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Partial differential equations. — Nonradial symmetric bound states for a system of
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ABSTRACT. — We consider bound state solutions of the coupled elliptic system

∆u − u + u3
+ βv2u = 0 in RN ,

∆v − v + v3
+ βu2v = 0 in RN ,

u > 0, v > 0, u, v ∈ H1(RN ),

whereN = 2, 3. It is known ([13]) that whenβ < 0, there are no ground states, i.e., no least energy solutions. We
show that, for certain finite subgroups ofO(N) acting onH1(RN ), least energy solutions can be found within the
associated subspaces of symmetric functions. Forβ ≤ −1 these solutions are nonradial. From this we deduce,
for everyβ ≤ −1, the existence of infinitely many nonradial bound states of the system.
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1. INTRODUCTION

In this paper, we study solitary wave solutions of time-dependent coupled nonlinear
Schr̈odinger equations given by

(1.1)



−i
∂

∂t
Φ1 = ∆Φ1 + µ1|Φ1|

2Φ1 + β|Φ2|
2Φ1 for y ∈ RN , t > 0,

−i
∂

∂t
Φ2 = ∆Φ2 + µ2|Φ2|

2Φ2 + β|Φ1|
2Φ2 for y ∈ RN , t > 0,

Φj = Φj (y, t) ∈ C, j = 1, 2,

Φj (y, t) → 0 as|y| → +∞, t > 0, j = 1, 2,

whereµ1, µ2 are positive constants,n ≤ 3, andβ is a coupling constant.
The system (1.1) arises in many physical problems, especially in the study of

incoherent solitons in nonlinear optics. We refer to [19, 20] for experimental results, and
[1, 6, 10–12] for a comprehensive list of references. Physically, the solutionΦj denotes
thej -th component of the beam in Kerr-like photorefractive media. The positive constant
µj is for self-focusing in thej -th component of the beam. The coupling constantβ is the
interactionbetween the first and the second component of the beam. The interaction is
attractive ifβ > 0, and repulsive ifβ < 0.

Problem (1.1) also arises in the Hartree–Fock theory for a double condensate, i.e. a
binary mixture of Bose–Einstein condensates in two different hyperfine states|1〉 and|2〉
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([8]). Physically,Φ1 andΦ2 are the corresponding condensate amplitudes,µj andβ are
the intraspecies and interspecies scattering lengths. The sign of the scattering lengthβ

determines whether the interactions of states|1〉 and |2〉 are repulsive (whenβ < 0, see
[24]) or attractive (whenβ > 0). The interactions of atoms of the single state|j〉 are
attractive whenµj > 0.

To obtain solitary wave solutions of system (1.1), we setΦ1(x, t) = eiλ1 tu(x),
Φ2(x, t) = eiλ2 tv(x) and transform (1.1) into a coupled elliptic system given by

(1.2)

{
∆u − λ1u + µ1u

3
+ βv2u = 0 in RN ,

∆v − λ2v + µ2v
3
+ βu2v = 0 in RN .

An important class of solutions arebound states, that is, solutions(u, v) satisfying (1.2)
and the following conditions:

(1.3) u, v > 0 in RN , u(y), v(y) → 0 as|y| → +∞.

In [2–4, 18, 22], the existence of bound states is proved whenβ > 0 under various
additional assumptions. Notice that in this case all solutions of (1.2), (1.3) are radially
symmetric up to translation (see [25]). Whenβ < 0, this is no longer true: a result in [16]
says that if

(1.4) N = 2, min

(√
λ1

λ2
,

√
λ2

λ1

)
< sin

π

k
for somek ≥ 2,

then, forβ < 0 with |β| sufficiently small, there are positive solutions to (1.2) with one
component concentrating at the center, and the other component concentrating around a
regulark-polygon.

The main purpose of the present paper is to study the existence ofnonradialsolutions
in the case whereβ < 0 andλ1 = λ2, µ1 = µ2. Note that in this case (1.4) fails, so
that the result of [16] does not apply. Without loss of generality, we may assume that
λ1 = λ2 = µ1 = µ2 = 1. That is, we consider the following system of elliptic equations:

(1.5)


∆u − u + u3

+ βv2u = 0 in RN ,

∆v − v + v3
+ βu2v = 0 in RN ,

u, v > 0 in RN , u(y), v(y) → 0 as|y| → +∞.

Solutions of (1.5) are critical points of the energy functionalE : (H1(RN ))2
→ R defined

by

E[u, v] =
1

2
(‖u‖

2
+ ‖v‖

2) −
1

4

∫
RN

(u4
+ v4) −

β

2

∫
RN

u2v2,

where‖u‖
2 :=

∫
RN (|∇u|

2
+ u2) dx for u ∈ H1(RN ). All nontrivial solutions of (1.5)

belong to theNehari set

N =

{
(u, v) ∈ (H1(RN ))2 : u, v ≥ 0, u, v 6≡ 0,

‖u‖
2

=

∫
RN

(u4
+ βu2v2), ‖v‖

2
=

∫
RN

(v4
+ βu2v2)

}
.
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A solution(ū, v̄) of (1.5) is called aground stateif E(ū, v̄) = c0, where

(1.6) c0 = inf
(u,v)∈N

E[u, v].

In particular,E(ū, v̄) ≤ E(u, v) for any nontrivial solution(u, v) of (1.5). Concerning the
existence of ground states, it was proved in [14] thatc0 is attained forβ > 0 small, whereas
c0 is not attained for anyβ < 0. To explain this phenomenon, it is worth pointing out that
E fails to satisfy the Palais–Smale condition since the embeddingH1(RN ) ↪→ L4(RN ) is
not compact. Moreover, forβ < 0 the interaction of the two species is repulsive. Therefore
a spatial separation ofu andv in RN is observed for(u, v) ∈ N with energy close toc0.
In fact, the repulsion ofu andv seems to be closely related to the repulsion of positive and
negative bumps in the study of sign changing solutions of the single equation−∆u + u

= u3 in RN (see e.g. [26]).
Forβ > −1, (1.5) admits the scalar solutions

(1.7) (u, v) =
1

√
1 + β

(w0, w0)

(and their translations), wherew0 ∈ H1(RN ) is the unique solution of the scalar elliptic
problem

(1.8)

 −∆w + w = w3, w > 0 in RN ,

w(0) = max
y∈RN

w(y), w ∈ H1(RN ),

(cf. [7, 9]). As remarked above, these solutions are not ground states for−1 < β < 0. For
β ≤ −1, (1.5) does not admit any solutions withu = v. Indeed, forβ ≤ −1, it is evident
that

(1.9) u 6= v for every(u, v) ∈ N.

In the present paper we prove, for anyβ < 0, the existence of ground states within
spaces of functions invariant under the action of a finite subgroupG of O(N). In these
spaces,E still fails to satisfy the Palais–Smale condition, but we recover compactness of
energy minimizing sequences by balancing the self-attraction of the single species with the
repulsion of different species and by applying concentration-compactness arguments.

To state our main results, we recall some notation for a (nontrivial) finite subgroup
G ≤ O(N). We setGx = {Ax : A ∈ G} ⊂ RN andGx := {A ∈ G : Ax = x} ⊂ G for
x ∈ RN , and we denote by|Gx| resp.|Gx

| the number of elements inGx, Gx , respectively.
Moreover, we set Fix(G) = {x ∈ RN : Gx = {x}}, which is a subspace ofRN , and
we write VG = Fix(G)⊥ for the orthogonal complement of Fix(G) in RN . Finally, we
set l(G) = min{|Gy| : y ∈ VG \ {0}}. If u ∈ H1(RN ), we say thatu is G-symmetricif
u(Ax) = u(x) for everyA ∈ G, and we put

HG = {u ∈ H1(RN ) : u is G-symmetric}.

We introduce the following definition.
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DEFINITION 1.1. Let B ∈ O(N), and letG ≤ O(N) be a finite subgroup ofO(N). We
call the pair(B,G) admissibleif

(a) B is contained in the normalizer ofG, andB2
∈ G.

(b) Bx = x for everyx ∈ Fix(G).
(c) There existsx0 ∈ VG \ {0} with

(c1) |Gx0| = l(G),
(c2) minA∈G\Gx0 |x0 − Ax0| < 2 minA∈G |x0 − BAx0|.

Condition (c2) in particular implies thatB 6∈ G. Condition (a) ensures thatGB =

G ∪ BG is a subgroup ofO(N), and that an action∗ of GB on (H1(RN ))2 is well defined
by A ∗ (u, v) := (u ◦ A−1, v ◦ A−1) for A ∈ G andB ∗ (u, v) := (v ◦ B−1, u ◦ B−1). The
∗-invariant elements of(H1(RN ))2 are precisely of the form(u, u ◦ B) with u ∈ HG . We
define

N(B,G) := {u ∈ HG : (u, u ◦ B) ∈ N}

and

(1.10) c(B,G) = inf
u∈N(B,G)

E(u, u ◦ B).

Now we state our main result.

THEOREM 1.2. Let N = 2 or N = 3, let (B,G) be an admissible pair, and letβ < 0.
Then:

(a) N(B,G) is nonempty andc(B,G) is attained. Moreover, every minimizeru ∈ N(B,G)

for (1.10)gives rise to aG-symmetric solution(u, u◦B) of (1.5)withu > 0 everywhere
onRN .

(b) If |β| < 1 is small, thenc(B,G) =
1

2(1+β)
‖w0‖

2, and this value is attained only at the
solutions(1.7)and their translations.

From part (a) and (1.9), we directly deduce the following.

COROLLARY 1.3. Under the assumptions of Theorem1.2, for β ≤ −1, there exists a
G-symmetric solution(u, u ◦B) of (1.5)with u 6= u ◦B. Henceu is notGB -symmetric and
therefore nonradial.

We briefly comment on Definition 1.1. Part (a) of this definition is clearly related
to the action∗ defined above. Part (b) ensures thatN(B,G) and the reduced energy
u 7→ E(u, u◦B) are invariant under translations of the formu 7→ u(·−y) for y ∈ Fix(G).
Part (c) will be crucial for estimating the value ofc(B,G) and thus for finding a relatively
compact energy minimizing sequence inN(B,G). A classification of admissible pairs
(B,G) in arbitrary dimension seems out of reach. In dimensionsN ≤ 3 the finite subgroups
of O(N) and their properties are well known (see e.g. [5]), and therefore we can determine
all admissible pairs. In combination with Corollary 1.3, the following list highlights the
rich structure of the solution set of (1.5) forβ ≤ −1.
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EXAMPLE 1.4. (i) Polygonal symmetry inR2: Let N = 2, fix k ∈ N, k ≥ 2 and let
Bk ∈ O(2) denote the (counter-clockwise) rotation byθk = π/k, i.e.,

Bk(x) = (x1 cosθk − x2 sinθk, x1 sinθk + x2 cosθk) for x = (x1, x2) ∈ R2.

We setGk = {Id, B2
k , B4

k , . . . , B2k−2
k }. Then the admissibility condition (a) is clearly

satisfied for the pair(Bk,Gk). Note also that Fix(Gk) = {0}. Moreover, for everyx ∈

R2
\ {0} we have|Gkx| = l(Gk) = k and

min
A∈Gk

A6=Id

|x − Ax| = |x − B2
k x| = 2 sinθk < 4 sin

(
θk

2

)
= 2|x − Bkx| = 2 min

A∈Gk

|x − BkAx|.

Hence the pair(Bk,Gk) is admissible.
(ii) Polygonal symmetry inR3: Let N = 3, fix k ∈ N, k ≥ 2 and letBk ∈ O(3) denote

the rotation of(x1, x2) by θk = π/k, i.e.,

Bk(x) = (x1 cosθk − x2 sinθk, x1 sinθk + x2 cosθk, 0) for x = (x1, x2, x3) ∈ R3.

With this choice ofBk we may defineGk as in (i), and again the admissibility condition (a)
is satisfied for the pair(Bk,Gk). In contrast to (i) we now have a nontrivial space of fixed
points Fix(Gk) = {(0, 0, ξ) : ξ ∈ R}. Nevertheless, for everyx ∈ VGk

\ {0} we still have
|Gkx| = l(Gk) = k and

min
A∈Gk

A6=Id

|x − Ax| = |x − B2
k x| = 2 sinθk < 4 sin

(
θk

2

)
= 2|x − Bkx| = 2 min

A∈Gk

|x − BkAx|.

Hence the pair(Bk,Gk) is admissible.
(iii) Tetrahedral symmetry inR3: Let N = 3, and consider the groupG ≤ O(3)

generated by the coordinate permutations(x1, x2, x3) 7→ (xπ1, xπ2, xπ3) andF ∈ O(3)

defined byF(x) = (x1, −x2, −x3). Then |G| = 24. Let B ∈ O(3) be defined by
B(x) = −x. ThenB2

= Id ∈ G, and sinceB commutes with permutations and withF , the
admissibility condition (a) is satisfied for the pair(B,G). We also note that Fix(G) = {0}.
Forx0 = (1, 1, 1) we have

Gx0 = {(1, 1, 1), (−1, −1, 1), (1, −1, −1), (−1, 1, −1)},

so that|Gx0| = 4 = l(G). Moreover, since

BGx0 = {(−1, −1, −1), (1, 1, −1), (−1, 1, 1), (1, −1, 1)},

we have
min

A∈G\Gx0
|x0 − Ax0| = 2 < 2

√
2 = 2 min

A∈G
|x0 − BAx0|.

Hence the pair(B,G) is admissible. Note that the groupG leaves the tetrahedron with
vertices(1, 1, 1), (−1, −1, 1), (1, −1, −1) and(−1, 1, −1) fixed.

By choosingkj = 2j , j ∈ N in Examples 1.4 (i) and (ii) above, Corollary 1.3 implies
the existence of bound states(uj , vj ) of (1.5) which areGkj -symmetric but notGkj+1-
symmetric. In particular,(uj , vj ), j ∈ N, are pairwise different nonradial solutions. Thus
we deduce our last main result.
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COROLLARY 1.5. For N = 2, 3 and β ≤ −1, the system(1.5) admits infinitely many
nonradial bound states.

The paper is organized as follows. In Section 2 we recall known facts and collect
preliminary results. In Section 3 we prove Theorem 1.2(a), and Section 4 contains the
proof of Theorem 1.2(b).

2. PRELIMINARIES

Throughout the remainder of this paper, we assume thatβ ≤ 0. We fix some notation. As
usual, we endow the Hilbert spaceH1(RN ) with the scalar product

〈u, v〉 =

∫
RN

(∇u∇v + uv) dx, u, v ∈ H1(RN ),

and we set‖u‖
2 :=

∫
RN (|∇u|

2
+ u2) dx as before. Moreover, for 1≤ p ≤ ∞ and

u ∈ Lp(RN ) we denote by|u|p the usualLp-norm ofu. It is well known (see [7]) that the
(unique) solutionw0 of the scalar problem (1.8) is a radial and radially decreasing function
which minimizes the Sobolev quotient of the embeddingH1(RN ) ↪→ L4(RN ), i.e.,

(2.11) ‖w0‖ =
‖w0‖

2

|w0|
2
4

= min
u∈H1(RN )\{0}

‖u‖
2

|u|
2
4

.

We recall the following asymptotic estimates forw0 (see e.g. [9, 17]):

(2.12)

 w0(y) = aN |y|
−(N−1)/2e−|y|(1 + o(1))

∂w0

∂r
(y) = −aN |y|

−(N−1)/2e−|y|(1 + o(1))

 as|y| → ∞.

HereaN > 0 is a constant depending only on the dimensionN . Similarly to [14, Lemma
2.6] we deduce some integral estimates.

LEMMA 2.1. Asy → ∞,

(2.13)
1

w0(y)

∫
RN

w3
0(x)w0(x − y) dx → bN > 0,

wherebN = aN

∫
RN w3

0 dx. Moreover, for0 < δ < 2,

(2.14)
1

w0(δy)

∫
RN

w2
0(x)w2

0(x − y) dx → 0 asy → ∞.

PROOF. By (2.12),

(2.15)
w0(x − y)

w0(y)
→ aN as|y| → ∞ for everyx ∈ RN .

Moreover, there isc > 1 such that

(2.16) c−1 min{1, |y|
−(N−1)/2

}e−|y|
≤ w0(y) ≤ c min{1, |y|

−(N−1)/2
}e−|y|



NONRADIAL SYMMETRIC BOUND STATES 285

for everyy ∈ RN . Let |y| ≥ 1, and put̄c = c52(N−1)/2. If |x| ≥ |y|/2, then

w3
0(x)

w0(x − y)

w0(y)
≤ c5

(
|y|

|x|

)(N−1)/2

e−3|x|−|x−y|+|y|
≤ c̄e−3|x|−|x−y|+|y|

≤ c̄e−2|x|,

and for|x| ≤ |y|/2 we also have

w3
0(x)

w0(x − y)

w0(y)
≤ c5

(
|y|

|x − y|

)(N−1)/2

e−3|x|−|x−y|+|y|
≤ c̄e−2|x|.

Consequently,

w3
0(x)

w0(x − y)

w0(y)
≤ c̄e−2|x| for |y| ≥ 1 and everyx.

Hence, by (2.15) and Lebesgue’s theorem,

lim
|y|→∞

1

w0(y)

∫
RN

w3
0(x)w0(x − y) dx = aN

∫
RN

w3
0(x) dx = bN .

Next we consider (2.14), and we may assume thatδ ≥ 1. Using (2.16) we estimate, for
|y| ≥ 1,

w2
0(x)w2

0(x − y)

w0(δy)
≤ c5(δ|y|)(N−1)/2e−2|x|−2|x−y|+δ|y|

≤ c5(δ|y|)(N−1)/2e−2|x|−(2+δ)|x−y|/2+δ|y|

≤ c5(δ|y|)(N−1)/2e−(2−δ)(|x|+|y|)/2
= fδ(y)e−(2−δ)|x|/2.

wherefδ(y) := c5(δ|y|)(N−1)/2e−(2−δ)|y|/2
→ 0 as|y| → ∞. Hence

1

w0(δy)

∫
RN

w2
0(x)w2

0(x − y) dx ≤ fδ(y)

∫
RN

e−(2−δ)|x|/2 dx → 0

as|y| → ∞, as claimed. 2

Next, we fix an admissible pair(B,G) in the sense of Definition 1.1. We consider the
reduced energy functional

EG ∈ C2(HG, R), EG(u) =
1

2
‖u‖

2
−

1

4
|u|

4
4 − βQ(u),

where theC2-functionalQ : H1(RN ) → R is defined by

Q(u) =
1

4

∫
RN

u2(x)u2(Bx) dx =
1

4
|u · (u ◦ B)|22.

LEMMA 2.2. For u ∈ HG, v ∈ H 1(RN ) we have

〈∇Q(u), v〉 =

∫
RN

u2(Bx)u(x)v(x) dx.
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PROOF. Foru, v ∈ H 1(RN ) we find

〈∇Q(u), v〉 =
1

2

∫
RN

(u2(x)u(Bx)v(Bx) + u2(Bx)u(x)v(x)) dx

=
1

2

∫
RN

(u2(B−1x) + u2(Bx))u(x)v(x) dx.

Foru ∈ HG we haveu ◦ B = u ◦ B−1, sinceB2
∈ G andu ◦ A = u for everyA ∈ G. We

thus conclude that

(2.17) 〈∇Q(u), v〉 =

∫
RN

u2(Bx)u(x)v(x) dx for u ∈ HG , v ∈ H1(RN ). 2

COROLLARY 2.3. If u ∈ HG is a nontrivial and nonnegative critical point ofEG , then
(u, u ◦ B) is a solution of(1.5).

PROOF. Forv ∈ H1(RN ) we have, by Lemma 2.2,

0 = 〈∇EG(u), v〉 = 〈u, v〉 −

∫
RN

u3v dx − β〈∇Q(u), v〉

= 〈u, v〉 −

∫
RN

u3v dx − β

∫
RN

(u ◦ B)2uv dx.

Thusu is a weak solution of the equation−∆u+u−u3
= β(u◦B)2u. By standard elliptic

regularity,u is in fact a classical solution. Moreover, sinceu ≥ 0 andu 6≡ 0, it follows
from the strong maximum principle thatu > 0 in RN . Now u ◦ B solves

−∆(u ◦ B) + (u ◦ B) − (u ◦ B)3
= β(u ◦ B2)2(u ◦ B) = βu2(u ◦ B),

sinceB2
∈ G. Hence(u, u ◦ B) is a classical solution of (1.5). 2

Next we put

NG = {u ∈ HG : u 6= 0, E′

G(u)u = 0} = {u ∈ HG : u 6= 0, ‖u‖
2

= |u|
4
4+β|u·(u◦B)|22},

where the second equality follows from Lemma 2.2. We note thatN(B,G) = {u ∈ NG :
u ≥ 0}. We need the following lemma.

LEMMA 2.4. (i) |u|
2
4 ≥ ‖u‖ ≥ κ for some constantκ > 0 (independent ofβ ≤ 0) and

everyu ∈ NG .
(ii) NG ⊂ HG is a closedC1-manifold.

(iii) EG(u) = ‖u‖
2/4 for u ∈ NG .

(iv) If u ∈ HG \ {0} satisfies|u|
4
4 > |β| |u · (u ◦ B)|22, then

√
t (u) u ∈ NG for

t (u) =
‖u‖

2

|u|
4
4 + β|u · (u ◦ B)|22

> 0.
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PROOF. (i) By definition and Sobolev embeddings, we have‖u‖
2

≤ |u|
4
4 ≤ κ0‖u‖

4 for

someκ0 > 0 andu ∈ NG , so that|u|
2
4 ≥ ‖u‖ ≥ κ for κ =

√
κ−1

0 .
(ii) By (i), NG is closed inHG . Moreover,NG is the zero set of the functional

(2.18) F ∈ C1(HG, R), F (u) = ‖u‖
2
− |u|

4
4 − 4βQ(u).

Since foru ∈ NG we have

(2.19) F ′(u)u = 2‖u‖
2
− 4(|u|

4
4 + β|u · (u ◦ B)|22) = −2‖u‖

2
6= 0,

NG is aC1-submanifold ofHG .
(iii) For u ∈ NG we have

EG(u) =
1

2
‖u‖

2
−

1

4
(|u|

4
4 + β|u · (u ◦ B)|22) =

1

4
‖u‖

2.

(iv) This also follows by direct computation. 2

3. EXISTENCE OF MINIMIZERS

In this section we prove part (a) of Theorem 1.2, which is an immediate consequence of
the following proposition. Here we set

(3.20) c̃ := inf
u∈NG

EG(u).

PROPOSITION3.1. (i) The valuec̃ is attained.
(ii) c̃ = c(B,G), and if u ∈ NG is a minimizer for(3.20), then either(u, u ◦ B) or

(−u, −u◦B) is a solution of(1.5). In particular, eitheru ∈ N(B,G) or −u ∈ N(B,G).

The remainder of this section is devoted to the proof of Proposition 3.1. The proof
consists of two steps; first we obtain an estimate for the value ofc̃ in terms of‖w0‖,
and then we analyze minimizing sequences for (3.20) via concentration-compactness
arguments. The strict inequality in the following estimate is crucial.

PROPOSITION3.2. We havec̃ < k
4‖w0‖

2, wherek = l(G) = |Gx0| andx0 is given by
Definition1.1.

PROOF. Let A1 = Id ∈ O(N), and letA2, . . . , Ak ⊂ G \ Gx0 be such thatGx0 =

{A1x0, . . . , Akx0}. We put

µ = min
j 6=1

|x0 − Ajx0| = min
i 6=j

|Aix0 − Ajx0| > 0

and
ν = min

j
|x0 − BAjx0| = min

i,j
|Aix0 − AjBx0|,

so thatµ < 2ν by Definition 1.1(c2). Forr > 0 and j = 1, . . . , k we setwj
r =

w0(· − rAjx0), and we considerUr =
∑k

j=1 w
j
r ∈ HG . As r → ∞, (2.13) implies
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that

dr :=
∑
i 6=j

∫
RN

(wi
r)

3w
j
r dx = (bN + o(1))

∑
i 6=j

w0(r[Aix0 − Ajx0]),

hence

(bN + o(1))(µr)−(N−1)/2e−µr
≤ dr ≤

k(k − 1)

2
(bN + o(1))(µr)−(N−1)/2e−µr .

Moreover, (2.14) yields for 1≤ i, j ≤ k andδ = µ/ν < 2 the estimate∫
RN

(wi
r(x))2(w

j
r (Bx))2 dx = o(w0(δr[Aix0 − AjBx0]))(3.21)

= o((δνr)−(N−1)/2e−δνr) = o(dr)

asr → ∞. We also have

‖Ur‖
2

= k‖w0‖
2
+

∑
i 6=j

∫
RN

(∇wi
r∇w

j
r + wi

rw
j
r ) dx(3.22)

= k‖w0‖
2
+

∑
i 6=j

∫
RN

(wi
r)

3w
j
r dx = k‖w0‖

2
+ dr ,

and

|Ur |
4
4 =

∫
RN

( k∑
j=1

w
j
r

)4
dx ≥

k∑
j=1

∫
RN

(w
j
r )4 dx + 4

∑
i 6=j

∫
RN

(wi
r)

3w
j
r dx(3.23)

= k|w0|
4
4 + 4dr = k‖w0‖

2
+ 4dr .

Furthermore we estimate

(3.24)
∫

RN

U2
r (x)U2

r (Bx) dx =

∫
RN

(∑
i,j

wi
r(x)w

j
r (x)

)(∑
i,j

wi
r(Bx)w

j
r (Bx)

)
dx

≤
1

4

∫
RN

(∑
i,j

[(wi
r)

2(x) + (w
j
r )2(x)]

)(∑
i,j

[(wi
r)

2(Bx) + (w
j
r )2(Bx)]

)
dx

≤ k2
∑
i,j

∫
RN

(wi
r)

2(x)(w
j
r )2(Bx) dx = o(dr)

by (3.21). Let

tr := t (Ur) =
‖Ur‖

2

|Ur |
4
4 + β|Ur(Ur ◦ B)|22

,

so that
√

trUr ∈ NG by Lemma 2.4(iv). Combining (3.22), (3.23) and (3.24), we obtain

EG(
√

trUr) =
1

4
‖
√

trUr‖
2

=
1

4
·

‖Ur‖
4

|Ur |
4
4 + β|Ur(Ur ◦ B)|22

≤
1

4
·

(k‖w0‖
2
+ dr)

2

k‖w0‖
2 + 4dr + o(dr)

=
k

4
‖w0‖

2
·

k‖w0‖
2
+ 2dr + o(dr)

k‖w0‖
2 + 4dr + o(dr)

,

so thatc̃ ≤ EG(
√

trUr) < k
4‖w0‖

2 for r large. 2
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LEMMA 3.3. There exists a sequence(un)n ⊂ NG with EG(un) → c̃ andE′

G(un) → 0
in H ∗

G .

PROOF. SinceNG is aC1-manifold, we may invoke Ekeland’s variational principle (see
e.g. [23]) to deduce the existence of a sequence(un)n ⊂ NG such thatEG(un) → c̃ and

(3.25) o(1) = (EG |NG )′(un) = E′

G(un) − λnF
′(un) in H ∗

G

for a sequence(λn)n ⊂ R, whereF is defined in (2.18). Sinceun ∈ NG , (2.19) and (3.25)
imply that

(3.26) o(1)‖un‖ = λnF
′(un)un = −2λn‖un‖

2,

and thereforeλn → 0 asn → ∞ by Lemma 2.4(i). Thus (3.25) yieldsE′

G(un) → 0 as
n → ∞, as claimed. 2

PROOF OF PROPOSITION 3.1 (COMPLETED). (i) Let (un)n ⊂ NG be a sequence as
provided by Lemma 3.3, and letyn ∈ RN , n ∈ N, satisfy∫

B1(yn)

u4
n dx = sup

y∈RN

∫
B1(y)

u4
n dx.

SinceNG andEG are invariant and∇EG is equivariant under translationsu 7→ u(· + y)

with y ∈ Fix(G) (cf. Definition 1.1(b)), we may assume thatyn ∈ VG = Fix(G)⊥ for
everyn. We recall thatun is bounded inH1(RN ) and |un|

2
4 ≥ κ > 0 for everyn by

Lemma 2.4, so a result of Lions [17, Lemma I.1] implies that

(3.27) lim inf
n→∞

∫
B1(yn)

u4
n dx > 0.

We claim that

(3.28) (yn)n is bounded.

Suppose this is false. Then we may pass to a subsequence with|yn| → ∞ andyn/|yn| →

y ∈ VG \ {0}. Sincek := l(G) ≤ |Gy|, there areA1, . . . , Ak ∈ G such that

(3.29) the pointsAjy, j = 1, . . . , k, are pairwise different.

Let ûn = un(· + yn). Up to a subsequence,ûn ⇀ û ∈ H1(RN ) weakly, whereû 6= 0
by (3.27). Since∇EG(un) → 0 in H1(RN ),

o(1) = 〈∇EG(un), û(· − yn)〉

= 〈un, û(· − yn)〉 −

∫
RN

u3
nû(· − yn) dx − β〈Q(un), û(· − yn)〉

= 〈ûn, û〉 −

∫
RN

û3
nû dx − β

∫
RN

u2
n(Bx)un(x)û(x − yn) dx

= 〈ûn, û〉 −

∫
RN

û3
nû dx + |β|

∫
RN

u2
n(Bx + yn)ûn(x)û(x) dx

≥ ‖û‖
2
− |û|

4
4 + |β|

∫
RN

u2
n(Bx + yn)(ûn(x) − û(x))û(x) dx + o(1),
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while∣∣∣∣∫RN

u2
n(Bx + yn)(ûn(x) − û(x))û(x) dx

∣∣∣∣
≤

(∫
RN

u4
n(Bx + yn) dx

)1/2(∫
RN

(ûn(x) − û(x))2û2(x) dx

)1/2

→ 0 asn → ∞.

We therefore conclude that 0< ‖û‖
2

≤ |û|
4
4, and thus

‖û‖
2

≥
‖û‖

4

|û|
4
4

≥
‖w0‖

4

|w0|
4
4

= ‖w0‖
2

by (2.11). Using Proposition 3.2, we may chooseR = R(ε) > 0 such that

(3.30)
∫

BR(0)

(|∇û|
2
+ û2) dx >

4c̃

k
.

By (3.29), the ballsBR(Ajyn), j = 1, . . . , k, are disjoint forn large. Therefore

EG(un) =
1

4
‖un‖

2
≥

1

4

k∑
j=1

∫
BR(Aj yn)

(|∇un|
2
+ u2

n) dx

≥
k

4

∫
BR(yn)

(|∇un|
2
+ u2

n) dx =
k

4

∫
BR(0)

(|∇ûn|
2
+ û2

n) dx.

Sinceûn ⇀ û weakly, (3.30) yields

lim inf
n→∞

EG(un) ≥
k

4

∫
BR(0)

(|∇û|
2
+ û2) dx > c̃,

which contradicts the fact that(un)n is a minimizing sequence for (3.20).
Thus (3.28) holds. Consequently, we may pass to a subsequence such thatun ⇀ u

weakly inHG , whereu ∈ HG \ {0}. SinceE′

G : HG → H ∗

G is weak-to-weak continuous,
we conclude thatu is a critical point ofEG , so thatu ∈ NG . Moreover,

c̃ = lim
n→∞

EG(un) =
1

4
lim

n→∞
‖un‖

2
≥

1

4
‖u‖

2
= EG(u),

so thatu is a minimizer of (3.30). Hencẽc is attained, and the proof of (a) is finished.
(ii) If u ∈ NG is a minimizer for (3.20), then

(3.31) 0= (EG |NG )′(u) = E′

G(u) − λF ′(u)

for someλ ⊂ R, sinceNG = F−1(0) is aC1-manifold. Hence

0 = E′

G(u)u − λF ′(u)u = −λF ′(u)u = −2λ‖u‖
2



NONRADIAL SYMMETRIC BOUND STATES 291

by (2.19), which yieldsλ = 0 and thereforeE′

G(u) = 0. We consideru+
= max{u, 0},

u−
= min{u, 0} ∈ HG . Then

0 = E′

G(u)u±
= ‖u±

‖
2
− |u±

|
4
4 − βQ′(u)u±

= ‖u±
‖

2
− |u±

|
4
4 + |β|

∫
RN

u2(Bx)u(x)u±(x) dx

≥ ‖u±
‖

2
− |u±

|
4
4 + |β|

∫
RN

[u±(Bx)]2[u±(x)]2 dx.

Hence, if 0< ‖u+
‖ < ‖u‖, thent (u+) ≤ 1 (cf. Lemma 2.4(iv)) and

EG(
√

t (u+)u+) ≤
1

4
‖u+

‖
2 <

1

4
‖u‖

2
= EG(u),

contradicting the assumption thatu is a minimizer for (3.20). Similarly, 0< ‖u−
‖ < ‖u‖

leads to a contradiction. We therefore conclude thatu does not change sign. By Lemma 2.3,
either(u, u ◦ B) or (−u, −u ◦ B) is a solution of (1.5). The proof is finished. 2

4. PROOF OF(B) OF THEOREM 1.2

Here we prove part (b) of Theorem 1.2. For this we considerβn < 0, n ∈ N, with βn → 0
and a sequence of corresponding minimizers(un, un ◦ B)n of (1.10). We only need to
show thatun = un ◦ B for largen, because then the uniqueness result in [7] for solutions
of −∆u + u = (1 + βn)u

3 implies thatun = un ◦ B =
1

√
1+βn

w0 up to translation in

Fix(G). So we assume by contradiction that, for a subsequence,

(4.1) un 6= un ◦ B for everyn.

The minimization property and (2.11) imply that

1

4
‖un‖

2
= inf

{
‖u‖

2

4
: u ∈ H1(RN ) \ {0} : ‖u‖

2
= |u|

4
4 + βn|u · (u ◦ B)|22

}
(4.2)

= inf

{
‖u‖

2

4
: u ∈ H1(RN ) \ {0} : ‖u‖

2
= |u|

4
4

}
+ o(1)

=
1

4
‖w0‖

2
+ o(1).

Hence(un)n is bounded inH1(RN ), and|un|
2
4 ≥ κ > 0 by Lemma 2.4(i). Similarly to the

proof of Proposition 3.1, we may assume that

(4.3)
∫

B1(yn)

u4
n dx = sup

y∈RN

∫
B1(y)

u4
n dx ≥ c > 0

for pointsyn ∈ VG , n ∈ N, and a constantc > 0. Settingûn = u(· + yn), we have
ûn ⇀ û 6= 0 (after passing to a subsequence), whereû is a solution of the scalar problem

(4.4) −∆û + û = û3, u ∈ H1(RN ), u > 0,
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so that û equals w0 up to translation. By (4.2) we thus have‖û‖ = ‖w0‖ =

limn→∞ ‖un‖ = limn→∞ ‖ûn‖, henceûn → û strongly inH 1(RN ). Sinceun ∈ HG ,

ûn(x) = un(x + yn) = un(Ax + Ayn) = ûn(Ax + (Ayn − yn)) for A ∈ G, x ∈ RN ,

so that the relative compactness of(ûn)n in H1(RN ) implies the boundedness of the
sequence(Ayn − yn)n ⊂ RN for everyA ∈ G. Recalling that(yn)n ⊂ VG = Fix(G)⊥,
we conclude that(yn)n is bounded. Sinceyn is bounded, we infer thatun → u in HG ,
whereu ∈ HG is a nontrivial solution of (4.4). This then implies thatu = w0(· − z0) for
somez0 ∈ Fix(G). Since supy∈RN

∫
B1(y)

w4
0 dx is attained precisely aty = 0, we deduce

from (4.3) thatz0 = 0, so thatun → w0 in HG . Combining this information with elliptic
estimates as in [26, Sec. 2], we find that

(4.5) un → w0 uniformly onRN .

We setϕn = un − un ◦ B ∈ HG and note thatϕn satisfies

(4.6) ∆ϕn − ϕn + 3w2
0ϕn + cn(x)ϕn = 0,

where

(4.7) cn = u2
n + (un ◦ B)2

+ un(un ◦ B) − 3w2
0 − βnun(un ◦ B) → 0 asn → ∞

uniformly in RN . By (4.1), we may choosexn ∈ RN with ϕn(xn) = maxx∈R3 |ϕn(x)| > 0.
Using (4.6) and (4.7), we deduce that(xn)n ⊂ RN is a bounded sequence. We consider
ϕ̂n = ϕn/|ϕn(xn)| which satisfies

(4.8) ∆ϕ̂n − ϕ̂n + 3w2
0ϕ̂n + cn(x)ϕ̂n = 0, ϕ̂n(xn) = 1.

Using elliptic estimates we derive that, for a subsequence,xn → x0 ∈ RN andϕ̂n → ϕ̂0 in
C1

loc(R
N ) asn → ∞, whereϕ̂0 ∈ HG ∩ C2(RN ) is a solution of∆ϕ̂0 − ϕ̂0 + 3w2

0ϕ̂0 = 0
with ϕ̂0(x0) = 1. It follows from Appendix C of [21] that

(4.9) ϕ̂0 =
∂w0

∂τ
for some vectorτ ∈ RN .

Sincew0 is radial, theG-symmetry of∂w0/∂τ = ϕ̂0 ∈ HG implies thatτ ∈ Fix(G). But
thenBτ = τ = B−1τ by Definition 1.1(b), and therefore

ϕ̂0(Bx) =
∂w0

∂τ
(Bx) =

∂w0

∂τ
(x) = ϕ̂0(x) for all x ∈ RN .

On the other hand, by definition we haveϕn ◦ B = −ϕn and thereforêϕ0 ◦ B = −ϕ̂0.
Henceϕ̂0 ≡ 0, contradictingϕ̂0(x0) = 1. We conclude thatun = un ◦ B for n large, as
required. The proof of Theorem 1.2(b) is finished.
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