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ABSTRACT. — We summarize the results obtained in the forthcoming papers [32, 33], in which we prove
theorems on existence and non-existence of weak solutions of quasilinear singular elliptic equations with weights.
We also establish regularity and qualitative properties of the solutions.
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In this note we present a survey of the main results establishedlin [32, 33]. Let us first
considerp-Laplacian equations in the enti® of the type

1) Apu = g(x,u),

where A, = div(|Dul?~2Du), Du = (du/dx1,...,du/dx,), 1 < p < n, and
g: R" x R — Ris a Caratkodory function.
A functionu € Hli’c” (R™), oru e D&)’é’ (R"), is said to be aveak solutiorof (I)) if

/R |Du(x)|P~?(Du(x), Do(x)) dx +/R glx, u(x))e(x)dx =0

for anyg € HYP(R") compactly supported ii®". A ground stateof (@ is a non-trivial
non-negative weak solution df](1) which tends to zergvas~> co.
Finally, afast decay solutioof (I) is a non-trivial weak solution of (I)) such that

lim |x|"=P/P=Dy(x) exists and is finite

|x]—00

In [33] we give several qualitative and regularity properties of weak solutiarf<{]),
as well as of weak solutions of more general quasilinear elliptic equations. In particular,
by using the Moser iteration scheme (see [21, 36]), the following three regularity results
for weak solutions of (1) are proved.

THEOREM1. Letu e Hlé’cp(R") be a weak solution ofT).

(i) f|g(x, u)| <a(x)A+|ulP~ 1) fora.a.x € R* andforallu € R, witha € L%/CP(R”),

thenu € Lig.(R") for anym € [1, 00).
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(i) If |gCx, u)| < C(ulP~L+ |u|?"~1) fora.a.x € R" and for allu € R, with C > 0,
thenu e L (R™).

(i) If u is also of classC(R" \ {0}) and the assumption ofi) holds witha €
LI n/p(1= ”(R”) for somee € (0O, 1] then for any bounded domaise of R”
contammgo,

()| = P lull L) + lallfhath g 121 + Suplu(o)] i 21\ {0},
EYe;
whereC = K[n/(n — p)]*~P/P and K is a suitable positive constant depending
one. In particularu € LT (R™).

(V) 11 < p < 2andg(u()) € LI R\ {O})Ithenu e HEP@®" \ {0}); while if
1< p<2andg(,u() € LL (R, thenu e H2P (RM).

In [31, Lemma 6.2.1] Pucci and Serrin prove Theofgm 1(iii) for general divergence
elliptic inequalities in bounded domains, with some control at the boundary. The inequality
given in Theorerﬂl(m) shows that any weak solutior Hll PR N CR" \ {0}) of (T)
is bounded in any bounded domadh of R” containing 0, that is, a sort of maximum
principle holds for[(]L).

Clearly, Theoreni[1(iv) also holds whéi \ {0} or R” are replaced by any domain
£2 C R". Here the result is stated IR \ {0} andR" for the later main applications (see
Theorem§ P and 4).

A result similar to Theorerp]1(iv) is first established [in[35], where Simon proves in
particular that every solution € HL?(R") of (D is of classH??(R"), provided that
1< p<2andg(x,u) = d@)|ul?%u + ¢(x) withd € L®(R"), essinfnd(x) > 0,
and¢ € L” (R"). For theorems of this type in bounded domaiaof R” see [12[13].

In particular, in [12] de TBlin proves that if 1< p < 2, g is independent of: and
g € L”(£2), then any solutiom € H:7(£2) of @ is of cIassH,f)’c”(Q). Then he applies
this regularity result to a special case[df (1) (see [13, Theorem 1]).

Our proof of Theorerfi|1(iv) is based on an inequality proved by Siman_in [35] and on
an argument taken from [112].

Next, we give some regularity results and qualitative properties for radial weak
solutions of[(1) when

(G) g = g(r,u), r = |x|, is continuous iR™ x R.

These results are particular consequences of the main theorems obtalned in [33] for more
general quasilinear elliptic equations.

PrROPOSITION]1. Letu € Drad (R") be a radial weak solution ofT)). AssumgG) and
thatg(-, u(-)) € L} (R"). Then

(i) 1Du(x)| = (x|~ "=V/=D) as|x| — 0;

1 The space;/ n/p(1=€) gy ¢ ¢ (0, 1], reduces to the usual spatf,(R") whene = 1.
2 We denote b)p the Holder conjugate op, thatis, ¥p + 1/p’ = 1.
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(i) u e CLR"\ {0}) and|Du|P~2Du € CL(R" \ {0});

(i) u solves(T)) pointwise inR" \ {0};

(iv) u € Cpl(R"\ {0}) for somed € (0, 1);

(v) moreover, ifu € Hé{é’(]R") andg(-,0) = 0inR*, g > 0in (R, c0) x (0, §) and
0<u <d8in (R, o) forsomeR, s > 0, thenu’ < 0in (R, 00) andu/(r) — 0as
r — oo, where’ = d/dr.

As a particular case of 1) we consider the following quasilinear singular elliptic
equation:

Apu = MulP~2u 4 plx| ™ ul2u + h(Ix) f ) =0 iInR"\ {0},

(2)
rAmuneR, 1<p<n,

where either0< o < p < g < pl = pn —a)/(n — p)ore = g = p (= pk), and

h:RT — RT andf : R — R are given continuous functions.

Special cases of (1) were recently widely studied in the literature. For the existence
and non-existence, as well as qualitative properties, of non-trivial non-negative solutions
for elliptic equations with singular coefficients in bounded domaingseél[2, 68,117,122, 34]
for p = 2 and [15[ 18], 23, 40] for general > 1, and in unbounded domains c¢f. [25] 27,
34,38] forp = 2 and [1[ 7] 10, 19, 24, 30, B7] for genefab- 1.

Homogeneous Dirichlet problems associated to equations of fype (2) are studied by
Ekeland and Ghoussoub in |15] and by Ghoussoub and Yuanlin [23] in smooth bounded
domains ofR” containing zero, when = 0, = 1, f(u) = clu|*"%u with ¢ > 0 and
p <s < p* = pn/(n — p). They give existence and multiplicity results for non-trivial
non-negative solutions by using variational methods and the Hardy—Sobolev inequality
(see, e.g.[]2.18,18. 28]), when eithexkly < p < ¢ < pk ora =g = p (= p}).

In [32] we extend the existence results bf [L5] 23] to the erkite and to the case
in which . > 0, h is a general non-trivial weight such that|x|) = o(|x|~#) as
x| — 0, with 8 € [0, p), bounded at infinity, whilef is possibly different from a
pure power. In particular, we prove the existence of a radial ground.:statg?) by the
celebrated Mountain Pass Theorem of Ambrosetti and Rabinowitz [3] and the Hardy—
Sobolev inequality. More precisely, oghwe assume the canonical conditions required in
[3], that is

(F1) f is continuous iR ;

(F2) there exist: > 0,b > 0 andp < s such that f ()| < au?~1 + bu* "L inRY;
(F3) lim,_,o+ u=PF(u) = 0, whereF (u) = [y f(v)dv forallu € RJ;

(F4) O< sFu) <uf(u) forallu e Rt;

while on the weight functioh we require the following assumption:

(H1) » = h(]x]) € Wg for someg € [0, p), whereWs is the function space

Wg = {w e L®(2g) foranyR > 0:w # 0, w > 0 a.e. inR", |im0|x|'3w(x) =0},

|x[—

with Qr =R"\ Bg andBg ={x e R" : |x]| < R}, R > 0.
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THEOREM 2. AssumdF1)—(F4)and(H1). Consider(2) with

0<B<p<s<ps=pn—p)/n—p), i >0 0<pupCig<qgmin(l i},
andeither O<a<p<g<ps of a=q=p(=p)),

whereCys = Cus(n, p, a, g) is the constant of the embeddimg;’é’(R") s LZ(R”)
Then(?), (3) admits a radial ground state € H-P(R"). Moreover,

rad

(i) u e Cl R\ {0}) for somed € (0, 1);
(i) [Du|P~2Du € C*(R" \ {O});

(i) u is positive, solve@), (3) pointwise inR” \ {0}, (x, Du(x)) < O for all x with |x|

sufficiently large andDu(x)| — 0as|x| — oo;

(iv) u is afast decay solution aB), (3);

V) if0<a<p=<g<pk thenu e L .(R") foranym e [1, c0);

(vi) if 0 <maxXa, B} < p, thenu € L®(R");

(vii) if 1 < p <2,thenu € Hlf)’cp(R” \ {O}); if furthermore0 < max«, B} < p —1, then

u e HZP (RY).

The regularity properties of the solutiarconstructed in Theorefi) 2 are a consequence
of Theorenj [l and Propositi¢f 1.

Since in the degenerate cage> 2 the uniform ellipticity of A, is lost at zeros of
Du, the best we can expect with respect to the regularity of solutions, even in the standard
non-weighted case df|(2), is to have solutions of c@ﬂgg(R” \ {O}) (seel[14]). Of course,
for much less could be expected and regularity was an open problem. A partial result
is given in the following proposition for radial ground states[df (2), provided they are
assumed a priobhounded

PrROPOSITION2. AssumgF1)—(F4)and (H1). Consider(@) withx > 0, u > 0,q > 1
and

0 < maxa, B} < p.

Letu € CL(R" \ {0}), with | Du|?~2Du € C1(R" \ {0}), be a bounded radial ground state
which solveq?) also pointwise irR” \ {0}. Thenu is positive inR” \ {0}. Moreover

() if , B €0, 1), thenu e CL(R™), withu(0) > 0and Du(0) = 0;

(i) if « =B =1, thenu € CEL®RM):;

loc
(iii) if 1 < maxXa, B} < p, thenu e CXY (R™), withe = (p — max{a, B})/(p — 1).

Thereforeu is continuous at = 0in all the casegi)—(iii) .

3 Forl< q < oo anda € R consider the weighted Lebesgue space

LLRY = LIR", |x| % dx) = {u € L&)C(]R") : ‘/]R" lu@)|? x| "% dx < oo}

endowed with the normiullg.o = (fgn |u(x)|9]x|~% dx)1/9. Embeddings oﬂé{é’(R") into LL (R") are proved
in Section 2 of{[32].
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In particular this proposition applies to the bounded radial ground state constructed in
Theorenj 2 when & maxa, 8} < p.

We point out that Propositign| 2 does not cover the ease ¢ = p in (2), which
remains open.

In [32] we also give some non-existence results fr (2) by a Pohozaev—Pucci—Serrin
type identity when conditioiF1) holds,# : R* — R is continuous and either

a=q=p(=p,;) or
ael0,p) ifqgelp pyl, pog=pn—a)/(n—p)>p.

More precisely, we establish the following result (see Lemma 4.6 6f [32]):

PROPOSITION3. Letu € HLP(R") N Hli’c”(R” \ {0}) satisfy(@) a.e. inR"” and assume
Foue LE®R)|Then

Apqllully + q/];g [(n — p)u(x) f(u(x)) —npFu(x)]h(|x]) dx

- rq /Rn F()|x|h' (Ix])dx = p(n — p)(pk — @ lulld o

foranyx, u € R.
Analogously, if: € D7 (R") N HZP (R" \ {0)) satisfies

Apu~+h(x)f(u) =0 a.e. inR"

andF ou € L}(R"), then

/];U[(n — pu(x) f(u(x)) = npF (u(x)]h(x]) dx = p /Rn Fu)lx|h'(jx]) dx.

The non-existence results fdr] (2) proved [inl[32, Section 4] are consequences of the
Pohozaev—Pucci-Serrin inequality given in Propos|tion 3.

Now, we consider[(2) wheih = u = 0 and the weight function is a power, that is,
we treat the equation

(4) Apu+1x|7Pfu) =0 ing,

whereg < p, f : Rj — Ris continuous and2 = R" if 8 < 0, while 2 = R" \ {0} if

B € (O, p).
If f is apure powerthatis, [4) reduces to

(5) Apu + yix|Pluf2u=0 in2, B<p, s>1,
with y € R, then the following result holds (see Corollary 4.13 and Theorem 5[1 bf [32]):
4 As before, for 1< q < oo andh € Wg, B € R, consider the weighted Lebesgue space
L (®") = LYR", h(|x]) dx) = {u €L (R"): fRn ()9 h(x]) dx < oo

endowed with the noru|l, , = (Jgn lu@)|9h(|x]) dx)Y/4.
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THEOREM3. If eithery < 0,0ory > Oands # pjg, then (5) admits inDLP(R™") N

H,ﬁ’c” (R™ \ {0}) only the trivial solutioru = 0.
Wheny > 0ands = p;;, the function

ux) =c(l+ |x|(P—ﬁ)/(p—l))—(n—p)/(p—ﬂ)7

where the constantis given by

n—B(n—p p=1q(=p)/p(p—p)
C = ’
[ Y (p - 1) }

is a positive radial fast decay ground state®j)) of class

DYP(R™) N L®R™) N CR") NC®R"\ {0)),

which solveqH)) pointwise inR”" \ {0}.
Finally, u € HLP(R") if and only ifn > p2.

If B =0ands = p*, then[$) reduces to the classical critical equation
(6) Apu+ylul” "2 =0 inR".

The existence of a non-trivial solution f¢r] (6) was considered by many authors which have
also given an explicit form of such solution (for the case- 2 see, for instance, [26, 36,
39] and references therein). Whegn>- 0 andg < [0, p) problem[$) was studied in several
papers for general (see, for instance, [15, 23]) and fpr= 2 (see, for examplel_[6, 25]).
Wheny = 1andg € [0, p), the explicit solutiorw in Theoren B was first given in
Theorem 3.1 of [233] by a different argument and approach.
The regularity atr = 0 of the solutioru constructed in Theorefr) 3 can be expressed in
terms of the parametegsandg and is summarized in the following table:

l<p=x2 p>2
B<2-p C2(R™)
p=2-p C*(R") Col(®R™)
2 —p < ﬂ < 1 CZ(R”) CIJ‘;C(lfﬁ)/(pfl) (Rn)
1 < IB <p C%c(p_ﬁ)/(p_l)(Rn)

If fis negative in alR?, then equatiorf {4) admits only the trivial solutier= 0, as a
consequence of Lemma 4.2 bf [32].

Now we give a result relating to the existence of positive radial ground statg$ of (4)
by means of the constrained minimization method (sée [4, 11]), whsnmot modelled
by a pure power, but actually is negative near the origin and positive at infinity. This is
usually called theormal casgsee|[[29]).

After the paperd [4,15] relating to elliptic problems for the Laplace operator, equations
with no weights, that is, whef = 0 in (4), involving thep-Laplacian operator iiR" were
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treated widely in the literature whefiis negative near the origin and positive at infinity;
see e.g. ]9, 16, 20] for the non-weighted case ahd [7] for general weighted equations.
Let us introduce the following conditions on the non-linear tgfm

(F5) there exist > 0 andg > 1 such that lim_, o+ u*~9 f (u) = —a;
(F6) there existg > 0 such thatf (u) > 0 andF (u) > 0

(F7) lim,_ o0 ul_p;f(u) = O'p;; =pn—pB)/n—p),l<p<n.

THEOREM4. AssumeF1) and(F5)—(F7) Then equatiofd) with 8 < p admits a radial

ground state: € Drlég R™ N L%(R") bounded above hy. Moreover,

(i) u e Cisl R\ {0}) for somed € (0, 1);

(i) |DulP~2Du € CY(R™ \ {0}) andu solves@d) pointwise inR" \ {O};

(i) |Du(x)| — 0as|x| — oo and|Du(x)| = O(|x|~*V/=Dyas|x| — 0;

(iv) u is continuous ak = 0, (x, Du(x)) < 0in R" \ {0}, and||u||cc = u(0) € (ug, u],
whereug = inf{v > 0 : F(v) > 0};

(V) if1< p <2 thenu € Hli’c”(R”\{O}); if furthermoreB < n/p’, thenu € I-ﬁi’f(R").
If 1 < g < p, thenu is compactly supported if®”, and of course is a fast decay

solution of (4)) of classH17(R"). Furthermoreu has the regularity irR” as described in
the following table:

l<p<x?2 p>2
B<1 C2(R") CL(rM)
1 < /3 <p C%C(P_ﬁ)/(l"l)(Rn)

If ¢ > p, thenu is positive inR”, u € C?(R" \ {0}) andu has the regularity irR” as
described in the following table:

l<p=<2 p>2
p<2-p C%(R")
p=2-p C2R") Ciod (R™)
2-p<pB<1 C2(R") CI%;C(lfﬁ)/(pfl)(Rn)
1<B<p C%C(p—ﬁ)/(p—l)(Rn)

Moreoveru is a fast decay solution off) and in particularr "—P)/(P=Dy is decreasing
in [R, oo) for R sufficiently large and approaches a lindit= 0 asr — oo. If £ > 0then
u € HYP(R") if and only ifn > p2; while if ¢ = 0andn > p? thenu € HLP(R").

Condition (F6) is necessary for the existence of non-trivial weak solutidos (@) of
classD1-P(R") N Hli’c”(R” \ {O}), with Fou € Lllg(R"), B < p.Indeed, by Lemma 4.2 of
[32], the following identity holds fou:

(n—p)|Dully = pn— PIF oullrp.
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Hence, if (F6) does not hold, that iB(u) < 0 for anyu € R, then [4) has only the trivial
solution, since k p < n.

Theorenf # extends the results given[in/[20] for the non-weighted versi¢h of (4) when
local Lipschitz continuity off is assumed. Theorem 4 extends to the weighted case also
the existence results obtained by Berestycki and Lionslin [4] when2, and by Citti in
[9] for generalp > 1 (see alsd [16]).

The regularity results given in Theorérm 4 extend to the general non-linear weighted
equation[(4) in the normal case the regularity established for the critical propJem (5) with
s = p;;, wheny > 0 and the explicit ground state is known (see Thegrem 3 and the related
table). We also improve the regularity properties first obtained by Citti (see Remarks 1.2
and 1.3 of([9]) in the non-weighted cage= 0.

An interesting model forf is when £ is of polynomial typee.g.

™ fw= —alul?%u —blu"Pu+clul*%u, a>0,b>0¢c>0 a+b>0.

In this case (F1), (F5)-(F7) are satisfied provided 4 <! < s < p%, and so Theorelﬂ4
applies. Whery is as in[T), in order to apply Theorém 4 we needB hat its growth exponent
atzeroisg < p;;, but there are functions satisfying (F1), (F5)—(F7) whose growth at zero
is critical or supercritical. For example,

—qui~t if uel0,ia], @ >0,
f@) = qa?%u —2a) if u e (i, 2i),
s(u—20)"1 ifuel2i,oc0),

satisfies (F1), (F5)—(F7) for a§ > 1 ands € (1, pjg). Thus, in particular, Theore@ 4
applies for sucly also whery > p;g.

Clearly, if we extendf as an odd function, theru, whereu is given by Theorer|4,
is a non-trivial non-positive weak solution ¢f (4) which tends to zerpcas> oco.

As a consequence of Proposit@n 3, the solution D17 (R™) N Hli’c” (R™\ {0}) of (@)
suchthatF ou € Lé(R") satisfies the identity

®) /R o) F ) — pF ]| dx =0,

Theorenj # and identity [8) finally yield

THEOREM5. Consider(d) with f given by(7)), whereg, [, s > 1andg < p.
If1<gq <1 <s < pjthen@), (7) admits a radial continuous ground stateof class

Drlég(R”) N L%(R"), with ||u]| 0o = #(0) € (uo, u], Whereug is defined as
up = inf{v > 0: F(v) > 0}
andu is any number satisfying

cl6-a) > fo<C<1 I+b
= 4o =t=S and C=sa+ |

©) "= CY6=D >y if C > 1, cql

> 0.
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Moreoveru has the regularity as stated in Theor@nand if1 < ¢ < p the solutioru is
compactly supported iR", while ifg > p the solutionu is positive inR”.

On the other hand@), (7) admits inD%-? (R") ﬂHlf;C” (R™\ {0}) only the trivial solution
u = 0wheneverg — p;)(l — p;) > 0 and either

s=p; and (¢ —p)+U—ps#0, or
s#pg and (s — ppllq—pp) + 1 —ppl <0

In particular, if 1 < ¢ <1 < s, then(@), (7) admits a bounded radial continuous ground
state Wherp;; > s and only the trivial solutiont = 0 whenpjg € [1,s]. The casep; €
(p, 1) is left open.

Furthermore, ifl = ¢ then(d), (7)) admits a bounded radial continuous ground state
whenl < g =1 < s < p§, With [lullec = u(0) € (CY“~9, @] andC = s(a + b)/cq;
while only the trivial solutioru = 0 whenpg € [q,s]. It remains an open problem
whether there are solutions @), (7) whenp < pj < g < s.Onthe other hand, the case
I = g = p is completely treated, that i€4), (7)) admits a bounded radial ground state
whenp < s < p;g and only the trivial solutiom: = 0 whens > pl’g.

Theorenf b extends to the weightgel aplacian case the existence and non-existence
results given by Berestycki and Lions in [4, Example 2] for the non-weighted Laplacian
case,i.ep =2andg =0.
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