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ABSTRACT. — Surface hyperstress is introduced along a layer with vanishing thickness, across which two
second-grade elastic Cauchy bodies are glued. Surface balances are obtained by making use of the relative power
of actions and of invariance requirements on the Lagrangian. The action of bulk hyperstress on vacancies, linear
inclusions and cracks is also evaluated.
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1. INTRODUCTION

The possible dependence of constitutive relations on second or higher-order gradients of
deformation and/or velocity in continuum mechanics has been widely discussed in the
scientific literature, since the pioneer works by Korteweg (1901) [17] and Jaramillo (1929)
[14]. Reasons for considering such a constitutive dependence are of various nature. For
example, gradients of the density are used to represent capillarity effects in fluids after
Korteweg (see, e.g., [17], [3], [2], [7], [40], [15], [8], [22]). The scheme admits a natural
generalization to fluids with constitutive structures depending on higher-order gradients
of the velocity field [29]. Solids undergoing phase transitions are characterized by diffuse
interfaces; the effects of the presence of such interfaces can be considered scattered over
the body and accounted for by gradients of deformation of various orders (see [27], [35],
[36]). Experiments also show the existence of non-local effects in plastic phenomena
[13], [30]; these effects have suggested the need of second-gradient theories of plasticity
(see, e.g., [12], [5] and references therein). Second-gradient (non-local) contributions
of the deformation can also be attributed to latent microstructures [2]. They determine
a ‘regularizing’ effect on the motion. In general, when gradients of orderN of the
deformation and/or velocity are involved in the constitutive structures, bodies are called
of gradeN . The analysis of such bodies has theoretical interest in purely mechanical (see,
e.g., [37], [39], [28], [20]), thermodynamical (see [3], [36]), and geometrical [18] aspects.

Measures of interaction, called hyperstresses, are power-conjugated with each gradient
of order greater than or equal to 2. Their existence is a necessary consequence of the
validity of the second law of thermodynamics [11], [3], [2]. Their balance has been widely
discussed (see the basic contributions [38], [10], [6]).

Here attention is focused on materials of grade 2 (also called second-grade materials).
A commentary to the standard treatment of them is contained in Section 2. The second
jet bundle language used below is the natural setting in which one may emphasize clearly
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the balance equations discussed in what follows. The accomplishments in the subsequent
sections are listed below.

• A surface hyperstressis introduced: it is defined along a thin layer gluing two second-
grade bodies. Such a stress enters surface balances which are derived here in a covariant
way.
• The influence of bulk hyperstresses on point defects and linear (rigid) inclusions is

evaluated by making use of (i) invariance requirements on the Lagrangian density and
(ii) balances of powers defined appropriately.
• Finally, the evolution of cracks in second-grade materials is analyzed. The presence of

hyperstresses alters the structure of the force driving the crack tip, as pointed out by
experiments (see companion results in [41]).

Notations. A · B denotes the scalar product between tensors of the same rank (covariant
components act on contravariant components in any product defined here). IfA andB

are second-rank tensors,AB indicates the product which contracts only one index and
generates a second-order tensor; for example(AB)ij = AikB

k
j (the sum over repeated

indices is understood). For second-rank tensors the superscript∗ indicates theformal
adjoint. If u is a vector andA a second-rank tensor, the productAu contracts the index
of u and furnishes a vector; for example(Au)i = Ai

ju
j . If A and G are third-order

tensors, the productA : G contracts two indices and furnishes a second-order tensor; for
example(A : G)il = AijkG

jk
l . If A is a third-order tensor andA a second-order tensor, the

productAA contracts the indices ofA and furnishes a vector (or a covector); for example
(AA)i = AijkA

jk; moreover, the productAxA contracts only one index and generates a
third-order tensor, for example(AxA)ij l = AijkA

k
l (in certain circumstances it will also

be writtenAyA with the same meaning, say(AyA)ijk = Al
iAljk). If u is still a vector

and A a third-rank tensor, the productAu furnishes a second-rank tensor, for example
(Au)ij = Aijku

k. For third-rank tensors the superscript∗ indicates the major formal
adjoint, i.e., given vectors (or co-vectors)a, b, c, one finds((Aa)b)c = ((A∗c)b)a. The
superscriptt indicates the formal minor adjoint, namely((Aa)b)c = ((Atb)a)c.

For any pair of vector spacesV andW (with dualsV ∗ andW ∗), Hom(V , W) is the
space of linear maps fromV to W . For any smooth manifoldM, TmM is the tangent space
of M atm ∈ M, whileT ∗mM the corresponding cotangent space.∂r means partial derivative
with respect to the generic entryr.

For a surfaceΣ in R3, oriented at almost every point by the normalm and for any
differentiable fieldR3

3 x 7→ a(x), the notation∇Σa = ∇a(I − m ⊗ m) indicates its
surface gradient atx ∈ Σ . The trace of∇Σa defines the surface divergence ofa at x,
DivΣ a = tr∇Σa. In particular, the negative of the surface gradient ofm, −∇Σm, is
denoted byL and is the curvature tensor ofΣ . Its trace is the overall curvatureK.

If x 7→ a(x) is a piecewise differentiable field overR3 (or some regular region of it),
taking values in a linear space and suffering a bounded discontinuity overΣ , its jump [a]
acrossΣ is defined by [a] := a+−a− at eachx ∈ Σ . Herea+ anda− denote respectively
the inner and outer traces ofa atΣ given by the limitsa± := limε→0 a(x±εm) for ε ≥ 0.
The average ofa acrossΣ at eachx is given by 2〈a〉 = a+ + a−. For any pair of fields
a1 anda2 overR3 with the same properties ofa, the relation [a1a2] = [a1]〈a2〉 + 〈a1〉[a2]
holds if the producta1a2 is defined in distributive way.
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2. COMMENTARY TO SECOND-GRADE ELASTICITY: VARIATIONAL FORMULATION ON

THE SECOND JET BUNDLE

A body occupies a regular regionB0 of R3 in a place taken asreference. New places are
achieved bytransplacement maps

(2.1) B0 3 x 7→ y := y(x) ∈ R3.

Each y is a standard deformation. Common assumptions are thaty is one-to-one,
continuous and piecewise continuously differentiable (at least twice for our purposes).
The current placeB := y(B0) of the body is endowed with the same regularity properties
of B0. Moreover,y is orientation preserving: the value of its gradient at eachx ∈ B0, i.e.
F := ∇y(x) ∈ Hom(TxB0, TyB), has positive determinant (see [1] for further details).

For simplicity one may assume thatB0 belongs to an isomorphic copyR‡3 of R3.
Motions are maps(x, t) 7→ y := y(x, t) ∈ R3 twice differentiable in time, withx ∈ B0,
t ∈ [0, t̄ ] andx = y(x, 0). The time derivativėy := ∂

∂t
y(x, t) is the velocity.

A fiber bundleY with π : Y → B0× [0, t̄ ] the natural projection andπ−1(x, t) = R3

theprototype fiberis the natural geometrical setting for describing the shape of a body and
its motion when the generic material element is considered only as a mass point. In this
case one may call such bodiesCauchy bodiesto stress the difference withcomplex bodies,
those for which the prototype material element needs to be considered as a system.

Mappings

(2.2) η : B0× [0, t̄ ] → Y, η(x, t) = (x, t, y(x, t)),

can then be selected and admit first and second prolongations

j1(η)(x, t) = (x, t, y, ẏ, F ),(2.3)

j2(η)(x, t) = (x, t, y, ẏ, F, ÿ,∇F),(2.4)

respectively, withj1(η) andj2(η) belonging to the first and second jet bundlesJ 1Y and
J 2Y. Consequently, one recovers the sequence

(2.5) B0× [0, t̄ ]
π
←− Y π1

←− J 1Y π2

←− J 2Y,

whereπ1 andπ2 are the relevant natural projections.
The conservative mechanical behavior of second-grade Cauchy elastic bodies is

described by a Lagrangian

(2.6) L : J 2Y →
∧3+1

(B0× [0, t̄ ]),

such that

(2.7) L(j2(η)(x, t)) = L dx∧dt,

with L := L(x, y, ẏ, F,∇F) a C2 density. In principle, one should take care in defining
L becauseB0× [0, t̄ ] is a manifold with boundaryB0× {0} ∪B0× {t̄}. However, possible
problems disappear because one is just interested in the variations of the action functional

(2.8) E :=
∫
B0×[0,t̄ ]

L dx∧dt.
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Note that, with the choice (2.8), the analysis is restricted to the description of
autonomousbehavior. In particular,L is selected of the form

(2.9) L :=
1

2
ρ0|ẏ|

2
− ρ0ẽ(x, F,∇F)− ρ0w̃(y),

whereρ0 is the referential mass density conserved along the motion,ẽ the elastic energy
andw̃ the potential of external body forces, all taken per unit mass. As convenient notation,
e andw will indicate the valuese := ρ0ẽ(x, F,∇F) andw̃ := ρ0w̃(y).

The Euler–Lagrange equations derive from the requirement that the first variation ofE
vanishes:

(2.10) δE = 0.

Under conditions of sufficient smoothness and an appropriate definition of the variations,
such equations read

(2.11)
·

∂ẏL = ∂yL− Div(∂FL− Div ∂∇FL).

The derivative∂∇FL is the so-calledhyperstressin the bulk.
Invariance requirements on the Lagrangian density under changes in observers and

relabeling of the material elements placed inB0 play the essential role of first principles.
In general, observers are representations of the geometrical environments necessary to
describe the morphology of a body and its motion (see [24]). In this case such geometric
environments are the ambient spaceR3, an isomorphic copyR‡3 containing the reference
placeB0, and the time scale [0, t̄ ]. Here attention is focused only on synchronous changes
in observers that leave invariant the reference place. They are described by smooth curves
R+ 3 s 7→ fs ∈ Diff (R3, R3) on the group of diffeomorphisms ofR3, starting from the
identity. The infinitesimal generator of such an action is indicated byv at eachy. It is the
derivative with respect tos of f := fs(y) at s = 0, that is,f′s(y)|s=0.

When appropriate,s will be tacitly identified with the timet . Of course, in the above
setting, classical isometric changes in observers, governed by the semidirect productR3 n
SO(3), are included.

By considering only changes of the ambient spaceR3, all observers register anidentical
picture of the reference placeB0. However, the assignment of labelsx to points inB0 is
only instrumental and has no physical relevance. Then the requirement of invariance of the
Lagrangian with respect to relabeling appears natural in these conditions. Moreover, when
defects are present, relabeling implies a sort of ‘permutation’ of defects (for example point
defects such as vacancies or inclusions). Formally, the relabeling is defined by smooth
curvesR+ 3 s1 7→ f1s1

∈ SDiff(B0, R‡3), with f10 the identity. SDiff(B0, R‡3) is the
special group of diffeomorphisms overB0 so that at eachs1 one getsx 7→ f1s1

(x), with
Div f1′s1

(x) = 0, where the prime denotes differentiation with respect to the parameters1.

The notationw:= f1′0 (x) is useful and also the gradient with respect tof1 := f1s1
(x) is

indicated by∇f1. When appropriate,s1 will be tacitly identified with the timet as well as
with s.
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LEMMA 1. The combined action off1s1
and fs at any s1 and s implies the following

transformations:

ẏ 7→ (gradf)ẏ,(2.12)

F 7→ F̄ = (gradf)F (∇f1)−1,(2.13)

∇F 7→ ∇F = ((gradf)y∇Fx(∇f1)−1)tx(∇f1)−1
+ Fy∇f1(∇f1)−1.(2.14)

PROOF. At eachs andy ∈ B, gradf ∈ Hom(TyB, Tf fs(B)); then, sinceẏ ∈ TyB, the
relation (2.12) follows. To prove (2.13), first recall thatF ∈ Hom(TxB0, TyB) ∼= TyB ⊗
T ∗x B0. Then, the left action of gradf maps linearlyTyB in Tf fs(B) while the right action
of (∇f1)−1 transforms linearlyT ∗x B0 in T ∗

f1
f1s1

(B0). The relation (2.14) can be obtained

by calculating the second gradient off = fs(y(f1
−1

(x))) and taking into account (2.13).
Notice that the twofold right application of(∇f1)−1 is justified by the fact that∇F ∈

TyB ⊗ T ∗x B0 ⊗ T ∗x B0, so a twofold transformation ofT ∗x B0 in T ∗
f1

f1s1
(B0) by means of

(∇f1)−1 is necessary. The second term on the right-hand side of (2.14) follows from the
fact that the derivative∇ is transported along the trajectories induced byf1s1

. 2

Note that the proof above holds even if one considers a generalized relabeling
represented by curves on the entire group of diffeomorphisms Diff(B0, R‡3) overB0, rather
than its special subgroup.

DEFINITION 1. L is said to beinvariant with respect to changes in observers and
relabelingif

(2.15) L(x, y, ẏ, F,∇F) = L(f1, f, (gradf)ẏ, F̄ ,∇F)

for any smooth curves 7→ fs ∈ Aut(R3) ands1 7→ f1s1
∈ SDiff(B0, R‡3).

From now on it is assumed that the mapx 7→ ∂∇FL ∈ T ∗y B ⊗ TxB0⊗ TxB0, x ∈ B0,

is of classC1(B0).

DEFINITION 2. Q andF are respectively scalar and vector densities defined by

Q := ∂ẏL · (v − Fw),(2.16)

F := Lw + ∂FL∗(v − Fw)− (Div ∂∇FL)∗(v − Fw)+ ∂∇FLt
∇(v − Fw).(2.17)

THEOREM 1. If L is invariant with respect to changes in observers and relabeling, then,
whenF is of classC1 in space andQ is of the same class in time,

(2.18) Q̇+ Div F = 0.

The theorem above is the Noether theorem for second-grade elasticity and is not a
new result. A proof is presented in [18] within a general framework of second-order
multisymplectic field theories [26] (see also [33] for higher order Euler operators and [34]).
A simple proof is reported below.
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PROOF. The requirement of invariance ofL under the action off1s1
and fs implies the

identities

(2.19)
d

ds1
L

∣∣∣∣
s1=0, s=0

= 0,
d

ds
L

∣∣∣∣
s1=0, s=0

= 0,

that correspond respectively to

(2.20) ∂xL · w − ∂FL · F∇w − ∂∇FL · (∇F tx∇w)

− ∂∇FL · (∇Fx∇w)− ∂∇FL · (Fy∇ ⊗ ∇w) = 0,

(2.21) ∂yL · v + ∂ẏL · (gradv)ẏ + ∂FL · (gradv)F + ∂∇FL · (gradvy∇F) = 0.

By evaluating the time derivative ofQ and the spatial divergence ofF, the use of (2.20)
and (2.22) implies, after some algebra, that

(2.22) Q̇+ Div F =
d

ds1
L

∣∣∣∣
s1=0, s=0

+
d

ds2
L

∣∣∣∣
s1=0, s=0

. 2

Note that in the proof above use is made of the Euler–Lagrange equation, which
requires a regularity greater than the one needed in a direct proof that does not make use
of balance equations (see [18], also [9] for classical field theories on first jet bundles).

COROLLARY 1. If v 6= 0 is left arbitrary andw = 0, it follows that

(2.23) ρ0ÿ = b + Div(P − Div S) in B0

In (2.23),P = −∂F L ∈ Hom(T ∗x B0, T ∗y B) is the first Piola–Kirchhoff stress,b =
∂yL ∈ T ∗yB the vector of non-inertial body forces andS = −∂∇FL ∈ TxB0⊗TxB0⊗T ∗y B
the bulk hyperstress (reasons for the existence of hyperstresses apart from this conservative
setting have been discussed in [6], [32]). Of course, (2.23) is just the Euler–Lagrange
equation associated with (2.8) but the way it is re-obtained ensures its covariance.

PROOF. Whenv 6= 0 andw = 0, in fact, one gets

Q = ∂ẏL · v,(2.24)

F = ∂FL∗v − (Div ∂∇FL)∗v + ∂∇FLt
∇v.(2.25)

Then, from Theorem 1 and (2.22), equation (2.23) follows.2

COROLLARY 2. Let fs be an isometry. Thenv = q× (y−y0) with q× ∈ so(3) andy0 an
arbitrary point. Let alsoq be constant. The action of the special choice offs just selected,
leavingq arbitrary, implies

(2.26) skw(PF ∗ +S : (∇F)∗) = 0.

The proof follows by direct calculation.
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COROLLARY 3. If w 6= 0 is left arbitrary andv = 0, it follows that

(2.27)
·

F ∗∂ẋL+ Div

(
P2−

1

2
ρ0|ẋ|

2I

)
+ F ∗b − ∂Xe = 0

in B0, with

(2.28) P2 = eI − F ∗P + F ∗Div S− (∇F)t : S.

The second-rank tensorP2 ∈ T ∗x B0 ⊗ TxB0 is the appropriate form for second-grade
materials of the Eshelby stress (see e.g. [16], [19]). In the absence of defects evolving
irreversibly within the body, equation (2.27) is nothing but the projection of (2.23) in the
reference place by means of the inverse mapy−1, when the deformation is sufficiently
smooth. On the other hand, when a bulk defect is present and evolves irreversibly in the
body, equation (2.27), augmented by a driving force, governs the evolution of the defect
itself.

PROOF. Whenv = 0 andw 6= 0, it follows that

Q = −∂ẏL · Fw,(2.29)

F = Lw − ∂FL∗(Fw)+ (Div ∂∇FL)∗(Fw)− ∂∇FLt
∇(Fw).(2.30)

Then, by using Theorem 1 and (2.20), equation (2.27) follows.2

For ahomogeneoussecond-grade elastic material, for any fixed control partb, equation
(2.27) is implied by the integral balance

(2.31)
d

dt

∫
B0

f (x)ρ0F
∗ẏ dx +

∫
B0

f (x)F ∗b dx +

∫
∂B0

f (x)P2n dH2

=
1

2

∫
∂B0

f (x)ρ0|ẏ|
2n dH2,

holding for any smooth (scalar) functionx 7→ f (x) with compact support inB0. Heren is
the outward unit normal to the boundary∂B0 anddH2 the two-dimensional measure over
∂B0. Moreover, if inertia and body forces are absent, one gets

(2.32)
∫

∂B0

f (x)P2n dH2
= 0.

3. GLUING TWO SECOND-GRADE BODIES: THE SURFACE HYPERSTRESS

Although the dependence of the energy on the second gradient of deformation∇F allows
one to account for the presence of minute interfaces scattered throughout the body in a
regularized manner, there might be circumstances in which additional macroscopic sharp
discontinuity surfaces occur. In this case, there is interaction between the minute interfaces
and the macroscopic one.

As a paradigmatic example, consider two second-grade bodies glued to each other
along a smooth surfaceΣ by means of a layer of glue with vanishing thickness. A surface
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energy densityφ accounts for the properties of the glue distributed alongΣ in order to
attach the two bodies, and assumed to be made of a second-grade material.

Σ is the surface{x ∈ clB0 : f (x) = 0}, with f a scalar function assumed smooth for
simplicity. The normalm to Σ is defined by

(3.1) m =
∇f (x)

|∇f (x)|

and orientsΣ locally. Alternatively one may consider a body in a reference placeB0; then
one may cut it in two distinct pieces and then glue them. In this caseΣ is the image inB0
of the glued cut inB, obtained by means of the inverse motiony−1.

It is assumed that both the mapsf1s1
andfs , defining respectively relabeling and changes

in observers, are continuous acrossΣ together with their derivativesf1′s1
andf′s with respect

to the relevant parameters (s1 for f1s1
ands for fs). Moreover, it is assumed that the map

(3.2) B0 3 x 7→ F = F(x) ∈ TyB ⊗ T ∗x B0

suffers bounded jumps atΣ , together with its gradient, and, as usual, thesurface
deformation gradientF is defined byF := 〈F 〉(I − m ⊗ m). It is the value of aC1

map

(3.3) Σ 3 x 7→ F = F(x) ∈ Hom(TxΣ, TyB).

The surface gradient ofF defined by∇ΣF : = ∇ΣF(x) ∈ T ∗x Σ ⊗ T ∗x Σ ⊗ TyB is the
second surface gradient of deformation. In particular, it is immediate to recognize that

(3.4) ∇ΣF = (〈∇F 〉x(I −m⊗m))tx(I −m⊗m)+ (〈F 〉L)⊗m+ (〈F 〉m)⊗ L.

The average ofF acrossΣ defines the surface deformation gradient alongΣ ; its jump
characterizesΣ , which is calledcoherentwhen [F ](I −m⊗m) = 0.

It is assumed that bulk stresses and velocity suffer bounded jumps acrossΣ while bulk
forces are continuous throughoutB0. The mass density is constant.

As mentioned above,Σ is assumed to be endowed with its ownsurface energyφ given
by a sufficiently smooth mapφ defined by

(3.5) (m, F,∇ΣF) 7→ φ = φ(m, F,∇ΣF).

The dependence on the second surface gradient of deformation∇ΣF allows one to account
for minute interfaces distributed overΣ or even for distributed wrinkles in a scattered
sense. The presence of the normalm in the list of entries ofφ accounts for possible
anisotropyof Σ . In the case of isotropic surfaces,φ does not depend onm.

As shown in [4] and [24], in the presence of discontinuity surfaces the arbitrariness of
the possible relabeling ofB0 has to be restricted. I indicate bys1 7→ f̂1s1

∈ SDiff(B0) the
‘restricted’ relabeling defined by the properties listed below.

(1) The fieldB0 3 x 7→ w := f̂1′0 (x) is of classC1(B0).

(2) Eachf̂1s1
preserves the elements of area ofΣ : if dA is the element of area ofΣ in B0,

thendA = f̂1∗s1
dA, where the asterisk indicates push-forward.
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(3) (∇w)m = 0 atx ∈ Σ .
(4) ∇Σvm = 0, with vm = w ·m.

DEFINITION 3. X is a vector density overΣ defined by

X := −φ(I −m⊗m)w + (∂Fφ)∗(v − 〈F 〉w)− (DivΣ ∂∇ΣFφ)∗(v − 〈F 〉w)(3.6)

+ (∂∇ΣFφ)t∇Σ (v − 〈F 〉w)− (∂mφ ⊗m)w.

At eachx, the vectorX is the surface counterpart ofF. There is no surface counterpart
of Q becauseΣ has no surface inertia of its own.

The projection of the vector∂FL∗(v − Fw) along the normaln is thepowerof the
tensionPn in the difference between the virtual velocityv and the push-forward inB
of the virtual ratew of material relabeling. Such a difference of velocities is a relative
velocity; for this reason I call the power developed in a relative velocity or in its gradient
relative power. This expression is also used below for the power of surface stresses. In fact,
an analogous meaning can be attributed to the surface vector fieldx 7→ (∂Fφ)∗(v−〈F 〉w).
Its projection along any normaln to a generic smooth curve overΣ , with n in the tangent
plane toΣ at x, is the relative power of the surface traction(∂Fφ)n developed in the
difference between the virtual velocity of change in observerv and the push-forward〈F 〉w
of the virtual velocity of surface relabeling. Analogous interpretations hold for the other
terms. Notice that the surface hyperstress∂∇ΣFφ appears twice in the definition ofX,
because the hyperstress∂∇F e appears twice in the definition ofF. The divergence of∂∇F e

is a ‘standard’ stress and is a sort of second order perturbation to∂F e. The divergence
of ∂∇ΣFφ has the same interpretation with respect to∂Fφ. On the other hand, the bulk
and surface hyperstresses∂∇F e and∂∇ΣFφ take into account inhomogeneity effects within
the material. At any virtual surface (Cauchy cut) inB0 with normaln, the stress(∂∇F e)n

develops power in the gradients of the ratesv andFw. Moreover, at any curve (surface
Cauchy cut) inΣ with normaln, the surface stress(∂∇ΣFφ)n develops power in the surface
gradient ofv and 〈F 〉w. The gradients ofv, Fw and 〈F 〉w underline inhomogeneities
in the virtual rates of changes in observers and relabeling. The variation in space ofv

andw allows one to account for the hyperstress effects. In fact, in the absence of body
forces, homogeneous deformations are universal solutions in the bulk even for second-
grade elasticity and no bulk hyperstress is associated with them. More precisely,F · n and
X · n represent the sums of the referential internal energy flow and the ‘relative power’ of
stresses in the bulk and on the surfaceΣ respectively.

A part bΣ , a generic subset ofB0 with the same geometrical properties ofB0 itself, is
said tocrossΣ when∂(bΣ ∩Σ) is a closed curve. In particular herebΣ is selected in such
a way that∂(bΣ ∩ Σ) is piecewise smooth and the normaln to it is defined everywhere
except at a finite number of points and, at each point of∂(bΣ ∩Σ), the vectorn belongs to
the plane tangent toΣ at the same point. By postulating the integral balance present in the
theorem below, I presume that a generalized form of the integral version of (2.18) holds on
a generic partbΣ .

THEOREM 2. LetL be invariant under changes in observers and relabeling. Suppose that
the integral balance

(3.7)
d

dt

∫
bΣ

Q dx +

∫
∂bΣ

F · n dH2
+

∫
∂(bΣ∩Σ)

X · n dH1
= 0
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is also true for any partbΣ of B0 crossingΣ and for any choice of the virtual ratesv
andw. Then acrossΣ the following interface balances hold:

(3.8) [P − Div S]m+ DivΣ (T−DivΣ T) = 0,

where

(3.9) T = −∂Fφ ∈ Hom(T ∗x Σ, T ∗y B) ∼= TxΣ ⊗ T ∗y B

is the surface Piola–Kirchhoff stress and

(3.10) T = −∂∇ΣFφ ∈ TxΣ ⊗ TxΣ ⊗ T ∗y B

the surface hyperstress; moreover, if the surface configurational shear

(3.11) c2 := −∂mφ − T〈F 〉m+ (DivΣ T)(〈F 〉m)+ T(∇Σ 〈F 〉)
tm− T〈F 〉L

is such that the mapx 7→ c2(x) is of classC1(B0), then

(3.12) m · [P2]m+ C2 tan · L+ DivΣ c2 = 0,

with

(3.13) C2 tan := φ(I −m⊗m)− F∗T+ F∗(DivΣ T)−∇ΣFt : T.

C2 tan is a generalized version of the surface Eshelby stress, introduced here for
second-grade materials; it accounts for the surface hyperstress. In (3.7),dH1 is the one-
dimensional measure over the line∂(bΣ ∩Σ).

The relation (3.7) states that the rate of the relative power of the momentum is balanced
by the flux of the relative power of the stresses (relative in the sense specified above) and
the material flux of the elastic energy, under assumption of invariance of the Lagrangian
density (see Definition 1). As mentioned above, the integral balance (3.7) can be considered
as aprinciple of relative virtual power for second-grade elastic Cauchy bodies. Note
that, in postulating (3.7), I account for the conditions (2.19) specifying the requirement
of invariance of the Lagrangian. One could omit explicit listing of the constitutive entries
of the elastic potential and write the balance of virtual power by inserting directly standard
stresses and hyperstresses. In this way, a global expression of the relative ‘virtual’ power
of all actions (inertial and non-inertial) on a partbΣ , augmented by the material flux of
energy due to the permutation of homogeneities, would appear more complicated than the
one used here.

When the surface energy is not taken into account, equation (3.12) is explicitly the
projection alongm of the Weierstrass–Erdmann corner condition for second-grade Cauchy
bodies.

PROOF. The velocityẏ suffers bounded jumps acrossΣ , but, sinceΣ has no peculiar
motion relative to the rest of the body, if a generic partbΣ is selected acrossΣ as a control
volume fixed in time, one gets simply

(3.14)
d

dt

∫
bΣ

Q dx =

∫
bΣ

Q̇ dx.
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Moreover, from the Gauss theorem it follows that

(3.15)
∫

∂bΣ

F · n dH2
=

∫
bΣ

Div F dx −

∫
bΣ∩Σ

[F] ·m dH2

and

(3.16)
∫

∂(bΣ∩Σ)

X · n dH1
=

∫
bΣ∩Σ

DivΣ X dH2.

By substituting (3.14) and (3.16) in (3.7) and taking into account Theorem 1, one finds that
the arbitrariness ofbΣ implies theweak local interfacial relative power balance

(3.17) [F] ·m+ DivΣ X = 0

for any choice ofv andw. If w = 0 andv is arbitrary andconstant, one deduces from
(2.17) and (3.6) that

(3.18) F = −P ∗v + (Div S)∗v, X = −T∗v + (DivΣ T)∗v.

Substitution in (3.17) implies (3.8) thanks to the arbitrariness ofv. Moreover, ifv = 0 and
w is arbitrary andconstant, one obtains

F = −P∗2w − ρ0w̃(y)w,(3.19)

X = −C∗2 tanw − c2vm,(3.20)

where the second-order tensorC2 tan and the vectorc2 are given by (3.13) and (3.11)
respectively. Of course, the jump ofw acrossΣ disappears because bulk forces are
continuous throughoutB0. When (3.19) and (3.20) are substituted in (3.7), one must take
into account first that

(3.21) DivΣ (C∗2 tanw + c2vm) = w · (DivΣ C2 tan+ (DivΣ c2)m)

and

(3.22) m · DivΣ C2 tan= C2 tan · L.

The first relation is immediate becausew is constant. To obtain the second relation, one
should take into account that, by definition,C2 tan is a superficial second-rank tensor, i.e.
C2 tanm = 0 at eachx. Formula (3.22) holds for any second-rank superficial tensor field
over Σ (see Lemma 2 in [4]). Both formulas (3.21) and (3.22) are useful because, to
derive (3.12), it is necessary to (i) insert (3.19) and (3.20) in (3.7), (ii) make use of the
arbitrariness ofw and its continuity acrossΣ , (iii) evaluate the component alongm of the
resulting equation, where the termρ0w̃(y)w disappears because it is continuous acrossΣ .
In developing algebra connected with the use of (3.19) and (3.20), one finds the product
Tt
∇Σ (〈F 〉w). It contributes both to the explicit expression ofC2 tan andc2. The reason is

that since by definition

(3.23) 〈F 〉 = F+ 〈F 〉m⊗m,
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it follows that

(3.24) ∇Σ 〈F 〉 = ∇ΣF+ ((∇Σ 〈F 〉)
tm)⊗m− (〈F 〉L)⊗m− (〈F 〉m)⊗ L.

The first term of the right-hand side contributes toC2 tan while the other terms appear in
the expression ofc2. In particular, notice that since

(3.25) ∇Σ (〈F 〉w) = (∇Σ 〈F 〉)
tw

becausew is selected constant amid all possibilities, one also gets

(3.26) ((〈F 〉m)⊗ L)tw = (〈F 〉m)⊗∇Σvm = 0,

thanks to the requirement (4) in the definition of relabeling with a restriction overΣ . This
last statement concludes the proof. 2

Theorems analogous to the previous one hold for both simple and complex bodies
(see [4] and [24]), that is, for first jet bundle classical field theories. In the relevant proofs
one may leavev andw arbitrary and exploit the requirement of invariance of the surface
energy under changes in observers and relabeling. Here, one is forced to selectv and
w constant to eliminate undesired terms like [S]t∇v, which cannot be eliminated by
invariance requirements onφ andL.

Following Definition 1, φ is called invariant under changes in observers and
relabeling when φ(m, F,∇ΣF) = φ((∇Σ f1)−1m, (gradΣ f)F(∇f1)−1,∇ΣF), where
∇ΣF = ((gradΣ f)y∇ΣFx(∇f1)−1)tx(∇f1)−1. In particular,φ is calledobjectivewhen
f1s1

is the identity andfs is an isometry with infinitesimal generatorv = q × (y − y0),
q× ∈ so(3) (see Corollary 2). Ifφ is objective, its derivative with respect tos, evaluated
at s = 0, must vanish. A straightforward calculation then implies that

(3.27) skw(TF∗ + T : ∇ΣF∗) = 0.

4. POINT DEFECTS

Consider a point defect (an impurity or a vacancy) located atx̄ in B0 when t = 0 and
assume that it moves inB relative toB itself. The relative motion of the defect inB can
be pictured inB0 by means of the inverse motiony−1. The result is a non-material motion
t 7→ x̄(t) in B0, characterized by the velocitȳw := d

dt
x̄(t).

Special assumptions about the admissible classes of changes in observers and
relabeling are here necessary. I presume that

(i) limx→x̄ w(x) = w̄, at eacht ,
(ii) v(y) is continuous.

A force f (adriving force) is power-conjugated with the fictitious (in the sense of being
non-material) kinematicst 7→ x̄(t) in B0. The evolution of the point defect implies the
breaking of material bonds inB so thatf should bepurely dissipativein the sense that

(4.1) f · w̄ ≥ 0
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for any choice ofw̄. Equality holds whenw̄ = 0. As a consequence,f admits a
representation of the type

(4.2) f = g(|w̄|)w̄,

with g(·) a positive definite isotropic scalar-valued function such thatg(0) = 0. The
relation (4.2) is, in fact, a solution to (4.1). Moreoverg depends on the modulus|w̄| of
w̄ rather thanw̄ itself if one imposes objectivity (in the sense ofSO(3) invariance) ong.
The driving forcef is associated with the sole dissipation mechanism occurring. Of course,
since the motiont 7→ x̄(t) is non-material (it is the fictitious representation inB0 of the real
motion of the point defect inB), the driving forcef is also fictitious and must be expressed
in terms of the true stress and hyperstress acting inB to ‘break’ the material bounds around
the point defect, by allowing it to move.

Below, br denotes a sphere of radiusr centered at̄x during its evolution, so that the
boundary∂br is endowed with a uniform velocitȳw. Consider an arbitrary partb of
B0, including x̄(t) in its interior so that there existr > 0 and a ballbr ⊂ b such that
∂br ∩ ∂b = ∅. For any fielda which takes values in a linear space and is possibly singular
at x̄, the integral ofa overb is understood here in the limit sense

(4.3)
∫
b
a(x) dx = lim

r→0

∫
b\br

a(x) dx.

From now on it is assumed thatQ and DivF are integrable overb in the sense above.
Q is then calledregular andF div-regular.

For any scalar fielda depending on space and time, forb aroundx̄ fixed in time,
and br ⊂ b varying in time to ‘follow’ virtually the motion of the point defect in its
representation inB0, in a time interval in which∂br(t) ∩ ∂b = ∅, one then gets

(4.4)
d

dt

∫
b
a(x, t) dx =

∫
b
ȧ(x, t) dx − lim

r→0

∫
∂br (t)

a(x, t)(w̄ · n) dH2.

Below it is assumed that the velocity fieldx 7→ ẏ, the standard stress and the
hyperstress may be singular in principle atx̄.

THEOREM 3. Let b be an arbitrary part including in its interior the interstitial point
defect located at̄x in B0. Consider a spherebr centered atx̄ and strictly included inb.
Suppose also that

(4.5)
d

dt

∫
b
Q dx +

∫
∂b

F · n dH2
+ f · w = 0

for any possible choice ofb, includingx̄ as specified above. IfL is invariant under changes
in observers and relabeling, covariant pointwise balances for a point defect follow as in
the list below:

lim
r→0

∫
∂br

(P − Div S)n dH2
= − lim

r→0

∫
∂br

(ρ0ẏ ⊗ w̄)n dH2,(4.6)

f = lim
r→0

∫
∂br

(P2− krelI )n dH2,(4.7)
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with

krel =
1

2
ρ0|ẏ − Fw̄|2.

Covariance is understood here in the sense of invariance with respect to the group
of automorphisms of the ambient space and relabeling. Note that (4.5) is always a relative
power balance. In the last term the infinitesimal generatorv of changes in observer is absent
becausef is configurational and is not influenced by the actions of the automorphisms of
the ambient space, where actual places of the body are described.

PROOF. Letb andbr be selected around̄x as described above (that is,br ⊂ b and∂br(t)∩

∂b = ∅ in a given time interval). By the divergence theorem,

(4.8)
∫

∂b
F · n dH2

=

∫
b

Div F dx + lim
r→0

∫
∂br

F · n dH2.

Then, by using (4.4) and (4.8), the relation (4.5) reduces to

(4.9)
∫
b
(Q̇+Div F) dx− lim

r→0

∫
∂br

Q(w̄ ·n) dH2
+ lim

r→0

∫
∂br

F ·n dH2
+ f ·w = 0,

so that Theorem 1 implies

(4.10) lim
r→0

∫
∂br

(F · n−Q(w̄ · n)) dH2
+ f · w = 0.

If v 6= 0 andw = 0, one finds

(4.11) Q = ρ0ẏ · v, F = −P ∗v + (Div S)∗v

so that (4.10) reduces to

(4.12) v · lim
r→0

∫
∂br

(ρ0ẏ ⊗ w̄ + P)n dH2
= 0

asr goes to zero, and (4.6) follows thanks to the arbitrariness ofv. The appearance of̄w is
due to the assumption made above that limx→x̄ w(x) = w̄.

Whenw 6= 0 andv = 0, one gets

Q = −ρ0ẏ · Fw,(4.13)

F = Lw + P ∗(Fw)− (Div S)∗(Fw)+St
∇(Fw)(4.14)

=
1

2
ρ0|ẏ|

2w − P∗2w −ww.

In this case (4.10) reduces to

(4.15) f · w + lim
r→0

∫
∂br

ρ0ẏ · Fw(w̄ · n) dH2

+ lim
r→0

∫
∂br

(
1

2
ρ0|ẏ|

2
− P∗2

)
w · n dH2

= 0.

The term limr→0
∫
∂br

ww · n dH2 is not present because the integrand is continuous
overB0. Sincew → w̄ asx → x̄, as assumed above, andw̄ is arbitrary, (4.15) must
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be valid under the transformation

(4.16) w̄ 7→ −w̄

so that, thanks to the arbitrariness ofw̄, (4.15) becomes

(4.17) f = lim
r→0

∫
∂br

(
P∗2n−

(
1

2
ρ0|ẏ|

2
− ρ0ẏ · w̃

)
n

)
dH2,

wherew̃ := Fw̄ is the limiting value ofFw asx → x̄. Equation (4.7) follows by taking
into account that

(4.18)
1

2
ρ0|ẏ|

2
− ρ0ẏ · w̃ = krel−

1

2
ρ0|w̃|

2

and

(4.19) lim
r→0

∫
∂br

ρ0|w̃|
2n dH2

= ρ0|w̃|
2 lim

r→0

∫
∂br

n dH2
= 0. 2

w̄ is different from zero only when the driving forcef exceeds a certain threshold
beyond which (4.7) becomes the evolution equation

(4.20) g(|w̄|)w̄ = lim
r→0

∫
∂br

(P2− krelI )n dH2.

A few remarks about the conditions under which the point defect evolves are added
below. The issue is completely standard. Lete be a unit vector attached atx̄ so that
w̄ = |w̄|e. By varyinge within S2, one finds in principle different strength of the material
aroundx̄, due to possible inhomogeneity. A mapF = S2

→ R+ then describes the
distribution of the resistance to the breaking of bonds aroundx̄. Following the standard
use one says thatf is subcriticalwhenf · e < F(e) for all e∈ S2, critical when there exist
somee ∈ S2 such thatf · e = F(e) while subcritical state is granted for all directions,
and supercritical when there exists somee ∈ S2 such thatf · e > F(e). Supercritical
behavior along a certain directione implies the evolution of the point defect alonge.
With f := f · e, the dissipationD alonge is given byD(f, e) = (f · e)w̄ = g(w̄)|w̄|2.
Also, the amplitudew̄ itself is determined byf and e so that one gets̄w = w̃(f, e),
with w̃(·, e) a strictly increasing function off . In isotropic conditionsw̄ = w̃(f ).
Supercritical behavior may occur along ‘many’e’s. The direction along which the point
defect evolves is selected by requiring that the dissipation is maximized, precisely one
computes maxe∈S2{D(f, e) | f · e > F(e)}. In isotropic conditions, the direction along
which the point defect evolves is then such thatf · e > f · s for anys∈ S2, s 6= e.

5. LINEAR INCLUSIONS

Consider now a linear rigid inclusion (a reinforcement) across which velocity and stress
fields might suffer discontinuities. Such an inclusion is represented inB0 by a single curve
l parametrized by arc lengths ∈ [0, s̄] and represented by a point valuedC2 mapZ :
[0, s̄] → B0 so that the derivativeZ,s of Z with respect tos, calculated atZ(s), is the
tangent vectort(s) atZ = Z(s).
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It is assumed that both the rate of relabelingw and the rate of change in observersv

are continuous in space.
A special class of partsbl,r of B0 is helpful. Each representativebl,r of this class is

a ‘curved’ cylinder wrapped aroundl, obtained by translating a discDr of radiusr from
Z(s1) to Z(s2), two arbitrary points ofl with s1 < s2, maintainingDr orthogonal tot at
eachZ(s) and the center ofDr coinciding withZ(s).

Consider two (coaxial) ‘curved’ cylindersbl,r1 andbl,r2 with r1 > r2. Even in this
case, for any fielda which takes values in a linear space and is possibly singular atl, the
integral ofa overbl,r1 is understood here in the limit sense

(5.1)
∫
bl,r1

a(x) dx = lim
r2→0

∫
bl,r1\bl,r2

a(x) dx.

A force field

(5.2) [0, s̄] 3 s 7→ f = f(s) ∈ R3

acts onl. It is configurational in the sense that it would be conjugated only with the velocity
of the line inclusion, in material representation, if the line inclusion itself would move in
the actual configuration relative to the rest of the body. By picturing inB0 a kinematics of
this type by means of the inverse motiony−1, in fact, an independent (actually, fictitious)
kinematics would appear inB0 which, on the contrary, would remain fixed for all time. The
situation of the evolving point defect would be exactly the same. Such a motion does not
occur because the linear inclusion is fixed, but one may imagine thatf exists even when it
is not strong enough to break the material bonds; in this sensef develops power here only
in the rate of changew of material labels inB0.

Below I considerF to be div-regular in the sense that I presume that the limit

(5.3)
∫
bJ

Div F dx = lim
r→0

∫
bJ \br

Div F dx

exists. This assumption is technical but crucial for the theorem below. In the same senseQ
is assumed to be regular.

THEOREM 4. Let bl,R and bl,r be arbitrary curved cylinders wrapped aroundl, with
R > r, bl,r ⊂ bl,R and∂bl,r ∩ ∂bl,R = ∅. Let the assumptions above be valid and also
suppose that

(5.4)
d

dt

∫
bl,r

Q dx +

∫
∂bl,r

F · n dH2
+

∫ s2

s1

f · w ds = 0

for any possible choice ofbl . If L is invariant under changes in observers and relabeling,
for anys1, s2 ∈ R+, covariant pointwise balances for a point defect follow as in the list
below: at eachs ∈ [0, s̄],

lim
r→0

∫
∂Dr

(P − Div S)n dH1
= − lim

r→0

∫
∂Dr

(ρ0ẏ ⊗ w̄)n dH1,(5.5)

f = lim
r→0

∫
∂Dr

(P2− krelI )n dH1,(5.6)

with krel =
1
2ρ0|ẏ − Fw̄|2.
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The proof follows the lines of the one of Theorem 3. Since herebl,r = Dr × [s1, s2],
one takes into account in addition just the arbitrariness of the interval [s1, s2]. Beyond
thresholds for the driving forcef, the motion of the line defect is activated as in the case of
point defects and the evolution of the line defect may generate a crack.

6. CRACKS

Within the setting of infinitesimal deformation regime, the influence of strain gradient
effects on the propagation of cracks has been discussed in [41] (see also [21]). The relevant
nonlinear theory has been developed in [23] as a special case of fracture mechanics in
complex bodies because the presence of the second gradient of deformation can be linked
to latent effects of complex material substructure in the sense introduced in [2].

In this section the matter is re-discussed: evolution equations of the crack tip are
derived by using the results of Theorems 2 and 4 above, and so in an invariant way,
completely different than the one in [23]. This follows the path indicated for field theories
on the first jet bundle in [25].

A crack occurs inB whileB0 is free of cracks. Since the crack may open and/or close,
the placement mapx 7→ y(x) fails to be one-to-one on a surfaceΣ in B0 assumed smooth
for simplicity. Unlike the surfaceΣ described in Section 2, hereΣ does not cut the body
completely, rather itendswithin B0 and its margin, thetip, is represented by a simple curve
described by a differentiable mapZ : [0, s̄] → B0.

The lateral margins of the crack are endowed with asurface energyφ which is assumed
constant, a special case of the one in Section 2. AlongJ a vector fields 7→n(s) is defined
and is such that at eachs the vectorn is normal to the tangentt(s). The scalar curvature of
J is k := −t,ss · n.

When the crack evolves in the current configuration, there is a monotone evolution
(without normal motion) ofΣ in time inB0. J moves relative toB0 and pieces ofΣ(t)

far fromJ remain at rest. For instantst1, t2 ∈ [0, t̄ ] with t1 ≤ t2, one getsΣ(t1) ⊆ Σ(t2).
During the evolution of the crack in the current place, the corresponding evolution of

J (t) is described byZ : [0, s̄] × [0, t̄ ] → B0, and

(6.1) vtip =
∂Z(s, t)

∂t

is the velocity of the tip. Precisely, herevtip is of the formvtip = V n with V = vtip · n.
As the surface energy is constant, the surface vector density in Definition 3 reduces to

(6.2) X := −φ(I −m⊗m)w.

Σ is not endowed with normal motion relative to the rest of the body so that the
proposition below holds and is a special case of Theorem 2.

PROPOSITION1. Along the lateral margins of a closed crack in a second-grade material
the following balance equations hold:

[P − Div S]m = 0,(6.3)

m · [P2]m+ φ(K −m · Lm) = 0.(6.4)
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To derive balance equations along the tip, Theorem 4 is helpful; however, here one
must consider that the tip of the crack, a line in three dimensions, is the margin of a surface
so that one must consider the contribution of the constant surface energyφ at the tip.
Another difference from the treatment of linear inclusions presented above is that one has
to consider an additionalline energyalong the tip, indicated byλtip, which is the energy
of the material bonds at the tip and can be considered constant along the tip itself. The
presence of the line energy suggests introducing the line counterpart of the vector densities
F andX along the tip, namely the scalar densityY defined by

(6.5) Y = λtipt · vtip.

Special partsbJ ,r of B0 are helpful in analyzing the balance at the tip, each having the
same geometry ofbl,r , defined in the previous section.

Additionally, when the crack evolves, its motion has a picture inB0 resulting in the
evolution ofΣ , which is an ‘additional’ (independent) kinematics inB0. A driving forcef is
then power-conjugated withvtip. In contrast to the previous section in whichf is postulated,
now one can say that it exists a priori becausef · vtip is at each point the power developed
in breaking bonds.f is intrinsically dissipative so thatf = g(|vtip|)vtip, with g a positive
definite function.

Below, two arbitrary curved cylindersbJ ,R andbJ ,r , R > r, wrapped around the tip,
are selected. Let alsobJ ,R be fixed in time whilebJ ,r be time-varying. Att = 0 they are
co-axial. Attention is here focused on a time interval in which∂bJ ,R ∩ ∂bJ ,r(t) = ∅.

THEOREM 5 (balances at the tip).Let the balance

(6.6)
d

dt

∫
bJ

Q dx +

∫
∂bJ

F · n dH2

+

∫
∂bJ ∩C

X ·m dH1
+

∫ s2

s1

f · vtip ds+Y(s2)−Y(s1) = 0

be valid for any time interval in which∂bJ ,R∩∂bJ ,r = ∅. If L is invariant under changes
in observers and relabeling, pointwise balances alongJ follow as in the list below:

(6.7) lim
r→0

∫
∂Dr

Pn dH1
= − lim

r→0

∫
∂Dr

(ρ0ẏ ⊗ vtip)n dH1,

whereDr is the cross-section, a disc, of∂bJ ,r , and

(6.8) f = J − φ − λtipk,

where

(6.9) J = n · lim
r→0

∫
∂Dr

(P2− krelI )n dH1

and

(6.10) krel =
1

2
ρ0|ẏ − Fvtip|

2.

If vtip 6= 0, then(6.8)becomesg(|vtip|)vtip = J − φ − λtipk.

The proof follows the lines of the proofs of Theorems 3 and 4.
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7. ADDITIONAL REMARKS

Second-grade elasticity and the related (in a sense subsequent) second-grade plasticity find
natural applications in modeling materials in which internal lengths generating non-local
effects play a role. A critical review by Hutchinson [13] lists prominent examples including
nano-indentation, torsion of copper wires, dislocation clustering (especially in thin films),
particle-reinforced composites. In particular, if one considers a composite made of a matrix
reinforced by spherical particles, an energy including “strain gradients will involve the
spacing between the spheres as a constitutive parameter. An elasticity theory based on
this energy density necessarily involves higher order stresses, which are the stress-like
quantities conjugated with strain gradients” (see [13, p. 234]). Another prominent case
is the one of polymeric bodies, specifically nematic elastomers. As shown in [31] it is
possible to establish a link between the gradient of the vector field describing locally the
‘orientation’ of the polymeric chains and the curvature tensor, giving rise to strain-gradient
elasticity. In this case the elastomeric substructure is consideredlatent in the sense of
Capriz [2].

To visualize a concrete example in which Theorem 2 applies, consider two composites
reinforced by spherical particles and attach them along a surfaceΣ by means of a
polymeric glue composing a thin film. The bulk hyperstressS is generated in the bulk
by the ‘spherical’ phase while the surface hyperstressT is generated in the glue by the
polymeric chains.

The introduction of the surface hyperstress and the covariant derivation of related
surface balances of interactions is the main result of this paper. It is supplemented by the
(covariant) analysis of the action of the bulk hyperstress on linear inclusions, point defects
and cracks.
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[29] J. NEČAS - M. ŠILHAV Ý, Multipolar viscous fluids. Quart. Appl. Math. 49 (1991), 247–265.



GEOMETRY AND BALANCE OF HYPERSTRESSES 331

[30] A. NEEDLEMAN - J. G. SEVILLANO , Preface to the viewpoint set on: geometrically necessary
dislocations and size-dependent plasticity. Scripta Materialia 48 (2003), 109–111.

[31] S. NIKOLOV - C.-S. HAN - D. RAABE, On the origin of size effects in small-strain elasticity
of solid polymers. Int. J. Solids Structures 44 (2007), 1582–1592.

[32] W. NOLL - E. G. VIRGA, On edge interactions and surface tension. Arch. Ration. Mech. Anal.
111 (1990), 1–31.

[33] P. J. OLVER, Application of Lie Groups to Differential Equations. Springer, Berlin, 1993.
[34] D. J. SAUNDERS - M. CRAMPIN, On the Legendre map in higher-order field theories. J. Phys.

A 23 (1990), 3169–3182.
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