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Number theory. — A transcendence criterion for infinite products, by PIETRO CORVAJA

and JAROSLAV HANČL, communicated on 11 May 2007.

ABSTRACT. — We prove a transcendence criterion for certain infinite products of algebraic numbers. Namely,
for an increasing sequence of positive integersan and an algebraic numberα > 1, we consider the convergent
infinite product

∏
n([αan ]/αan ), where [·] stands for the integer part. We prove (Theorem 1) that its value is

transcendental under certain hypotheses; Theorem 3 will show that such hypotheses are in a sense unavoidable.
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1. STATEMENTS

Transcendence criteria are usually based on diophantine approximation: for instance the
celebrated theorem of Roth provides a transcendence criterion stating that if a real number
is “too well” approximated by a sequence of rationals, then it is transcendental. As a
consequence, one obtains several transcendence results for sums of convergent series of
rational numbers, like the series

∑
n 2−3n

. Generalizations of Roth’s theorem like the
one by Ridout naturally lead to sharper transcendence criteria. In [1] Schmidt’s subspace
theorem was applied to prove the transcendence of certain lacunary series, going beyond
what could be done by other known methods.

The purpose of this paper is the application of a new diophantine approximation result
proved in [2] (also using the subspace theorem) to the transcendence of infiniteproducts
of algebraic numbers. Our main result is the following:

THEOREM 1. Let α > 1 be a real algebraic number such that no power ofα is a Pisot
number; let{an}

∞

n=1 be a sequence of positive integers with

lim inf
n→∞

an+1

an

> 2.

Then the real number

(1)

∞∏
n=1

[αan ]

αan

is transcendental.

Here the symbol [·] stands for the integer part. Of course, ifα is an integer, then the
above product equals 1. Theorem 3 below will show that the condition that no power of
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α is a Pisot number cannot be replaced by the weaker condition that no power ofα is an
integer.

The above mentioned diophantine approximation tool is the following Theorem CZ,
which can be easily deduced from the main theorem in [2]. Its statement requires a
definition, introduced in [2]:

DEFINITION. We say that a real algebraic numberα > 1 is a pseudo-Pisot number
if all its (complex) conjugates have absolute values< 1 and it has an integral trace:
TrQ(α)/Q(α) ∈ Z.

With the above definition we have

THEOREM CZ. Letα, δ be real algebraic numbers withα > 1. If for some positive real
numberε the inequality

(2) 0 <

∣∣∣∣δ −
p

αN

∣∣∣∣ <
1

αN(1+ε)

has infinitely many solutions(p, N) ∈ N2, then for all but finitely many such integersN ,
the algebraic numberαNδ is a pseudo-Pisot number. Also the numeratorp is the trace
of δαN :

p = TrQ(δαN )/Q(δαN ).

We note that the absolute value involved is the ordinary one (i.e. normalized with
respect toQ, not toQ(α)), so the result is sharper than the classical Roth–Ridout theorem
wheneverα is irrational.

Under some mild restrictive conditions on the sequencean appearing in Theorem 1,
one can relax the condition onα, and require just that it is not an integer (clearly this last
requirement cannot be avoided). We shall consider a sequence of positive integers{an}

∞

n=1
such that:

(i) lim inf n→∞ an+1/an > 2;
(ii) for every primep, there exist infinitely many indicesn such thatp does not dividean;

(iii) for every triple(A, B,C) ∈ Z3 with A, B > 0, the line of equationAx − By = C

contains only finitely many pairs(an, an+1).

Observe that all conditions (i)–(iii) are satisfied for instance when the sequence
(an+1/an)n≥1 of rational numbers converges to an irrational number> 2 and the fractions
an+1/an are reduced.

We shall prove the following

THEOREM 2. Let {an}
∞

n=1 be a sequence satisfying conditions(i)–(iii) above. Then the
functionf : [1, ∞) → (0, 1] defined as

f (x) =

∞∏
n=1

[xan ]

xan

takes transcendental values at every non-integral algebraic point.
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On the other hand, it is clear thatf (x) = 1 wheneverx is an integer. We observe that
transcendence statements like Theorem 2 are quite common for values of transcendental
analytic functions, but our functionf is not even continuous.

As remarked, Theorem CZ in the particular case of a rational numberα follows
from Ridout’s generalization of Roth’s theorem, i.e. from the one-dimensional subspace
theorem. As a consequence, one could prove by using just Ridout’s theorem that the
functionf in Theorem 2 takes transcendental values at everyrational non-integral point
x > 1.

As promised, we show by a concrete example that the conclusion of Theorem 1 does
not hold if one just assumes that no power ofα is an integer.

THEOREM 3 (Example). Let t ≥ 3 be an integer, andα be the largest solution to the
quadratic equation

x2
− tx + 1 = 0.

Thenα is an irrational Pisot number; in particular no power ofα is an integer. Let
a1, a2, . . . be the sequence defined bya1 = 1 andan = 2 · 3n−2 for n ≥ 2. Then

lim
n→∞

(an+1/an) = 3

and
∞∏

n=1

[αan ]

αan
=

t − 1

t
.

2. PROOFS

We begin with the following elementary lemma of purely algebraic nature:

LEMMA 4. Let δ, α be real algebraic numbers withα > 1. Suppose that for infinitely
many positive integersn ∈ N, the algebraic numberδαn is pseudo-Pisot. Then there exists
an integerD > 0 such that all the conjugates ofαD, distinct fromαD, have absolute value
≤ 1. Also, every powerαn has this property if and only ifn ≡ 0 (modD). There exists an
integerh ∈ {0, . . . , D − 1} and an integern0 > 0 such that for everyn > n0, if δαn is
pseudo-Pisot, thenn ≡ h (modD).

PROOF. Let K ⊂ C be the Galois closure overQ of the field Q(α, δ). Let G :=
{σ1, . . . , σr} (wherer = [K : Q]) be the corresponding Galois group, withσ1 the identity
automorphism ofK. LetN ⊂ N be the set of integersn > 0 such thatδαn is pseudo-Pisot.
Note that if a positive integern belongs toN then for alli = 1, . . . , r, either

σi(δα
n) = δαn

or
|σi(δα

n)| < 1.

We begin to prove that, under our assumption that the setN is infinite, no conjugate
σi(α) has (complex) absolute value> |α|. If this were the case, then for all largen, we
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would have|σi(δα
n)| > |δαn

|, contrary to the assumption thatδαn is pseudo-Pisot for all
n ∈ N . Hence for alli = 1, . . . , r, |σi(α)| ≤ |α|.

Let us now consider the setA ⊂ {1, . . . , r} of indicesi for which we have the equality
of absolute values|σi(α)| = |α|. Since|α| > 1, for all i ∈ A and all largen, |σi(δα

n)| > 1.
Then, for all but finitely manyn ∈ N , σi(δα

n) = δαn, sinceδαn is pseudo-Pisot. Rewriting
the last equality as

σi(δ)

δ
=

(
α

σi(α)

)n

we see thatα/σi(α) is a root of unity; lettingDi be the order ofα/σi(α), the exponentsn
for which the above equality holds form an arithmetic progressionn ≡ hi (modDi), for
a suitable integerhi ∈ {0, . . . , Di − 1}. As already mentioned, all the exponentsn ∈ N ,
except possibly finitely many, satisfy such congruence.

Let nowB ⊂ {1, . . . , r} be the set of indicesi such that|σi(α)| < |α|; then necessarily
|σi(α)| ≤ 1, as otherwise we would have 1< |σi(δα

n)| < |δαn
| for largen, contrary to

the assumption thatδαn is pseudo-Pisot for infinitely manyn.
We thus obtain the partition{1, . . . , r} = A ∪ B, with the property that|σi(α)| ≤ 1

wheneveri ∈ B, and all large integersn ∈ N satisfy the system of congruences

n ≡ hi (modDi)

for i ∈ A. Such a system either has no solution, which is excluded by the fact that the setN
is infinite, or is equivalent to a single congruencen ≡ h (modD), where the modulusD is
the least common multiple of theDi . Note thatD is also the order of the (finite) subgroup
of the multiplicative group generated by the numbersα/σi(α) for i ∈ A. So, if n ≡ 0
(modD), the conjugatesσi(α

n) either coincide withα (when i ∈ A) or have absolute
value≤ 1 (wheni ∈ B), as required. On the other hand, ifn 6≡ 0 (modD), thenα has at
least one conjugateσi(α) which is different fromα but has absolute value equal to|α|, so
> 1. 2

The following statement sharpens the previous lemma, under the additional hypothesis
that the trace ofδαn be a good approximation to the pseudo-Pisot numberδαn; it depends
on the subspace theorem.

LEMMA 5. Let δ, α be as in Lemma4. Suppose that for all integersn in an infinite set
N ⊂ N the algebraic numberδαn is pseudo-Pisot and its trace

p(n) := TrQ(δαn)/Q(δαn)

satisfies

(3) |p(n) − δαn
| < ln

for some fixed real number0 < l < 1. LetD, h be the integers defined in Lemma4. Then
αD is a Pisot number, in particularα is an algebraic integer. Also,αn is a pseudo-Pisot
number if and only ifn ≡ 0 (modD), in which case it is a Pisot number. Finally, every
large integern ∈ N satisfies(3) if and only ifn ≡ h (modD).
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PROOF. In view of Lemma 4, the setN is contained in the union of a finite set and the
arithmetic progression{n ∈ N : n ≡ h (modD)}. Neglecting the finitely many integers
n ∈ N not satisfying such a congruence, we writen = h + mD. Using the notation of
the proof of Lemma 4, let us remark that the automorphismsσi , with i ∈ A, are precisely
those fixingαD; they form a subgroupH of G, and they fix alsoδαh. After renumbering
theσi , we can suppose thatσ1, . . . , σt (with t = [Q(δαh, αD) : Q]) form a complete set
of representatives forG/H . Then the tracep(n) can be written as

p(n) = p(h + mD) = TrQ(δαn)/Q(δαn) =

t∑
j=1

σj (δα
h) · (σj (α

D))m.

The linear recurrence sequence on the right hand side above is non-degenerate by definition
of the integerD. Then Lemma 1 from [2] (applied withn = t , u = αmD, λj = σj (δα

h) for
j = 1, . . . , t and withw equal to the complex absolute value) implies that if the inequality
(3) has infinitely many solutions then all rootsσj (α

D) for j 6= 1 have absolute value
strictly less than 1, as desired. Also, the same Lemma 1 from [2] in the ultrametric case
implies thatα is an algebraic integer. HenceαD is a Pisot number, whileαn is not, forn
not dividingD, because it admits some conjugate with the same absolute value. Finally, it
is clear that for all largen with n ≡ h (modD), inequality (3) is satisfied if we take forl
any number with max1<j≤t |σj (α

D)|1/D < l < 1. 2

PROOF OF THEOREM 1. Let α be as in Theorem 1 andδ be the value of the infinite
product in (1); suppose by contradiction thatδ is an algebraic number. We assume that (1)
holds, so there exist positive real numbersε, N0 such that

an+1

an

> 2 + ε

for all n ≥ N0. In particular the sequence is strictly increasing forn > N0.
Form ≥ N0 put

p = p(m) =

m∏
n=1

[αan ]

and letN = N(m) =
∑m

n=1 am. Then

(4)

∣∣∣∣δ −
p

αN

∣∣∣∣ =

∣∣∣∣ p

αN

∣∣∣∣ ·

∣∣∣∣1 −

∞∏
n=m+1

[αan ]

αan

∣∣∣∣;
using the inequality|1 − t | ≤ |log t | for 0 < t < 1 we deduce from the above that∣∣∣∣1 −

∞∏
n=m+1

[αan ]

αan

∣∣∣∣ ≤

∣∣∣∣log

( ∞∏
n=m+1

[αan ]

αan

)∣∣∣∣.
On the other hand,

log

( ∞∏
n=m+1

[αan ]

αan

)
=

∞∑
n=m+1

log

(
1 −

{αan}

αan

)
,
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where the symbol{·} stands for the fractional part. Using the inequality|log(1− t)| ≤ |2t |

for 0 < t < 1/2, and the fact that the fractional part{·} is always< 1, we find that the
right hand side above is bounded by

∞∑
n=m+1

∣∣∣∣log

(
1 −

{αan}

αan

)∣∣∣∣ <

∞∑
n=m+1

2

αan
=

2

αam+1
·

∞∑
n=m+1

1

αan−am+1
<

2

αam+1
·

1

α − 1
.

So finally we obtain from (4) and the above inequalities, recalling thatp/αN
≤ 1,

(5)

∣∣∣∣δ −
p

αN

∣∣∣∣ <
2

αam+1
·

1

α − 1
.

We shall now compare the integerN =
∑m

n=1 an with am+1. For this purpose we recall
that form ≥ N0, am+1 > (2 + ε)am while am−i ≤ (2 + ε)−iam for i = 1, . . . , m − N0.
Then for largem we haveam+1 ≥ (1 + ε)N . Hence in particular we obtain a rational
approximationp/αN to the algebraic numberδ satisfying the second inequality in (2). Our
hypothesis that no power ofα is an integer guarantees that the differenceδ − p/αN is
non-zero, so both inequalities in (2) are satisfied. Now Theorem CZ shows thatδαN is a
pseudo-Pisot number and that the numeratorp = p(N) is the trace ofδαN , so inequality
(3) of Lemma 5 is also satisfied. If this happens for infinitely many exponentsN then by
Lemma 5 some power ofα is a Pisot number, which we have excluded. 2

PROOF OFTHEOREM 2. Let α ∈ [1, ∞) be an algebraic point, not a rational integer,
and letδ = f (α). We have to prove thatδ is transcendental. Suppose by contradiction it is
algebraic.

Arguing as in the proof of Theorem 1, we deduce that the sequence of rational numbers

m∏
n=1

[αan ]

αan
=

p(m)

αN
,

whereN = N(m) =
∑m

n=1 an, satisfies inequality (2) of Theorem CZ. Hence, by Theorem
CZ, for all largem, δαN is a pseudo-Pisot number. Now by Lemmas 4 and 5 this implies
that all such integersN are congruent moduloD, whereD is the minimal positive integer
n such thatαn is a Pisot number; in particular, there exists a numbern0 such that all the
integersan for n > n0 are divisible byD. Due to the arithmetic condition (ii), this is
possible only ifD = 1, henceα is a Pisot number. Since by hypothesisα is not an integer,
it must be irrational.

Now, α being a Pisot number, the integral part of every powerαn has the explicit
expression

[αn] =

t∑
j=1

αn
j = Tr(αn),

or

[αn] =

( t∑
j=1

αn
j

)
− 1 = Tr(αn) − 1,
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where α1 = α, α2, . . . , αt are the conjugates ofα, while the integral part ofδαn is
expressed as

(6) [δαn] = η1α
n
1 + · · · + ηtα

n
t

for suitable non-zero conjugate algebraic numbersη1, . . . , ηt . Writing the above identity
for n = N(m) andN = N(m + 1) = N(m) + am+1 we obtain

(7) (η1α
N(m)
1 + · · · + ηtα

N(m)
t ) · (α

am+1
1 + · · · + α

am+1
t )

= (η1α
N(m)+am+1
1 + · · · + ηtα

N(m)+am+1
t ),

or, in the case [αan ] = Tr(αn) − 1,

(η1α
N(m)
1 + · · · + ηtα

N(m)
t ) · (α

am+1
1 + · · · + α

am+1
t − 1)

= (η1α
N(m)+am+1
1 + · · · + ηtα

N(m)+am+1
t ).

Since the two cases are very similar, we only treat the first one, so we suppose that (7)
holds; we then obtain theS-unit equation

(8)
∑
i 6=j

ηiα
N(m)
i α

am+1
j = 0.

Note that the sum on the left, which ranges over the pairs(i, j) ∈ {1, . . . , t}2 with i 6= j , is
non-empty since we have proved thatα is irrational (which is equivalent tot > 1). By the
S-unit equation theorem (see for instance [3, Ch. V, Theorem 2A]), there exist two distinct
elements in the above sum for which the ratio is equal to a given number infinitely often.
This in particular implies that there exist two pairs(i, j) 6= (h, k) such that the equation

α
N(m)
i α

am+1
j

α
N(m)
h α

am+1
k

= c

has infinitely many solutions. Since the ratiosαi/αh andαj/αk are not both roots of unity,
the above relation implies the existence of a non-trivial linear dependence relation of the
form

(9) c1N(m) − c2am+1 = c3,

where c1, c2, c3 are real numbers with(c1, c2) 6= (0, 0), satisfied by infinitely many
pairs(N(m), am+1). Clearly, one can suppose without loss of generality thatc1, c2, c3 are
integers andc1, c2 are positive. LetN be the (infinite) set of integersm such that the pair
(N(m), am+1) satisfies (9). Since the pair(N(m+1), am+2) = (N(m)+am+1, am+2) also
satisfies theS-unit equation (8), there is a non-trivial linear dependence relation of type (9)
satisfied by infinitely many integersm ∈ N . Namely there exist integersd1, d2, d3, with
d1, d2 > 0, such that for infinitely manym ∈ N ,

(10) d1N(m + 1) − d2am+2 = d3.
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From (9) and (10), using the equalityN(m + 1) = N(m) + am+1 and eliminatingN(m),
we obtain the dependence relation

(d1c1 + d1c2)am+1 − c1d2am+2 = d3c1 − d1c3,

which would have infinitely many solutions. This is excluded by our hypothesis (iii), so
the theorem is proved. 2

The proof of Theorem 3 rests on the following result:

LEMMA 6. Assume the hypotheses of Theorem3 hold. For all m ≥ 1 put N(m) =∑m
n=1 an. Also, denote byα′ the algebraic conjugate ofα, i.e. α′

= t − α. Then for all
integersm ≥ 1,

m∏
n=1

[αan ] =
t − 1

t
· (αN(m)

+ α′ N(m)).

PROOF. The proof by induction onm. Form = 1, we havea1 = 1 = N(1), [α] = t − 1
andα + α′

= t , so the relation holds. Suppose it holds form, so

m∏
n=1

[αan ] =
t − 1

t
· (αN(m)

+ α′ N(m)).

Then we have to prove that

(αN(m)
+ α′N(m))[αam+1] = αN(m+1)

+ α′N(m+1).

For this purpose we use the property of the sequencean that for eachm ≥ 1, am+1 =

2N(m) = 2
∑m

n=1 an, soN(m + 1) = 3N(m). Then the above identity becomes

(αN(m)
+ α′N(m)) · [α2N(m)] = α3N(m)

+ α′3N(m),

which follows easily from the fact that for alln ≥ 1, [αn] = αn
− 1 + α′ n. 2

PROOF OFTHEOREM 3. In view of the above lemma, for eachm ≥ 1,

m∏
n=1

[αan ]

αan
=

t − 1

t
·
αN(m)

+ α′ N(m)

αN(m)
,

which clearly tends to the limit(t − 1)/t asm → ∞. 2
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