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Number theory. — A transcendence criterion for infinite productsy PETRO CORVAJA
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ABSTRACT. — We prove a transcendence criterion for certain infinite products of algebraic numbers. Namely,
for an increasing sequence of positive integgrsand an algebraic number > 1, we consider the convergent
infinite product[ [, ([a®"]/a%), where [] stands for the integer part. We prove (Theorem 1) that its value is
transcendental under certain hypotheses; Theorem 3 will show that such hypotheses are in a sense unavoidable.
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1. STATEMENTS

Transcendence criteria are usually based on diophantine approximation: for instance the
celebrated theorem of Roth provides a transcendence criterion stating that if a real number
is “too well” approximated by a sequence of rationals, then it is transcendental. As a
consequence, one obtains several transcendence results for sums of convergent series of
rational numbers, like the seri€s,, 2-3'. Generalizations of Roth's theorem like the
one by Ridout naturally lead to sharper transcendence criterial In [1] Schmidt's subspace
theorem was applied to prove the transcendence of certain lacunary series, going beyond
what could be done by other known methods.

The purpose of this paper is the application of a new diophantine approximation result
proved in [2] (also using the subspace theorem) to the transcendence of ipfodtects
of algebraic numbers. Our main result is the following:

THEOREM1. Leta > 1 be a real algebraic number such that no powewo a Pisot
number; let{a, }° ; be a sequence of positive integers with

Then the real number

(1) 1_[ [aan]

is transcendental.

Here the symbol.] stands for the integer part. Of coursegifis an integer, then the
above product equals 1. Theorem 3 below will show that the condition that no power of
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« is a Pisot number cannot be replaced by the weaker condition that no powes ah
integer.
The above mentioned diophantine approximation tool is the following Theorem CZ,

which can be easily deduced from the main theoremlin [2]. Its statement requires a
definition, introduced in[2]:

DEFINITION. We say that a real algebraic number > 1 is a pseudo-Pisot number
if all its (complex) conjugates have absolute valuesl and it has an integral trace:

Tr@(a)/(@((x) c 7.
With the above definition we have

THEOREMCZ. Leta, s be real algebraic numbers witla > 1. If for some positive real
numbere the inequality

s Pt
- < N{dte

has infinitely many solutiong, N) € N2, then for all but finitely many such integeig
the algebraic numbew” § is a pseudo-Pisot number. Also the numeratois the trace
of saV:

p = TrQ(gaN)/Q((SOlN).

We note that the absolute value involved is the ordinary one (i.e. normalized with
respect tdQ, not toQ(«)), so the result is sharper than the classical Roth—Ridout theorem
whenevew is irrational.

Under some mild restrictive conditions on the sequencappearing in Theorem 1,
one can relax the condition @ and require just that it is not an integer (clearly this last
requirement cannot be avoided). We shall consider a sequence of positive iftgdErs
such that:

@) liminf,  apy1/an > 2;
(i) for every primep, there exist infinitely many indicessuch thatp does not divide, ;
(iii) for every triple(A, B, C) € Z3 with A, B > 0, the line of equatiomx — By = C
contains only finitely many pair®,, a,+1).

Observe that all conditions (i)—(iii) are satisfied for instance when the sequence
(an+1/an)n>1 Of rational numbers converges to an irrational number and the fractions
an+1/a, are reduced.

We shall prove the following

THEOREM 2. Let{a,};°, be a sequence satisfying conditigfils-(iii) above. Then the
function f : [1, c0) — (0, 1] defined as

foo =T
n=1

xAn

takes transcendental values at every non-integral algebraic point.
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On the other hand, it is clear thé(x) = 1 whenever is an integer. We observe that
transcendence statements like Theorem 2 are quite common for values of transcendental
analytic functions, but our functioyi is not even continuous.

As remarked, Theorem CZ in the particular case of a rational numbfailows
from Ridout’'s generalization of Roth’s theorem, i.e. from the one-dimensional subspace
theorem. As a consequence, one could prove by using just Ridout’s theorem that the
function f in Theorem 2 takes transcendental values at exadrgnal non-integral point
x > 1.

As promised, we show by a concrete example that the conclusion of Theorem 1 does
not hold if one just assumes that no powetas an integer.

THEOREM 3 (Example). Let r > 3 be an integer, and be the largest solution to the
quadratic equation
x> —ix+1=0.

Thena is an irrational Pisot number; in particular no power af is an integer. Let
ai, az, ... be the sequence definedday= 1 anda, = 2- 3"2forn > 2. Then

lim (apy1/an) =3
n—00

and

1°—°[ [@] -1
fulic] ofn t

2. PROOFs

We begin with the following elementary lemma of purely algebraic nature:

LEMMA 4. Leté, o be real algebraic numbers witta > 1. Suppose that for infinitely
many positive integers € N, the algebraic numbet«” is pseudo-Pisot. Then there exists
an integerD > 0 such that all the conjugates af’, distinct froma”, have absolute value
< 1. Also, every powet” has this property if and only #f = 0 (modD). There exists an
integerh € {0, ..., D — 1} and an integetig > 0 such that for everyr > no, if da” is
pseudo-Pisot, them = h (modD).

PROOF Let K c C be the Galois closure ovep of the field Q(«, d). Let G =
{o1,...,0:} (Wherer = [K : Q]) be the corresponding Galois group, withthe identity
automorphism oK . Let ' C N be the set of integers > 0 such thasa” is pseudo-Pisot.
Note that if a positive integer belongs toV then foralli =1, ..., r, either

o; (§a™) = s

or
lo; (8a™)| < 1.

We begin to prove that, under our assumption that the\&&t infinite, no conjugate
oi () has (complex) absolute value |«|. If this were the case, then for all large we
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would havelo; (§a™)| > |8a”|, contrary to the assumption th&t” is pseudo-Pisot for all
neN.Henceforali =1,...,7, |oi(a)] < |a].

Let us now consider the sgt C {1, ..., r} of indicesi for which we have the equality
of absolute valuel; («)| = |«|. Sincela| > 1, foralli € Aand all largez, |o; (§a™)| > 1.
Then, for all but finitely many € NV, 0; (8a™) = §a”, sinceda” is pseudo-Pisot. Rewriting

the last equality as
0i(8) a \"
s \oi(@)

we see thatr/o; (@) is a root of unity; lettingD; be the order o&/o; («), the exponents
for which the above equality holds form an arithmetic progressiea i; (mod D;), for
a suitable integek; € {0, ..., D; — 1}. As already mentioned, all the exponentg N/,
except possibly finitely many, satisfy such congruence.

LetnowB C {1, ..., r} be the set of indicessuch thato; («)| < |«a|; then necessarily
lo;(a)|] < 1, as otherwise we would haved |o;(§a™)| < |8a”| for largen, contrary to
the assumption that" is pseudo-Pisot for infinitely mary.

We thus obtain the partitiofd, ..., r} = A U B, with the property thato; («)] < 1
whenever € B, and all large integers € N\ satisfy the system of congruences

n = h; (modD;)

fori € A. Such a system either has no solution, which is excluded by the fact that ke set
is infinite, or is equivalent to a single congruemce: & (modD), where the modulu® is

the least common multiple of the;. Note thatD is also the order of the (finite) subgroup
of the multiplicative group generated by the numbeys; («) fori € A. So, ifn = 0
(modD), the conjugates; («") either coincide withe (wheni € A) or have absolute
value< 1 (wheni € B), as required. On the other handri& 0 (modD), thena has at
least one conjugate (o) which is different frome but has absolute value equaljtd, so

> 1. O

The following statement sharpens the previous lemma, under the additional hypothesis
that the trace o« be a good approximation to the pseudo-Pisot nunibéry it depends
on the subspace theorem.

LEMMA 5. Lets, a be as in Lemmd. Suppose that for all integersin an infinite set
N C N the algebraic numbesa” is pseudo-Pisot and its trace

p(n) = TrgeenyQda™)
satisfies
3 |p(n) —da”| < 1"

for some fixed real numbér< [ < 1. Let D, h be the integers defined in LemmaThen
«P is a Pisot number, in particulas is an algebraic integer. Alsay” is a pseudo-Pisot
number if and only ifz = 0 (modD), in which case it is a Pisot number. Finally, every
large integem € N satisfieqd) if and only ifz = 4 (modD).
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PROOF In view of Lemma 4, the seV/ is contained in the union of a finite set and the
arithmetic progressiofrn € N : n = h (modD)}. Neglecting the finitely many integers
n € N not satisfying such a congruence, we write= 1 + mD. Using the notation of
the proof of Lemma 4, let us remark that the automorphismwiith i € A, are precisely
those fixinga”; they form a subgroug of G, and they fix alsda”. After renumbering
theo;, we can suppose that, ..., o; (with 1 = [Q(8a”, «P) : Q]) form a complete set
of representatives fat / H. Then the trace (n) can be written as

t
p(n) = p(h +mD) = Trgesen@@a™) = Y ajda") - (0 (@)™
j=1

The linear recurrence sequence on the right hand side above is non-degenerate by definition
of the integerD. Then Lemma 1 froni]2] (applied with = ¢, u = o™, A =0j (8a™) for
j=1,...,tand withw equal to the complex absolute value) implies that if the inequality

@ has infinitely many solutions then all roaig(a”) for j # 1 have absolute value
strictly less than 1, as desired. Also, the same Lemma 1 from [2] in the ultrametric case
implies thatw is an algebraic integer. Hene’ is a Pisot number, while” is not, forn

not dividing D, because it admits some conjugate with the same absolute value. Finally, it
is clear that for all large with n = h (modD), inequality [3) is satisfied if we take for

any number with max. ;< |o;(@?)|¥? <1 <1. O

PROOF OFTHEOREM 1. Leta be as in Theorem 1 antlbe the value of the infinite
product in[(1); suppose by contradiction tiias an algebraic number. We assume that (1)
holds, so there exist positive real number#/p such that

an+1
an

>2+¢€

for all n > Ng. In particular the sequence is strictly increasingifos No.
Form > Np put

p=p0m) = [ [[«]
n=1

and letN = N(m) = > an. Then

4

using the inequalityl — ¢| < |logz| for 0 < r < 1 we deduce from the above that

oo [1 &20))

= o]

o
115

<

On the other hand,
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where the symbd|-} stands for the fractional part. Using the inequalibg(1 — 1)| < |2¢]
for 0 < t < 1/2, and the fact that the fractional pdr} is always< 1, we find that the
right hand side above is bounded by

{o%n} X 2 2 . 1 2 1
|09(1_ ofn < Z E T afmil ' Z o —m+1 = otm+1 - a—1

n=m+1 n=m+1

o0

2

n=m+1

So finally we obtain fronﬂ4) and the above inequalities, recalling phiat’ < 1,

2 1

afm+l o — 1 ’

)

We shall now compare the integ¥r= ", a, with a,,+1. For this purpose we recall
that form > No, ami1 > (2+ €)a, whilea,,_; < 24 €)"la, fori =1,...,m — No.
Then for largem we havea,, 11 > (1 + €)N. Hence in particular we obtain a rational
approximatiorp /" to the algebraic numbérsatisfying the second inequality ﬁ (2). Our
hypothesis that no power of is an integer guarantees that the differedice p/a is
non-zero, so both inequalities i (2) are satisfied. Now Theorem CZ showsuttas a
pseudo-Pisot number and that the numeratet p(N) is the trace ofa”, so inequality
(3 of Lemma 5 is also satisfied. If this happens for infinitely many expon€rttsen by
Lemma 5 some power of is a Pisot number, which we have excluded. O

PROOF OFTHEOREM 2. Leta € [1, co) be an algebraic point, not a rational integer,
and lets = f(«). We have to prove thatis transcendental. Suppose by contradiction it is
algebraic.

Arguing as in the proof of Theorem 1, we deduce that the sequence of rational numbers

whereN = N(m) = Y ', ay, satisfies inequalitﬂZ) of Theorem CZ. Hence, by Theorem
Cz, for all largem, s is a pseudo-Pisot number. Now by Lemmas 4 and 5 this implies
that all such integer®’ are congruent modul®, whereD is the minimal positive integer
n such thate” is a Pisot number; in particular, there exists a numigesuch that all the
integersa,, for n > ng are divisible byD. Due to the arithmetic condition (ii), this is
possible only ifD = 1, hencex is a Pisot number. Since by hypothesis not an integer,
it must be irrational.

Now, o being a Pisot number, the integral part of every powérhas the explicit
expression

t
[0 =) of =Tr"),
j=1

or
t

["] = (121 a;?) —1=Tr@" -1,
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wherea; = o, a2,...,qa, are the conjugates af, while the integral part oBa” is
expressed as

(6) [8a"] = nof + -+ + neof

for suitable non-zero conjugate algebraic numbgts. ., n,. Writing the above identity
forn = N(m) andN = N(m + 1) = N(m) + a,,+1 We obtain

(1) (771(111_\,(’") 4+ .4 matN(’")) . (aierl 4t Oltam+1)
N m N m
_ (o™ g Ny
or, in the cased] = Tr(@") — 1,
(nlaiv(’") +---+ n;atN(’")) . (aimﬂ +o gt atam+1 —1
N m N .
= (pay " e

Since the two cases are very similar, we only treat the first one, so we supposg that (7)
holds; we then obtain th&-unit equation

N m
8 Z nic; (m)a; =0
i#]

Note that the sum on the left, which ranges over the gair® < {1, ..., r}%withi # j, is
non-empty since we have proved thais irrational (which is equivalent to> 1). By the
S-unit equation theorem (see for instance [3, Ch. V, Theorem 2A)), there exist two distinct
elements in the above sum for which the ratio is equal to a given number infinitely often.
This in particular implies that there exist two pafis;j) # (k, k) such that the equation

N(m) am+1
i 9

N(@m) am+1
Oy

o
=cC

has infinitely many solutions. Since the ratigga;, anda; /«y are not both roots of unity,
the above relation implies the existence of a non-trivial linear dependence relation of the
form

9 ciN(m) — coam41 = c3,

where c1, ¢2, c3 are real numbers witlicy, c2) # (0, 0), satisfied by infinitely many
pairs(N (m), a,,+1). Clearly, one can suppose without loss of generality ¢hatz, c3 are
integers and1, c, are positive. Lef\" be the (infinite) set of integers such that the pair

(N (m), ay+1) satisfies (9). Since the paiN (m + 1), ay,+2) = (N (m) + am+1, am+2) also
satisfies theS-unit equation (8), there is a non-trivial linear dependence relation of type (9)
satisfied by infinitely many integers € A/. Namely there exist integets, da, d3, with

d1, d» > 0, such that for infinitely many: € \V,

(10 diN(m + 1) — doay 42 = d3.
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From (9) and (10), using the equality(m + 1) = N(m) + an+1 and eliminatingv (m),
we obtain the dependence relation

(dic1 + dic2)am+1 — cidoay 2 = dac1 — dics,

which would have infinitely many solutions. This is excluded by our hypothesis (iii), so
the theorem is proved. O

The proof of Theorem 3 rests on the following result:

LEMMA 6. Assume the hypotheses of Theofgmmold. For allm > 1 put N(m) =
Y w_1an. Also, denote by’ the algebraic conjugate af, i.e.o’ = r — «. Then for all
integersm > 1,

X t—1
H[aan] — . . ((xN(m) +a/N(m)).
n=1

PrRoOOF The proof by induction om. Form = 1, we haver; = 1= N(1),[e] =t -1
anda + o’ = t, so the relation holds. Suppose it holds#grso

s t—1
[Tre1 = —= @ oM.
n=1

Then we have to prove that

(aN(m) +a/N(m))[aam+1] — OlN(m+1) +O[/N(m+l).

For this purpose we use the property of the sequendhat for eachn > 1, a,,11 =
2N(m) = 2% 4 a, SON(m + 1) = 3N (m). Then the above identity becomes

(aN(m) +a/N(m)) . [a2N(m)] — O[3N(m) +a/3N(m)’
which follows easily from the fact that for all > 1, [@"] = " — 1+ o'". O
PrROOF OFTHEOREM 3. In view of the above lemma, for eagh> 1,

m [0{”"] B r—1 aN(m) +a/N(m)
obn - t ' aN(m) ’

n=1

which clearly tends to the limix — 1)/t asm — oo. m]
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