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Differential geometry. — Conservative principle for differential forms, by JUN
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ABSTRACT. — Motivated by recent developments on the conservative principle for differential forms, we study
sufficient conditions for a manifold to satisfy that principle.
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1. INTRODUCTION

LetM be a connected smooth Riemannian manifold without boundary. We say thatM is
stochastically complete, orM satisfies the conservative principle, if any constant function
is stable under the action of the heat semigroup associated to the minimal self-adjoint
Laplace–Beltrami operator, i.e., the equality

(1) 〈e−t∆f, h〉 = 〈f, h〉

holds for everyt > 0, f ∈ C∞

0 (M) and any constant functionh. The Gaussian integral
shows that a Euclidean space of any dimension is stochastically complete, but there exists a
geodesically complete but stochastically incomplete Riemannian manifold [1]. In order to
ensure the stochastic completeness, one needs to control the Brownian motion at infinity
by imposing a condition either on the volume growth of geodesic balls or on the Ricci
curvature (see e.g. [8] for an extensive overview of the theory).

Let Aq be the set of differential forms of degreeq (Aq0 is the set ofq-forms with
compact support), and∆q be the Hodge Laplacian acting onAq . While both the stochastic
completeness and Hodge theory have been studied with considerable efforts, there has been
no notion ofconservative principle onAq , until Vesentini’s recent work [19]. In that paper,
he extended the notion of conservative principle from functions toAq as follows:

DEFINITION 1. We say theconservative principle holds onAq if the equality

(2) 〈e−t∆qψ, η〉 = 〈ψ, η〉

holds for everyt > 0, ψ ∈ A
q

0, and harmonic formη ∈ L∞(Aq).

This definition has two nice features: first, ifq = 0, it reduces to the stochastic
completeness (because byα being harmonic, we meandα = 0 andδα = 0, anddh = 0
implies thath is constant), and secondly, it is stated in terms of harmonic forms, so actually
we will study the “conservativeness” of harmonic forms, which play the central role in
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Hodge theory. Motivated by this background, in this article we will show the following
results.

THEOREM 1. Let M be an n-dimensional complete Riemannian manifold without
boundary. IfM is stochastically complete and the Weitzenböck tensor onAq is bounded
below for some0 ≤ q ≤ n, then the conservative principle holds onAq .

Since the Weitzenb̈ock tensor onA1 coincides with the Ricci curvature, and the condition
of Ricci curvature being bounded below implies the stochastic completeness [20], we have

COROLLARY 1. If the Ricci curvature of a complete manifoldM without boundary is
bounded below, then the vector fields onM are conservative.

The significant difference of the conservativeness forq = 0 and forq > 0 is the
curvature condition. The reason why we need the curvature condition can be seen in
Definition 1; indeed, in order to make the left hand side of (2) converge, we need

(3) e−t∆q (A
q

0) ⊂ L1,

which is true whenq = 0 but not clear forq > 0. Therefore, we will apply a semigroup
domination theorem (e.g. [6], [9], [10], and [15]) to bound the heat kernel onAq and ensure
(3), provided the Weitzenb̈ock tensor onAq is bounded below.

We will also study these problems on incomplete manifolds. For that purpose, we
extend the semigroup domination theorem to incomplete manifolds by studying the
essential self-adjointness of the Hodge Laplacian, which is of interest in its own right:

PROPOSITION1. LetM be a complete manifold without boundary andΣ be its closed
submanifold. The Hodge Laplacian with domainA0(M \Σ), the set of smooth forms with
compact support inM \ Σ , is essentially self-adjoint if and only ifΣ has codimension
greater than3.

This is a generalization of the corresponding result for the Laplace–Beltrami operator
acting on functions [4], [12]. Since the semigroup domination theorem holds true ifM is
stochastically complete and if the Hodge Laplacian is essentially self-adjoint, we have

COROLLARY 2. LetM be a complete Riemannian manifold without boundary andΣ ⊂

M be a closed submanifold with codimension greater than3. IfM satisfies the assumptions
in Theorem1 and Corollary1, respectively, then the respective conclusions hold true for
the incomplete manifoldM \Σ .

Since the stochastic completeness ofM is equivalent to the uniqueness of the bounded
solution to the Cauchy problem for the heat equation ifq = 0, it would be interesting to
study the corresponding problem forq > 0. Regarding this problem, we will show

THEOREM 2. LetM be a complete Riemannian manifold without boundary. Assume that
there exists a pointx0 ∈ M so that

(V)
∫

∞ r dr

logµ(B(x0, r))
= ∞.
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Then every bounded solutionα(x, t) to the Cauchy problem

(4)


∂α

∂t
+∆qα = 0,

α|t=0+
= 0 (in the sense ofL2

loc(M)),

in M × (0, T ) is 0.

The volume growth condition (V) is sufficient for the stochastic completeness [8].
Finally, let us remark that all of our results extend to complete manifolds with boundary

with the Neumann boundary condition (except Proposition 1, they fail for the Dirichlet
boundary condition), and Theorems 1 and 2, and Corollary 1, extend to the Bismut–Witten
Laplacian on a weighted manifold with associated Weitzenböck tensor [7].

2. NOTATIONS

We denote by〈α, β〉 the inner product ofq-formsα, β with compact support, that is,

(5) 〈α, β〉 =

∫
M

α ∧ ∗β,

where∗ is the Hodge star operator (ifM is not orientable, we consider its double covering).
Denote byµ the measure induced by the volume form∗1. Then the pointwise inner product
〈α, β〉(x) of α andβ atx ∈ M is the density with respect toµ:

〈α, β〉 =

∫
M

〈α, β〉(x) µ(dx).

We denote byAq0 andL2(Aq) the set of smoothq-forms with compact support and the set
of square integrableq-forms, respectively. By the Stokes formula, the formal adjoint ofd

onL2(Aq) is given by

δ = (−1)q ∗
−1 d ∗ .

We define theHodge Laplacian∆q onAq as the Friedrichs extension of the quadratic form

E(α, β) = 〈(d + δ)α, (d + δ)β〉, D(E) = A
q

0.

Since∆q is self-adjoint, it generates a semigroupTt := e−∆q , whose kernel is a double
form Ek, called theheat kernel(e.g. [2], [14], and [16]). Whenq = 0, the heat kernel
for functions is the smallest positive fundamental solution to the heat equation [5]. This
characterization of the heat kernel is crucial in the proof of the equivalence of the stochastic
completeness ofM and the uniqueness of the bounded solution to the Cauchy problem for
the heat equation ifq = 0 [8]. Of course, ifq > 0 there is no such characterization, and
thus, the assumptions in Theorems 1 and 2 are different.
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3. PROOF OF THE RESULTS

We start from the conservative principle, that is, Theorem 1.

PROOF OFTHEOREM 1. Put

Gu :=
∫

∞

0
e−t

∫
M

k(t, ·, y)u(y) µ(dy) dt for everyu ∈ L2,

wherek is the heat kernel for functions. Letul ∈ C∞

0 (M) be such that 0≤ ul ≤ ul+1 ≤ 1
for everyl > 1, andul → 1 asl → ∞. SinceM is stochastically complete,vl := Gul ∈

D(∆) ∩ C∞(M) for everyl > 0 and

(6) vl → 1 and ∆vl = vl − ul → 0 asl → ∞, µ-a.e.

For a bounded harmonicq-form η, putηl := vlη. Sinceη is harmonic,∆q(ηl) = (∆vl)η

pointwise. Thus, noting thatD(∆q) is the set ofL2 forms α with ∆qα ∈ L2 because
Stampacchia’s inequality holds onM, we have

∆qηl ∈ D(∆q).

Denote byEk the heat kernel onAq , and byTt the corresponding semigroup. By the
semigroup domination theorem for a complete manifold [15], if we assume that the
Weitzenb̈ock tensor onAq is bounded below byc > −∞, then

(7) |Ek(t, x, y)| ≤ e−ct |k(t, x, y)| for all t > 0 andx, y ∈ M.

Now we can proceed as follows:

|〈Tτψ, ηl〉 − 〈ψ, ηl〉| =

∣∣∣∣∫ τ

0
〈∆qTtψ, ηl〉 dt

∣∣∣∣ =

∣∣∣∣∫ τ

0
〈Ttψ,∆qηl〉 dt

∣∣∣∣(8)

=

∣∣∣∣∫ τ

0
〈Ttψ, (∆vl)η〉 dt

∣∣∣∣ ≤ ‖∆vl‖∞‖η‖∞

∫ τ

0
‖Ttψ‖1 dt

≤ ‖∆vl‖∞‖η‖∞

∫ τ

0
e−ct‖ψ‖1 dt.(9)

The left-hand side of (8) tends to|〈Tτψ, η〉−〈ψ, η〉| asl → ∞, becauseTτψ is integrable
for everyτ > 0 by (7). Finally, as (9) tends to 0 asl → ∞ by (6), we have completed the
proof. 2

We now prove the essential self-adjointness of the Hodge Laplacian on an incomplete
manifold, namely, Proposition 1.

PROOF OF PROPOSITION 1. For a complete manifoldM, consider the incomplete
manifoldN = M \Σ , whereΣ is a closed submanifold ofM. Denote by∆M and∆N the
Hodge Laplacians whose domains areA0(M) andA0(N), respectively.

First we assume that the codimension ofΣ is greater than 3, and show that∆N is
essentially self-adjoint. Since∆M is essentially self-adjoint (e.g. [3], [17], [19]), and since
∆N ⊂ ∆M , it suffices to prove that

∆M ⊂ ∆N ,
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where the bar indicates the Hilbert closure of the operator. For that purpose, we wish to
construct for anyα ∈ D(∆M) a sequenceαl ∈ D(∆N ) satisfying

αl → α in ∆-graph norm asl → ∞.

By the essential self-adjointness of∆M , we may assume thatα ∈ D(∆M) = A0(M)

without loss of generality. Consider the cut-off functionχl [12] defined as

χl := θ(r1/l), l > 0,

wherer is the distance function onM fromΣ , andθ ∈ C∞(R) satisfies:

θ(r) =

{
1 if 3/4 ≤ r,

0 if r ≤ 1/2.

Because the codimension ofΣ is greater than 3 and∆r can be estimated bycr−1 with
some constantc > 0 on a neighbourhood ofΣ [11], the cut-off functionχl satisfies:

• liml→∞ χl = 1 almost everwhere,
• both‖∆χl‖L2(K) and‖dχl‖L2(K) tend to 0 asl → ∞ for any compact setK ⊂ M.

Set
αl := χlα.

By the compactness of supp(α), the formαl belongs toD(∆N ) for sufficiently largel. By
the formula (e.g. [14])

(∆(χnα))i1···ip = χn(∆α)i1···ip − 2(∇iχn)(∇iαi1···ip )+ (∆χn)αi1···ip ,

and the fact that‖∇α‖L∞ and‖∆α‖L∞ are bounded, it follows that

∆(χlα) → ∆α in L2(A(M)) asl → ∞.

By the Lebesgue theorem,αl → α in L2(A) asl → ∞. This shows that∆M = ∆N , in
particular∆N is essentially self-adjoint.

Conversely, assume that the codimension ofΣ is less than 4. Letf ∈ W2,2(M) ∩ C∞

be the function which is greater thanc > 0 at some pointx ∈ Σ . By the Sobolev theorem,
if fl → f in W2,2(M), then there existsl0 such thatfl(x) > c/2 for any l > l0. This
shows thatfl /∈ W

2,2
0 (N) for l > l0, thusW2,2

0 (N) ( W2,2(N), and hence∆N ( ∆M .
We have completed the proof. 2

Applying Proposition 1, we extend the semigroup domination theorem to the
incomplete manifoldM \ Σ , where the codimension ofΣ is greater than 3. Then, by
noting thatM \ Σ is stochastically complete becauseΣ is almost polar inM [13], the
proof of Theorem 1 applies to show Corollary 2.

Finally, we prove the uniqueness of bounded solutions of the Cauchy problem for the
heat equation forq > 0, that is, Theorem 2.

PROOF OFTHEOREM 2. Since the proof is similar to the case ofq = 0 (see Theorem
9.1 of [8]), we only demonstrate the different parts, and refer the reader to [8].
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Set ξ(x, t) = ρ2(x, t)/4(t − s) with fixed s and a Lipschitz functionρ satisfying
‖dρ‖L∞ ≤ 1. Then

(10) ξ̇ + |dξ |2 ≤ 0,

where the dot stands for the partial derivative int . For an arbitraryR > 0, let χ be a
Lipschitz function such thatχ = 0 on(B2R)

c andχ = 1 inB3R/2.
Let α be a boundedq-form which is the solution to the Cauchy problem (4). By noting

that∗ is isomorphic at each point, and that|α ∧ η| ≤ |α| |η| pointwise, we may compute
(we suppressM anddµ for simplicity)

−〈δα, δ(χ2eξα)〉 = −

∫
δα ∧ 2χeξ ∗ dχ ∧ α −

∫
δα ∧ χ2eξ ∗ dξ ∧ α

−

∫
δα ∧ ∗η2eξ δα

≤ 2
∫

|δα|χeξ |α| |dχ | +

∫
χ2eξ |δα| |dξ | |α| −

∫
χ2eξ |δα|

2

≤ 2
∫ [

1

4
|χδα|

2
+ |dχ |

2
|α|

2
]
eξ +

1

2

∫
[|δα|

2
+ |dξ |2|α|

2]χ2eξ

−

∫
χ2eξ |δα|

2

≤ 2
∫

|dχ |
2
|α|

2eξ +
1

2

∫
|dξ |2|α|

2χ2eξ .

In a similar way, we have

−〈dα, d(χ2eξα)〉 ≤ 2
∫

|dχ |
2
|α|

2eξ +
1

2

∫
|dξ |2|α|

2χ2eξ .

Therefore,∫
B2R

∆α ∧ ∗αχ2eξ ≤ 2

[
2

∫
B2R

|dχ |
2
|α|

2eξ +
1

2

∫
B2R

|dξ |2|α|
2χ2eξ

]
.(11)

On the other hand,

(12)
∫
C

∂(|α|
2)

∂t
χ2eξ dµ dt =

∫
B2R

|α|
2χ2eξ

∣∣∣τ
τ−σ

dµ−

∫
C

|α|
2χ2ξ̇ eξ dµ dt,

whereC = B2R × [τ − δ, τ ] is a cylinder. By (11) and by applying inequality (10) to (12),
we deduce that

(13)
∫
B2R

|α|
2χ2eξ |ττ−σ ≤ 4

∫
C

|dχ |
2
|α|

2eξ dµ dt.

Now one may proceed to show thatα = 0 onBR by applying (13) and (V) as in the
case ofq = 0 cited above. SinceR > 0 is arbitrary, this shows thatα = 0 onM. 2
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REMARK 1. There exists a complete manifold satisfying (V) and on which

lim
t→∞

e−t∆1(A1
0) ( L1.

PROOF. Consider a Riemannian manifold

M = {(x, y) ∈ R2 : r(x, y) := x2
+ y2 < 1}

with metricg = (1−r2)−1/2dxdy. By a direct computation, we see thatM is geodesically
complete and thatM satisfies (V). In Theorem 3.7 of [18], it is proved that there exists
α ∈ A1

0 such that limt→∞ e−t∆1α ∈ L2(A1) is a non-integrable, non-trivial, harmonic
form. 2
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