). Thus,

(24) |(An1)(y)| = 1 ∀n ∈ N, y ∈ X,

and (19) yields

|(Anf )(y)| = |f (ω◦n(y))| ∀f ∈ C(X), y ∈ X, n ∈ N,

and, by (22),

(25) lim
n→∞

|f (ω◦n(y))| = |f (y)|.

SinceX is compact, for anyy ∈ X, there are an increasing sequence of positive integers
{n0, n1, . . .} and a pointy′

∈ X such that

lim
j→∞

ω◦nj (y) = y′,

and therefore, by (25),

|f (y)| = lim
j→∞

|f (ω◦nj (y))| = |f (y′)|

for all f ∈ C(X). This implies thaty = y′, i.e.

(26) lim
n→∞

ω◦n(y) = y ∀y ∈ X.

Hence, for anyy ∈ X,

ω(y) = lim
n→∞

ω◦n(ω(y)) = lim
n→∞

ω◦(n+1)(y) = y,

showing that the mapω is the identity, and thereforeA is a surjective isometry represented
by

Af = A1 · f ∀f ∈ C(X).

In particular,

(27) An1 = (A1)n for n = 0,1,2, . . . .

Since|(A1)(y)| = 1 for all y ∈ X, we deduce that

lim
n→∞

(An1)(y) = 1 ∀y ∈ X

if, and only if,A1 = 1.
Thus:

PROPOSITION4. If the isometryA ∈ L(C(X)) maps all unitary functions to unitary
functions, and if the sequence{An} converges to the identity for the weak operator
topology, thenA is the identity.
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II. By a theorem of R. Phelps ([17]), if the function algebraA is logmodular and if there
is a Gleason partL of Σ(A) which is total overA, then the closed unit ball ofA is the
closed convex hull of its exposed points.

Examples of such algebras are the disc algebraA0, i.e., the uniform algebra of all
complex-valued, continuous functions on the closure∆ of ∆ whose restrictions to∆ are
holomorphic, and the uniform algebraH∞ of all bounded holomorphic functions on∆.

As is well known,A0 is a Dirichlet algebra whose set of maximal ideals and the Shilov
boundary are respectively∆ and the unit circle∂∆.

As a consequence of a theorem by A. Bernard (see, e.g., [10, Corollary 2.4]), the closed
unit ball of A0 is the closed convex hull of the set of all finite Blaschke products. By
Proposition 1, ifA ∈ L(A0) is an isometry for which

(28) A(U(A0)) ⊂ U(A0),

thenA1 ∈ U(A0) and there is a surjective continuous mapω : ∂∆ → ∂∆ such that

(Af )(z) = (A1)(z)〈f, ω(δz)〉

for all f ∈ A0 and allz ∈ ∆.
If ι ∈ A0 is the “coordinate function”,ι : ∆ 3 z 7→ z, then

(Aι)(z) = (A1)(z)$(z),

where$(z) = 〈ι, ω(δz)〉. As a consequence,$ is holomorphic at allz ∈ ∆ where
(A1)(z) 6= 0. Hence it is holomorphic on∆, that is, an inner function contained inA0.

If f is the restriction to∆ of an analytic polynomial
∑N
n=0 anι

n for some positive
integerN andan ∈ C, then

(Af )(z) =

N∑
n=0

an(Aι
n)(z) = (A1)(z)

N∑
n=0

anι
n($(z))(29)

= (A1)(z)
N∑
n=0

an($(z))
n

= (A1)(z)f ($(z))

for all z ∈ ∆.
Since analytic polynomials are dense inA0, (29) holds for allf ∈ A0 and allz ∈ ∆

and therefore for allz ∈ ∆. Furthermore, the fact thatQ = ∂∆ entails that|(A1)(z)| = 1
for all z ∈ ∂∆.

Conversely, ifA is a linear isometry ofA0 expressed by (29) for allf ∈ A0 and all
z ∈ ∆, where$ is an inner function contained inA0, then|A1| = 1 at all points of∂∆,
because if the set

V = {θ ∈ [0,2π) : |(A1)(eiθ )| < 1}

is not empty, then choosingf ∈ A0, with ‖f ‖ = 1, peaking only at a point of$(V ) we
have‖Af ‖ < 1 = ‖f ‖, contradicting the fact thatA is an isometry.

In conclusion, the following theorem holds.
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THEOREM 5. For any isometryA ∈ L(A0) satisfying(28), A1 is an inner function
contained inA0, and there is a non-constant inner function$ ∈ A0 such that

Af = A1 · f ◦$ ∀f ∈ A0.

Conversely, ifA1 ∈ A0 is an inner function and$ ∈ A0 is a non-constant inner
function, then the operatorA represented by the last equation is a linear isometry ofA0

into itself.

If the isometryA is surjective, thenA−1 is represented by

A−1f = A−11 · f ◦ ς ∀f ∈ A0,

whereς ∈ A0 is a non-constant inner function. Forf = 1, the condition

(30) A−1
◦ Af = A ◦ A−1f = f

is equivalent to

(A−11)(z)(A1)(ς(z)) = (A1)(z)(A−11)($(z)) = 1 ∀z ∈ ∆.

The fact that‖A1‖ = ‖A−11‖ = 1 and the maximum principle imply thatA1 is constant:
A1 = c ∈ ∂∆, and thereforeA−11 = c. Thus, by (30),

f ($(ς(z))) = f (ς($(z))) = f (z) ∀z ∈ ∆, f ∈ A0,

i.e.$ is a holomorphic automorphism of∆ andς = $−1.

Thus, the following theorem holds:

THEOREM 6. The operatorA ∈ L(A0) is a bijective isometry ofA0 into itself if, and
only if, there exist a constantc ∈ ∂∆ and a M̈obius transformation$ of∆ such that

(31) Af = c · f ◦$ ∀f ∈ A0.

We will now see how this result and the Wolff–Denjoy theorem [4] yield some
information on the point spectrum of a surjective linear isometryA of A0.

Note first that if, and only if,A1 is constant (A1 = c1 for somec ∈ ∂∆), then 1 is an
eigenvector ofA (with eigenvaluec).

Let nowA be a surjective isometry expressed by (31), wherec is a unimodular constant
and$ is a Möbius transformation with no fixed point in∆.

By the Wolff–Denjoy theorem, for anyz ∈ ∆ the sequence{$ ◦n(z) : n = 0,1,2, . . .}
converges to a pointζ ∈ ∂∆. Since, for anyf ∈ A0 and anyz ∈ ∆,

lim
n→∞

f ($ ◦n(z)) = f (ζ ),

by (31),

(32) lim
n→∞

|(Anf )(z)| = |f (ζ )| ∀f ∈ A0, z ∈ ∆.
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If κ is an eigenvalue of the isometryA, then|κ| = 1 and, by (31), iff is any one of its
eigenvectors, then

|f (z)| = |κnf (z)| = |cnf ($ ◦n(z))| = |f ($ ◦n(z))|

for all z ∈ ∆ andn = 1,2, . . . . Thus, by (32),

|f (z)| = |f (ζ )| ∀z ∈ ∆.

The maximum principle then implies thatf is constant andκ = c, proving the following
proposition.

PROPOSITION5. If A ∈ L(A0) is a surjective isometry and if the M̈obius transformation
$ has no fixed points in∆, then the complex line spanned by the constant function1 is the
only eigenspace ofA.

Thusκ is the only eigenvalue ofA, and its geometric multiplicity is one.
A direct computation yields

PROPOSITION6. If the linear isometryA ∈ L(A0) is surjective and if the M̈obius
transformation$ in (31) fixes one point in∆, then there isθ ∈ [0,2π) such that the
point spectrumpσ(A) ofA is given by

pσ(A) = {ceinθ : n = 0,1, . . .}.

Hence, if the M̈obius transformation$ is not periodic, then the spectrum contains
densely the point spectrum ofA and coincides with∂∆. If $ is periodic, then

pσ(A) = {1, e2πi/N , . . . , e2π(N−1)i/N
}

for some positive integerN .

III. Let H∞ be the vector space of all bounded holomorphic functions on the open unit disc
∆ of C. Uniform norm and pointwise composition makeH∞ a uniform function algebra
on the compact Hausdorff spaceM = ∂H∞.

Forα ∈ ∂∆ letΣα be the “fiber” overα ([11, p. 161], [10, p 190]):

Σα = {χ ∈ Σ(H∞) : 〈ι, χ〉 = α}, ∂H∞
=

⋃
α∈∂∆

(Σα ∩ ∂H∞),

and letπ be the continuous map ofΣ(H∞) onto∆ mappingδz ontoz for all z ∈ ∆ and
π(Σα) = {α} for all α ∈ ∂∆.

If Aα is the restriction toΣα of the algebraĤ∞ of the Gelfand transforms of the
elements ofH∞, then ([11, p. 192])Σα andΣα∩∂H∞ are respectively the maximal ideal
space and the Shilov boundary ofAα.

For anyθ ∈ R the “rotation”z 7→ eiθz maps bijectivelyΣα ontoΣeiθα and the Shilov
boundary ofAα onto the Shilov boundary ofAeiθα.

By D. J. Newman’s characterization of the Shilov boundary ofH∞ (see, e.g., [11,
Theorem, pp. 179–180]),|〈u, χ〉| = 1 for all inner functionsu and all charactersχ in
∂H∞, i.e.,u is unimodular.
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Conversely, letu ∈ H∞ be unimodular. Ifu is not inner, there is a Borel setC ⊂ ∂∆

with positive Lebesgue measure such that

lim
r↑1

|u(rζ )| < 1 ∀ζ ∈ C.

By the Lusin theorem, there is a Borel setE ⊂ C with positive Lebesgue measure such
thatu is continuously extendable to∆∪E. As a consequence ([12, Theorem, p. 161]),u is
constant on the fiberΣζ , and therefore has modulus less than one onΣζ , and in particular
onΣζ ∩ ∂H∞, for any ζ ∈ E, contradicting the hypothesis thatu is unimodular. This
proves

LEMMA 6. The setU(H∞) consists of all inner functions inH∞.

SinceH∞ is a logmodular algebra [12], any character ofH∞ has a unique representing
measure. Since moreover the closed unit ball ofH∞ is the closed convex hull of the set of
all inner functions ([10, p. 196]), Theorem 2 yields the following result.

LEMMA 7. For any isometryA ∈ L(H∞) of H∞ into itself there exist a subsetP of
Σ(H∞) and a continuous mapω : P → Σ(H∞) such that

(33) 〈Af, χ〉 = 〈A1, χ〉〈f, ω(χ)〉

for all f ∈ H∞ and all χ ∈ P . Moreover,Q = P ∩ ∂H∞ is non-empty and closed in
∂H∞, andω(Q) = ∂H∞.

Similar arguments to those developed forA0 yield

LEMMA 8. For any isometryA ∈ L(H∞) such that

(34) A(U(H∞)) ⊂ U(H∞)

there is a continuous mapω : Σ(H∞) → Σ(H∞) such that

(35) 〈Af, χ〉 = 〈A1, χ〉〈f, ω(χ)〉

for all f ∈ H∞ and all χ ∈ Σ(H∞). Moreover,A1 is an inner function andω maps
∂H∞ onto itself.

By (35), for everyz ∈ ∆,

(36) (Af )(z) = (A1)(z)〈f, ω(δz)〉

for all f ∈ H∞ and allz ∈ ∆. Choosing asf the coordinate functionι yields

〈Aι, χ〉 = 〈A1, χ〉〈ι, ω(χ)〉

for all χ ∈ Σ(H∞). In particular ifχ = δz, then

(Aι)(z) = 〈A1, δz〉〈ι, ω(δz)〉 = (A1)(z)$(z),
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where$(z) = 〈ι, ω(δz)〉. As a consequence,$ is holomorphic at allz ∈ ∆ where
(A1)(z) 6= 0, and therefore it is holomorphic in∆; so$ ∈ H∞. The fact thatω maps
∂H∞ into itself shows that$ is an inner function.

If p is an analytic polynomial of degreeN ,

p(z) =

N∑
n=0

anz
n (an ∈ C),

then

(Ap)(z) = (A1)(z)〈p,ω(δz〉) = (A1)(z)
N∑
n=0

an〈ι
n, ω(δz)〉(37)

= (A1)(z)
N∑
n=0

an〈ι, ω(δz)〉
n

= (A1)(z)
N∑
n=0

an$(z)
n

= (A1)(z)p($(z))

for all z ∈ ∆.
If f ∈ H∞, then for 0< r < 1 the functionfr : ∆ 3 z 7→ f (rz) can be approximated

pointwise by the sequence{cNpN : N = 0,1, . . .}, wherepN is the Taylor polynomial of
degreeN of fr and

cN =
‖fr‖

‖pN‖
.

Thus, by (37),
(Afr)(z) = (A1)(z)fr($(z)),

and because
‖Afr − Af ‖ = ‖A(fr − f )‖ = ‖fr − f ‖ → 0

asr ↑ 1, we have

(Af )(z) = lim
r↑1
(Afr)(z) = (A1)(z) lim

r↑1
fr($(z))

= (A1)(z)f ($(z)) ∀z ∈ ∆.

In conclusion, the following theorem holds.

THEOREM 7. Any linear isometryA of H∞ into itself satisfying(34) is a weighted
composition operator represented by

(38) Af = A1 · f ◦$ ∀f ∈ H∞,

whereA1 is an inner function and$ is a non-constant inner function.

Conversely, ifu and$ are inner functions and$ is not constant, then the weighted
composition operator

H∞
3 f 7→ u · f ◦$

is a linear isometry ofH∞.
A similar argument to that leading to Theorem 6 yields the following theorem ([16],

[6] and [11, Corollary, p. 147]).
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THEOREM 8. The operatorA ∈ L(H∞) is a surjective isometry if, and only if, there
exist a constantc ∈ ∂∆ and a M̈obius transformation$ of∆ such that(31) holds for all
f ∈ H∞.

The Gleason–Kahane–Żelazko theorem [22] then yields

COROLLARY 5. An isometryA ∈ L(H∞) satisfying(34) is surjective if, and only if, it
maps onto itself the setH∞−1 of all invertible elements of the Banach algebraH∞.

Let A1 ∈ H∞−1. Since anyf ∈ H∞ is invertible inH∞ if, and only if, |f (z)| ≥ a

for somea > 0 and allz ∈ ∆, Theorem 7 implies that iff ∈ H∞−1, then there isb > 0
such that

|(Af )(z)| = |(A1)(z)| · |f ($(z))| ≥ b

for all z ∈ ∆. That implies

PROPOSITION7. The isometryA ∈ L(H∞) satisfying(34) mapsH∞−1 into itself if,
and only if,A1 ∈ H∞−1.

5. PERIODIC LINEAR ISOMETRIES OFH∞

LetA ∈ L(H∞) be an isometry satisfying (34) for which there exists an integern > 1 and
somez ∈ ∆ such that

(39) (Anf )(z) = f (z) ∀f ∈ H∞.

By Theorem 7,A is represented by

A : f 7→ A1 · f ◦$,

whereA1 ∈ U(H∞) and$ : ∆ → ∆ is a non-constant inner function.
Equations (18) and (19) imply that

(40) (An1)(z) = 1,

and$ ◦n(z) = z. Hence, either$(z) = z or

Card{z,$(z), . . . ,$ ◦(n−1)(z)} > 1,

in which case (see [21])$ is a holomorphic automorphism of∆ fixing a pointα ∈ ∆.
Thus, if there is an infinite setE ⊂ ∆ with a cluster point in∆ such that (39) holds
wheneverz ∈ E, then$ is a holomorphic periodic automorphism of∆ fixing a point
α ∈ ∆, whose period is a divisor ofn.

Since

(41) $(α) = α,

we have
1 = (An1)(α) = ((A1)(α))n.
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Thus, the maximum principle implies that the functionA1 is constant:A1 = κ for some
κ ∈ ∂∆, which, by (39), isκ = e2πi/n. HenceA is represented by

(42) A(f ) = e2πi/n
· f ◦$ ∀f ∈ H∞,

and the following theorem holds:

THEOREM 9. If the linear isometryA ∈ L(H∞) satisfying(34) is such that(39) holds
for some integern > 1, anyf ∈ H∞, and allz ∈ E, whereE ⊂ ∆ is an infinite set with
a cluster point in∆, thenA is periodic with periodn, and is represented by(42), where$
is a periodic M̈obius transformation of∆.

Conversely, for any M̈obius transformation$ of ∆ such that$ ◦n
= id, (42) defines

ann-periodic surjective isometry ofH∞.

We will now show that if the iterates of the linear isometryA of H∞ satisfying (34)
converge to the identity for the weak operator topology, thenA itself is the identity.

The hypothesis implies that

(43) lim
n→∞

〈Anf, δz〉 = lim
n→∞

(Anf )(z) = f (z) ∀f ∈ H∞, z ∈ ∆.

If |(Am1)(z)| ≤ a for somez ∈ ∆, a ∈ (0,1) andm ≥ 1, then, by (18),|(An1)(z)| ≤

a < 1 whenn � 1, contradicting (43). Thus|(A1)(z)| = 1 for all z ∈ ∆, and therefore,
by the maximum principle, there is some constantc ∈ ∂∆ such that

(A1)(z) = c ∀z ∈ ∆.

Since, by (43),cn → 1 asn → ∞, it follows thatc = 1 and (38) yields

(44) Af = f ◦$.

Thus, again by (43),
lim
n→∞

$ ◦n(z) = lim
n→∞

ι($ ◦n(z)) = z

for all z ∈ ∆. The Wolff–Denjoy theorem [4] then implies that

$(z) = z ∀z ∈ ∆,

proving the following theorem.

THEOREM 10. The identity operator is the only linear isometryA ofH∞ into itself which
satisfies(34), and whose iterates converge to the identity for the weak operator topology.

6. CONTINUOUS SEMIGROUPS OF LINEAR ISOMETRIES OFH∞

We will now investigate strongly continuous semigroups of linear isometries ofH∞.
LetT : R+ → L(H∞) be a strongly continuous semigroup of linear isometries ofH∞

into itself. According to a result by H. P. Lotz [14], [15],T , as any strongly continuous
semigroup of linear operators acting onH∞, is uniformly continuous. Hence, it is the
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restriction toR+ of a uniformly continuous group onR, with values inL(H∞), which
will be denoted by the same symbolT .

Since for anyt < 0 and anyf ∈ H∞,

‖f ‖ = ‖T (−t)T (t)f ‖ = ‖T (t)f ‖,

T : R → H∞ is a group of surjective isometries. According to Theorem 8, there are a
functionc : R → ∂∆ and a family{ρt : t ∈ R} of holomorphic automorphisms of∆ such
that

(45) T (t)f = c(t)f ◦ ρt ∀t ∈ R, f ∈ H∞,

As c(t) = T (t)1, c is a continuous homomorphism ofR into ∂∆. Therefore there isδ ∈ R
such that

(46) c(t) = eiδt ∀t ∈ R.

Furthermore
ρs+t = ρs ◦ ρt ∀s, t ∈ R

and the mapt 7→ ρt (z) is continuous for everyz ∈ ∆; thus,ρ is a continuous flow of
holomorphic automorphisms of∆ (which is called theconformal flowof T ).

Hence the following theorem holds:

THEOREM 11. Any strongly continuous semigroup of linear isometries ofH∞ is the
restriction toR+ of a uniformly continuous group of surjective isometries.

The continuous flowρ is defined by a one-parameter subgroupt 7→ exptΘ of
SU(1,1) defined by a 2× 2 matrix

Θ =

(
iγ c

c −iγ

)
with γ ∈ R andc ∈ C. As was shown in [23], ifγ 2

− |c|2 is positive, negative or zero,
thenρt (z) is expressed respectively by:

ρt (z) =

(
cos(rt)+ i

γ
r

sin(rt)
)
z+

c
r

sin(rt)
c
r

sin(rt)z+ cos(rt)− i
γ
r

sin(rt)

with r =

√
γ 2 − |c|2;

ρt (z) =

(
cosh(st)+ i

γ
s

sinh(st)
)
z+

c
s

sinh(st)
c
s

sinh(st)z+ cosh(st)− i
γ
s

sinh(st)

with s =

√
|c|2 − γ 2;

ρt (z) =
(1 + itγ )z+ tc

tcz+ 1 − itγ
.
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In the first case, the flowρ is elliptic, i.e. fixes one point in∆ and is periodic with period
2π/r. In the second and third cases, the flowρ is respectively hyperbolic and parabolic and
has no fixed point in∆.

In the elliptic case, the periodicity ofρ and (46) show that the groupT is almost
periodic.

It was shown in [23] that if the flowφ is not elliptic, then there is somek > 0 such that

‖T (t)ι‖ > 1/2 ∀t > k.

In conclusion, the following theorem holds (see [23]).

THEOREM 12. The groupT is almost periodic if, and only if, its conformal flowρ is
elliptic.

Furthermore, the groupT is periodic if, and only if,δ and the period ofρ are linearly
dependent overQ.

Let now T : R → L(A0) be a strongly continuous group of (surjective) linear
isometries ofA0. Arguing as in the case ofH∞ one shows thatT is represented by

T (t)f = eiδt · f ◦ ρt

for all t ∈ R and allf ∈ A0, whereδ ∈ R andρ : t 7→ ρt is a continuous flow of M̈obius
transformations of∆.

As before we see that if the continuous flowρ is elliptic, then the groupT is almost
periodic (periodic whenδ and the period ofρ are linearly dependent overQ).

On the other hand, if the flowρ is hyperbolic or parabolic, then by Proposition 5 the
only eigenspace ofT (t) is the complex lineeiδtC. Theorem 2 of [1] then shows that the
groupT is not almost periodic, thus extending Theorem 12 to the strongly continuous
groups of linear isometries acting onA0.
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