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Partial differential equations. — Intrinsic Harnack inequalities for quasi-linear
singular parabolic partial differential equation®y EMMANUELE DIBENEDETTO, UGO
GIANAZZA and VINCENZO VESPR| communicated on 6 July 2007.

ABSTRACT. — Intrinsic Harnack estimates for non-negative solutions of singular, quasi-linear, parabolic
equations are established, including the prototygeaplacian equatior] (1}4) below. Ferin the supercritical

range /(N +1) < p < 2, the Harnack inequality is shown to hold in a parabolic form, both forward and
backward in time, and in an elliptic form at fixed time. These estimates fail for the heat equatien?). It is

shown by counterexamples that they fail fjpm the subcritical range ¥ p < 2N /(N + 1). Thus the indicated
supercritical range is optimal for a Harnack estimate to hold. The novel proofs are based on measure-theoretical
arguments, as opposed to comparison principles, and are sufficiently flexible to hold for a large class of singular
parabolic equations including the porous medium equation and its quasi-linear versions.
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1. MAIN RESULT

Let E be an open setiRY and forT > OletEr = E x (0, T]. Letu be a weak solution,

(1.1) U € Cioc(0, T; LEL(E)) N LL (0, T; Wl (E)), 1<p<2

loc

of a quasi-linear, singular parabolic equation of the type
(1.2) uy — divA(x, t,u, Du) = B(x,t,u, Du) weaklyinEr

where the functionf : E; x RVl — RN andB : E;r x RVt — R are only assumed
to be measurable and subject to the structure conditions

A(x,t,u, Du) - Du > Co|Du|P — CP
(1.3) |IA(x,t,u, Du)| < C1|DulP~1+CcP~1  ae.inEr,
|B(x,t,u, Du)| < C|DulP~1+CP

wherep € (1, 2) andCo andC1 are given positive constants, a@ds a given non-negative
constant. Ifu is a weak solution of (I]1)F(1).2), the quasi-linear structure conditjon (1.3)
are in addition required to ensure that the truncatits — k) are sub(super)solutions
for all k € R. Namely,

1.2+ %(u —k)+—divA(x,t, u—k)+, Du—k)+) < B(x,t,(u—k)x, D(u—k)+)
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weakly in E7 against admissible non-negative test functions. The prototype example is
(1.4) uy —div|Dul’?Du =0, 1<p<2 weaklyinEs.

Equation [(T.]1)£(T]2) is singular, since its modulus of ellipticity goesctas|Du| — 0.
We show that its non-negative weak solutions satisfy an intrinsic form of the Harnack
inequality providedp is in the so calledupercriticalrange

2N

<p<?2

The parameter§N, p, Co, C1, C} are the data and we say that a generic constast

y (N, p, Co, C1, C) depends upon the dathit can be quantitatively determined a priori
only in terms of the indicated parameters. fpas 0 let K, be the cube of center the origin
of RY and edge 2, and fory € RV let K, (y) denote the homothetic cube centereg.at
Fix Pp = (xo, fo) € E7 such that«(xg, tp) > 0, and consider cylinders of the type

Po)\ 2P Pr)\ 2P
@8 0, =Kyt x [ (G2 ) o< znon (U2) e,

wherec is the constant of Theorefn 1.1 below. These cylinders are “intrinsic” to the
solution since their time length is determined by the value af(xo, r9), and the Harnack
inequality holds in such an intrinsic geometry.

THEOREM1.1. Let u be a non-negative, weak solution {@.1)—[1.3)for p in the
supercritical range(L.5). There exist positive constanis and ¢, depending only upon
the data, such that for alPp € E7 and all cylinders of the typ@s,(Po) C Er, either
u(Pg) < Cp, or

a.7) cu(xp, to) < inf u(,1)
K, (x0)

for all times: satisfying
(1.8) to — 8:[u(Po)]>"PpP <1 < 10+ 8:[u(Po))*> 7 pP.
The constants andé, tend to zero as eithes — 2 or p — p,.

This inequality is simultaneously a “forward and backward in time” Harnack estimate
as well as a Harnack estimate of elliptic type. Any of these three types of inequalities
would be false for non-negative solutions of the heat equation. This is reflecfed]in (1.7)—
(L.8), as the constantsandsé, tend to zero ap — 2. It turns out that these inequalities
lose meaning also gstends to the critical valup, in (1.5). We comment on each of these
aspects separately.

2. THE FORWARD IN TIME HARNACK INEQUALITY

A forward Harnack estimate can be established independently of Thgorem 1.1 and it takes
the following form.
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THEOREM2.1. Let u be a non-negative weak solution @.7)-[I.3)for p in the
supercritical rangg(1.5). There exist positive constants, 8 such that for all cylinders

Po)\*” Po)\* "
Kgp(x0) % {to - (u(c40)> (8p) <t <10+ <u(40)> (80)”}

+ C+
contained inE7, either
u(Po) < Cp,
or
(2.1) cu(xo, o) < inf u(x, to + 84[u(Pe)]>~7 pP).
Kp(x0)

The constants, ands, tend to zero ap — p, but they are “stable” ag — 2, in the
sense that there exist positive constant&) ands, (2), which can be determined a priori
only in terms of the data, such that (p), §+(p) — c+(2),8+(2) asp — 2. Thus by
formally letting p — 2 in (2.7) one recovers Moser’s classical Harnack inequality of [11].

A positive waiting time is needed for a Harnack estimate to hold even for non-negative
solutions of the heat equation, as pointed out by a counterexample of Maser ([11]). The
novelty of [2.]) is in that such a waiting time is intrinsic to the solution itself. No forward
in time Harnack estimate would be possible for non-negative solutiofis ¢f (1.1)—(1.3) if the
waiting time were not driven by the solution itself. Indeed, weak non-negative solutions of
(I.4) in bounded domains, with homogeneous Dirichlet da@®and non-negative initial
dataug, become extinct, abruptly, in finite time. That is, there exists a fim&hich can be
determined a priori in terms of the data ang such that for alk € E ([3| Chap. VII, § 2])

(2.2) u(x,t) >0 fort <T and u(x,t)=0 forr>T.

For such a solution, a Harnack estimate with waiting time independemtvafuld not
hold.

3. THE ELLIPTIC HARNACK INEQUALITY
A consequence of (1.7]—(1.8) is the following elliptic form of the Harnack inequality.

COROLLARY 3.1. Letu be a non-negative weak solution @.1)-[I.8)for p in the
supercritical range(1.5). There exists a positive constantepending only upon the data,
such that for allPg € E7 and all cylinders of the typ@s,(Po) C E7, either

u(Pp) < Cp,
or

(3.2) cu(xo, t0) < inf u(-, t0)
K (x0)

The constant tends to zero as eithgr — 2 or p — p,.
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While unusual, such an inequality can be understood by examining the naturg of (1.4).
As |Du| ~ 0, the modulus of ellipticity becomes large and the p.d.e. tends to favour
its elliptic component. The inequality (3.1) makes this heuristic argument quantitatively
precise. The parabolic component enters in thé required to exist for a sufficiently
large time interval aboup.

4. THE BACKWARD IN TIME HARNACK INEQUALITY
Another consequence ¢f (1.7)—(1.8) is a backward Harnack estimate in the following form.

COROLLARY 4.1. Letu be a non-negative weak solution (@.1)-[I.B)for p in the
supercritical range(1.5). There exist positive constants and ¢, depending only upon
the data, such that for alPy € E7 and all cylinders of the typ@s,(Po) C Er, either

u(Pp) < Cp,
or

4.1) cu(xo. 10) < inf (- 1o - 8:[u(P)1?~7 pP).

p X0

The constants andé, tend to zero as eithep — 20r p — p,.

While unexpected, this occurrence reflects the tendency of the solution to become
extinct in finite time, as indicated if (2.2). Notice that we have a backward inequality,
but the time is not reversed. Indeed, for {4.1) to hold, the soluti@required to exist in
a large time interval aboug. Nevertheless this remains the most intriguing aspect of these
inequalities.

5. NOVELTY AND SIGNIFICANCE

In [6] a detailed discussion will be given to show that the range of (1.5) is optimal for

the Harnack estimatg (1.7)—(1L.8) to hold. Indeed gfar the subcritical range & p < p,,
explicit counterexamples are provided which fail to satisfy the Harnack inequality in any
one of the forward, backward, or elliptic form. This raises the question of what form, if
any, the Harnack estimate might take foin such a range.

For non-negative solutions of the prototype homogeneous equétidn (1.4), intrinsic
Harnack inequalities in the forward forfn (2.1) and the elliptic form](3.1) were established
in a series of contributions([7] 8]), collected and re-organizedlin [3]. These proofs, one
way or another, had at their root the application of the maximum principle by comparing,
locally, the solutions of[ (T]4) with either the explicit Barenblatt solutiohs ([3]), or some
suitably constructed subsolution([7]).

The original proofs of the parabolic Harnack inequality for non-negative solutions
of the heat equation, due independently to Hadamard [9] and [Pini [13], were based on
local comparisons with caloric potentials. The leap forward achieved by Maser (J10, 11,
12]) consists in replacing comparison methods by measure-theoretical arguments. This is
precisely one of the key novel points of this contribution, that is, the Harnack inequalities
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(I.7)—2.1) are established by entirely measure-theoretical arguments, thereby bypassing

any form of comparison principle. These methods are rather different than the classical

techniques of De Giorgi[2] and Moser [11], and are based on two technical tools, namely

. Lﬁ)c- o Harnack-type estimates ferin the supercritical range;

e a proper expansion of positivity based on an iteration argument originally introduced
in [1].

For degenerate equatiorfs (1.[)1.3) with> 2 a reasonably complete theory of the
intrinsic forward Harnack inequality has recently been established if [4, 5], to which we
refer for further comments.

A second key novel point is the backward inequality in the fdrm| (4.1). The latter has
never been observed before, not even for the prototype equptign (1.4), and it opens an
intriguing issue on the local behaviour of solutions of such singular equations.

The approach is sufficiently general to apply, upon minor modifications, to non-
negative weak solutions of a class of singular parabolic equations, including quasi-linear
versions of the singular porous medium equations. We refer|to [6] for full details and
complete proofs.
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