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ABSTRACT. — Motivated by recent developments on the conservative principle for differential forms, we study
sufficient conditions for a manifold to satisfy that principle.
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1. INTRODUCTION

Let M be a connected smooth Riemannian manifold without boundary. We say/tisat
stochastically complet®r M satisfies the conservative principleany constant function

is stable under the action of the heat semigroup associated to the minimal self-adjoint
Laplace—Beltrami operator, i.e., the equality

@) (7" f, hy = (f, h)

holds for everyr > 0, f € C3°(M) and any constant functiol. The Gaussian integral
shows that a Euclidean space of any dimension is stochastically complete, but there exists a
geodesically complete but stochastically incomplete Riemannian manifold [1]. In order to
ensure the stochastic completeness, one needs to control the Brownian motion at infinity
by imposing a condition either on the volume growth of geodesic balls or on the Ricci
curvature (see e.d.l[8] for an extensive overview of the theory).

Let A7 be the set of differential forms of degrqe(Ag is the set ofg-forms with
compact support), and, be the Hodge Laplacian acting @9. While both the stochastic
completeness and Hodge theory have been studied with considerable efforts, there has been
no notion ofconservative principle od4, until Vesentini’'s recent work [19]. In that paper,
he extended the notion of conservative principle from functions$tas follows:

DEerINITION 1. We say theonservative principle holds o#? if the equality
©) (e~ 4y, m) = (¥, m)
holds for every > 0, ¢ € A{, and harmonic formy € L>®(A9%).

This definition has two nice features: first, gf = 0, it reduces to the stochastic
completeness (because dybeing harmonic, we meafw = 0 andda = 0, anddh = 0
implies thath is constant), and secondly, it is stated in terms of harmonic forms, so actually
we will study the “conservativeness” of harmonic forms, which play the central role in
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Hodge theory. Motivated by this background, in this article we will show the following
results.

THEOREM1. Let M be an n-dimensional complete Riemannian manifold without
boundary. IfM is stochastically complete and the Weitzéclbtensor ond? is bounded
below for somé® < ¢ < n, then the conservative principle holds af.

Since the Weitzeritick tensor om?! coincides with the Ricci curvature, and the condition
of Ricci curvature being bounded below implies the stochastic completénéss [20], we have

COROLLARY 1. If the Ricci curvature of a complete manifod without boundary is
bounded below, then the vector fieldsMnare conservative.

The significant difference of the conservativenessgfoe= 0 and forg > 0 is the
curvature condition. The reason why we need the curvature condition can be seen in
Definition[J; indeed, in order to make the left hand sidd pf (2) converge, we need

®3) e M (Af) c LY,

which is true whery = 0 but not clear fog > 0. Therefore, we will apply a semigroup
domination theorem (e.d.|[6].][9].[10], arid [15]) to bound the heat kerndl‘oand ensure
(3), provided the Weitzeriizk tensor om? is bounded below.

We will also study these problems on incomplete manifolds. For that purpose, we
extend the semigroup domination theorem to incomplete manifolds by studying the
essential self-adjointness of the Hodge Laplacian, which is of interest in its own right:

PrROPOSITION1. Let M be a complete manifold without boundary aidbe its closed
submanifold. The Hodge Laplacian with domaig(M \ X), the set of smooth forms with
compact support il \ X, is essentially self-adjoint if and only ¥ has codimension
greater than3.

This is a generalization of the corresponding result for the Laplace—Beltrami operator
acting on functions [4]/[]12]. Since the semigroup domination theorem holds tidesf
stochastically complete and if the Hodge Laplacian is essentially self-adjoint, we have

COROLLARY 2. LetM be a complete Riemannian manifold without boundary and

M be a closed submanifold with codimension greater BidhM satisfies the assumptions
in Theorenfl]and Corollary{l] respectively, then the respective conclusions hold true for
the incomplete manifold? \ X.

Since the stochastic completenesabfs equivalent to the uniqueness of the bounded
solution to the Cauchy problem for the heat equatiap # O, it would be interesting to
study the corresponding problem fpr> 0. Regarding this problem, we will show

THEOREM2. LetM be a complete Riemannian manifold without boundary. Assume that
there exists a pointg € M so that

V) /OO _rdr
log 1 (B(xo, r))
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Then every bounded solutiafix, ¢) to the Cauchy problem

0 A =0
) or LAY T
ali=o, =0 (inthe sense of2 (M)),

inM x (0,7)isO.

The volume growth condition (V) is sufficient for the stochastic completenéess [8].

Finally, let us remark that all of our results extend to complete manifolds with boundary
with the Neumann boundary condition (except Propositipn 1, they fail for the Dirichlet
boundary condition), and Theorefrjs 1 &hd 2, and Cordllary 1, extend to the Bismut—-Witten
Laplacian on a weighted manifold with associated Weitdekliensor([7].

2. NOTATIONS

We denote by«, 8) the inner product of-formse, 8 with compact support, that is,

5) (@, B) = /Ma A B,

wherex is the Hodge star operator (# is not orientable, we consider its double covering).
Denote byu the measure induced by the volume fogfin Then the pointwise inner product
(a, B)(x) of  andB atx € M is the density with respect {o:

(o, B) 2/ (o, B)(x) p(dx).
M

We denote byAg andL2(A?) the set of smootly-forms with compact support and the set
of square integrablg-forms, respectively. By the Stokes formula, the formal adjoind of
on L?(A%) is given by

§=(—-17x1dx.
We define thédodge Laplaciand, on A7 as the Friedrichs extension of the quadratic form
E(@, B) = (d+d)a, (d+8)B), DE) = A].

Since A, is self-adjoint, it generates a semigrofip:= ¢~4+, whose kernel is a double
form k, called theheat kernel(e.g. [2], [14], and[[15]). Whery = O, the heat kernel

for functions is the smallest positive fundamental solution to the heat equation [5]. This
characterization of the heat kernel is crucial in the proof of the equivalence of the stochastic
completeness a¥f and the uniqueness of the bounded solution to the Cauchy problem for
the heat equation § = 0 [8]. Of course, ifg > 0 there is no such characterization, and
thus, the assumptions in Theorems 1[ahd 2 are different.
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3. PROOF OF THE RESULTS

We start from the conservative principle, that is, Thedrém 1.
PROOF OFTHEOREM1. Put

o0
Gu = / e"/ k(t, -, y)u(y) u(dy)dt foreveryu e L?,
0 M

wherek is the heat kernel for functions. Let € C3°(M) be such that G< u; < w41 <1
for everyl > 1, andu; — 1 asl — oo. SinceM is stochastically complete; := Gu; €
D(A) N C*® (M) for everyl > 0and

(6) y—>1 and Avyy=v;—u; — 0 asl — oo, u-a.e.

For a bounded harmonig-form », putn; := v;n. Sincen is harmonic,A, (n;) = (Av)n
pointwise. Thus, noting thab(4,) is the set ofL? forms & with A, € L? because
Stampacchia’s inequality holds ad, we have

Ay € D(Ay).

Denote byl? the heat kernel om4, and byT; the corresponding semigroup. By the
semigroup domination theorem for a complete maniféld [15], if we assume that the
Weitzenlidck tensor o4 is bounded below by > —oo, then

@) lk(t, x, y)| < e “|k(t, x,y)| forallz>0andx,ye M.

Now we can proceed as follows:

8 KIxy.m) — (¥, m)l = ‘/0 (AT, m) dt| = ‘/o (Tir, Agmi) dt

T

T
=‘/0 (T, (M) di snAvlnmnnnmfo VT 11 dr

©) = IIszlloollnlloofO e Yl dr.

The left-hand side of {8) tends t(I: v, n) — (¥, n)| asl — oo, becausd’ ¥ is integrable
for everyr > 0 by (7). Finally, as[(9) tends to 0 &s-> oo by (§), we have completed the
proof. O

We now prove the essential self-adjointness of the Hodge Laplacian on an incomplete
manifold, namely, Propositidr] 1.

PROOF OF PROPOSITION 1. For a complete manifold4, consider the incomplete
manifoldN = M \ ¥, whereX is a closed submanifold @ff. Denote byA,; andA y the
Hodge Laplacians whose domains @@ M) and Ag(N), respectively.

First we assume that the codimensionXfis greater than 3, and show thaty is
essentially self-adjoint. Sinc#), is essentially self-adjoint (e.d.![3]..[17].[19]), and since
An C Ay, it suffices to prove that

Ay C Ay,
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where the bar indicates the Hilbert closure of the operator. For that purpose, we wish to
construct for any € D(Ay) a sequence; € D(Ay) satisfying

o) — « in A-graph norm ag — oo.

By the essential self-adjointness dfy;, we may assume that € D(Ay) = Ag(M)
without loss of generality. Consider the cut-off functign[12] defined as

i =00Yh, 1>0,
wherer is the distance function oM from X', andd € C°°(R) satisfies:

8(r) = 1 !f3/4§r,
0 ifr<1/2

Because the codimension &f is greater than 3 andr can be estimated by~ with
some constant > 0 on a neighbourhood o [11], the cut-off functiony; satisfies:

e lim;_ o x; = 1 almost everwhere,
e both||Ax:ll 2(ky andlld x:ll 2k, tend to 0 ag — oo for any compact sek C M.

Set
o) = Y.

By the compactness of suf@p, the forme; belongs toD(Ay) for sufficiently large. By
the formula (e.g.[14])

(AG))igiy = Xn(Aiy.eiy, — 20V xu) (Vitig.oi) + (Axn)tiy i
and the fact thatVa|| .~ and| A«x|| .~ are bounded, it follows that
AGua) = A in L>(A(M)) asl — oo.

By the Lebesgue theoremy; — « in L2(A) asl — oo. This shows thai\y, = Ay, in
particularAy is essentially self-adjoint.

Conversely, assume that the codimensiod§ less than 4. Lef € W22(M) N C™®
be the function which is greater than- 0 at some point € X. By the Sobolev theorem,
if i — fin W22(M), then there existg such thatf;(x) > ¢/2 for any! > Io. This
shows thatf; ¢ WZ2(N) for I > o, thusWZ3(N) € W22(N), and hencely C Ay.
We have completed the proof. O

Applying Proposition[Jl, we extend the semigroup domination theorem to the
incomplete manifoldM \ X', where the codimension of is greater than 3. Then, by
noting thatM \ X' is stochastically complete becauZeis almost polar inM [13], the
proof of Theoreni [1 applies to show Corollary 2.

Finally, we prove the unigqueness of bounded solutions of the Cauchy problem for the
heat equation fog > 0, that is, Theorein| 2.

PROOF OFTHEOREM 2. Since the proof is similar to the caseqf= 0 (see Theorem
9.1 of [8]), we only demonstrate the different parts, and refer the reader to [8].
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Set&(x, 1) = p2(x,1)/4(t —s) with fixed s and a Lipschitz functiorp satisfying
lldpll L~ < 1. Then

(10) £ +1dEl> <0,
where the dot stands for the partial derivativerirFor an arbitraryR > 0, let x be a
Lipschitz function such that = 0 on(Br)“ andy = 1in Bzg/>.

Let« be a boundeg-form which is the solution to the Cauchy problgm (4). By noting
thatx is isomorphic at each point, and thatA n| < |«||n| pointwise, we may compute
(we suppresa/ anddu for simplicity)

—(8a, 8(x%fa)) = — faa A2xef xdy Ao — /m A x%5 % dE A a
—/80{ A *17265804
< 2/ el x el 1d x| + / x2¢ |8 |dE| || — / X2 |8al?
1 1
<2 [ZIXS(XI2+ Idxlzlalz]es +5 [ al? + 1ds Pialyet
- / x2e |8al?
1
<2 [ ldxPlaf?et + 5 [ Ids Plaiti®e
In a similar way, we have
1
~dad(P @) =2 [ 1dxPlaf?et + 5 [ 1dePlaity’e
Therefore,

1
(1)) / Aa A >kot)(ze£’t < 2|:2/ |d)(|2|a|265 + —/ |d§|2|a|2)(2e$i|.
Bog Bag 2 Baog

On the other hand,

2
(12) /szeédudt:/
c ot B

whereC = Bag x [t — 8, t]is a cylinder. By [(I1L) and by applying inequalify (10) fo](12),
we deduce that

T .
x| du - / la2x%E e dyudt,
T—0 C

2R

(13) [ el <a [ idxPiaet du.
Bog C

Now one may proceed to show that= 0 on B by applying [IB) and (V) as in the
case ofy = 0 cited above. Sinc® > 0 is arbitrary, this shows that= 0 on M. o
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REMARK 1. There exists a complete manifold satisfying (V) and on which
Jlim e 1Arad) c L.
PrRooOF Consider a Riemannian manifold
M={(x,y) eR?:r(x,y) i=x?4y% <1

with metricg = (1—r2)~Y2dxdy. By a direct computation, we see thitis geodesically
complete and thad/ satisfies (V). In Theorem 3.7 of [118], it is proved that there exists
a € A} such that lim., o e "1 € L?(A%) is a non-integrable, non-trivial, harmonic
form. m|
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