Rend. Lincei Mat. Appl. 18 (2007), 279-294

Partial differential equations. — Nonradial symmetric bound states for a system of
coupled Schidinger equationsby JUNCHENG WEI and ToBIAS WETH, communicated
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ABSTRACT. — We consider bound state solutions of the coupled elliptic system
Au7u+u3+ﬁv2u=0 inRN,
Av—v+v3+ﬂu2v:0 in]RN,
u>0v>0, u,vEHl(RN),

whereN = 2, 3. Itis known ([13]) that whem < O, there are no ground states, i.e., no least energy solutions. We
show that, for certain finite subgroups@{ N) acting onHL(RY), least energy solutions can be found within the
associated subspaces of symmetric functions.g~er —1 these solutions are nonradial. From this we deduce,
for everyg < —1, the existence of infinitely many nonradial bound states of the system.
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1. INTRODUCTION

In this paper, we study solitary wave solutions of time-dependent coupled nonlinear
Schiddinger equations given by

ad
—io P1= AP+ | P12P1 + D20y fory eRY, 1> 0,

)
(1.1) —io b2 = Ab + 2| P22z + Bl P12,  fory e RN, 1 >0,

@ =(y,1)eC, =12,
Di(y,t) > 0 asly|] - +o0, >0, j =12,

wherepu, 2 are positive constants, < 3, andg is a coupling constant.

The system[(I]1) arises in many physical problems, especially in the study of
incoherent solitons in nonlinear optics. We refer(to| [19, 20] for experimental results, and
[1,16,[10+12] for a comprehensive list of references. Physically, the soldtjctenotes
the j-th component of the beam in Kerr-like photorefractive media. The positive constant
w; is for self-focusing in thg-th component of the beam. The coupling consfard the
interaction between the first and the second component of the beam. The interaction is
attractive if > 0, and repulsive i < 0.

Problem [(1.]l) also arises in the Hartree—Fock theory for a double condensate, i.e. a
binary mixture of Bose—Einstein condensates in two different hyperfine $iatend|2)
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([8]). Physically,®; and®; are the corresponding condensate amplitugesand 8 are
the intraspecies and interspecies scattering lengths. The sign of the scatteringBlength
determines whether the interactions of stafésand|2) are repulsive (whep < 0, see
[24]) or attractive (wherg > 0). The interactions of atoms of the single state are
attractive whenu; > 0.

To obtain solitary wave solutions of systefn {1.1), we @&tx,7) = e*'u(x),
®y(x, 1) = e*2'y(x) and transforl) into a coupled elliptic system given by

Au — Au —l—leu?’—i—ﬂvzu =0 inRV,

1.2
(1.2 Av — Aov + puovd + Bulv =0 inRN.

An important class of solutions atmund statesthat is, solutiongu, v) satisfying [1.2)
and the following conditions:

(1.3) u,v>0 inRY, wu(y),v(y) >0 as|ly| > +oo.

In [2H4,[18,[22], the existence of bound states is proved whes 0 under various
additional assumptions. Notice that in this case all solution$ of (1.2}, (1.3) are radially
symmetric up to translation (see [25]). Whgn< 0, this is no longer true: a result in [16]
says that if

A A
(1.4) N =2, min( —l, 22) . sinz for somek > 2,
Ao A1 k

then, forg < 0 with | 8| sufficiently small, there are positive solutions [to {1.2) with one
component concentrating at the center, and the other component concentrating around a
regulark-polygon.
The main purpose of the present paper is to study the existemmncddial solutions
in the case wher@ < 0 andiy = A2, u1 = 2. Note that in this cas¢ (1.4) fails, so
that the result of[[16] does not apply. Without loss of generality, we may assume that
A = A2 = u1 = u2 = 1. That is, we consider the following system of elliptic equations:
Au—u+u3+,3v2u =0 inRYV,
(1.5) Av—v+ 03+ Bulv=0 inRV,
u,v>0 InRY, u(y),v(y) = 0 as|y| - +oo.
Solutions of[(1.5) are critical points of the energy functioAal (H(R"))2 — R defined
by
1 1
Bl o] = S0l + 10i?) - [ a5 [ a2
2 4 Jrw 2 JrN
where||ul|? == [pn (IVu|? + u?) dx for u € HYXRN). All nontrivial solutions of [(1.5)
belong to theNehari set

N = {(u,v) e HX®Y)?:u,v>0, u,v#0,

I|u||2=/ W* + pu®v?), ||v||2:/ (v4+/3u2v2)}.
RN RN



NONRADIAL SYMMETRIC BOUND STATES 281
A solution (i, v) of (L.F) is called ayround statef E (i, v) = co, where

(2.6) co = (u,lp)feN Elu, v].
In particular,E (i1, v) < E(u, v) for any nontrivial solutior(u, v) of (I.5). Concerning the
existence of ground states, it was proved i [14] thas attained fo8 > 0 small, whereas
co is not attained for anyg < 0. To explain this phenomenon, it is worth pointing out that
E fails to satisfy the Palais—Smale condition since the embeddii®") — L*(RY) is
not compact. Moreover, f@# < 0 the interaction of the two species is repulsive. Therefore
a spatial separation af andv in R" is observed foKu, v) € N with energy close tao.
In fact, the repulsion of andv seems to be closely related to the repulsion of positive and
negative bumps in the study of sign changing solutions of the single equation+ u
=ulinRY (see e.g[[26]).

Forg > —1, (1.5) admits the scalar solutions

2.7) (u,v) =

1
(wo, wo)
VI+B
(and their translations), whergg € HL(R") is the unique solution of the scalar elliptic

problem

—Aw+w=w3, w>0 inRY,

w(0) = maxw(y), w e H'(RY),
yeRN

(1.8)

(cf. [[7,/9]). As remarked above, these solutions are not ground stateslfer 8 < 0. For
B < —1, (1.5) does not admit any solutions with= v. Indeed, for8 < —1, itis evident
that

(2.9) u#v forevery(u,v) € N.

In the present paper we prove, for afly< 0, the existence of ground states within
spaces of functions invariant under the action of a finite subggbop O (N). In these
spaceskE still fails to satisfy the Palais—Smale condition, but we recover compactness of
energy minimizing sequences by balancing the self-attraction of the single species with the
repulsion of different species and by applying concentration-compactness arguments.

To state our main results, we recall some notation for a (nontrivial) finite subgroup
G < O(N).WesetGx = {Ax : A e G} c RV andG* :={A € G: Ax = x} C G for
x € RV, and we denote bjGx| resp.|G*| the number of elements @i, G*, respectively.
Moreover, we set Figg) = {x € RY : Gx = {x}}, which is a subspace &", and
we write Vg = Fix(G)* for the orthogonal complement of Kig) in RY. Finally, we
setl/(G) = min{|Gy| 1 y € Vg \{0}}. If u € HY(RY), we say thau is G-symmetricf
u(Ax) = u(x) for everyA € G, and we put

Hg = {u € HYRY) : u is G-symmetrig.

We introduce the following definition.
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DEFINITION 1.1. LetB € O(N), and letG < O(N) be a finite subgroup o (N). We
call the pair (B, G) admissiblaf

(a) B is contained in the normalizer ¢f, and B2 € G.
(b) Bx = x for everyx € Fix(G).
(c) There existsg € Vg \ {0} with

(c1) [Gxol = 1(9),
(€2) minyeg\gro [xo — Axo| < 2mingeg [xo — BAxo|.

Condition (c2) in particular implies tha® ¢ G. Condition (a) ensures th&tz =
G U BG is a subgroup oD (N), and that an actiom of Gz on (HX(R"))? is well defined
by A (u,v) ;= oA L, voA Y forA e GandB x (u,v) ;= (vo B~ uoB1). The
x-invariant elements offi*(RV))? are precisely of the fornu, u o B) with u € Hg. We
define

N(B.G) :={u € Hg : (u,u o B) € N}

and

(1.10) c(B,G)= inf E(u,uoB).
ueN(B,G)

Now we state our main result.

THEOREM1.2. LetN = 2or N = 3, let (B, G) be an admissible pair, and lgt < 0.
Then:

(8) N(B, G) is nonempty and(B, G) is attained. Moreover, every minimizere N(B, G)
for (1.1Q)gives rise to &-symmetric solutiofi, uo B) of (1.§)withu > 0everywhere
onRV.

(b) If |B] < lis small, there(B, G) = Z(l—iﬁ)nwonz, and this value is attained only at the
solutions(I.7) and their translations.

From part (a) and (1]19), we directly deduce the following.

COROLLARY 1.3. Under the assumptions of Theor@ng, for 8 < —1, there exists a
G-symmetric solutioitu, u o B) of (L.B)with u # u o B. Henceu is notGg-symmetric and
therefore nonradial.

We briefly comment on Definitiop 1.1. Part (a) of this definition is clearly related
to the actionx defined above. Part (b) ensures thNtB, G) and the reduced energy
u — E(u, uo B) are invariant under translations of the form> u(-—y) for y € Fix(G).
Part (c) will be crucial for estimating the value afB, G) and thus for finding a relatively
compact energy minimizing sequenceN{B, G). A classification of admissible pairs
(B, G) in arbitrary dimension seems out of reach. In dimensigns 3 the finite subgroups
of O(N) and their properties are well known (see €.§. [5]), and therefore we can determine
all admissible pairs. In combination with Corollgry [1.3, the following list highlights the
rich structure of the solution set ¢f (1.5) for< —1.
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EXAMPLE 1.4. (i) Polygonal symmetry iiR%: Let N = 2, fixk € N, k > 2 and let
By € 0(2) denote the (counter-clockwise) rotationfy= n/k, i.e.,

By (x) = (x1COSO; — x2 SiNB, x1 SING + x2€0S8;)  for x = (x1, x2) € R2.

We setGy = {ld, B, B, ..., B,fk_z}. Then the admissibility condition (a) is clearly
satisfied for the paifBy, Gr). Note also that FigG,) = {0}. Moreover, for everyx €
R2\ {0} we have|Gix| = [(Gr) = k and

. _ (6 _
min |x — Ax| = [x — B2x| = 2sing; < 4sm<—k> — 2|x — Byx| = 2 min |x — By Ax|.
AeGy 2 AeGy
A#£ld

Hence the pait By, Gy) is admissible.
(i) Polygonal symmetry ii3: Let N = 3, fixk € N, k > 2 and letB; € O(3) denote
the rotation of(x1, x2) by 6y = 7 /k, i.e.,

By (x) = (x1COSHx — X2 SiNB, x1 SiNB + x2C080;, 0)  for x = (x1, xo, x3) € RS,

With this choice ofB; we may defingj; as in (i), and again the admissibility condition (a)
is satisfied for the pai¢By, Gi). In contrast to (i) we now have a nontrivial space of fixed
points FixGy) = {(0,0, ) : £ € R}. Nevertheless, for every € Vg, \ {0} we still have
|Gkx| = 1(Gx) = k and

min |x — Ax| = |x — B,gx| = 2sing; < 4Sin<9—k> = 2|x — Brxx| =2 min |x — By Ax|.
AeG 2 AeGy
A#ld

Hence the pait By, Gy) is admissible.

(iii) Tetrahedral symmetry iiR%: Let N = 3, and consider the groug < 0(3)
generated by the coordinate permutatiQng x2, x3) > (Xny, Xx,, Xzg) ANAF € O(3)
defined byF(x) = (x1, —x2, —x3). Then|G| = 24. Let B € 0(3) be defined by
B(x) = —x. ThenB? = Id € G, and sinceB commutes with permutations and wikh the
admissibility condition (a) is satisfied for the p&B, G). We also note that FiG) = {0}.
Forxgo = (1, 1, 1) we have

Gxo={(1, 11, (-1,-11), (1,-1,-1), (-1,1, -1},
so that|Gxp| = 4 = I1(G). Moreover, since
BGxo={(-1,-1,-1), (1,1, -1, (-1,1, 1), (1, -1, 1)},

we have
min  |xg — Axo| = 2 < 2¢/2 = 2min|xg — BAxo|.
AeG\G*0 AeG
Hence the paiB, G) is admissible. Note that the groupleaves the tetrahedron with
vertices(1, 1, 1), (-1, -1, 1), (1, -1, —1) and(—1, 1, —1) fixed.

By choosingt; = 2/, j € Nin Example$ 1J4 (i) and (ii) above, Corolldry [L.3 implies
the existence of bound states;, v;) of (1.5) which areGy;-symmetric but noiGy, , -
symmetric. In particularu;, v;), j € N, are pairwise different nonradial solutions. Thus
we deduce our last main result.
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COROLLARY 1.5. For N = 2,3 andB < —1, the systen{l.5) admits infinitely many
nonradial bound states.

The paper is organized as follows. In Sectign 2 we recall known facts and collect
preliminary results. In Sectign 3 we prove Theorem 1.2(a), and Sedtion 4 contains the
proof of Theorenh T]2(b).

2. PRELIMINARIES

Throughout the remainder of this paper, we assumeghat0. We fix some notation. As
usual, we endow the Hilbert spai& (R") with the scalar product

(u, v) =/ (VuVv 4+ uv)dx, u,v eHl(RN),
RN

and we sef|u||? := [pv(IVul? + u?) dx as before. Moreover, for  p < oo and

u € LP(RN) we denote byu|, the usualL?-norm ofu. Itis well known (seel[[7]) that the
(unique) solutionwg of the scalar probleny (11.8) is a radial and radially decreasing function
which minimizes the Sobolev quotient of the embeddifigR") — L4®RN), i.e.,

lwoll? . llull
(211) lwoll = 5 = m 7
lwoly  ueH'®RM)\(0} |ul]

We recall the following asymptotic estimates iog (see e.g.[9, 17]):

wo(y) = ay|y|~ VD271 4 0(2))

(2.12) dwo

as|y| — oo.
=, 0= —ay|y|” N V2=V + 0(2))

Hereay > 0 is a constant depending only on the dimengiarSimilarly to [14, Lemma
2.6] we deduce some integral estimates.
LEMMA 2.1. Asy — oo,

1

2.13
(2.13) wo(y)

/ wg(x)wo(x —y)dx — by > 0,
RN

whereby = ay [pv w3 dx. Moreover, for0 < § < 2,

1
(2.14) —/ w%(x)wg(x —y)dx —- 0 asy— oo.
wo(8y) Jry
PrOOF. By (2.12),
(2.15) wole =), ay as|y| > oo foreveryx € RV,

wo(y)
Moreover, there is > 1 such that

(2.16) cImin(d, [y|m N Y/21e7 I < wp(y) < emin, [y|m N D72y
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for everyy € RV. Let|y| > 1, and put = c>22NV=D/2 |f |x| > |y|/2, then

(N-D/2
wolX — ,
i) Lo =) 65(|Y|) o3Iy < g3l < G20l

wo(y) |x|

and for|x| < |y|/2 we also have

(N-1)/2
W Lo =) _ 5( 1yl > o3Il I+ < gp-2l,
wo(y) lx =yl
Consequently,
wolxX —
wg’(x)M <ce ?l for|y| > 1 and everw.
wo(y)

Hence, by[(2.7]5) and Lebesgue’s theorem,

lim
Iyl=00 wo(y) Jr¥

wg’(x)w()(x —y)dx = aN[ wg(x) dx = by.
RN

Next we considel] (2.14), and we may assume éhat 1. Using [2.1F) we estimate, for
Iy =1,

2 2
WWWOE = V) _ 55 ) (N-1)/2,~2ixI-2ix 3131
wo(8y)
< 58]y N —D/2=2xI=@+8)lx—y1/2+51)]

< S@|yN V2= CDUEID/Z = fy(y)e=@DR2

where fs(y) := ¢2(8|y|) N —D/2e=(@=0I¥/2 5 0 as|y| — oco. Hence

wiwh(x — y)dx < f5(y) / e @24y - 0
wo(3y) Jry RN

as|y| — oo, asclaimed. O

Next, we fix an admissible pa(B, G) in the sense of Definition 1.1. We consider the
reduced energy functional

2 1 2 1 4
Eg € C°(Hg,R), Eg(u) = EIIMII - Z|M|4 - BO®),
where theC?-functional Q : HY(RY) — R is defined by
1 2,82 1 2
Q) = 2 - u“(x)u“(Bx)dx = Zlu - (u o B)|5.
LEMMA 2.2. Foru € Hg, v e HY(R"Y) we have

(VO(u), v) :/ u?(Bx)u(x)v(x) dx.
RN
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PROOF Foru,v € HY(RM) we find
(VO@u),v) = %/ U2 (x)u(Bx)v(Bx) + u?(Bx)u(x)v(x)) dx
RN
= }/ W?(B~1x) + u?(Bx))u(x)v(x) dx.
2 JrN

Foru € Hg we haveu o B =u o B~1, sinceB? € G andu o A = u for everyA € G. We
thus conclude that

(2.17) (VQ(u),v):/ u?(B)u(x)v(x)dx foru € Hg,v e HX®R"Y). O
RN

CoOROLLARY 2.3. If u € Hg is a nontrivial and nonnegative critical point dg, then
(u, u o B) is a solution of(L.5).

PROOF Forv e HL(R") we have, by Lemma 2.2,

0= (VEg(u),v) = (u,v) —f uSvdx — B(VQ(u), v)

RN

= (u, v) —f ulvdx — ﬂ/ (uo B)Zuvdx.
RN RN

Thusu is a weak solution of the equatienAu +u —u® = B(uo B)?u. By standard elliptic
regularity,u is in fact a classical solution. Moreover, since> 0 andu # 0, it follows
from the strong maximum principle that> 0 in RY. Nowu o B solves

—AWoB)+ WwoB)— (uoB)®=BwoB>?woB)=Bu’uoB),
sinceB? € G. Hence(u, u o B) is a classical solution o[@.S). O
Next we put
Ng ={u e Hg:u+#0, EGuyu=0}={u e Hg:u#0, |u|®=|ulz+plu-(uoB)|3}.

where the second equality follows from Lemma]2.2. We note i@, G) = {u € Ng :
u > 0}. We need the following lemma.

LEMMA 2.4. (i) |u|f1 > |lu|| > « for some constant > 0 (independent g8 < 0) and
everyu € Ng.

(i) Ng C Hg is a closedCt-manifold.

(i) Eg(u) = |lu||?/4foru e Ng.

(iv) If u € Hg \ {0} satisfiequ| > B lu - (u o B)|3, theny/7(w) u € Ng for

_ Jlu]|?
lulg + Blu - (uo B)|3

t(u)
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PROOF. (i) By definition and Sobolev embeddings, we hawe? < |u|f < «ollu||* for
1

somexg > 0 andu € Ng, so that1u|f1 > lull =« fore = /x5~
(i) By (i), Ng is closed inHg. Moreover,Ng is the zero set of the functional
(2.18) FeCYNHg,R), F(u)=|ul?®—|ulj—4B0w).
Since foru € Ng we have
(2.19) F'(uyu = 2|ul® — 4(Julg + Blu - (u o B)I5) = —2[u|® #0,
Ng is aCl-submanifold ofHg.
(iii) For u € Ng we have

1 1 1
E¢m=§ww—zwﬁ+mWWom®:Zwﬁ

(iv) This also follows by direct computation. O

3. EXISTENCE OF MINIMIZERS

In this section we prove part (a) of Theorém|1.2, which is an immediate consequence of
the following proposition. Here we set
(3.20) ¢:= inf Eg(u).
ueNg
PropPosITION3.1. (i) The valuef is attained.

(i) ¢ = ¢(B,G), and ifu € Ng is a minimizer for(3.20) then either(u, u o B) or
(—u, —uoB) is a solution of(1.5). In particular, eitheru € N(B, G) or —u € N(B, G).

The remainder of this section is devoted to the proof of Proposditign 3.1. The proof
consists of two steps; first we obtain an estimate for the valug infterms of ||wol],
and then we analyze minimizing sequences for (3.20) via concentration-compactness
arguments. The strict inequality in the following estimate is crucial.

PROPOSITION3.2. We haver < §||wo||2, wherek = [(G) = |Gxg| and xg is given by
Definition[1.1

PROOF Let A1 = Id € O(N), and letAo, ..., Ay C G\ G be such thaxg =
{A1xo, ..., Arxo}. We put

1 =min|xo — Ajxo| = min|A;xo — Ajxg| > 0
Jj#1 ' i#]

and
v =min|xg — BAjxo| = min|A;xg — AjBxol,
J L]

so thaty < 2v by Definition(cZ). For > Oandj = 1,...,k we setw] =
wo(- — rAjxp), and we considet/, = Zle wi € Hg. Asr — oo, ) implies
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that
f (wiPw! dx = (by +0(1) Y wo(r[Aixo — Ajxq]),
i#] i#]
hence
k(k — 1)

(by + o(1)) (ur)~N=D/2e=1r < g, < (by + 0(L)) (ur)~N=D/2g=nr,

Moreover, [[2.1}4) yields for k i, j < k ands = /v < 2 the estimate
(3.21) f (w! (x))2(w (Bx))? dx = o(wo(8r[A;xo — AjBxq)))
RN

= o((Bvr)" N2 = 0(d,)

asr — oo. We also have

(3.22) U117 = Kllwoll® + Zf (Vv +wjw])dx
i#]j
— kol + Y [ )%l dx = kol + d.
i#j
and
k
(3.23) |U,|j{=/ (Z dx>2/ (w1)4dx+42/ w3 w] dx
RYY=1 i#j RN

= klwolf + 4d, = k|lwol|® + 4d, .

Furthermore we estimate
3.24 U? UzBd:/ Fowi [(Bx)w] (Bx))d
(3.24) fR 2(0)U2(Bx) dx RN(;w,mw (x))(%jwr( Owl (Bx)) dx
<3 [ (Ztcte0 + wh2i) (Slwh?e + wh@]) dx
— 4 RN = r r = r r
<k / (WP W) (Bx) dx = o(dy)
iy /RY

by (3.27). Let

U, 12
\Ur |5+ BIU-(Uy 0 B)[3’
so thaty/7-U, € Ng by Lemmg 2.Ji(iv). Combining (3.22], (3]23) afd (3.24), we obtain

I 1= t(Ur) =

1 1o, 1*
EgWWt:Up) = ZIINGU? = 5 -
A |Ur|z‘+ﬂ|ur(uro3)|§
_1 (Kllwol® +dp)? — Kol - kllwoll® + 2d, + o(dy)
~ 4 klwol? +4d, +o(d,) 4 kllwoll? + 4d, + o(dy)’

so thaté < Eg(y/U,) < &llwolforr large. O
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LEMMA 3.3. There exists a sequen¢g,), C Ng with Eg(u,) — ¢ and E/g(un) -0

in HE.

PROOF. SinceNg is aC-manifold, we may invoke Ekeland’s variational principle (see
e.g. [23]) to deduce the existence of a sequé&ng®, C Ng such thatEg(u,) — ¢ and
(3.25) 0o(1) = (Eg|Ng),(”n) = Ei(;(”n) — M F'(uy) in Hé

for a sequencér,), C R, whereF is defined in[(2.18). Since, € Ng, (2.19) and[(3.25)
imply that

(3.26) o) lun |l = An F' )ty = —20y ||un]|?,

and therefore., — 0 asn — oo by Lemm(i). Thu5) yields; (u,) — 0 as
n — oo, as claimed. O

PROOF OF PROPOSITION[3.T (comMPLETED). (i) Let (u,), C Ng be a sequence as
provided by Lemmf 3|3, and Igt € RV, n € N, satisfy

/ ufldx = sup ufldx.
B1(yn) yeRN JB1(y)

SinceNg and Eg are invariant and/ Eg is equivariant under translatioms— u(- + y)
with y € Fix(G) (cf. Definition(b)), we may assume that € Vg = Fix(G)* for
everyn. We recall thatu,, is bounded inH*(R") and |un|‘21 > k > 0 for everyn by
Lemmg 2.4, so a result of Lions [17, Lemma |.1] implies that

(3.27) liminf utdx > 0.

n—00 B1(yn)

We claim that
(3.28) (yn)n is bounded.

Suppose this is false. Then we may pass to a subsequencgwith co andy, /|v,| —
y € Vg \ {0}. Sincek :=1(G) < |Gy|, there aredy, ..., Ax € G such that

(3.29) the points;y, j =1, ..., k, are pairwise different.

Let i, = u,(- + y,). Up to a subsequencg, — i € HY(RY) weakly, whereii # 0
by (3.27). SinceV Eg(u,) — 0in HY(RY),

0(1) = (VEg(up), it(- — yn))

= (Un, U(- — yn)) — /u‘w uﬁﬁ(- — yn)dx — B(Qun), (- — yn))

= (i, 1) —/ a3 dx — ﬂf u?(Bx)un (x)i(x — yp) dx
RN RN

= (lin, 1) —f adhdx + |,3|/ u?(Bx + yn)iin (x)ii(x) dx
RN RN

> Nl — lilg + 1p] /RN i (Bx + yn) i (x) — ()it (x) dx + 0(2),
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while
' / u2(Bx + yu)(iin (x) — 0(x))it (x) dx
RN

1/2 1/2
< <[ ut(Bx + yn)dx> (f (i1 (x) — ﬁ(x))zﬁz(x)dx> -0 asn— oo.
RN RN

We therefore conclude that® ||i]|? < |i]3, and thus

I 4
~2 llul® Jwoll 2
lull® = —7 = —7 = llwoll

iy A - 4 -
|u|4 |w0|4

by (2.13). Using Propositidn 3.2, we may chod®e= R(¢) > 0 such that

4¢
(3.30) / (Val? + i%) dx > —.
Br(0) k

By (3.29), the ballBr(A;y,), j = 1, ..., k, are disjoint fom large. Therefore

1 5, 1 y
Eglun) = 3l = Z}ZLR(AWGWM +u2) dx
k k A A
= —/ (|Vun|? +u?)dx = —/ (IVii,|? 4 42y dx.
4 JBr(y) 4 JBr )

Sinceii, — i weakly, [3.30) yields

o k . . -
liminf Eg(u,) > -/ (\Vil|? + 4% dx > ¢,
n—o00 4 Br(0)

which contradicts the fact that,), is a minimizing sequence fdr (3.20).
Thus [3.2B) holds. Consequently, we may pass to a subsequence sugh that

weakly in Hg, whereu € Hg \ {0}. SinceEg; : Hg — H{ is weak-to-weak continuous,
we conclude that is a critical point ofEg, so that: € Ng. Moreover,

¢ = lim E —1I'm 2.1 2_E
£= Im Egu) = I gl = 7l = EgGo,

so that is a minimizer of [(3.3D). Hencéis attained, and the proof of (a) is finished.
(i) If u € Ng is a minimizer for[(3.2D), then

(3.31) 0= (Eglng) () = Eg(u) — AF'(u)
for somei C R, sinceNg = F~1(0) is aC*-manifold. Hence

0= E;uu — AF (wu = —AF (wu = —22|u||®
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by ), which yields. = 0 and therefore£(; (1) = 0. We consider™ = maxu, 0},
u~ =minfu, 0} € Hg. Then

0= EGuu™ = [u™|® - [u* |3 — BQ'w)u™
= lu® 12 = [k} + |B] / u?(Bx)u(x)u* (x) dx
RN
= P = G 1Bl [ (o BT .
R
Hence, if O< [lu*]| < [lu, thent(u™) < 1 (cf. Lemmd 2.4(iv)) and

1 1
Eg(Wtuhu™) < Zn»ﬁu2 < Znunz = Eg(u),

contradicting the assumption thats a minimizer for|(3.2D). Similarly, G< ||u~|| < |ju]|
leads to a contradiction. We therefore conclude #tdes not change sign. By Lemfnal2.3,
either(u, u o B) or (—u, —u o B) is a solution of[(1.5). The proof is finished. O

4. PROOF OF(B) OF THEOREM[T.Z

Here we prove part (b) of Theorgm 1.2. For this we consiijex 0,n € N, with 8, — 0

and a sequence of corresponding minimizers, u, o B), of (1.10Q). We only need to
show thatu,, = u,, o B for largen, because then the uniqueness resultlin [7] for solutions
of —Au +u = (1 + B,)us implies thatu, = u, o B = Jl}kiﬂwo up to translation in
Fix(G). So we assume by contradiction that, for a subsequerqce,

4.1) u, #u, oB foreveryn.
The minimization property anfl (2.L1) imply that

1 : 2
@2) gl =it L5 e BNV 100 002 = i+ - o B3]

2
= inf{@ cu e HE®RY)\ {0} : u)? = |u|3‘} +0(1)

1
= Z||w0||2+0(1)~

Hence(u,), is bounded irHI*(R"), and|u, |2 > x > 0 by Lemmg 2.A(i). Similarly to the
proof of Propositiof 3]1, we may assume that

(4.3) f uﬁ dx = sup uﬁ dx>c¢>0
B1(yn) yeRN J Bi(y)

for pointsy, € Vg, n € N, and a constant > 0. Settingi, = u(- + y,), we have
u, — u # 0 (after passing to a subsequence), wlieiea solution of the scalar problem

(4.4) —Ai+ia=0% ueH'®RY) u>0,
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so thati equalswg up to translation. By[(4]2) we thus havgi]l = [wol =
liM = o0 lnll = liMy— oo lliinll, hencel, — & strongly in H1(RY). Sinceu,, € Hg,

An(X) =ty (x + yp) = tn(AX + Ayy) = l,(Ax + (Ay, — y)) forA e G, x eRY,

so that the relative compactness @f,), in HY(R") implies the boundedness of the
sequencéAy, — y,), C RN for everyA e G. Recalling that(y,), C Vg = Fix(G)L,
we conclude thaty,), is bounded. Since, is bounded, we infer that, — u in Hg,
whereu € Hg is a nontrivial solution o 4). This then implies that= wo(- — zg) for
somezp € Fix(9). Since sup.gy me) wq dx is attained precisely at = 0, we deduce
from (4.3) thatzo = 0, so thatt, — wo in Hg. Combining this information with elliptic
estimates as in [26, Sec. 2], we find that

(4.5) u, — wo uniformly onRY .

We setp, = u, — u, o B € Hg and note thap, satisfies

(4.6) A@n — ¢n + Bwhpn + ca(X)pn =0,

where

4.7 ¢ = u,% + (u, o B)2 + u,(u, o B) — 3w8 — Baouy(uy 0o B) > 0 asn — oo

uniformly in RV By (4.1), we may choose, € RY with ¢, (x,) = max.cgs [¢a(x)] > 0.
Using [4.6) and[(4]7), we deduce tHat,), c R" is a bounded sequence. We consider
@n = ©n/l@n(x,)| Which satisfies

(4.8) A‘/A)n - (an + 3wg¢7n + cn (x)()?’n =0, (!A’n (x,) =1

Using elliptic estimates we derive that, for a subsequence; xo € RY andg, — ¢oin
CL.(RN)asn — oo, wherego € Hg N C?(RY) is a solution ofAgo — ¢o + 3w3go = 0
with @o(xo) = 1. It follows from Appendix C of[[21] that

_ dwo

(4.9) Po for some vector € RV.

ot
Sincewy is radial, theG-symmetry ofdwo/dt = @o € Hg implies thatr € Fix(G). But
thenBt = t = B~ by Definition[1.1(b), and therefore

3 3
do(Bx) = %(Bx) - %(x) — Jo(x) forallx e RV,
T T

On the other hand, by definition we hayg o B = —¢, and thereforeyg o B = —¢o.
Hencegg = 0, contradictingpo(xg) = 1. We conclude that,, = u, o B for n large, as
required. The proof of Theorejm 1.2(b) is finished.

ACKNOWLEDGEMENTS The research of the first author is partially supported by an Earmarked Grant from
RGC of Hong Kong. Part of the paper was written while the second author was visiting the Chinese University of
Hong Kong, to which he is deeply grateful for its hospitality. The second author also wishes to thank T. Bartsch
for helpful discussions.



NONRADIAL SYMMETRIC BOUND STATES 293

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
9]
(10]
(11]

(12]

(13]
(14]
(15]
(16]

(17]

(18]
(19]
(20]
(21]

(22]

REFERENCES

N. AKHMEDIEV - A. ANKIEWICZ, Partially coherent solitons on a finite backgrourfehys.
Rev. Lett. 82 (1999), 2661-2664.

A. AMBROSETTI- E. COLORADO, Bound and ground states of coupled nonlinear dimger
equationsC. R. Math. Acad. Sci. Paris 342 (2006), 453-458.

A. AMBROSETTI - E. COLORADO, Standing waves of some coupled nonlinear 8dimger
equationsJ. London Math. Soc. 75 (2007), 67-82.

T. BARTSCH - Z.-Q. WANG - J. C. WEI, Bound states for a coupled Sdiinger system
Preprint.

P. CHOSSAT - R. LAUTERBACH - |. MELBOURNE, Steady-state bifurcation witkD(3)-
symmetryArch. Ration. Mech. Anal. 113 (1990), 313-376.

D. N. CHRISTODOULIDES - T. H. COSKUN - M. MITCHELL - M. SEGEV, Theory of
incoherent self-focusing in biased photorefractive meltays. Rev. Lett. 78 (1997), 646—649.
C. V. COFFMAN, Uniqueness of the ground state solution for—u+u3 = 0Oand a variational
characterization of other solutionérch. Ration. Mech. Anal. 46 (1972), 81-95.

B.D. ESRY-C. H. GREENE- J. P. BJRKE JR. - J. L. BoHN, Hartree—Fock theory for double
condensatedPhys. Rev. Lett. 78 (1997), 3594-3597.

B. GIDAS - W. M. NI - L. NIRENBERG, Symmetry and related properties via the maximum
principle. Comm. Math. Phys. 68 (1979), 209-243.

F. T. HOE, Solitary waves fotv coupled nonlinear Sclidinger equationsPhys. Rev. Lett.
82 (1999), 1152-1155.

F. T. HOE - T. S. SALTER, Special set and solutions of coupled nonlinear 8dimger
equationsJ. Phys. A 35 (2002), 8913-8928; Corrigendum, ibid. 37 (2004), 7821

T. KANNA - M. LAKSHMANAN, Exact soliton solutions, shape changing collisions, and
partially coherent solitons in coupled nonlinear Sgtimger equationsPhys. Rev. Lett. 86
(2001), 5043-5046.

T. C. LIN - J. C. WEI, Ground state ofV coupled nonlinear Sclidinger equations irk”,

n < 3. Comm. Math. Phys. 255 (2005), 629-653.

T. C. LIN - J. C. WEI, Spikes in two coupled nonlinear Schrodinger equatigkh®n. Inst.

H. Poincaé Anal. Non Lireaire 22 (2005), 403—-439.

T. C. LIN - J. C. WEI, Spikes in two-component systems of nonlinear @thger equations
with trapping potentialsJ. Differential Equations 229 (2006), 538—-569.

T. C. LIN - J. C. WEI, Solitary and self-similar solutions of two-component system of nonlinear
Schidinger equationsPhys. D 220 (2006), 99-115.

P.-L. LioNSs, The concentration-compactness principle in the calculus of variations. The
locally compact caseAnn. Inst. H. Poinca& Anal. Non Lireaire 1 (1984), 109-145 and
223-283.

L. A. MAIA - E. MONTEFUSCO- B. PELLACCI, Positive solutions for a weakly coupled
nonlinear Schddinger systeml]. Differential Equations 229 (2006), 743-767.

M. MITCHELL - Z. CHEN - M. SHIH - M. SEGEV, Self-trapping of partially spatially
incoherent light Phys. Rev. Lett. 77 (1996), 490—493.

M. MITCHELL - M. SEGEV, Self-trapping of incoherent white lighiNature 387 (1997),
880-882.

W.-M. NI - |. TAKAGI, Locating the peaks of least energy solutions to a semilinear Neumann
problem Duke Math. J. 70 (1993), 247-281.

B. SIRAKOV, Least energy solitary waves for a system of nonlinear &tihger equations

in R". Comm. Math. Phys. 271 (2007), 199-221.



294 J. C. WEI - T. WETH

[23] M. STRUWE, Variational Methods2nd ed., Springer, Berlin, 1996.

[24] E. TIMMERMANS, Phase separation of Bose—Einstein condens&tags. Rev. Lett. 81 (1998),
5718-5721.

[25] W. C. TroY, Symmetry properties in systems of semilinear elliptic equatidbnBifferential
Equations 42 (1981), 400—413.

[26] T. WETH, Energy bounds for entire nodal solutions of autonomous elliptic equations via the
moving plane methoCalc. Var. 27 (2006), 421-437.

Received 4 December 2006,
and in revised form 23 February 2007.

J. C. Wei
Department of Mathematics
The Chinese University of Hong Kong
SHATIN, Hong Kong
wei@math.cuhk.edu.hk

T. Weth
Mathematisches Institut
Universitat Giessen
35392 GESSEN Germany
Tobias.Weth@math.uni-giessen.de



	Introduction
	Preliminaries
	Existence of minimizers
	Proof of (b) of Theorem 1.2

