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Partial differential equations. — Gaussian estimates for hypoelliptic operators via
optimal contro] by UGo BOSCAIN and SRGIO POLIDORO, communicated on 11 May
2007.

ABSTRACT. — We obtain Gaussian lower bounds for the fundamental solution of a class of hypoelliptic
equations, by using repeatedly an invariant Harnack inequality. Our main result is given in terms of the value
function of a suitable optimal control problem.
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1. INTRODUCTION

We consider a class of linear second order operatdRdih! of the form
m
(1.1) L:=) X{+Xo—d.
k=1
In (1.3) theX,'s are smooth vector fields @, i.e. denoting = (x, r) the point inRN+1,

N
Xi(x) = Zaj’.‘(x)axj, k=0,...,m.
j=1

We will also consider thé&(;’s as vector fields iRV *+1 and write

Our main assumption on the operatdrss the invariance with respect to a homogeneous
Lie group structure, and a controllability condition:

HyPOTHESIS[H]. There exists a homogeneous Lie grdiup= (RN *1, o, §,) such that

() X1,...,X,,Y are left translation invariant orfs;
(i) Xi,...,X,, are§-homogeneous of degree one ands §,-homogeneous of degree
two.

HYPOTHESIS[C]. Forevery(x, 1), (y,s) € RNt withr > s, there exists an absolutely
continuous pathy : [0, r — s] — RY such that

1.3) y(0) = Y o@D Xi(y (1) + Xo(y (1),
' k=1

YO =x, y@—s)=y,
withws, ..., w, € L®([0, f — s]).
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The solution of[(Z:B) will be denoted by((x, 1), (y, 5), w).

Operators of the forn{ (1] 1), satisfying hypotheses [C] and [H], have been considered
by Kogoj and Lanconelli in [10] and [11]. An invariant Harnack inequality for the positive
solutions of Lu = 0 is proved in [[10], and a general procedure for the construction
of sequences of operators satisfying [C] and [H] is givenLin [11]. We next give some
comments about these assumptions. We first compare the controllability property [C] with
some properties of the commutators Xf, ..., X,,, Y. It is known that condition [H]
implies that the coefficientst’s of the X;'s are polynomial functions, hence we can rely
on classical results (see Derridj and Zuily [5] and ik and Radkevi [16, Chap. I,

Sec. 8]) to see that [C] yields

(1.4) rank LigX1, ..., Xm, Y} @) = N+1, VzeRNVtL

Note that it is not true that [C] is a consequencd of|(1.4); nevertheless it is well known that
the condition

(1.5) rank LigX1, ..., Xpu}(x) =N, Vx eRY,

(which is stronger thar] (1].4)) implies [C] (see for instance the books of Agrachev and
Sachkov([1] and Jurdjevic [9]).

In the theory of partial differential equations, the above properties are strongly related
to the regularity problem fof.. Specifically, condition[(Z]4) is the well known sufficient
condition for the hypoellipticity of. introduced by Wrmander in[[¥]. In[[10] it is proved
thatL has a fundamental solutidn which is invariant with respect to the group operation,
is smooth outside its poles adg-homogeneous of degree-20:

(1.6) [z, =r¢toz,0, I'(6z,0 =121 0),

for everyz, ¢ € R¥+1andx > 0 (hereQ denotes the homogeneous dimension of the Lie
groupG, see Section 2). Moreovef,(x, t,&,7) > Ofort > t,andI"(x,t,&,t) = 0O for
t<rt.

The main purpose of this paper is to adapt a method due to Moser [14] and used by
Aronson and Serrin [2]L]3], in order to prove a Gaussian lower bourid. af/e recall that
the method of Moser has been introduced in the study of uniformly parabolic operators
and is based on repeated use of an invariant Harnack inequality. In that framework,
the Gaussian bound reads as followst # be the fundamental solution of a uniformly
parabolic operator. Then there exists a positive constasuch that

@a.7) h(x —y, t —s) > O;e ci—s)
-5

for every(x, 1), (y,s) € RVt withr > s. In order to adapt the method to operators of
type [1.1), we rely on the following invariant Harnack inequality proved by Kogoj and
Lanconelli. Consider the sef$.(zo0) = zo o §,(H1) andS, (zo) = zo o 6,(S1), where

Hy={(x,t) e RN | (x, 1)llg < 1, £ < 0},
S1={(x,t) €e H1|1/4 < —t < 3/4}.
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Then the following result holds (s€e |10, Theorem 7.1§Xs2 be an open subset &Y +1
containingH, (zo) for somezg € RN+l andr > 0. Then there exist two positive constants
6 and M, only depending on the operatér, such that

(1.8) sup u < Mu(zp)

Sor (z0)
for every non-negative solutianof Lu = 0 in £2. Our first result is enon-locallower
bound for positive solutions tbu = 0 obtained by the (local) Harnack inequality (1.8).

PrROPOSITIONL.1. LetL be as defined iff.1), satisfying assumptiori€] and[H]. Then
there exist three constangse 10, 1[, # > 0 and M > 1, only depending on the operator
L, such that the following statement is truex If RV x ] Tp, T1] — R is a positive solution
toLu =0, (x,1), (v,s) € RN x]Tp, T1] are two points such thay — 62(Ty — Tp) < s <

t < Ty, andy((x, 1), (y, s), w) is a solution tofL.3), then

u(y,s) < Mlﬂ)(‘”)/hu(x, 1),

where -
) =/ (@2(T) + -+ + 02 (1) dr.
0

The above proposition extends a previous result by Pascucci and Polidoro (Theorem
1.1 in [17]) and gives a bound fany solutiony of (I.3). In order to obtain the best
exponent we formulate a natural optimal control problem: we consider the fungtien
(w1, - .., wy) as thecontrol of the pathy in (I.3) and we look for the one minimizing the
total cost® among the pathg satisfying [1.B). We then define the value function

(1.9) V(x,t,y,s) =inf{®(w) | y((x,1), (,s), w) is a solution to[(T]3)
As a straightforward corollary of Propositipn]L.1, we obtain
(1.10) u(y,s) < MV @y hy

provided thau: satisfies the assumptions of Proposifiorj 1.1. A further direct consequence
is the following lower bound for the fundamental solutibrof L:

THEOREM1.2. Let L be as defined ifL.q), satisfying assumptiorf€] and [H]. Then
there exist two constants > 0 and6 < ]0, 1], only depending on the operatdr, such
that

1
r(x,t0,0 > We—”(xﬁz”o’o), V(x,1) € RN x RT.

Thanks to[(16), Theorem 1.2 provides a lower boundfer, 7, y, s) with 7 > s.

We next compare the above result with the known estimates of the fundamental solution
due to Jerison andd®ichez-Calle€ [8], Kusuoka and Stroockl[12], Varopoulos, Saloff-Coste
and Coulhon([1B], concerning operators in the fom]|(1.1) without the drift tgmThe
main result in[[8],[12], and [18] is the bound

1 Cd?(x,y) C 2y
(111) —— T < I y9) € e T

Cy/1Bi—s(x)] 1B —s ()]
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for every (x, 1), (y,s) € RN x ]To, T1] with ¢ > s, whered(x, y) denotes the Carnot—
Caratleodory distance associated to the problem] (1.3), in which the vectorfigisl set
to zero (se€e [15]) aniB, (x)| is the volume of the metric ball with centerand radius-.
The lower bound stated in Theor¢m|1.2 agrees with the one stafed ih (1.11), since

d?(x,
(1.12) V(x,t,y,s):# whenXo = 0.
— S

The identity [1.IP) fails to hold when the drift terky is needed to fulfill condition [C].
Consider for instance the Kolmogorov operators

Po N
Ku = Z a,-,jaxl.xju + Z b,-,jxiaxju — Oiu

i,j=1 i,j=1

where A = (aij)i j=1,...pp @Nd B = (b;;); j=1,..n are constant real matriced, is
symmetric and positive. We recall that assumptions [C] and [H] are equivalent to some
explicit conditions on the matrice4 and B (see[[13]). Moreover, the explicit expression

of the value function for this class of operators is explicitly known (ske [6]). In the simplest
case, the Kolmogorov equation reads

.....

Bflu + Xx10x,u = 0su
and the value function related to the Kolmogorov group is

Vet y.s) = (x1 — y1)2+3(X1 —y)(x24+ (. —s)y1—y2) +3(x2 + (t — $)y1 — y2)?

t—s (t —s)2 (t —s)3

3

which clearly does not satisfy equati¢n (7.12).

Aiming to show that the estimate given in Theorgm| 1.2 is sharp, we remark that one
can prove an analogous upper bound for the fundamental solution. More specifically, under
suitable conditions on the vector field&, ..., X,,, which guarantee the existence of
global solutions of the problerfi (3.3), and assuming that there are no singular minimizers,
one has

Cs —V((0,et)0(x,1)0(0,¢t),0,0) /32 N +
Px,1,0,0) = —=575¢ ., V(x,1n eRY xRY,

for every positivee. The above inequality is obtained by a suitable adaptation of the method
introduced by Aronson ir [2] (details are given|in [4]).

We recall that in the case of Kolmogorov equations, for every 1 there exists a
positive constant such thatV(x,7,0,0) < CV(x,ct,0,0) < CV(x t, 0, 0) for every
(x,1) € RY x RT (see formula (6.13) i [6]). As a consequence, bounds analogous to

(L.13) hold:

1

C
CV(x,t,y,s) —Vi(x,t,y,s)/C
—_——=¢ <I(x,t,y,§) < —————
C(t —5)(@-2/2 = I ¥5) (

—5©-272°

for every(x, 1), (y, s) € RVt with r > s.
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2. PROOF OF THE MAIN RESULTS

A Lie groupG = (RV*1, o) is calledhomogeneoui there exists a family of dilations
(83)5.0 0N G With 8, (z 0 £) = (8,2) o (8,¢) for everyz, ¢ € R¥N*1 and for anya > 0. In
our setting, hypotheses [C] and [H] imply tH&t' has a direct sum decomposition

RN=vi®- @V,
such that, ift = x® + ... 4+ x™ with x® e Vv, then the dilations are
(2.1) Y 4+ x® ) = @ 4™ 0%
forany(x, r) € R¥*landx > 0. We may assume that

x(l)z(xl,,..,xml,o,...,O)EV]_,

x(k)z(O,...,O,x:(Lk),... x 0,...,0 € Vg,

> my

for some basis dR", where

*) . L
X = Xyt P=1 0, mp = dimVy.

The natural number .
0= kak +2
k=1

is usually called théhomogeneous dimensioh G with respect ta§;). We also introduce
the following 8, -homogeneous norms @¥ andRV*1:
xlg =max{lx® Y k=1, i=1,...,m),

Il(x, Dllg =max|x|g, |t1*3).

SinceXy, ..., X,, andY are smooth vector fields which a¥g-homogeneous respectively
of degree one and two, we have

n

Xp=Y a kU v k=1 m,

j=1
(2.2) n | |
Y= b oGP, .. xV72). v g,
j=2
where

v — @,...,0, 8x§-j), ...,axg}),o,...,O),
and a]].‘ and b; are é;-homogeneous polynomial functions of degrgavith values in
Vi+1 and Vj4» respectively. Let us explicitly mention that formula (2.2) says that
spariX1(0), ..., X,,(0)} = Vi; then we may assuma = my and X;(0) = ¢ for
Jj = 1,...,m where{e; }1<;<n denotes the canonical basis®f. Also note that from
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(2.2) it follows thatV, = spar{Xo(0), [X;, Xx](0) : j,k = 1,...,m}. Moreover, up
to the linear change of variablg, r) — (x — tbo, ), we may (and will) assume that
bo = Xo(0) = 0.

As said in the introduction, our argument mainly relies on the Harnack ineqyality (1.8)
by Kogoj and Lanconelli ([10, Theorem 7.1]). We first state a corollary of it; we refer to
Proposition 3.2 in[[17] for the proof.

PROPOSITION2.1. Let £2 be an open set iiRV*+1 containing H, (zo) for somezg €
RN+l andr > 0. Then

(2.3) u(zp o z) < Mu(zo)
for every non-negative solutianof Lu = 0in §2 and for every; in the positive cone
(2.4) Py ={(x,—1) e RV |x]2 <2, 0 <1 < 20%2).

In order to prove Propositign 1.1 we need a preliminary result.
LEMMA 2.2. Lety : [0,7] — R be a solution tofI.3), and letr = +/2T /26. There
exists a positive constant only depending on the operatdr, such that(y (s),t — s) €

(x, 1) o P, for everys € [0, T] such that/y | (7)|?dt < h.

PROOFE We first prove the claim in the cage, t) = (0, 0), namely

(2.5) y(@) =

J

wi () X;(y () + Xo(y(r)), v(0) =0.
1

m

The result in the general case directly follows from the invariance of the vector fields

X1, ..., X,;, andY with respect to the operation™. We prove that, for sufficiently smail,
(y(s), —s) € Py, that is,

(2.6) y®P )2 = max |y )Pk < 2s

i=1,..,my

foranyk = 1, ..., n. To this end, we consider the function
N
F(s) =/ lw(t)|?dt forO<s<T.
0

We claim that
(2.7) Iy ® ()% < ek (F(s) + F(s)F)sk  for everys € [0, T],

for k = 1,...,n, and for some positive constants, ..., ¢, that only depend on the
operatorL. SinceF (0) = 0 andF is a continuous increasing function, from (2.7) it follows
that we can choose a positikesuch that conditiorj (2]6) holds whenevets) < k. Hence
we only need to prové (2.7).
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We first considey; (z) for j =1, ..., m. SinceX;(0) = g for j =1, ..., m, we have

s s 1/2
5/ |@,(f)|df5(f |w<r)|2dr> 5,
0 0

so that condition[(2]7) is satisfied for= 1 with ¢1 = 1/2.
Next, we have

(2.8)  lyil= ‘/0 wj(r)drt

y@@) =Y ;e (P ()

j=1

where thm%, ..., aj" are linear functions (recall thay = 0). Then

S S 1/2
@) < / |w<r>||y<1>(r>|dr5c’2<f |w<r>|2dr> EG)/2
0 0

by (2.8), where the constari only depends on the coefﬁciem%. Hence the components
y @ (s) satisfy condition[(2]7) witlz = (c5)?/2.
We also explicitly considet = 3:

7O =Y wi@a(yP ). y? @) + b1y V(o)
j=1

where theué 's ared; -homogeneous functions of degree 2 ands linear. Then
)
Y] < cgfo (@Il P @+ 1y 2 @D + Iy P (@) dr
s 1/2
< cg((/ |w(r)|2dr) F(s5)s%? + F(s)1/2s3/2),
0

by the previous estimates ¢fY and y®, where the constant, only depends on the

coefficients ofaé andby, while cg depends orm; andcp. Hence the componenié3) (s)
satisfy condition[(Z]7) for somes that depends of.
Fork =4, ...,n,we have

y 0@ =Y wj@al_ oY@, ....y* V)
j=1

+ b2y V@), ..., y* 2 (1)),

and, sincez,{ andby, ares,-homogeneous functions of degreea straightforward inductive
argument yields

ly O ) < / (@) %D ()2 4 F(r)-D/2)
0

+ " 22F@2 + F()*2%) de
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where the constam’g depends omy, ..., cx—1 and on the coefficienus[_1 andby_». By
the Holder inequality we find

s 1/2
y @)l < ck(( / |w<r)|2dr> A(F&Y? + Fs)*07)
0
+(F©Y2+ F(s)(kz)/2)>sk/2,
and then the inequality (3.7) follows far This concludes the proof. O

PROOF OFPROPOSITIONI. . Leth, & andM be the constants of Lemrha .2, Bt=
t — s and note that, (x, 1) C RN x ]To, T1] for r = /1 — Tp.

If
t—s
/ o (0)[?dT < h,
0
then the result is an immediate consequence of Lefnma 2.2 and Proppsifion 2.1, since

t —s < 622, by our assumption.
If the above inequality is not satisfied, we set

t—s
(2.9) k:max{jeN:jh</ |a)(r)|2dr},

0
and define

o
o = inf/ lo(©)?dt > jh, ti=t—0;, j=1,... k
o>0Jp

Note thats <, < --- < 11 < ¢, so that
(2.10) H,, (y(0). ;) CRN x1To, Ta] forrj =/tj —To, j=0.... k,
ands; — 141 < 6%rZfor j =0, ..., k (hererg = 1), andy, — s < 6%r7 .

By Lemma@,(y(al), 1) € (x,1) o Py, and we can use Propositipn .1 to get
u(y(o1), 1) < Mu(x,t). We next repeat the above argument: Lenimé& 2.2 ensures that
(y(02),12) € (y(01),11) o Pr,. We then recall[(2.10) and apply Propositfon]2.1, which
givesu(y (02), t2) < Mu(y(o1), 1) < M?u(x, ). We iterate the argument until, at the
(k + 1)-th step, we find

u(y,s) < Mu(y (o). tr) < M u(x, 1).

The assertion then follows froh (2.9). O

PROOF OFTHEOREM[L.3. Let(x,7) € RY x R*. Under the hypothesis of Proposition
1.1, applied withTo = 0, T1 = ¢ and(y, s) = (0, (1 — 62)1), it follows from (T.10) that

I(x,1,0,0) > M~V&e0.0-00/h 0o (1 — 92)1, 0, 0).
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The conclusion then follows from the fact that

ro,1,0,0)

2 —
rO.1=6%100 = o G

as a consequence of the second identity in (1.6), and that

Vix,t,0,(1—06%1) = V(x,0%,0,0. O
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