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Partial differential equations. — A general effective Hamiltonian methdoly ANDRE
MARTINEZ, communicated on 9 March 2007 by S. Graffi.

ABSTRACT. — We perform a general reduction scheme that can be applied in particular to the spectral study of
operators of the typ@ = P(x, y, hDyx, Dy) ash tends to zero. This scheme permits us to reduce the study of

P to the one of a semiclassical matrix operator of the tpe A(x, hD,). Here, for any fixedx, £) € R”", the
eigenvalues of the principal symhe(x, £) of A are eigenvalues of the operaiBtx, y, &, Dy).
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1. INTRODUCTION

In the last decade, many efforts have been made by several authors in order to apply
semiclassical techniques to problems in which extra nonsemiclassical variables occur
(see, e.g.,[IGMS, Ha, KMSW, Né, NeSo,|So]). Such efforts have shown that, despite
the presence of these extra variables, in many situations it is still possible to perform
semiclassical constructions related to the existence of some hidden effective semiclassical
operator.

In particular, this has been completely clarified in the case of the spectral study of
molecules. In this case, the Hamiltonian can be written in the form

H=—h?A; — Ay + V(x,y) = —h®A, + Hel(x),

wherex € R” represents the position of the nucleic R? is the position of the electrons,

h is proportional to the inverse of the square-root of the nuclear masg/ @énd) is the

sum of all the interactions. The operafdg (x) is the so-called electronic Hamiltonian and

its eigenvalues are the so-called electronic levels. Then, by using symbolic calculus, it has
been proved il [KMSW] that the spectral studyifon L2(R"*7) can be reduced to that

of a semiclassical pseudodifferential matrix operatg = Heff(x, hD,) on L2(R")®N,
where N > 0 depends on the energy level. Moreover, the principal parEgf can

be explicitly related to the electronic levels in agreement with the original intuition of
M. Born and R. Oppenheimer. Let us observe that, actullly,= HZ; also depends on

the spectral parameter but this dependence is analytic and involves afi§:?) terms.

In compensation, the reduction is exact in the sense that one has the following equivalence
(without error terms):

(1.2) reo(H) & rea(HY).
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(Hereo stands for the spectrum.) If one accepts error terms of Qige®), then other
techniques exist that permit constructing-sndependent effective Hamiltonian (see, e.qg.,
[NeSa, So]). However, when one wants to study exponentially small quantities (such as
the tunneling effect), it becomes necessary to (1.2).

The way in which[(1.]1) has been proved relies on the construction of an operator acting
on a greater space (the so-called Grushin operator) by means of the eigenfunctions of
He(x), and is closely related to the older Feshbach method (see! e.qa., [CDS]).

In the same spirit, another reduction has been proved in_[GMS] for differential
operators of the typ@(x, y, hDx + D,), whereP (x, y, £) is periodic iny. Here again,
the idea was to construct a Grushin operator by means of the eigenfunctions of the operator
Ox) = P(x,y, Dy).

Although these two constructions seem to be rather different from each other, actually
there exists a unified way to see them. Indeed, in both cases the construction is based on
the eigenfunctions of the operator obtained by substituting a vecto(day,the operator
hD, (that is, the same procedure that relates quantum mechanics to classical mechanics).
In the first case, the operator one obtains’is- Hei(x) (Which has the same eigenfunctions
as Hel(x)), and in the second case, one obtalg, y, & + D,), the eigenfunctions of
which are deduced from those #f(x, y, D,) by conjugating withe’sY. Because of the
explicit dependence of these eigenfunctionséofindeed, trivial in the first case), the
constructions performed ih [KMSW, GMS] could be done without particular problems.

Here we plan to give a unified version of these reduction schemes, which can be applied
to a general class of operators of the typéx, y, kD, Dy). In particular, we have to
overcome the additional difficulty that the eigenfunctionsPak, y, £, D,) may depend
oné¢ in an essentially arbitrary way. However, our assumptions will permit us to quantize
this dependence, and to obtain in this way a Grushin problem in the same spirit as in
[KMSW| IGMS]. Note that we consider only time-independent problems here: for related
time-dependent results, one may consult €.g9. [HaJo, MaSo1, MaSoZ, PST, SpTe].

2. ASSUMPTIONS AND RESULT

Let H; and H> be two Hilbert spaces such thaf; c H> and the natural injection
H1 — Hy is continuous. We denote b1, = L(H1; Hz) the space of bounded
linear operators front{; to H> and we consider a family of operator-valued functions
(Ph)o<h<hy IN C®(R?";'H1,) (herehg > 0 is some fixed small number) such that
prh(x, &) = po(x, &) + hry(x, &) with pg independent ofi, and for every multi-index

o € N2,

2.1) 0% po(x, &)y, + 10%rn(x, §)llp,, = O)

uniformly with respect td: € (0, hg] and (x, £) € R?". For anyh > 0 small we consider
the pseudodifferential operatéy, with symbol py,,

Pyt LAR"; H1) — L3(R"; H2), uv+> Puu,
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where for almost alk € R", P,u(x) € Hz is defined by the oscillatory integral (the
so-called Weyl quantization ¢fj,, see, e.g.[[Ma1])

i(x— x+
/u ”“*‘m(Ty,s)u(y)dyds.

Note that P, maps continuouslyL?(R"; H1) into L2(R"; H»), thanks to (a slight
generalization of) the Cald@n—Vaillancourt theorem (sele [Mal, Theorem 2.8.1]).

We assume that for anyt, &) € R?*, the spectruna (po(x, £)) of po(x, &) contains a
finite subset (x, £) such that the following conditions hold for akt, £) € R?":

(H1) There existpa, ..., ¢n € C°(R?";H1) such that for all(x, £) € R?" the family
(p1(x, &), ..., om(x, &)) forms an orthonormal basis of the vector sp&¢e, &) :=
Y scor(n.6) 2k=>1 Ker(po(x, §) — MK, (HereCZ® stands for the space of functions
that are uniformly bounded together with all their derivatives.)

(H2) The spaceH, can be split inta€(x, &) & F(x, &) where F(x, &) is stable under
po(x, &), in the sense thapo(x, £) mapsF(x, &) N Hy into F(x, ). Moreover
the two (not necessarily orthogonal) projectiaidg, » and I1r,¢ associated with
the decompositiort{, = £(x, &) & F(x, &) are uniformly bounded and depend
continuously or(x, &) in R%".

(2.2)  Puu(x) =0p) (pu(x) ==

2 h)"

In particularo (x, ) is included in the discrete spectrum pf(x, £) and consists of the
eigenvalues of the: x m complex matrix

(23) M(xv g) = (<p0(-x7 g)(pk(-xv é)s (p] (-xv é)))lfj,kf"’h
where(-, -) stands for the scalar product.
Set
ori= |J opo OlFuenm)
(x,&)eR2

Our main result is the following:

THEOREM2.1. AssumdZ.T)and(H1)—(H2) Thenforany € C\o there exists am x
m matrix A, = (Aé’k)lgj,ksm of h-pseudodifferential operators, bounded bA(R")®"
with principal symbolM (x, &), and such that the following equivalence holds:

z€0(Py) & z€0o(Ay).
Moreover,A, depends analytically onin the interior of C \ o £.

ExampPLE. For anyx € R”, let Q(x) be a (possibly unbounded) nonnegative self-
adjoint operator on some Hilbert spa@€ with domain 1 such thato (Q(x)) =
{r1(x), ..., Am(x)} U X(x), where A1(x), ..., A, (x) depend continuously on, re-
main uniformly separated outside some compact subseRgf and inf¥(x) >
max{i1(x), ..., An(x)} + 8 for somes > 0 and for allx € R". Assume also thaf (x)
depends smoothly om and is uniformly bounded together with all its derivatives as an
operator frontH1 to H». Then our result can be applied with

Py = (—h?A, + Q) + 171
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and
o1(x, &) = {E*+ W + D1 <j <m).

Indeed, using the method 6f[D|Sj, Section 8], we see that (2.2) anjd (2.1) are satisfied,
and po(x, &) = (€2 4+ Q(x) + 1)~L. Moreover, the constructions ih [KMSW] show the
existence of an orthonormal fami@y1(x), ..., ¢, (x)) in H2 which depends smoothly on
x € R, has all its derivatives uniformly boundedty, and generate@}}”:1 Ker(Q(x) —
Aj(x)). Since, by the spectral mapping theorem, this latter space is equal to

PrerE+ 0w+t - E+ 1 + D7,

j=1
we see that (H1) is also satisfied. Finally, condition (H2) is automatically satisfied by taking
F(x, &) as the orthogonal space®fx, &), sincepg(x, &) is self-adjoint or{,. In this case
or = (0, (1 + A4)~ 1 with

Ay = iﬂgj(G(Q(X)) \{A1(x), . A (0],

and our result recovers the reduction method used, e.d., inl[Ma2] (seé also [KMSW] for
the Coulomb case) for studying the spectrum of the moleculafd8oiger operatoH =
—h?A, + Q(x) (typically, Q(x) = —A, + V(x, y) acts onL2(R}) wherey stands for the
electronic position variables).

REMARK. As one can see from the proof, there is no real difficulty in generalizing this
theorem to unbounded symbols that, instead of (2.1), satisfy, e.g., estimates of the type

19% poCx, )iy, + 10%ra(x, )3y, = OUE)

for somek > 0. However, as illustrated by the previous example, it is often possible in
applications to transform the problem to one that involves bounded symbols only.

3. PrROOF

The idea of the proof is to reduce the problem to the inversion of some Grushin problem,
and to use the semiclassical symbolic calculus in order to construct the inverse.
We denote byB the operatod.2(R")®" — L2(R"; H>) defined by

u 1 o x +
B(uiea-~-eaum>=2(2ﬂh)n/e’“ ”Wsoj( Zy,s>u,,~<y)dyds,

j=1

and byB* its adjointL2(R"; Ho) — LZ(R™)®™ given by

. " 1 i x+y
B M(X) — @ (ZNh)n /(3 ( J’)S/h<u(y), @Qj (T,E>>H2 dy dé

j=1

Then forz € C we consider the following matrix operator (the so-call@dushin

operato):
P,—z B
P(2) :=( " 0)
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that mapsL2(R"; H1) @ L2(R™)®" into L2(R"; H2) & L2(R™)®™. In particular, we see
thatP(z) can be seen as dnpseudodifferential operator with operator-valued principal
symbolP, (x, &) given by

3.1) P.(x. £) = <P0lfjf(’f)§;z b(xd 9) HL®C" — Hp @ C"

whereb(x, £) (o, .. ., ) = o101(x, &) + -+ + o (x, &), (@1, ..., an € C), and

b*(x, &) f = ((f, 9202, E) s - - - (S om(x, E))1,) (f € Ha). In order to show thaP(z)
is invertible, we first prove the following lemma:

LEMMA 3.1. Denote byHg the orthogonal projection ont&(x, £). Then for allz €
C\or andforall(x, &) € R?, the operatorP, (x, £) defined i) is invertible and its
inverse is given by

.
P, 6) =0 (x.6) = ( Q:(x.8) 0 (X»é))’

07 (x,8) QF(x,8)
where, forg € HoandB = (B1, ..., Bm) € C",
0.(x,8)g = (1— O (pp(x, &) — 2) Fcg,

OF(x. &)= Biwj,

j=1
07 (x,8)g := ((Mg/rg + (po(x, &) — DI2(py(x, &) — ) x/e8, 9i))1<)<m,
0F(x,6)B 1= (z — M(x,§))B.

Here we have denoted ly((x, &) — z)~* the inverse of po(x, &) — 2)| 7 ¢)-

PROOE Forg € Hpandg = (1, ..., Bn) € C" we have to solve the problem

(3.2) P.(x,)(fPa)=gD B
where the unknowtf @« = f & (a1, ..., o) isin H1 & C". We can rewrite[(3]2) as

(po(x, &) —=2)f + ) ajpj(x,§) =g,
j=1

(fiojx, ) =8 (G=1....m),

and, writing f = fg + fr with f¢ € £(x,&) and fr € F(x, &), we obtain (since
(p1(x, &), ..., on(x, &)) is an orthonormal basis &f(x, &))

fe =Y _(Bj — (fF. 0))9;.
(3.3) j=t

(po—DfF+(po—2Dfe+ Y g =g
j=1
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(Here we have omitted the dependence(ong) to simplify the notation.) Since both
space< (x, £) andF(x, &) are stable undepg(x, £) we see tha{ (3]3) is equivalent to

fe = Z(ﬂ, (fF. )9
(3.4) (po— Z)f}' Uf/sg,

(po—2)fe + Za,/fp,/ =1Ilg/rg,
j=1

and thus, since by assumptiopg — z)| 7(x.¢) Is invertible for all(x, £) € R”,
fr= (pa —2) Mg,

(3.5) fe= Z(,Bj (fF, eiNej,

= (176/]-'8 —(po—Dfe,9;) (G=1,...,m).

In particular fr, fg a1, ..., o, can all be determined in terms gfandg, and using[(Z]3)
and the fact thaﬂgv = Z 1{v, ¢;)p;, we obtain the formulae given in the lemma. O

The next step is important, since it will permit us to construct the inversB(ejf
by means of the symbolic calculus afpseudodifferential operators (sée [Mal] and the
appendix of [GMS]).

LEMMA 3.2. Foranyz € C\ or, the map
Q,:R” - L(H2®C", Ha®C"),  (x,8) > Q.(x,8),
is C* and uniformly bounded together with all its derivativesk?i. Moreover, it depends

analytically onz in the interior ofC \ o £.

PrROOFE Thanks to assumptions (H1) and (H2), it is straighforward to verify ¢haik, &)

is uniformly bounded oiR?" as an operatot, & C" — Hi @ C". Since, moreover,
P.(x, &) depends smoothly ofx, £) and is uniformly bounded together with all its deriva-
tives, the continuity and differentiability follow by writing, for alk, £), (x', £’) € R?*,

Q:(x,8) — Q:(x', ) = Qu(x, E)(P(x', &) — P(x, £) Q. (x', &).
This yields
(Vi Q) (x,8) = —Qz(x, §) (Vi e Po)(x, §) Qo (x, §),

and the result follows by differentiating iteratively this equality. The analyticity of
Q. (x, &) with respect toz is also a direct consequence of the analytic dependence of
P.(x,&)onz. |

Thanks to Lemm 2, we can consider the Weyl quantizaflat) = Op}‘:"(QZ) of
Q.(x, &), defined onLZ(R"; Ho & C") ~ L2(R"; Hp) & L%(R™)®" by the oscillatory

integral
Q@Y (x) = / e"“m/hgz(%,s)mw dy dt.

(2mh)
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Herey = u @ui @ - ® un € LA(R"; Ha) & L2(R")®™. By the Caldebn—Vaillancourt
theorem,Q(z) is a bounded operator froh2(R"; Ho) & LZ([R")®" to L2(R"; H1) &

L2(R™)®™ and as a consequence we can perform the two composi@¢ns®(z) and
P(z)Q(z). Moreover, the symbolic calculus permits us to estimate it as follows:

Q()P(z) = Op} (Q:P.) + hRy = I +hRy
with
”Rl||[:(L2(Rﬂ;H1)@L2(Rn)®m) = O(l)
uniformly with respect ta:. Similarly, we also have

P(2)Q(z) = Op) (P,Q,) + hRy = I + hR2

with
” R2”E(LZ(R”;'HQ)EBLZ(R")@’”) = O(l)

uniformly with respect tdi. As a consequence, farsmall enoughP(z) is invertible and
its inverse is given by the convergent Neumann series

o0 +o0
(3.6) Pyt = (Z h"R’{) 00(z) =0)o (Z hkR’2‘>.
k=1 k=1

Therefore, we have proved the first part of the following proposition:

PROPOSITION3.3. The operatorP(z) : L2(R"; Hy) & L2(R")®" — L2(R"; Ho) &
L2(R™®™ is invertible and its inverse can be written as

L (0@ 0tR
P@ _<Q‘(z) Qi@)

whereQ(z), 07 (z), 0~ (z), and Q% (z) are h-pseudodifferential operators with principal
symbolsQ; (x, &), Qj(x,g), Q7 (x,§), and Qf(x,é) respectively. Moreover, we have
the following equivalence:

(3.7) zeo(Pp) & 0e€0(0F(2).

PROOF In view of (3.8) it remains only to prove th@(z), 0% (z), 0~ (z), and 0*(z)
areh-pseudodifferential operators and that the equivalgncé (3.7) holds. The first assertion
comes from the fact tha®(z) 1 is the inverse of an elliptia-pseudodifferential operator,

and it can be proved in a standard way by using the Beals characterization theorem (see
[DiSj, Proposition 8.3]). The second assertion comes from the following two series of
algebraic identities:

(38) (Ph—2u=v & PUud0)=vdB*u & Q) v®B*u)=ud0

N 0()v+ 01 (2)B*u = u,
0~ (v + Q*(2)B*u =0,
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and

(39 0O0f*@a=8 & Q)0 a)=0"2)ads & PO T@a®p) =00«

N (Pn —2)Q" (2)a + BB =0,
B*0t(2)a = «a.

Since we also hav8* Q™ (z) = 1 (just write explicitly thatP(z) Q(z) = I), we see that
if z ¢ o (Pp), then [3.9) implies the following equivalence:

0*@a=p & a=—B*(P,—2) 'Bp.
In particular 0¢ o (Q*(z)) and
(3.10) 0@t =-B*(P— 2B
Conversely, if 0¢ o (Q*(z)), then ) gives the following equivalence:

B*u = —Q0* ()70 (v,
u=0@v-0r2)0% 210 v

Moreover, the fact thaB*Q(z) = 0 andB* QT (z) = 1 shows that, actually, the first equa-
tion of the latter system is implied by the second. As a consequence, in this case we have

(Ph—2u=v & {

(Ph—2u=v & u=Q0@w-0"@0* @10 @,
and thug ¢ o (Py) and
(3.11) (Pr=2' =0 - 070 @0 @.
This completes the proof of the proposition. O

To complete the proof of the theorem, it just remains to observe that, by construction,
0*(s) is an h-pseudodifferential operator oh?(R")®”, that is, anm x m matrix of
pseudodifferential operators drf (R"). Therefore the theorem follows from Proposition

and Lemmp 3|1 by setting, = 0*(z) —z. O
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