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ABSTRACT. — Surface hyperstress is introduced along a layer with vanishing thickness, across which two
second-grade elastic Cauchy bodies are glued. Surface balances are obtained by making use of the relative power
of actions and of invariance requirements on the Lagrangian. The action of bulk hyperstress on vacancies, linear
inclusions and cracks is also evaluated.
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1. INTRODUCTION

The possible dependence of constitutive relations on second or higher-order gradients of
deformation and/or velocity in continuum mechanics has been widely discussed in the
scientific literature, since the pioneer works by Korteweg (1901) [17] and Jaramillo (1929)
[14]. Reasons for considering such a constitutive dependence are of various nature. For
example, gradients of the density are used to represent capillarity effects in fluids after
Korteweg (see, e.gl [17].[31.[2].[7].[40].[15].1[8]..122]). The scheme admits a natural
generalization to fluids with constitutive structures depending on higher-order gradients
of the velocity field [29]. Solids undergoing phase transitions are characterized by diffuse
interfaces; the effects of the presence of such interfaces can be considered scattered over
the body and accounted for by gradients of deformation of various orders (See [27], [35],
[36]). Experiments also show the existence of non-local effects in plastic phenomena
[13], [30]; these effects have suggested the need of second-gradient theories of plasticity
(see, e.g.,[[12],[15] and references therein). Second-gradient (non-local) contributions
of the deformation can also be attributed to latent microstructres [2]. They determine
a ‘regularizing’ effect on the motion. In general, when gradients of omdeof the
deformation and/or velocity are involved in the constitutive structures, bodies are called
of gradeN. The analysis of such bodies has theoretical interest in purely mechanical (see,
e.g., [37], [39],[28],120]), thermodynamical (see [3], [36]), and geometrical [18] aspects.

Measures of interaction, called hyperstresses, are power-conjugated with each gradient
of order greater than or equal to 2. Their existence is a necessary consequence of the
validity of the second law of thermodynamics [11], [3], [2]. Their balance has been widely
discussed (see the basic contributions [38]) [10], [6]).

Here attention is focused on materials of grade 2 (also called second-grade materials).
A commentary to the standard treatment of them is contained in Section 2. The second
jet bundle language used below is the natural setting in which one may emphasize clearly
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the balance equations discussed in what follows. The accomplishments in the subsequent
sections are listed below.

e A surface hyperstress introduced: it is defined along a thin layer gluing two second-
grade bodies. Such a stress enters surface balances which are derived here in a covariant
way.

e The influence of bulk hyperstresses on point defects and linear (rigid) inclusions is
evaluated by making use of (i) invariance requirements on the Lagrangian density and
(ii) balances of powers defined appropriately.

e Finally, the evolution of cracks in second-grade materials is analyzed. The presence of
hyperstresses alters the structure of the force driving the crack tip, as pointed out by
experiments (see companion results in [41]).

Notations A - B denotes the scalar product between tensors of the same rank (covariant
components act on contravariant components in any product defined heAeanid B

are second-rank tensorg,B indicates the product which contracts only one index and
generates a second-order tensor; for exaniplg);; = AikBj’F (the sum over repeated
indices is understood). For second-rank tensors the supersciipticates theformal
adjoint If u is a vector andd a second-rank tensor, the produtt contracts the index

of u and furnishes a vector; for exampldu)’ = Alu/. If 2 and & are third-order
tensors, the produé : & contracts two indices and furnishes a second-order tensor; for
example® : &);; = Qlijkailfk. If 2 is a third-order tensor andl a second-order tensor, the
product2 A contracts the indices of and furnishes a vector (or a covector); for example
RAA); = Ql,-jkAJ"‘; moreover, the producL A contracts only one index and generates a
third-order tensor, for exampl@(LA);;; = Q(ijkAf‘ (in certain circumstances it will also

be written A_2l with the same meaning, say_20);x = Af%lljk). If u is still a vector
and 2l a third-rank tensor, the produtx furnishes a second-rank tensor, for example
Rlu)ij = Qlijkuk. For third-rank tensors the superscriptindicates the major formal
adjoint, i.e., given vectors (or co-vectows)b, ¢, one finds((2a)b)c = ((*A*c)b)a. The
superscript indicates the formal minor adjoint, namel§2la)b)c = ((A'b)a)c.

For any pair of vector spacds and W (with dualsV* and W*), Hom(V, W) is the
space of linear maps from to W. For any smooth manifold?, 7,, M is the tangent space
of M atm € M, while T, M the corresponding cotangent spai;eneans partial derivative
with respect to the generic entry

For a surfaceX in R3, oriented at almost every point by the normaland for any
differentiable fieldR3 > x > a(x), the notationVsa = Va(I — m ® m) indicates its
surface gradient at € X. The trace ofVya defines the surface divergence ot x,
Divya = trVya. In particular, the negative of the surface gradientigf—Vym, is
denoted by and is the curvature tensor &f. Its trace is the overall curvatufé.

If x — a(x) is a piecewise differentiable field ov&3 (or some regular region of it),
taking values in a linear space and suffering a bounded discontinuity>ovies jump [a]
acrossY is defined by §] := a™ —a~ ateachr € X. Herea™ anda™ denote respectively
the inner and outer traces @bt X given by the limitsa® := lim,_,ga(x £em) fore > 0.
The average of acrossX at eachx is given by 2a) = a* + a~. For any pair of fields
a1 anday overRR3 with the same properties af the relation §1az] = [a1](a2) + (a1)[az]
holds if the product;a; is defined in distributive way.



GEOMETRY AND BALANCE OF HYPERSTRESSES 313

2. COMMENTARY TO SECOND-GRADE ELASTICITY: VARIATIONAL FORMULATION ON
THE SECOND JET BUNDLE

A body occupies a regular regidsy of R3 in a place taken aference New places are
achieved bytransplacement maps

(2.2) Bos x> y:i=ykx) eR:

Each y is a standard deformation. Common assumptions are jh&t one-to-one,
continuous and piecewise continuously differentiable (at least twice for our purposes).
The current plac® := y(Bp) of the body is endowed with the same regularity properties
of Bp. Moreover,y is orientation preserving: the value of its gradient at each 5y, i.e.

F := Vy(x) € Hom(TBo, T, B), has positive determinant (see [1] for further details).

For simplicity one may assume th&p belongs to an isomorphic cog§*3 of R3.
Motions are mapsr, 1) — y := y(x, r) € R3 twice differentiable in time, withx € Bo,

t € [0, f] andx = y(x, 0). The time derivative) := %y(x, t) is the velocity.

A fiber bundle) with = : ) — By x [0, 7] the natural projection and~1(x, r) = R3
theprototype fibeiis the natural geometrical setting for describing the shape of a body and
its motion when the generic material element is considered only as a mass point. In this
case one may call such bodi@auchy bodie$o stress the difference witomplex bodies
those for which the prototype material element needs to be considered as a system.

Mappings

(2.2) n:Box[0,f] >V, nx, 1) =1 yx1),
can then be selected and admit first and second prolongations
(2.3) PGt = Gty 9, F),

(2.4) PGt = (e .y, 3, F.§, VF),

respectively, withj1(n) and j2(n) belonging to the first and second jet bundiés’ and
J2Y. Consequently, one recovers the sequence

1 2
(2.5) Box[0,7]] <y I gty &I j2y,

wherern! andz? are the relevant natural projections.
The conservative mechanical behavior of second-grade Cauchy elastic bodies is
described by a Lagrangian

(2.6) L:J%Y — N* (B x [0, 1)),
such that
(2.7) L% (x, 1)) = L dxAdt,

with £ := L(x, y, y, F, VF) aC? density. In principle, one should take care in defining
L becauséy x [0, 7] is a manifold with boundarBy x {0} U By x {t}. However, possible
problems disappear because one is just interested in the variations of the action functional

(2.8) £ :=/ L dxndt.
Box[0,7]
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Note that, with the choice[ (2.8), the analysis is restricted to the description of
autonomou$ehavior. In particularf is selected of the form

1 . . .
(2.9) L= Epolylz—poe(x, F,VF) — poro(y),

wherepg is the referential mass density conserved along the matitime elastic energy
andr the potential of external body forces, all taken per unit mass. As convenient notation,
e andw will indicate the valueg := ppé(x, F, VF) andw = poto(y).

The Euler-Lagrange equations derive from the requirement that the first variation of
vanishes:

(2.10) 8 = 0.

Under conditions of sufficient smoothness and an appropriate definition of the variations,
such equations read

(2.11) ;L = 3yL — DiV(dp L — Div dvrL).

The derivativedy ¢ L is the so-calledhyperstresén the bulk.

Invariance requirements on the Lagrangian density under changes in observers and
relabeling of the material elements placed3gplay the essential role of first principles.
In general, observers are representations of the geometrical environments necessary to
describe the morphology of a body and its motion (§eé [24]). In this case such geometric
environments are the ambient spdt® an isomorphic copR*3 containing the reference
placeBo, and the time scale [@]. Here attention is focused only on synchronous changes
in observers that leave invariant the reference place. They are described by smooth curves
Rt 5 s — f, e Diff (R%, R3) on the group of diffeomorphisms @?, starting from the
identity. The infinitesimal generator of such an action is indicated ayeachy. It is the
derivative with respect to of f := f,(y) ats = 0, that isf} () |s=o.

When appropriates will be tacitly identified with the timeg. Of course, in the above
setting, classical isometric changes in observers, governed by the semidirect firdeuct
SO (3), are included.

By considering only changes of the ambient sg&ggall observers register agentical
picture of the reference placBy. However, the assignment of labalgo points inBg is
only instrumental and has no physical relevance. Then the requirement of invariance of the
Lagrangian with respect to relabeling appears natural in these conditions. Moreover, when
defects are present, relabeling implies a sort of ‘permutation’ of defects (for example point
defects such as vacancies or inclusions). Formally, the relabeling is defined by smooth
curvesRt 5 51 > fL e SDiff(Bo, R*®), with f} the identity. SDiffBo, R*®) is the
special group of diffeomorphisms ovBp so that at each; one getsx — f}l(x), with
Div fS]Jl(x) = 0, where the prime denotes differentiation with respect to the parameter

The notationw:= fé’(x) is useful and also the gradient with respectto:= fsll(x) is
indicated byV;1. When appropriates; will be tacitly identified with the time as well as
with s.
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LEMMA 1. The combined action df}l and f; at anys; and s implies the following
transformations:

(2.12) y — (gradf)y,
(2.13) F — F = (gradf) F(vf}H) 1,
(2.14) VF + VF = ((gradf) .V FL(VEH ™Y L(vihy =t 4 Fova(vih 1

PrROOF At eachs andy € B, gradf € Hom(7, B, Tif,(B)), then, sincey € T,B, the
relation ) follows. To prov@3), first recall thete Hom(7Bo, T,B) = T,B ®

T} Bo. Then, the left action of gradmaps linearlyr’, 5 in Tif,(B) while the right action
of (vih~1 transforms linearlyr’? By in Tf% (Bo). The relation ) can be obtained

flls1
by calculating the second gradientfof= fs(y(fl_l(x))) and taking into accoun3).
Notice that the twofold right application a1 is justified by the fact thaV F e
T,B® T, Bo ® T, Bo, so a twofold transformation dfBg in T*l‘fsll(Bo) by means of
(vih)~1is necessary. The second term on the right-hand side of (2.14) follows from the
fact that the derivativ® is transported along the trajectories inducedﬁ?y O

Note that the proof above holds even if one considers a generalized relabeling
represented by curves on the entire group of diffeomorphismgifiR *3) over By, rather
than its special subgroup.

DEerFINITION 1. £ is said to beinvariant with respect to changes in observers and
relabelingif

(2.15) L(x,y,y, F,VF)=L{ 1, (gradf)y, F, VF)
for any smooth curve — f, € Aut(R®) andsy — fl e SDiff(Bo, R*3).

From now on it is assumed that the mep~> dvrL € T7B Q T:Bo ® TxBo, x € B,
is of classC1 (o).

DEFINITION 2. Q and§ are respectively scalar and vector densities defined by

(2.16) Q:=0;L (v— Fuw),
(2.17) = Lw+pL* (v — Fw) — (DVdvrL)* (v — Fw) + dvp L' V(v — Fw).

THEOREM 1. If £ is invariant with respect to changes in observers and relabeling, then,
wheng is of classC? in space and2 is of the same class in time,

(2.18) Q+Divg =0.

The theorem above is the Noether theorem for second-grade elasticity and is not a
new result. A proof is presented ih 18] within a general framework of second-order
multisymplectic field theorie$ [26] (see al§o[33] for higher order Euler operator§ and [34]).
A simple proof is reported below.



316 P. M. MARIANO

PrROOF The requirement of invariance d@f under the action of}1 andf, implies the
identities

(2.19) —L =0, —C =0,
de_ s1=0, s=0 ds s1=0, s=0
that correspond respectively to

(220) KL -w—93rL - FVw —dyrL - (VF'LVw)
—ovpLl - (VFLVw) — 0vpL - (F.V ® Vw) =0,

(2.21) 98,L-v+03;L-(gradv)y + L - (gradv)F + dvrL - (gradv VF) = 0.

By evaluating the time derivative & and the spatial divergence §f the use of[(2.20)
and [2.2R) implies, after some algebra, that

d
+ L
s1=0, s=0 ds2

(2.22) Q+DW§:515 O

S1

s1=0, s=0

Note that in the proof above use is made of the Euler-Lagrange equation, which
requires a regularity greater than the one needed in a direct proof that does not make use
of balance equations (see [18], alsb [9] for classical field theories on first jet bundles).

COROLLARY 1. If v # Qis left arbitrary andw = 0O, it follows that
(2.23) po¥ = b+ Div(P —DivG) in By

In ), P = —0rL € Hom(T}Bo, 7,/ B) is the first Piola—Kirchhoff stres$, =
WL eTTB the vector of non-inertial body forces ad= —dv gL € TxBo®TxBo®Ty*B
the bulk hyperstress (reasons for the existence of hyperstresses apart from this conservative
setting have been discussed lin [6].1[32]). Of coure, {2.23) is just the Euler-Lagrange
equation associated with (2.8) but the way it is re-obtained ensures its covariance.

PrROOF Whenv # 0 andw = 0, in fact, one gets

(2.24) Q=L v,
(2.25) F=0pLv — (Div aVFﬁ)*U + avpﬁtvv.

Then, from Theorem 1 anfl (Z]22), equatipn (2.23) follows. O

COROLLARY 2. Letf; be anisometry. Them= ¢ x (y — yo) withg x € s0(3) andyg an
arbitrary point. Let alsqy be constant. The action of the special choic gfist selected,
leavingg arbitrary, implies

(2.26) SKWPF* + & : (VF)*) =0

The proof follows by direct calculation.
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COROLLARY 3. If w # Ois left arbitrary andv = 0, it follows that

_ 1
(2.27) F*0; L + DiV(Pz - épo|fc|21> + F*b — 3xe =0
in Bp, with
(2.28) P,=el — F*P+ F*DivG — (VF)' : &.

The second-rank tens € T;*Bo ® T, 5o is the appropriate form for second-grade
materials of the Eshelby stress (see €.gl [16], [19]). In the absence of defects evolving
irreversibly within the body, equatiof (2]27) is nothing but the projectiof of [2.23) in the
reference place by means of the inverse map, when the deformation is sufficiently
smooth. On the other hand, when a bulk defect is present and evolves irreversibly in the
body, equation[(2.27), augmented by a driving force, governs the evolution of the defect
itself.

PROOF Whenv = 0 andw # 0, it follows that

(2.29) Q=—8L- Fu,
(2.30) F=Lw— apﬁ*(Fw) + (Div avpﬁ)*(Fw) — avpﬁtV(Fw).

Then, by using Theorem 1 ar{d (2]20), equatjon (2.27) follows.0

For ahomogeneousecond-grade elastic material, for any fixed control pagguation
(2.27) is implied by the integral balance

(2.31) i/ f(x),ooF*y'dx—i-/ f(x)F*bdx—i—/ F(x)Pon dH?
dt Bo Bo a8y

_1 L2 2
=5 fx)poly|“ndH?,
B0

holding for any smooth (scalar) functian— f(x) with compact support iffg. Heren is
the outward unit normal to the boundaigo andd+? the two-dimensional measure over
dBp. Moreover, if inertia and body forces are absent, one gets

(2.32) f)PondH? =0.
aBo

3. GLUING TWO SECOND-GRADE BODIES THE SURFACE HYPERSTRESS

Although the dependence of the energy on the second gradient of deforrvatialiows
one to account for the presence of minute interfaces scattered throughout the body in a
regularized manner, there might be circumstances in which additional macroscopic sharp
discontinuity surfaces occur. In this case, there is interaction between the minute interfaces
and the macroscopic one.

As a paradigmatic example, consider two second-grade bodies glued to each other
along a smooth surfacE by means of a layer of glue with vanishing thickness. A surface
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energy densityp accounts for the properties of the glue distributed aléh@ order to
attach the two bodies, and assumed to be made of a second-grade material.

X is the surfacdx € cl By : f(x) = 0}, with f a scalar function assumed smooth for
simplicity. The normaln to X is defined by

Vi)
m =

IV f )l
and orientsY locally. Alternatively one may consider a body in a reference pligéehen
one may cut it in two distinct pieces and then glue them. In this gagethe image in3g

of the glued cut in3, obtained by means of the inverse motion'.
Itis assumed that both the md@§andfs, defining respectively relabeling and changes

in observers, are continuous acrassogether with their derivative‘%{ andf’, with respect
to the relevant parameters for f;Ll ands for f,). Moreover, it is assumed that the map

(3.1)

(3.2) Bos>x+— F=F(x)eT,B®T;Bo

suffers bounded jumps aF, together with its gradient, and, as usual, thaface
deformation gradientf is defined byF := (F)(I — m ® m). It is the value of aCt
map

(3.3) T 3x - F=F(x) e HomT, X, T, B).

The surface gradient df defined byVsF : = VsF(x) € T} Y ® T)Y ® T, B is the
second surface gradient of deformatidn particular, it is immediate to recognize that

(3.4) VsF=(VF).(-m®m)' (I —-m®m)+ (F)L)®m+ (F)m) ® L.

The average of acrossX defines the surface deformation gradient aldhgits jump
characterize&’, which is calledcoherenwhen [F](I — m @ m) = 0.

Itis assumed that bulk stresses and velocity suffer bounded jumps acreke bulk
forces are continuous throughd8g. The mass density is constant.

As mentioned above, is assumed to be endowed with its osurface energy given
by a sufficiently smooth magp defined by

(3.5) m,F, VsF) > ¢ = ¢(m, F, VsTF).

The dependence on the second surface gradient of deformégiBrallows one to account
for minute interfaces distributed ove¥ or even for distributed wrinkles in a scattered
sense. The presence of the normalin the list of entries of¢p accounts for possible
anisotropyof X'. In the case of isotropic surfacesdoes not depend on.

As shown in|[4] and[[24], in the presence of discontinuity surfaces the arbitrariness of
the possible relabeling d#y has to be restricted. | indicate by — f;Ll € SDiff(Bp) the
‘restricted’ relabeling defined by the properties listed below.

(1) The fieldBo > x > w :=f§ (x) is of classC*(Bo).
2) Eachf%1 preserves the elements of areaXtfif d A is the element of area df in By,
thend A = f%l*dA, where the asterisk indicates push-forward.
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(3) Vwym =0atx € X.
(4) Vyv,, =0, withv,, = w - m.

DEFINITION 3. X is a vector density oveE defined by

(3.6) X:=—-¢(-m@muw+ @r)*(v — (F)w) — (DiVy dy;rd)* (v — (F)w)
+ (vsFg) Ve (v — (F)w) — (3¢ @ m)w.

At eachx, the vectorX is the surface counterpart §f There is no surface counterpart
of Q becauseX has no surface inertia of its own.

The projection of the vectoyr L*(v — Fw) along the normak is the power of the
tension Pn in the difference between the virtual velocityand the push-forward i
of the virtual ratew of material relabeling. Such a difference of velocities is a relative
velocity; for this reason | call the power developed in a relative velocity or in its gradient
relative power This expression is also used below for the power of surface stresses. In fact,
an analogous meaning can be attributed to the surface vectat field 9p¢)* (v — (F)w).
Its projection along any normalto a generic smooth curve ovét, with n in the tangent
plane toX at x, is the relative power of the surface tractigdr¢)n developed in the
difference between the virtual velocity of change in obsenvand the push-forwartF)w
of the virtual velocity of surface relabeling. Analogous interpretations hold for the other
terms. Notice that the surface hyperstrégsr¢ appears twice in the definition €,
because the hyperstressy e appears twice in the definition g The divergence dfy re
is a ‘standard’ stress and is a sort of second order perturbatiépetoThe divergence
of 9y, r¢ has the same interpretation with respecdjg. On the other hand, the bulk
and surface hyperstressigre anddy, r¢ take into account inhomogeneity effects within
the material. At any virtual surface (Cauchy cut)dp with normaln, the stres$dy re)n
develops power in the gradients of the rateand Fw. Moreover, at any curve (surface
Cauchy cut) inx with normaln, the surface streg8y . r¢)n develops power in the surface
gradient ofv and (F)w. The gradients ob, Fw and (F)w underline inhomogeneities
in the virtual rates of changes in observers and relabeling. The variation in space of
andw allows one to account for the hyperstress effects. In fact, in the absence of body
forces, homogeneous deformations are universal solutions in the bulk even for second-
grade elasticity and no bulk hyperstress is associated with them. More pregiselgnd
X - nrepresent the sums of the referential internal energy flow and the ‘relative power’ of
stresses in the bulk and on the surfaceespectively.

A part by, a generic subset @y with the same geometrical propertiesi¥ itself, is
said tocrossX whend(bx N X) is a closed curve. In particular hetrg is selected in such
a way thatd(by N X) is piecewise smooth and the nornmato it is defined everywhere
except at a finite number of points and, at each poindtdf; N X), the vecton belongs to
the plane tangent t& at the same point. By postulating the integral balance present in the
theorem below, | presume that a generalized form of the integral versipn of (2.18) holds on
a generic parbx.

THEOREM 2. Let. be invariant under changes in observers and relabeling. Suppose that
the integral balance

d
(3.7) — | Qdx+ S-ndﬁz—l—/ X-ndH'=0
dt Jey bx 3(bzNT)
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is also true for any parby of By crossingX and for any choice of the virtual rates
andw. Then acros< the following interface balances hold:

(3.8) [P — DivS]m + Divy (T—Divy T) =0,
where
(3.9 T = —dp¢p € Hom(T;} 2, Ty B) = T. ¥ @ Ty B

is the surface Piola—Kirchhoff stress and

(3.10) T=—Oy,rp e LZRT,ZRT;B

the surface hyperstress; moreover, if the surface configurational shear
(3.11) 2= —0nop — T(F)m + (Divy D) (F)m) + T(Vx(F))'m — T(F)L

is such that the map — ¢2(x) is of classC1(Bp), then

(3.12) m - [P2]m + Cotan- L+ Divy ¢ =0,
with
(3.13) Cotan:=¢(I —m @ m) — F*T + F*(Divy T) — Vs F' : %.

Cotan is a generalized version of the surface Eshelby stress, introduced here for
second-grade materials; it accounts for the surface hyperstrelnd(H.17)s the one-
dimensional measure over the libg x N 3).

The relation[(3.]7) states that the rate of the relative power of the momentum is balanced
by the flux of the relative power of the stresses (relative in the sense specified above) and
the material flux of the elastic energy, under assumption of invariance of the Lagrangian
density (see Definition 1). As mentioned above, the integral balange (3.7) can be considered
as aprinciple of relative virtual power for second-grade elastic Cauchy bodiate
that, in postulating[(3]7), | account for the conditions (2.19) specifying the requirement
of invariance of the Lagrangian. One could omit explicit listing of the constitutive entries
of the elastic potential and write the balance of virtual power by inserting directly standard
stresses and hyperstresses. In this way, a global expression of the relative ‘virtual’ power
of all actions (inertial and non-inertial) on a part, augmented by the material flux of
energy due to the permutation of homogeneities, would appear more complicated than the
one used here.

When the surface energy is not taken into account, equdtion| (3.12) is explicitly the
projection alongn of the Weierstrass—Erdmann corner condition for second-grade Cauchy
bodies.

ProOOF The velocityy suffers bounded jumps acrogs but, sinceX’ has no peculiar
motion relative to the rest of the body, if a generic figftis selected across as a control
volume fixed in time, one gets simply

d

(3.14) — | Qdx=| Qdx.
dt bs bs
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Moreover, from the Gauss theorem it follows that

(3.15) / S~nd'H2=/ Divgdx—f [3] - mdH?
Bbz ['12 bzﬂz
and
(3.16) / x-ndlef Divs X dH2.
a(byNx) byNXy

By substituting[(3.14) andl (3.116) in (3.7) and taking into account Theorem 1, one finds that
the arbitrariness di » implies theweak local interfacial relative power balance

(3.17) [§]-m +Divy X =0

for any choice ofv andw. If w = 0 andv is arbitrary andconstant one deduces from

(2:17) and[(3.p) that
(3.18) F=—-P*v+ (Dive)*v, X =-T"v+ (Divy %)*v.

Substitution in[(3.1]7) implie$ (3.8) thanks to the arbitrariness doreover, ifv = 0 and
w is arbitrary andconstantone obtains

(3.19) § = ~Phw — poid(y)w,
(3.20) X = —C§ arl — 2V,

where the second-order tensBpan and the vector, are given by[(3.13) and (3.]11)
respectively. Of course, the jump af acrossX disappears because bulk forces are
continuous throughousy. When [3.ID) and (3.20) are substituted[in(3.7), one must take
into account first that

(3.21) Divs; ((C;tanw + coVy) = w - (Divy Cotan+ (Divy c2)m)
and
(3.22) m - DiVy Cotan= Catan- L.

The first relation is immediate becauseis constant. To obtain the second relation, one
should take into account that, by definitidiy ta, is @ superficial second-rank tensor, i.e.
Catann = 0 at eachx. Formula [(3.2R) holds for any second-rank superficial tensor field
over ¥ (see Lemma 2 in[4]). Both formulag (3]21) arid (3.22) are useful because, to
derive [3.1D), it is necessary to (i) ins€rt (3.19) gnd (3.20) in| (3.7), (ii) make use of the
arbitrariness ofv and its continuity acros¥, (iii) evaluate the component alomg of the
resulting equation, where the temgro (y)w disappears because it is continuous acss

In developing algebra connected with the use| of (3.19) pnd](3.20), one finds the product
T'Vx ((F)w). It contributes both to the explicit expression@fan andcy. The reason is

that since by definition

(3.23) (F)=F+ (F)m ®m,
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it follows that
(3.24) Ve(F)=VsF+ (Vs(F)'m)®@m — (F)L) ® m — ((F)m) ® L.

The first term of the right-hand side contributesigian while the other terms appear in
the expression of. In particular, notice that since

(3.25) Vs(F)w) = (Vz(F)'w
becausew is selected constant amid all possibilities, one also gets
(3.26) ((Fym) @ L)'w = ((F)m) ® VxV,, =0,

thanks to the requirement (4) in the definition of relabeling with a restriction Bvérhis
last statement concludes the proof. O

Theorems analogous to the previous one hold for both simple and complex bodies
(see 4] and([24]), that is, for first jet bundle classical field theories. In the relevant proofs
one may leave andw arbitrary and exploit the requirement of invariance of the surface
energy under changes in observers and relabeling. Here, one is forced tovsetett
w constant to eliminate undesired terms lik&]{Vv, which cannot be eliminated by
invariance requirements ghand ..

Following Definition 1, ¢ is called invariant under changes in observers and
relabeling when ¢ (m, F, VsF) = ¢(VsfH)~im, (grads HF(VIH L, VeF), where
VsF = ((grads ) VsFL (V)™ (Vi) =L, In particular,¢ is called objectivewhen
f}l is the identity and, is an isometry with infinitesimal generator= ¢ x (y — yo),
gx € so0(3) (see Corollary 2). I is objective, its derivative with respect o evaluated
ats = 0, must vanish. A straightforward calculation then implies that

(3.27) SkWTF* + T : V5F*) = 0.

4. POINT DEFECTS

Consider a point defect (an impurity or a vacancy) located &t 59 when: = 0 and
assume that it moves i relative to5 itself. The relative motion of the defect ifi can
be pictured inBy by means of the inverse motigm . The result is a non-material motion
t — x(¢) in Bg, characterized by the velocity := %i(t).

Special assumptions about the admissible classes of changes in observers and
relabeling are here necessary. | presume that

@) lim,_; w(x) = w, at eaclr,
(i) v(y) is continuous.

A forcef (adriving force is power-conjugated with the fictitious (in the sense of being
non-material) kinematics — x(¢) in Bg. The evolution of the point defect implies the
breaking of material bonds i so thatf should bepurely dissipativen the sense that

4.1) fow>0
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for any choice ofw. Equality holds whemv = 0. As a consequencd, admits a
representation of the type
(4.2) f=g(whw,

with g(-) a positive definite isotropic scalar-valued function such %@ = 0. The
relation [4.2) is, in fact, a solution tp (4.1). Moreovgedepends on the modulug| of
w rather thanw itself if one imposes objectivity (in the sense $ (3) invariance) org.
The driving forcef is associated with the sole dissipation mechanism occurring. Of course,
since the motiom — x(¢) is non-material (it is the fictitious representatiorfnof the real
motion of the point defect i), the driving forcef is also fictitious and must be expressed
in terms of the true stress and hyperstress actirjtm'break’ the material bounds around
the point defect, by allowing it to move.

Below, b, denotes a sphere of radiusentered at during its evolution, so that the
boundarydb, is endowed with a uniform velocityp. Consider an arbitrary pa#t of
Bo, including x(¢) in its interior so that there exist > 0 and a ballb, c b such that
ab, N ab = ¢. For any fielda which takes values in a linear space and is possibly singular
atx, the integral oz overb is understood here in the limit sense

(4.3) /a(x) dx = lim / a(x)dx.
b r—0 b\b,
From now on it is assumed th& and DivF are integrable ovel in the sense above.
@ is then calledegular and§ div-regular.
For any scalar field: depending on space and time, foraroundx fixed in time,
andb, C b varying in time to ‘follow’ virtually the motion of the point defect in its
representation ifp, in a time interval in whick9b, (r) N 9b = ¢, one then gets

d . _
(4.4) —/a(x, t)ydx = /d(x, t)dx — lim a(x,t)(w - n) dH?.
dt Jp b r=0J56,(t)
Below it is assumed that the velocity field — y, the standard stress and the
hyperstress may be singular in principlecat

THEOREM3. Let b be an arbitrary part including in its interior the interstitial point
defect located at in By. Consider a spheré, centered atc and strictly included inb.
Suppose also that

(4.5) i/de+ F-ndH*+§-w=0
dt Jy ab

for any possible choice @f includingx as specified above. ff is invariant under changes
in observers and relabeling, covariant pointwise balances for a point defect follow as in
the list below:

(4.6) lim [ (P=Div&)ndH?=—1im [ (poy ® w)ndH?,
r—0 ab, r—0 ab,

4.7) f=1lim | (P2 — kietl)n dH>,

r—0 ab,
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with
1 . — 2
krel = EPOD’ — Fwl|*.

Covariance is understood here in the sense of invariance with respect to the group
of automorphisms of the ambient space and relabeling. Note that (4.5) is always a relative
power balance. In the last term the infinitesimal genenatdrchanges in observer is absent
becausd is configurational and is not influenced by the actions of the automorphisms of
the ambient space, where actual places of the body are described.

PROOF. Letb andb, be selected aroundas described above (thatts, C b andab, ()N
ab = ¢ in a given time interval). By the divergence theorem,

(4.8) F-ndH? = / DivZdx +lim | §-ndH>
3b b r—0J3p,
Then, by using[(414) anfl (4.8), the relatipn {4.5) reduces to
(4.9) /(Q+Divg) dx — lim Q(w -n) dH?+ lim F-ndH?+f-w=0,
b r—0J3p, r—0J3p,
so that Theorem 1 implies

(4.10) lim | (@ n— Q- n)dH? +f-w =0.
r— 3br

If v # 0 andw = 0, one finds

(4.11) Q=py-v, F=—P*v+ (DivS)*v

so that[(4.Ip) reduces to
(4.12) v-lim / (poy ® W + P)ndH? =0
r—>0J3p,

asr goes to zero, anfl (4.6) follows thanks to the arbitrariness ®he appearance af is
due to the assumption made above that lip w(x) = w.
Whenw # 0 andv = 0, one gets
(4.14) §=Lw+ P*(Fw) — (Div&)*(Fw) + &8'V(Fw)
1
= Epo|y|2w — Pow — ow.
In this case[(4.70) reduces to

(4.15) f-w—i—limO/ ooy - Fw(w - n) dH?
r— abr

. 1
—|—|Im/ (—po|)'z|2—]P”§>w'nd'H2=0.
r—0 ab, 2

The term lim_o fab, row - n dH? is not present because the integrand is continuous
over Bop. Sincew — w asx — X, as assumed above, aadis arbitrary, [(4.1p) must
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be valid under the transformation
(4.16) W —w

so that, thanks to the arbitrarinessunf(4.15) becomes

1
(4.17) f= lim / (Pzn— (—poly'lz—poy"ﬁ})n> aH2,
r—0J3p, 2

wherew := Fw is the limiting value ofFw asx — x. Equation[(4.]7) follows by taking
into account that

1 . .o 1 .
(4.18) Epolyl2 — poy - W = krel — é/oolwl2
and
(4.19) Iim/ p0|zb|2ndH2=,oo|zZ)|2|im/ ndH?>=0. O
r—0J3p, r—0J3p,

w is different from zero only when the driving forgeexceeds a certain threshold
beyond which([(4]7) becomes the evolution equation

(4.20) g(lwhw = IimO/ (P2 — kretI)n dH2.
r— 3br

A few remarks about the conditions under which the point defect evolves are added
below. The issue is completely standard. leebe a unit vector attached at so that
w = |w|e. By varyinge within $2, one finds in principle different strength of the material
aroundx, due to possible inhomogeneity. A map = $2 — R* then describes the
distribution of the resistance to the breaking of bonds aroungbllowing the standard
use one says th4is subcriticalwhenf - e < F(e) for all e € §?, critical when there exist
somee € $2 such thatf - e = F(e) while subcritical state is granted for all directions,
and supercritical when there exists some € S2 such thatf - e > F(e). Supercritical
behavior along a certain directiomimplies the evolution of the point defect alorg
With f := f - e, the dissipatior® alonge is given by®(f,e) = (f- @w = g(w)|w|
Also, the amplitudew itself is determined byf and e so that one get®r = w(f,e),
with w(-, €) a strictly increasing function off. In isotropic conditionsw = w(f).
Supercritical behavior may occur along ‘margg. The direction along which the point
defect evolves is selected by requiring that the dissipation is maximized, precisely one
computes max 2{D(f.e) | f- e > F(e)}. In isotropic conditions, the direction along
which the point defect evolves is then such thae > f - sfor anys € 52, s # e.

5. LINEAR INCLUSIONS

Consider now a linear rigid inclusion (a reinforcement) across which velocity and stress
fields might suffer discontinuities. Such an inclusion is represent8g by a single curve

I parametrized by arc leng# < [0, 5] and represented by a point valuéd map Z :

[0,5] — Bp so that the derivative s of Z with respect tos, calculated atZ(s), is the
tangent vectot(s) at Z = Z(s).
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It is assumed that both the rate of relabelingand the rate of change in observers
are continuous in space.

A special class of parts; , of By is helpful. Each representatie . of this class is
a ‘curved’ cylinder wrapped arourid obtained by translating a didg, of radiusr from
Z(s1) to Z(s2), two arbitrary points of with s1 < s», maintainingD, orthogonal ta at
eachZ(s) and the center ab, coinciding withZ(s).

Consider two (coaxial) ‘curved’ cylinders ., andb; ., with ry > rp. Even in this
case, for any field: which takes values in a linear space and is possibly singulattz
integral ofa overb; ., is understood here in the limit sense

(5.1) / a(x)dx = lim / a(x)dx.
bl.rl r2—>0 bl.rl\bl,rz
A force field
(5.2) [05] 55+ f=f(s) € R®

acts on. Itis configurational in the sense that it would be conjugated only with the velocity
of the line inclusion, in material representation, if the line inclusion itself would move in
the actual configuration relative to the rest of the body. By picturinggia kinematics of
this type by means of the inverse motign?, in fact, an independent (actually, fictitious)
kinematics would appear iig which, on the contrary, would remain fixed for all time. The
situation of the evolving point defect would be exactly the same. Such a motion does not
occur because the linear inclusion is fixed, but one may imaging thdsts even when it
is not strong enough to break the material bonds; in this setleeeclops power here only
in the rate of change of material labels iri3;.

Below | considef to be div-regular in the sense that | presume that the limit

(5.3) / DivFdx = lim / DivFdx

by r—0 b7\b,
exists. This assumption is technical but crucial for the theorem below. In the sameaXense
is assumed to be regular.

THEOREM4. Letb; g and b;, be arbitrary curved cylinders wrapped arourdwith
R > r, b, C by ganddb;, Nab;, g = ¥. Let the assumptions above be valid and also
suppose that

d 52

(5.4) = | Qdx+ 3-ndH2+/ f-wds =0
dt er abl,r 51

for any possible choice df. If £ is invariant under changes in observers and relabeling,

for anysi, s, € R, covariant pointwise balances for a point defect follow as in the list

below: at eacls € [0, 5],

(5.5) im [ (P—Div&ndH: = — lim / (poy ® w)n dH2,
r—>0J3p,

I
r—0 3D,

(5.6) f= lim / (P2 — ket)n dH,
D,

r—

with krel = %POU’ — Fl2
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The proof follows the lines of the one of Theorem 3. Since lbgre= D, X [s1, 52],
one takes into account in addition just the arbitrariness of the intesyasd]. Beyond
thresholds for the driving forcg the motion of the line defect is activated as in the case of
point defects and the evolution of the line defect may generate a crack.

6. CRACKS

Within the setting of infinitesimal deformation regime, the influence of strain gradient
effects on the propagation of cracks has been discussed in [41] (s€e also [21]). The relevant
nonlinear theory has been developedlinl [23] as a special case of fracture mechanics in
complex bodies because the presence of the second gradient of deformation can be linked
to latent effects of complex material substructure in the sense introduced in [2].

In this section the matter is re-discussed: evolution equations of the crack tip are
derived by using the results of Theorems 2 and 4 above, and so in an invariant way,
completely different than the one in_]23]. This follows the path indicated for field theories
on the first jet bundle ir [25].

A crack occurs in3 while By is free of cracks. Since the crack may open and/or close,
the placement map — y(x) fails to be one-to-one on a surfagein By assumed smooth
for simplicity. Unlike the surface& described in Section 2, he® does not cut the body
completely, rather iendswithin By and its margin, thép, is represented by a simple curve
described by a differentiable map: [0, 5] — Bo.

The lateral margins of the crack are endowed wislhudace energy which is assumed
constanta special case of the one in Section 2. Alghg vector fields —n(s) is defined
and is such that at eaetthe vectom is normal to the tangertts). The scalar curvature of
Jist:=—tg N

When the crack evolves in the current configuration, there is a monotone evolution
(without normal motion) ofX' in time in Bp. J moves relative td5g and pieces o' (¢)
far from 7 remain at rest. For instants o € [0, 1] with 11 < £, one gets¥ (r1) € X (12).

During the evolution of the crack in the current place, the corresponding evolution of
J (t) is described by : [0, 5] x [0, ] — Bo, and

0Z(s,1)
Jat

is the velocity of the tip. Precisely, hevg, is of the formugp = Vnwith V = vgjp - n.
As the surface energy is constant, the surface vector density in Definition 3 reduces to

(6.1) Utip =

(6.2) X'=—¢(-—memuw.

X is not endowed with normal motion relative to the rest of the body so that the
proposition below holds and is a special case of Theorem 2.

ProPOSITIONL. Along the lateral margins of a closed crack in a second-grade material
the following balance equations hold:

(6.3) [P —DivS&]lm =0,
(6.4) m - [Po]lm + ¢ (I —m - Lm) = 0.
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To derive balance equations along the tip, Theorem 4 is helpful; however, here one
must consider that the tip of the crack, a line in three dimensions, is the margin of a surface
so that one must consider the contribution of the constant surface epesgyhe tip.
Another difference from the treatment of linear inclusions presented above is that one has
to consider an additiondihe energyalong the tip, indicated bjp, which is the energy
of the material bonds at the tip and can be considered constant along the tip itself. The
presence of the line energy suggests introducing the line counterpart of the vector densities
§ andX along the tip, namely the scalar densljydefined by

(6.5) 2 = hipt - vep.

Special partd 7 , of By are helpful in analyzing the balance at the tip, each having the
same geometry df; ., defined in the previous section.

Additionally, when the crack evolves, its motion has a pictur@grresulting in the
evolution of ¥, which is an ‘additional’ (independent) kinematicdif A driving forcef is
then power-conjugated withjp. In contrast to the previous section in whidls postulated,
now one can say that it exists a priori becafiseyp, is at each point the power developed
in breaking bondsj is intrinsically dissipative so thgt= g(|vtp|)viip, With g a positive
definite function.

Below, two arbitrary curved cylindetts; z andb 7 ., R > r, wrapped around the tip,
are selected. Let aldg; g be fixed in time whileb 7 . be time-varying. At = 0 they are
co-axial. Attention is here focused on a time interval in whidhy g N 0b 7 . (t) = @.

THEOREM5 (balances at the tip).et the balance

d
66) — | Qdx+ F-ndH?®
dt bs by

52
+/ 3€-mdf)1+/ - vipds +(s2) — V(s1) = 0
abij 51

be valid for any time interval in whichb 7 R N0b 7 , = @. If L is invariant under changes
in observers and relabeling, pointwise balances alghipllow as in the list below:

(6.7) Iim/ Pnd$Ht = — lim / (poy ® viip)n st

r—0 aD, r—0 aD,
whereD, is the cross-section, a disc, &b 7 ,, and
(6.8) f=J—&— Aipt,
where
(6.9) J=n-lim / (P2 — ket d$Ht

r—0 D,
and
1 . 2

(6.10) krel = Epoly — Fuipl“.

If viip # O, then@) becomeg (Jviip)vtip = J — ¢ — Atipt.

The proof follows the lines of the proofs of Theorems 3 and 4.
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7. ADDITIONAL REMARKS

Second-grade elasticity and the related (in a sense subsequent) second-grade plasticity find
natural applications in modeling materials in which internal lengths generating non-local
effects play arole. A critical review by Hutchinson [13] lists prominent examples including
nano-indentation, torsion of copper wires, dislocation clustering (especially in thin films),
particle-reinforced composites. In particular, if one considers a composite made of a matrix
reinforced by spherical particles, an energy including “strain gradients will involve the
spacing between the spheres as a constitutive parameter. An elasticity theory based on
this energy density necessarily involves higher order stresses, which are the stress-like
quantities conjugated with strain gradients” (se€ [13, p. 234]). Another prominent case
is the one of polymeric bodies, specifically nematic elastomers. As shovinlin [31] it is
possible to establish a link between the gradient of the vector field describing locally the
‘orientation’ of the polymeric chains and the curvature tensor, giving rise to strain-gradient
elasticity. In this case the elastomeric substructure is considatedt in the sense of
Capriz [2].

To visualize a concrete example in which Theorem 2 applies, consider two composites
reinforced by spherical particles and attach them along a sufadey means of a
polymeric glue composing a thin film. The bulk hyperstré&sss generated in the bulk
by the ‘spherical’ phase while the surface hyperstfgss generated in the glue by the
polymeric chains.

The introduction of the surface hyperstress and the covariant derivation of related
surface balances of interactions is the main result of this paper. It is supplemented by the
(covariant) analysis of the action of the bulk hyperstress on linear inclusions, point defects
and cracks.
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