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Special functions.— Remarkable identities related to the Riemann zeta functign
GABRIELE DI CERBO, communicated on 11 May 2007.

ABSTRACT. — We derive some formulas and identities for the Riemann zeta function related to the celebrated
Ramanujan formula.
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1. INTRODUCTION

In Ramanujan’s Notebooksl[1] we can find some identities for the Riemann zeta function
at odd integers, e.g.
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The general expression is also due to Ramanujan and reads as follows:

THEOREM1.1. Leta andp be positive numbers such that = 2. Letn be a positive
integer. Then
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From this identity we obtain the Riemann zeta function at odd integers as a rational
multiple of 72*+1 plus, in general, two other series. This formula is the analogue of Euler’s
one at even integers. The most natural substitutialn is 7 and8 = x; however, we
obtain interesting results onlyif = 2m — 1. In this case we have a generalization of (1),
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On the other hand, the computation of (2) whens even ande = g gives no
information about the zeta function. It is easy to notice that all the terms with the zeta
function and the other series vanish and we have only the sum with the Bernoulli numbers,
so that
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In order to obtain some identities when is even we are forced to choose other
substitutions. For example,if= 2,« = 7/2 andg = 2r we have
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This relation links the zeta function to two series which differ only in exponents. Plouffe
[2], [3], inspired by the identity (1), discovered several remarkable identities using high-
precision software. For example,
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A generalization of this type of identities (see Theorem 2.1 below) has been proved by
Vepstas|[[4] using complex-analytic techniques. In this paper we derive the same result as
a direct consequence of Theorem 1.1.

Plouffe also gives other identities where the Riemann zeta function is not related to
powers ofr, e.g.
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We show that these identities directly follow from Ramanujan’s formula. The above results
can be used to prove most of Plouffe’s identities; we have not attacked here the case in
which the series have a square root exponent.

2. PLOUFFE' S IDENTITIES

The main result of this paper is the following theorem which proves one set of Plouffe’s
identities; in particular, it is a generalization of (3).
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THEOREM2.1. Letm be a positive integer. Then
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PROOFE In order to simplify the computation we define the quantities
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where) is a complex number, and
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Lettingn = 2m and
@=Z0-0), p=ml+i)

in Theorem 1.1 we obtain
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First we evaluate the series relategstand we note that
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The series related @ is real and it can be written as
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We want to writeSIr as a linear combination o, ande. Using again the Ramanujan
formula with the substitution = 2m, o = 7/2 andp = 2x it follows that
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Solving this identity forS;” we obtain
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as follows from the identity? — 1 = (x — 1)(x + 1), respectively withx = ¢™* and
x = e’ The above considerations and identity (8) allow us to write

1
©) Sy =¢@m+p@mto27h @l o), —27mlgl §n4’"+1A.
By (7) and (9) we get
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It remains to evaluate only the last term, i.e. the sum with the Bernoulli numbers
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where the last identity is obtained via the formula
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to be proved later. Substituting (6), (10) and (11) in (5) yields
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If we multiply both members of the latter expression(By(1 — i))%" we have
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Theorem 2.1 follows at once by solving the above equality fdm + 1).
Thus, we only have to prove equality (12): let= 7/2(1 — i) and = =w(1 + i)

in (2), and again let = 7(1 —i) andg = (r/2)(1+ i) in (2); this yields two different
expressions,
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If we take the product of the second one byl)” we note that they differ only in the
two sums with the Bernoulli numbers. Therefore, if we sum these two expressions, all the



348 G. DI CERBO

terms withs (4m + 1), S, andS;_; cancel, so we have
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Considering only the real part or analogously the sums with even index only we get
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After the change of variable = m — j in the second sum we obtain
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By the above two identities, (12) holds. O

Theorem 2.1 allows us to derive the following result that generalizes identity (4). We
use the same notation for the ser.R;"‘s and for the quantityd as in the proof of Theorem
2.1; moreover, we define
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COROLLARY 2.2. Letm be a positive integer. Then
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PROOFE We rewrite the expression given by Theorem 2.1 using the eqttbgﬁty: Sy
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Combining the two relations we obtain the assertion. O
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