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Algebraic geometry.— Characteristic varieties and constructible sheaves
by ALEXANDRU DIMCA.

ABSTRACT. — We explore the relation between the positive-dimensional irreducible components of the
characteristic varieties of rank one local systems on a smooth surface and the associated (rational or irrational)
pencils. Our study, which may viewed as a continuation of D. Arapura’s paper [1], yields new geometric insight
into the translated components relating them to the multiplicities of curves in the associated pencil, in a close
analogy to the compact situation treated by A. Beauville [3]. The new point of view is the key role played by the
constructible sheaves naturally arising from local systems.
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1. INTRODUCTION

Let M be a smooth complex quasi-projective variety. The first characteristic varieties
V(M) describe the jumping loci for the dimension of the first twisted cohomology groups
HY(M, ), whereL is a rank one local system ovl. These characteristic varieties, and
their relative position inside the algebraic grdbgVf) = Hom(Hy (M), C*) parametrizing
the rank one local system avl, play a key role in understanding the fundamental group
m1(M) (seel[15],[[16]).

Since we are interested here only in the first cohomology groups, we can réplace
by a smooth quasi-projective surface, by taking a generic linear section and applying a
general version of the Zariski theorem (see for instance [11, p. 25]). Therefore, to help the
reader’s intuition, we will assume in this paper that dim= 2, though the results and
proofs hold in any dimension. This is a very interesting setting, as the opening lines of
Catanese’s Introduction in][6] tell us:

“The study of fibrations of a smooth algebraic surfécever a smooth algebraic
curveB lies at the heart of the classification theory and of the geometry of algebraic
surfaces.”

The main aimof this paper is to study the translated components of the characteristic
variety V1(M). According to Arapura’s results[1], such a compon@ht= W ([, p) is
described by a paltf, p) where

(a) f is a surjective morphism¥ — S, from the surface/ to a smooth curve, having
a connected generic fibét;

(b) p € T(M) is a torsion character such thét is the translate by of the subtorus
SHTS)), e W = p - f*(T(S)).



366 A. DIMCA

Using the (Logarithmic) Isotropic Subspace Theorem (see Catadnese [5] in the compact
case and Bauel[2] and Catanesk [6, Thm. 2.11] in the quasi-projective case), one can
determine in many cases the various possible morphfsfriesm certain maximal isotropic
subspaces it/ 1(M), relative to the cup-product

HY (M) x HY (M) - H?(M).
A similar approach is provided by the study of the resonance varieties (See [15]).

In this paper we assume that the morphigimhas already been determined and
concentrate on the finite order charagteabove. Our results can be described briefly as
follows. The characterg arising in (b) above for a given map are parametrized by the
Pontryagin dualf"(f) = Hom(T (f), C*) of a finite groupT (f) defined in terms of the
topology of the mapping’. This group depends only on the multiple fibers in the pencil
associated tg (see Theore@.S). When(S) < 0, any character iff (/) actually gives
rise to a component (see Propositjon| 4.3), while fos) = 0 (i.e. whenS is an elliptic
curve, a case treated by Beauville [3] wh&his proper, or wher§ = C*) one should
discard the trivial character i (f) (see Corollar 8). Moreover, for a generic local
systemZ € W = W(f, p), the dimension off1(M, L) is expressed in terms of the Euler
characteristicy (S) and the cardinality of the support pf(see Corollary 4]7).

The caseS = C* is the most mysterious, and Suciu’s example of such a component
for the deletedBs-arrangement given in_[24], [25] played a key role in our understanding
of this question. We consider this component in detail in Exanjplés 3.8 and 5.12, and for
the generalization given by thé,,-arrangements, discussed in [8] ahd [9], see Examples
and’5.74 below.

Our results are exemplified all along this paper on two types of situations:
CASEA: M is a curve arrangement complemeniPmh

CASE B: M is a curve arrangement complement on a normal weighted homogeneous
surface singularity, a case which includes the Seifert link complements discussed in
Eisenbud and Neumann'’s book [17].

In fact, the reader interested only in Case A may refer tb [13] for additional information.

In Section 2 we collect some basic facts on regular mappfhgsM — S and the
associated pencils. Lemina2.2 intends to clarify the key notiemlofissible mapised by
Arapura in [1].

In Section 3 we give the main definitions related to characteristic varieties. Theorem
[3.§ collects some (more or less known) facts on irreducible components of characteristic
varieties, which are derived by a careful reading of Arapura’s paper [1]. The key
topological property (ii) in Theoretn 3.6 was not explicitly stated before (in the proper
case, a related property is used(in [3]). In Corol[ary 4.6 we give a purely topological proof
of this property.

In Section 4 we emphasize the key role played in this setting by the constructible
sheaves obtained as direct images of local systemd amder the mapping : M — S
(see for instance Propositiops 4.3 4.5 and Lenimas 4. and 4.4). In particular, for a
local systemC € W = W(f, p), the dimension off1(M, L) is expressed in terms of the
Euler characteristig (S) and the cardinality of theingular supportX (F) of the sheaf

F = Rf.L, (see Corollary 4]7).
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In the final section we associate to a magp M — S as above a finite abelian group
T (f) such that the torsion characiers determined by a charactgiof T'( ) (see formula
(5-7)). We compute this group(f) in terms of the multiplicities of the special fibers of
f (see Theorerpn 5/3). The grodpx f) is intimately related to therbifold fundamental
group n"’b(f) of the map f (and even more so to the correspondioipifold first

homology groug2™(f) of £), see Corollary 54.
In Theore we show that the charactere f(f) is trivial if and only if the
associated constructible shef= RO f, (L,) is a local system oHf.

2. GENERALITIES ON PENCILS ON A SURFACEM

Let M be a smooth compactification of a complex smooth quasi-projective sufatet
f M — S be aregular mapping, wheteis a smooth curve. Then there is a minimal
non-empty finite sefp ¢ M such thatf has an extensioff to U = M \ A with values
in the smooth projective mod8iof S. By blowing up the points im, we pass from/ to
a new compact|f|cat|0|M of M such thatf or f is the restriction of a regular morphism
f M — S. R
We call any of the morphismg, f or f above apencil of curvesSuch a pencil is
rational if the curveS (or, equivalently,g) is rational, and it idrrational otherwise. For
anys € S, we denote by, the corresponding fiber i (obtained by taking the closure
of F=1(s)) orin M. The corresponding pencil will be denoted sometime€ by (C;)
We recall the following sufficient condition to have a rational pencil.

seg'

PropPoOsITION2.1. If the complex smooth surfaceVl satisfies the condition
WiHY(M,Q) = 0, where W is the weight filtration of the canonical mixed Hodge
structure, and iff : M — S has a generic connected fiber, th8ris a rational curve.
Moreover, the conditiorW1H1(M,Q) = 0 holds if the surfaceM admits a smooth
compactification¥? such thatd1(M, Q) = 0.

To prove this result, we need the following.

LEMMA 2.2. LetX andS be smooth irreducible algebraic varieties widim § = 1 and
let f : X — S be a non-constant morphism. Then for any compactificafioX — S of
f with X, § smooth, the following are equivalent.

() The generic fibe¥ of f is connected.
(i) The generic fiber of f is connected.
(iif) All the fibers off are connected.

If these equivalent conditions hold, the¢n: 71(X) — 71(S) andfg : nl()?) — n1(§)
are surjective.

PROOF Note thatD = X \ X is a proper subvariety (not necessarily a normal crossing
divisor) with finitely many irreducible component3,,. For each such componem,,,
eltherf(Dm) is a point, orf Dy — S is surjective. In this latter case, it follows that
d|m(F ND,,) <dimD,, <dim F SinceF is smooth of pure dimension, it follows that

is connected if and only if" = F \ U, (D N F) is connected. To show that (ii) implies
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(iii) it is enough to use the Stein factorization theorem (see for instance [19, p. 280]) and
the fact that a morphism between two smooth projective curves which is of degree one (i.e.
generically injective) is in fact an isomorphism.

To prove the last claim fof', note that there is a Zariski open and dense sufjset S
such thatf induces a locally trivial topological fibratiofi : X’ = f~1(5') — S’ with
fiber type F. SinceF is connected, we get an epimorphigin: 71(X’) — 71(S"). The
inclusion of 8’ into S induces an epimorphism at the level of fundamental groups. Let
Jj X' — X be the inclusion. Then we have seen tifat j induces an epimorphism
at the level of fundamental groups. Therefore the same is tru¢.fahe proof for f is
completely similar. O

PROOF OF PROPOSITION[2.1. From the surjectivity off; it follows that f*
H(S, Q) — HY(M, Q) is injective. Sincef* preserves the weight filtratiol , it follows
thatw,H1(S, Q) = 0, i.e. S is a rational curve.

If the surfaceM admits a smooth compactificatign: M — M such thatH1(M, Q)
= 0, then W HY(M,Q) = j*HY(M,Q) = 0 as explained for instance in |11,
p.243. O

ExAmMPLE 2.3. The following classes of complex smooth surfacks satisfy
W1HY(M, Q) = 0 and will be used as test cases.

CASE A: complements of plane curve arrangements fife= P2 \ C whereC is a plane
curve, usually with several irreducible components. One can thenMake P2. A more
general situation is obtained by replacifi§by any smooth simply connected surfatfe
e.g. a smooth complete intersection in some projective space.

CAseE B: complements of curve arrangements on a weighted homogeneous isolated
complete intersectiofX, 0) with dim X = 2, whose link¥ (X, 0) is aQ-homology sphere.

Such a singularity can by represented by an affine complete intersection skirfedimed

by some weighted homogeneous equations with respect to some positive integer weights
W= (wi,...,w,),

filx) =+ = fu2(x) =0
in C". Moreover the complex surfac¥ is smooth away from the origin. Le¢ €
Clx1, ..., x,] be another weighted homogeneous polynomial with respect to the weights

w and setC = g~1(0), M = X \ C. Since the link of X, 0) is aQ-homology sphere, one
hasH1(X \ 0, Q) = H2(X \ 0, Q) = 0. Note that each irreducible componéhtof C is
arational curve, sincé‘j’.‘ = C; \ Ois exactly aC*-orbit of theC*-action onC" associated
to the given weights. Moreover, this shows th‘:;tis smooth. LetCy, ..., C, be the set of
these components. The Gysin exact sequence

0=HYX\0) —» H'M) —> @ H(CH (1) > H*(X\0) =0
j=1

with rational coefficients shows that(M, Q) is pure of type(1, 1), in particular one has
W1HY(M, Q) = 0. Moreover it gives1 (M) = r.

The following explicit description of rational pencils is recalled for the reader’s
convenience.
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PROPOSITION2.4. Let U be a smooth surface. If : U — P! is a morphism, then
L = f*O()is aline bundle o/, generated by the two global sectians= f*(y;), with
y1, y2 a system of homogeneous coordinate®bn

Conversely, if. is a line bundle or/, generated by two global sectiossfori = 1, 2,
then there is a morphisri : U — P such thatL = f*O(1) ands; = f*(y;), with y1, y2
a system of homogeneous coordinate®bn

PROOF. It is well known (see for instance [119, p. 150]) that a morphismtU — Plis
given by a line bundle&€ € Pic(U) and two sectionsy, s2 € I' (U, £) which do not both
vanish at any point irV. In fact £ = f*(O(1)) ands; = f*(y;), with y1, y2 a system
of homogeneous coordinates Bh. With this notation, one hag(x) = [a : b] where
[a : b] € PLis such thatiso(x) — bsi(x) =0. O

REMARK 2.5. SinceU is smooth, we have Rit/) = C¢(U) and similarly P|¢M) =
CU(M) (see forinstancé 19, p. 145]). On the other hand, the inclusioti — M induces
an isomorphisny* : CL(M) — CL(U), as codimA = 2 (see[[19, p. 133)). It follows that

* : Pic(M) — Pic(U) is also an isomorphism, i.e. any line bundlee Pic(U) is the
restriction toU of a line bundleL on M. If M = P2, thenL has the form®(D) and
the global sections aof are nothing else than the restrictions of global sections of the line
bundleL = O(D), which are the degreP homogeneous polynomials. In general, the two
sectlonsl have natural extensions 8, and we may consider the divisafs : s; = 0 on
M and the associated rational peril: aysy + azsy of curves onM.

In the following we regard the differend@ = M \ M as a (reduced) curve and let
C= U;zl C; be the decomposition @ into irreducible components.

PROPOSITION2.6. LetB C S be afinite set and denote ISythe gomplemerff\ B. For
any surjective morphisnf : M — S and any compactification of M as above, any
irreducible component; of C is in one of the following cases.

(1) ¢, is contained in a curvé,, in the pencilC, corresponding to a poirti € B;

(2) C; is strictly contained in a curvé; in the pencilC, corresponding to a point € S

(3) C; is a horizontal component, i.€; intersects the generic fibel; of the pencilC
outside the base locus.

Moreover, if| B| > 1, thenC; is in the first case above if and only if the homology clgss
of a small loop around’; satisfiesH1(f)(y;) # 0in Hi(S, Z).

PROOF Let C; be an irreducible component ¢f. Then eitherf(Cj) is a point, which
leads to the first two cases, ﬁ(Cj) is dense inS, which leads to the last case. The strict
inclusion in the second case comes from the surjectivity.of

__ The last claim is obvious if we use the Mayer-Vietoris exact sequence of the covering
S = S U D, whereD is the union of small closed discs dhcentered at the points iB.

For instance, in the first case dif is a small loop ab, then one hasly(f)(y;) = m; - &,

with m; > 0 the multiplicity of the curveC; in the divisor f/~1(b) (if the orientations of

the loopsy; ands,, are properly chosen). See also equation| (3.1) below
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DEFINITION 2.7. In the setting of PropositioR.§ we say that the curve arrangement
C is minimal with respect to the surjective mappirfg: M — S if any component;

of C is of type(1), i.e. C; is contained in a curve, in the pencilC, corresponding to a
pointb € B. We say that the curve arrangemehtis specialwith respect to the surjective
mappingf : M — S if some componert; of C is of type(2), i.e. C; is strictly contained
in a curveC, in the pencilC, corresponding to a poirngt € S.

REMARK 2.8. If|B| > 1, then the base locus of the pencilC on the surfacé/ is just
the intersection of any two distinct fibe€s N C; for b, b’ distinct points inB. Note also
that cas€?2) above cannot occur if all the fibe€s for s € S are irreducible. The fibeiG
may be non-reduced, i.e. we consider them usually as divisors. Saying; tisatontained
in Cy means tha€y = m;C; 4 --- withm; > 0.

3. LOCAL SYSTEMS AND CHARACTERISTIC VARIETIES

3.1. Local systems ofi

We return to the notatio§ = §\ B, with B = {b1, ..., by} a finite set of cardinality
|B| =k >0.Letg = g(§) be the genus of theAcur\féand denote by, ..., 5, the usual
Z-basis of the first integral homology grodf (S).

If 82,+; denotes an elementary loop based at some base#painB and turning once
around the poinb;, then with the usual choices, the first integral homology grou§ isf
given by

(3.1) Hi(S) = Z(81, ..., 82¢4k)/(B2g 41 + - - - + 82 1k)-

Therefore, fok > 0, the rank one local systems Srare parametrized by th@g + k — 1)-
dimensional algebraic tordB(S) = Hom(H1(S), C*) given by

(3.2) T(S) = {h = (A1, -+ ., A2gk) € (CHZETE | diggiq - Apgrn = 1.
Herei; € C* is the monodromy along the lodp. Whenk = 0, one has
(3.3)  T(S) =Hom(Hi(S), C*) = { = (A1, ..., Aze) € (C*)%} = (CH*.

Note that in both cases dift(S) = b1(S). Fori € T(S), we denote by, the correspond-
ing rank one local system afi
The twisted cohomology grougg™ (S, £,) are easy to compute. There are two cases.

Case 1: £, = Cs. Then we get the usual cohomology groupsSpohamely fork > 0
we have dimHO(S, £;) = 1, dmHY(S, £,) = 2g+k—1andH™ (S, £;) = 0form > 2.
And for k = 0 we have dinH°(S, £;) = dim H2(S, £;) = 1, dmH(S, £;) = 2g and
H™(S, L;) =0form > 3.

CASE 2: £, nontrivial. This case corresponds to the case when at least one monodromy
Ajis not 1. In such a situation one hag 2 k > 2. Then

(3.4) dimHY(S, L) =28 +k —2=—x(S)
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and H™(S, £;) = 0 form # 1. One has obviously dif%(S, £;,) = 0 in this case.
The vanishing ofH2(S, £;) follows by duality if ¢ = 0, and sinceS is homotopically a
bouquet of circles whek > 0.

3.2. Local systems o/

The rank one local systems @i are parametrized by the algebraic group

(3.5) T(M) = Hom(Hy(M), C*)

which is an extension of the algebraic tori@*)?2™) by the finite group Tor#f1(M).
This group can be described explicitly as soon as we kilgM ).

CASE A: complements of plane curve arrangements, Me.= P2\ C whereC is a
plane curve, with irreducible componer@s for j = 1,...,r, degC; = d;. Lety; be
an elementary loop around the irreducible compor@ntfor j = 1,...,r. Then it is
known (see for instance [11, p. 102]) that

(3.6) Hi(M) =Z{y1, ... y)/{diyr + -+ dryy)

whered; is the degree of the componefi. It follows that the rank one local systems on
M are parametrized by the algebraic group

(8.7) T(M)=Hom(Hi(M),C*) = {p = (p1, ..., py) € (C*) | pi .. pd = 1}.

The connected componeh?(M) of the unit element £ T(M) is the(r — 1)-dimensional
torus given by

(3.8) TOM) = {p = (p1, ..., pr) € (C | pi*--- pf" = 1)
with D = GCD(dy, ...,d,) ande; =d;/Dforj=1,...,r.

REMARK 3.3. Ifdi =1, then{yo, ..., y,}is a basis fotHH1 (M) and the toruf'(M) can
be identified to(C*)"~1 under the projectiop — (o2, ..., p,).

Case B: complements of curve arrangements on a weighted homogeneous isolated
complete intersectio(X, 0) with dim X = 2, whose link¥' (X, 0) is aZ-homology sphere.
Using the notation from Exam.3, we see tHatM) = Z(y1, ..., vr), Wherey; is an
elementary loop around the irreducible compor@ntfor j = 1, ..., r. It follows that

(3.9) T(M) = Hom(H1(M), C*) = (C*)".

The computation of the twisted cohomology group% (M, L,) is one of the major
problems. A simple situation is described in the following.

ExampPLE 3.4. If £, = Cy and we are in one of the two cases above, this computation
can be done as follows.

CAse A: The result depends on the local singularities of the plane carvin fact,
dimH%M,C) = 1,dimHY(M, C) = r — 1 andH™ (M, C) = 0 form > 3. To determine
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the remaining Betti numbdr,(M) = dim H2(M, C) amounts to determining the Euler
characteristige (M) = 3— x(C), and this can be done, e.g., by using the formulgfar)
givenin [11, p. 162].

CaseB: HeredimH%M,C) =1,dimHY(M, C) = r and also dinH{?(M,C) = r—1,
as well asH™ (M, C) = 0 form > 3. To see this, note that is an affine open subset in
X (which yieldsH™(M,C) = 0 form > 3), and there is £*-action onM with finite
isotropy groups (which yieldg (M) = 0).

To study these cohomology groups™ (M, L,) in general, one idea is to study the
characteristic varieties

(3.10) Vn(M) = {p € T(M) | dimHY(M, L,) > m}).

3.5. Arapura’s results

We recall here some of the main results fram [1], applied to the rank one local systems
on M, with some additions from [20], [15] and some new consequences.

THEOREM3.6. Let W be an irreducible component of (M) and assume thaty =
dimW > 1. Then there is a surjective morphisfiy : M — Sw onto a smooth curvéy,
with a connected generic fibét( i), and a torsion charactepy € T(M) such that

W = pw ® fiy (T(Sw)).
More precisely, the following hold.

i) Sw = §W\BW, with By afinite set satisfyindy = 2g(§w)+kw—1 =—xSw)+1
if kw = |Bw| > 0.If By =0, thendW = 2g(Sw) =—xSw) + 2.
(i) For any local systenf € W, the restrictionZ| F ( fw) of L to the generic fiber ofw
is trivial, i.e. L|F (fw) = Crfuy-
(i) If Ny is the order of the charactesy, then there is a commutative diagram

M/$M

if‘ﬁy lfw
I
where p is an unramifiedVy -cyclic Galois coveringg is a possibly ramifiedvy -
cyclic Galois covering fy, is uny -equivariant in the obvious sense, has a generic
fiber F(f},) isomorphic to the generic fibef ( fw) of fw, and p*pw is trivial. Here
Ny, denotes the cyclic group of théy -th roots of unity.
(iv) If1e WandL € W, thendim HYX(M, £) > —x (Sw) and equality holds with finitely
many exceptions.
(v) If 1 e W, thendy > 2for ky > Oanddwy > 4for ky = 0.
(vi) If 1 ¢ W and eitherdy = 2 and Sy is not an elliptic curve, ody > 2, then the
subtorusW’ = f (T(Sw)) is another irreducible component % (M).
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PROOF The first assertion is just Thm. 1.6 [ [1, Section V].

To prove claim (i) note thady = dimW = dimT(Sw) = b1(Sw).

For (vi), consider now the situation ¢ W. Note thaty (Sw) > 0 if and only if
eitherg(Sw) = 0 andky < 2, org(Sw) = 1 andky = 0. The first possibility (which
contains the trivial caseSy = P, Sy = C and the interesting casg) is excluded,
since then dinW = dimT(Sw) < 1. The second case correspondsjjobeing an elliptic
curveE, and can be excluded as above if we assudge- 2. The corresponding translated
components in this case (assumikgproper) are described ihl[3]. A uniform treatment
of the translated components in the only two interesting c@83emnd E is given below in
Corollary[5.8.

With the exception of these special cases, it follows théfy) < 0 andW' =
fw (T(Sw)) is another irreducible componentBf(M) by Prop. 1.7 inl[1].

Now we prove claim (ii). SinceV = pow ® fy, (T(Sw)), it is enough to prove the
claim for £1 = L,,,. Sincepyw is a torsion character, it follows that is a unitary local
system. LetM be a good compactification @ff obtained by adding the normal crossing
divisor D to M. Let (L1, V1) be the integrable flat connection & corresponding to the
local systemZ; and let(L1, V1) be the Deligne extension of the connectidn, V1) to
‘M with residues having the real parts in [0. Then there is a Hodge to de Rham spectral
seguence

EV?=HIM, Q%(Iog D)® L1) = HPT(M, L1).

Since by hypothesigft(M, £1) # 0, it follows that eitherE%’O #+ 0, orEg’1 # 0.1In
the first case, we are exactly in the situation of [1, Prop. 1.3 in Section V] and our claim
(ii) is proved in the final part of the proof. Just note that on the last line of that proof,
one should replace “which forceg| F to be trivial” by “which forcesy |(F N X) to be
trivial”. (This is due to the fact thaF in [1] denotes the compactification of our affine fiber
F = F(fw), andX in [1] corresponds to ouM.) If we are in the latter case, then one
can show thaﬁ;l leads to the first case, exactly as in the second part of the proof of [1,
Prop. 1.4 in Section V]. Since claim (ii) faf; is equivalent to claim (ii) forCIl, we are
done. Property (ii) corresponds to Prop. 1.2 in Beauville’s pager [3]. As noted there, it is
the same thing to ask triviality for the restriction to one generic fibefobr to all generic
fibers of f. See Corollary 416 below for a direct topological proof of (ii).

Claim (jii) is just the “untwisting” part of the proof of Thm. 1.6 ihl[1]. The existence
of the diagram is explained there via the Stein factorizatioryfpro p. However, the fact
that the morphisng has degre&/y depends on the previous claim (ii), and this key point
is not mentioned in [1].

The proof of (iv) is more technical. Using the projection formula

(3.11) P+(Cy) ® L = pu(p*(L))

for £ € W (see for instance [12, p. 42]) and then the Leray spectral sequenpe($ee
for instance([1R2, p. 33]), one gets an isomorphism.gf, -representations

(3.12) HYM', p*L) = H'(M, p+(Cy) ® L).
Following the argument in the proof of Thm. 1.6 In [1], we get

dmHY M, £) > —x(Sw).
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The only point which deserves some attention is the fact;flma’and?w do not admit
finite triangulations as required inl[1], since they are not compact. However, we can replace
them by finite simplicial complexes without changing the homotopy type,Sg:gcan be
replaced by the compact Riemann surface with boundary obtainedHEtoby deleting
small open discs centered at the pointBip.

The fact that there are only finitely many local systefns W such that

dmHY M, £) > —x(Sw)

follows by an argument similar to the end of the proof(df [1, Prop. 1.7, Section V]. For a
different approach and a generalization to translated components, see Corollaries 4.7 and
5.9 below.

Finally, claim (v) follows directly from (iv). O

REMARK 3.7. Conversely, iff : M — S is a morphism with a generic connected fiber
and with x(S) < 0O, thenW; = f*(T(S)) is an irreducible component il (M) such
that 1e Wy and dimW, > 2 (seel[l, Section V, Prop. 1.7]). Some basic situations of this
general construction of irreducible componeWis are the following.

CASEA.

(i) The local componentésee for instance [24, Subsection (2.3)] in the case of line
arrangements). The case of curve arrangements inuns as follows. Lepp € P? be a
point such that there is a degrégand an integet, > 2 such that

(1) thesetd, ={j | p € C; and ded"; = d,} has cardinality,;
(2) dim(f; | j € Ap) = 2, with f; = 0 being an equation faf;.

If {P, Q} is a basis of this 2-dimensional vector space, then the associated pencil induces
amap
friM—=S,

wheres,, is obtained fronP! by deleting thek, points corresponding to the curves, for
J € A,. Inthis way, the poinp produces an irreducible componenfi(M), namely
Wy = £, (T(Sp))

of dimensionk, — 1, and which is called local because it depends only on the chosen
point p. Note that in the case of line arrangements;an be chosen to be any point of
multiplicity at least 3.

(i) The components associated to neighborly partititsese [21]) correspond exactly to
pencils associated to the line arrangement, as remarked in [18, proof of Theorem 2.4].

CAsSEB. Let(X,0) c (C",0) be as in Examplg 23. Ley andg> be two weighted
homogeneous polynomials of degeéwvith respect to the weights such that

XN{g1=0N{g2=0}=0.

Defineg : X \ 0 - Pl byx — (g1(x) : g2(x)). Note thatg is constant on the corres-
pondingC*-orbits. Assume that the generic fibergis connected, i.e. it coincides with an
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orbit. Let B c P! be a finite subset such thiat= |B| > 2 andC, = g~ 1(b) is connected
foranyb € B. Then if we sets = P1\ B,C = Upep Cp andM = (X \ 0) \ C, we have
Hi(M) = 7ZF, T(M) = (CH*, T(S) = (C*)¥~1 and the subtorugy = g*(T(S)) is a
(k — 1)-dimensional irreducible component Bf(M).

All these points in Case A are illustrated by the following beautiful example.

ExampPLE 3.8. This is a key example discovered by A. Suciu (see Example 4.1lin [24]
and Example 10.6 in [25]). Consider the line arrangemei@figiven by the equation

xyz(x = x -2y —-2)x—y—-2)x—y+z2 =0

We number the lines of the associated affine arrangeme®? ifobtained by setting
z = 1) asfollows:L1 : x = 0,L : x—1=0,L3 :y =0,Lg:y—1=0,
Ls:x—y—1=0,Lg:x —y=0andL7:x —y+ 1= 0 (see the pictures in Example
4.1in [24] and Example 10.6 i [25]). We also consider the line at infihigy z = 0. As
stated in Example 4.1 in[24], there are:

(i) Seven local components: six of dimension 2, corresponding to the triple points, and one
of dimension 3, for the quadruple point.

(i) Five components of dimension 2, passing through the unit element and coming from
the following neighborly partitions (of braid subarrangement$k|26|38), (28/36|45),
(14123/68), (16/27/48) and (18/37|46). For instance, the pencil corresponding to the first
partition is given byP = L1Ls = x(x —y —z) andQ = LaoLe = (x — 2)(x — y). Note
thatLzLs = yz = Q — P is a decomposable fiber in this pencil.

(iii) A 1-dimensional componeri¥ in V1(M) with
pw=(1-1,-111-11 -1 e T(M) C (C*)®
and fw : M — C* given by

x(y —2)(x —y —2)?
(x—2)ylx—y+2)?

fwx:iy:iz)=

or, in affine coordinates,

_x( - D —y—1)72
Swx,y) = G Dyo —y P12

ThenW C Vi(M) andW N Vo(M) consists of two charactersy above and
ow=(-1,1,1,-1,1,-1,1, -1).

Note that this componerW is a translated coordinate component. This is related to the
fact that the associated pencil is special. For more on this arrangement see Hxanjple 5.12.
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4. TRANSLATED COMPONENTS AND CONSTRUCTIBLE SHEAVES

We need the following version of tigojection formulawhich is used very often, e.g./[1],
[20], but for which | was not able to find a reference.

LEMMA 4.1. For any local systenf1 on M and any local systemi; on S, one has
(RfL1) ® L2 = Rf(L1® [ L2).

PROOFE To prove this lemma, we start with the usual projection formula, i.e., in the above
notation,

4.1) (RALL) ® L2 = RA(L1® f1L2)

(see Thm. 2.3.29, p. 42 il [12]). L&t be a connected smooth complex algebraic variety
of dimensionm. Then the dualizing sheaf; is justCz[2m] and Dz £ = £Y[2m] for any
local systemC on Z (see Example 3.3.8, p. 69 in [12]). Note also that for two bounded
constructible complexed* andB* in D% (Z, C) we have the isomorphisms

(4.2) D7 A* ® B* = RHom(A*, wz) ® B* = RHOM(A*, wz ® B*)
= RHom(A*, B*)[2m].

It follows that

(4.3) Dz(A* ® B*) = RHom(A* ® B*, wz) = R Hom(A*, R Hom(B*, wz))
— Dy A* ® Dz B*[—2m].

For the second isomorphism here we refer to Prop. 10.23, p. 175 in [4]. Apply now the
duality functorDyg to the projection formulg (4}1). On the left hand side we get

Ds((RfiL1) ® L2) = Ds(RfiL1) ® Ds(L2)[—2] = Rfi(DuL1) ® Ds(L2)[—2]
= Rf(LY) ® L3[4].

Except the isomorphisms explained above we have used here the isomorphisfn =
Rf.Dy (see Cor. 4.1.17, p. 90 in_[12]). Similarly, on the right hand side we get
DsRfi(L1® f7*L2) = RfiDu(L1® f1L2) = Rf(LY ® (f*L2)V)[4]. Since
(L)Y = f‘l(ﬁg) and since any local system is the dual of its own dual, the proof is
complete. O

Note thatF = R f,(L1) is in general no longer a local system $rbut aconstructible
sheaf By definition, there exists a minimal finite sEt= X' (F) C S, called thesingular
support of F, such thatF|(S \ X) is a local system (se2 [12, p. 87]). The main properties
of this sheaf are given in the following result.

LEMMA 4.2. Let£; be arank one local system @i, F the generic fiber of : M — §,
and setF = ROf,(£1). Then either

(i) the restrictionZy|F is trivial, F|(S \ X) is a rank one local system aifl, = 0 if and
only ifs € X, or
(i) the restrictionZs|F is non-trivial andF = 0.
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PrROOF Consider first case (i). I§’ c S is a Zariski open subset such that the restriction
f' M — S with M = f~1(5) is a topologically locally trivial fibration, thetF|S’ is
a rank one local system. Indeed, foe S’ we have

Fy = lim F(D) = lim H(f~X(D), £1) = C.

Here the limit is taken over all the sufficiently small open digcin S centered at, and
the last equality comes from the fact that the inclusign= f~1(s) — f~4(D)is a
homotopy equivalence angh|F; = Cr, (recall thatF; is connected, and henge (D)
is connected as well). In particul&¥ c S\ 8, and henceX = @if f : M — Sisa
locally trivial fibration. The above argument also shows tRat= 0 if and only ifs € X.

In case (i), assume thaf;, # 0 for somes € S. Then there is a small open digcin §
centered at such that/%(f~1(D), £1) # 0. This implies that the restrictiofi; | f ~1(D)
is trivial, and hence 4| F is trivial as well, a contradiction. O

We have the following key result.

PrROPOSITION4.3. Let f : M — § be a surjective morphism with a generic connected
fiber F from the surfaceV onto the curveS. Then for any local systerfy; on M and any
local systen; on S, one has the following exact sequence:

0— HYS, RO fi(L1) ® L2) — HY (M, L1® f~1L2) — HO(S, R fo(L1) ® L2).

The last morphism is surjective in any of the following situations:

(i) Sis affine;
(i) L41|F is non-trivial;
(i) L1]F is trivial and £ is generic, i.e. it is different from a finite set of local systems
depending ory and £;.

PROOF We use the Leray spectral sequence
ES? = HP(S, RIf(L1® f~1L2))
converging toH? (M, L1 ® f~1L5). By Lemm we have
RIfu(L1® [ L2) = R fu(L1) ® Lo
In particular, the above spectral sequence yields the exact sequence
0— HY(S, ROfu(L1) ® L2) — HYM. L1® [~1L2) — K3t — 0

Whel’ng’l is the kernel of the di1"ferentiaig’l — E%’O.
When § is affine, this spectral sequence degeneratdszeﬁinceEé”q =0forp ¢
{0, 1} by the Artin theorem (see Thm. 4.1.26, p. 95[ini[12]), and this proves claim (i).
In case (ii) one ha&® = H2(S, R°f.(L1) ® L2) = 0 sinceF = RO f.(L1) = 0.
For case (iii), we use the exact sequence of cohomology with compact supports

0=HYZ, F® L) — HXU, FQ L) - HX S, F® L) > HX(Z, FR L) =0
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whereU = S\ X (note thatS can be assumed to be compact, since otherwise we are in
the affine case (i)); see for instanCel[12, p. 46]. NBW = Lg is a rank one local system,
and we can use duality to get

H2(U, Lo® L2) = HOU, LY ® £3)".

These cohomology groups are clearly trivial i&4|U # Egl. Since the restrictiof ;| U
determines the local systefip, this means that there is at most one local sysfenfor
whichE3? #0. O

To continue we need the following.
LEMMA 4.4. The constructible sheg&f = R! f,(Cy) has no section with finite support.

PrROOF This proofis given in D. Arapura[1, Proposition 1.7], but we repeat it here for the
reader’s convenience, and to clarify some points in Arapura’s proofDLst a small disc
in S centered at a bifurcation poibte S, let D* = D\ {b} and choose a poigt € D*. Set
Mp = YD), M*, = f~Y(D*) andM, = f~1(g). The claim is equivalent to showing
that the morphism

i*: H'(Mp,C) - H'(M,,C)

induced by the inclusiof) : M, — Mp is injective. Indeed, one has natural identifications
G, = HY(Mp, C) andg, = HY(Mm,,C) andi; corresponds to the restriction morphism
G» — Gy. The open inclusiory, : M}, — Mp clearly induces a surjective morphism
H1(M}) — Hi(Mp), and hence an injective morphisih: H*(Mp, C) — H(M}, C).

Now, if the discD was chosen small enough, the restrictionfaver D* is a locally
trivial fibration with fiber typeM, and hence we get the following exact sequence (which
is dual to an exact sequence similar{to5.2) below):

(4.4) 0— HY(D*, C) L5 H M3, C) % HYM,, C)
where, : M, — Mj, is the inclusion. It follows that : H*(Mp,C) — H'(M,,C)

is injective if and only if/ = im(j;) Nim{HY(D*,C) — HY(M},C)} = 0. Since

f : M — S is surjective, it follows thatd = f~1(b) is a hypersurface /. Let p be

a smooth point on the associated reduced hypersurface. It follows that there is an analytic
curve germy : (C,0) — (M, p) such thatf (¢ (z)) has some ordaf > 1, whered is the
multiplicity of H at p. Note that in D. Arapura’s proof[1], the multiplicity is supposed

to be 1, which is not always the case.

Leto € I. Sinces € im{H1(D*, C) EAN HY(M%, C)}, it follows that there is @ €
Hom(H1(D*), C) = HY(D*, C) such thatr = B o f.. The germp induces a morphism
¢+ . H1(D*) — Hi1(M7})) such thatf, o ¢, is multiplication byd on the groupHy(D*)
= Z. It follows thato o ¢, = d - B.

On the other hand, sinee € im(j;), there iss” € Hom(H1(Mp), C) such that =
o’ o jps. Itfollows thato o ¢, = 0”0 jps 0 Py is trivial, sincej, o has an obvious extension
¢ from the punctured dis®* to the discD. In conclusiong = 0, and sl = 0, proving
our claim. O
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The above lemma can be generalized as follows.

PROPOSITION4.5. Let f : M — S be a surjective morphism withm S = 1 and a
connected generic fibeF. If £ is a rank one local system oW, then the constructible
sheafG = R f,(£) has no section with finite support. Equivalently,

HO(S,G® L2) =0
for all but finitely many local system® € T(S).

PrROOF First we check that the last two claims are equivalent. Locally, the two shaves
andg ® L coincide, so they admit at the same time non-zero sections with finite support.
If this is the case, then clearly

HO(S.G® L2) #0

for any local systent,. Suppose now that there are no such sections with finite support.
Let X' := ¥ (G) = ¥ (G ® L>) and note that in this case the restriction

HO(S,G® L2) — HY(S\ X', G ® L2)

is injective. SinceS \ X’ is homotopically a bouquet of circles (or a compact curvg if
is compact andz’ = ), the last group is non-zero exactly when the monodromy.of
along any of the loops forming a basis for the integral homology isfthe inverse of one
of the eigenvalues of the monodromy of the local systHi$ \ X’) along this loop, i.e.
for a finite number of local systeni%.

With the notation from the proof of Lemnja 4.4, we have to prove that the restriction
morphism

i*: H'(Mp. £) — H (M, L|M,)
is injective.

The open inclusiory, : Mj, — Mp clearly induces an epimorphismy (M},) —
m1(Mp), and hence an injective morphisif: HX(Mp, £) — HY (M}, £). This follows
for instance by using the description of the first twisted cohomology grétigs/, £) in
terms of cross-homomorphisms (seel[22]).

CAsE 1: the restrictionZ|F is the trivial local systenCg. To study the local system
L' = L|M?},, note that it corresponds to a character

p i mi(M}) — C*.
The exact sequence
1— m(My) — m1(Mp) — m1(D¥) — 1
and the triviality ofC|M, (note thatM,, is a generic fiber off) imply thatL = f*(L,),

whereL, is the rank one local system dn* with monodromya € C*. For this class of
local systems we have a long exact cohomology sequence

0_,-1. 0
@5 — HOM,. C) = gOm,. C) - HYM}. L) —5 HY(M,.C)
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(seel[12, p. 212]). Herg™ are the monodromy operators of the fibratiefy) — M}, —
D* and clearlyr® = Id since the fibet,, is connected.

If « = 1, then locally at the bifurcation poiate S we have exactly the same situation
as in Lemm& 4J4, hence the result is already proven.

0_g-1. . . .
If @ # 1, then the morphisn#®(M,, C) pzamd HO(M,, C) is an isomorphism,

[*
which yields an injectiorHX(M*, £') — H(M,, C). This gives the result in this case,
since the composition of two injections is an injection.

CASE 2: the restrictionC| F is a non-trivial local system. In this cag®’ f,.£ = 0 and
the Leray spectral sequence of the fibratddp — M}, — D* yields an isomorphism

HY(M}, £) — HO(D*, RY f.L).
SinceHO(D*, R1f,L) is just the invariant part 0H1(Mq, L|M,) under the monodromy
of the local systenk? £,£ on D*, this gives rise to a natural injection
1% 4 o1
HY (M}, £) 5 HY (M, £IM,).
which completes the proof in this case as well. O

The following corollary of the exact sequence in Propositioh 4.3 and of Propdsition 4.5
gives also a new, topological proof for the claim in Theofen 3.6(ii).

COROLLARY 4.6. Let f : M — S be a surjective morphism with a generic connected
fiber F from the surfacé/ onto the curves with b1(S) > 0. Then for any local systeify

on M such thatZ4|F is non-trivial, and for any generic local systefi? € T(S), one has
HY M, L1® f*(L2)) = 0.

As a consequence of Propositipn]4.3, we get the following extension of Theorem
[3.4(v). (This special case corresponds to the dse= Cyy, when ROf,.(L,) = Cs
and hencer = @. For an illustration of the general case, see Exainplg 5.14 below.)

COROLLARY 4.7. If £, is arank one local system a¥f such thatl,|F is trivial, then
dim HY (M. L, ® f71L) = =x(S) + | Z(Rfu(Lp))]

with equality for all but finitely many local systenfse T(S). In particular, if Wy, =
o ® f*(T(S)) is a positive-dimensional irreducible componenVatM), thenWy , is an
irreducible component af, (M) for anyl < g < q(f, p) := —x(S) + |2(R°f*([,p))|.
Conversely, any positive-dimensional irreducible componebt G#7) for ¢ > 1is of this
type.

PROOF To estimate dinH1(S, F ® £5) we compute

x(S, F® L) =dimHS, F @ L2) — dimHY(S, F® L2) = x(S\ ¥)
using Thm. 4.1.22, p. 93 in.[12]. This yields
(4.6)  dimHYS, F® L2) =dimHO(S, F® L2) — x(S) + || = —x(S).
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In the caseC1 = £, such thatCq| F is trivial, Propositio@ yields
HY M, L1® f1L2) = HY(S, R°fu(L1) ® L2)

for all but finitely many local system&, € T(S). Similarly, the description o& given
above shows that the group®(S, F ® L) is zero unles = @ andLy = F~ 1.

The only thing to explain is the last claim in the cage- 1. Assume thaW, is a
positive-dimensional irreducible componenyf(M) for ¢ > 1. SinceV, (M) C V1(M),
there is an irreducible componeWt of V1 (M) such thatW, C W. Then the first claim in
Corollary[4.7 implies thaW C V, (M), i.e. W, = W. a

5. TRANSLATED COMPONENTS AND MULTIPLE FIBERS

Let W be a translated irreducible componendafM), i.e. 1 ¢ W. Then, as in Theorem
[3.8, there is a torsion charactere T(M) and a surjective morphisri : M — S with
connected generic fibdt such that

(5.1) W = pf*(T(S)).

We say in this situation that the componé#itis associatedo the mappingf. In this
section we give detailed information on the torsion charagter T(M) in terms of the
geometry of the associated mappifig M — S.

5.1. The general setting

Let F be the generic fiber of the mappifg: M — S, i.e. F is the fiber of the topologically
locally trivial fibration ' : M’ — S’ associated tg as in the previous section. Then we
have an exact sequence

(5.2) Hi(F) - Hi(M') 2> Hy(8) — 0
as well as a sequence
(5.3) Hi(F) <5 Hu(M) L Hi(S) - 0

which is not necessarily exact in the middle, i.e. the group
(5.4) T(f) = ker f,./imi,

is in general non-trivial. Heré : F — M andi’ : F — M’ denote the inclusions, and
homology is taken wittZ-coefficients if not stated otherwise.

This group was studied in a compact (proper) setting by Serranol(skee [23]), but no
relation to local systems was considered there. On the other hand, this compact situation
was also studied by A. Beauville inl[3], with essentially the same aims as ours.

The sequencé (3.3) induces an obvious exact sequence

(5.5) 0— T(f) — Hy(M)/imi, <> Hy(S) — O.
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Since H1(S) is a freeZ-module, applying the fuctor Ho(, C*) to the exact sequence
(5.8), we get a new exact sequence

(5.6) 1— T(S) — T(M)r — Hom(T(f), C*) — 1.

HereT(M)F is the subgroup iff' (M) formed by all characterg : Hi(M) — C* such
thaty o i, = 0. This means exactly that the associated local syglerny restriction toF
yields the trivial local systerCr.

The torsion character € T(M) which occurs in[(5]1) is in this subgrod M) r (see
Theorern3.B(ii)). Moreover, this characteis not unique, but its class

(5.7) p € T(M)p/T(S) ~ Hom(T (f), C*) = T(f)

is uniquely determined. From now on, we will regard f(f). Hence, to understand the
possible choices fof, we have to study the group(f) or, equivalently, its Pontryagin
dual 7 (f).

5.2. The computation of the group( /)

Let f : M — S be a surjective morphism with a generic connected fibass above. Let
C(f) c S be a finite, minimal subset such that if we fit= S \ C(f), M’ = f~1(S"),

then the induced mapping : M’ — §’ is a locally trivial fibration. Forc € C(f) we
denote bym, the multiplicity of the divisorF, = f~1(c). We have the following result,
where the first claim is already ihl[3, the remarks after Proposition 1.19], and in Serrano
[23]. However, this second author wrongly claims that the isomorphism in (i) holds for case
(ii) as well. The mistake in[23] is in the proof of Thm. 1.3, Claim 1, where the relation
between the,’s is incorrect. In the proof below, these 1-cycigss are denoted by, and

the correct relation ig = 0.

THEOREMS5.3. (i) If the curveS is proper, then

T(H)=( @ z/m2)/d,....1.

ceC(f)

(i) If the curves is not proper, then

T(f)= @ Z/mZ.
ceC(f)

PROOFE The main ingredient to prove this theorem is Lemma 3n [7], which yields the
exact sequence

(5.8) m1(F) = m1(M) — 79P(f) — 1.

Here theorbifold fundamental grouprfrb(f) of the mappingf is the quotient ofry(S”)

by the normal subgroup generated by the elemgfitfor ¢ € C(f), with §. a simple loop
going once around the poiat Note that this result is stated inl [7] under the assumption
that the curves is proper, but the proof given there works fnon-proper as well.
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The exact sequende (5.8) yields, by passing to abelianizations, the exact sequence
(5.9) Hi(F) — Hi(M) — HY™(f) — 0.

We will denote by 2™ the epimorphisny (M) — Hfrb(f) in the exact sequence above.
Coming back to the notation from Subsection 3.1, we get the following presentation
for the orbifold first homology grou;Hf’b(f) of the mappingf:

(5.10) Hfrb(f) = Z{81, ..., 82¢1k; O¢ forc e C(f))/{A, m:8. forc € C(f))
whereA = 82,41 + - -+ + 82444 + . 8c. There is a natural surjective morphism
(5.11) 0 : HO'(f) — Hy(S)

given bys; — §; fori = 1,...,2¢ + k and$. — O for c € C(f). Here we use the
presentation foH1(S) given in the formula[(3]1). Comparing the exact sequencg (5.9) to
the sequence (3.3), we get an isomorphism

(5.12) ketd) ~ T(f).

When S is proper we havé = 0 and the group ké#) is spanned by the loop% for
¢ € C(f), with the relationsn, - . = 0 andA = )" .8, = 0. This yields claim (i), since
clearly A corresponds to the eleme(rjl el i).

When S is not proper we havé > 0 and the group keéf) is spanned byA and the
loopss, for ¢ € C(f), with the relationsn, - 8. = 0 andA = 0. Claim (ii) follows from
this description. O

COROLLARY 5.4. There is a non-canonical isomorphism
HY™(f) = Hi(S) x T(f).

In particular, .
TO®(f) =~ T(S) x T(f)

where f(f) = Hom(T (f),C*) is the Pontryagin dual of the finite group(f) and
TO(f) = Hom(Hlf”b(f), C*) is the corresponding orbifold character group ff

ExampLE 5.5 (Computation of the group(f) in Case B, the Seifert links). Lé&fX, 0)
be a complex quasi-homogeneous normal surface singularity. Then the sxiffaceX \
{0} is smooth and it has @*-action with finite isotropy group€’. These isotropy groups
can be assumed to be trivial, except for those corresponding to finitely many mrhits,
ps in C(X) = X*/C*. We setk, = [C}|for p € P ={pa,..., ps}.

The quotientC (X) is a smooth projective curve. For any finite subBeh C(X) we
get a surjective mapping : M — S induced by the quotient mafp : X* — C(X),
whereS = C(X) \ B andM = £~1(S).

In addition, the curv& (X) is rational iff the link L (X) of the singularity X, 0) is aQ-
homology sphere (use Cor. (3.7) on p. 53 and Thm. (4.21) on p. 66lin [11]). In particular, if
the link L(X) of the singularity(X, 0) is aZ-homology sphere, theH1(M) = Z4 where
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g = |B|, and a basis is provided by small loops around the fibet, = f~1(b) for
b € B, as explained in Subsectipn B.2.

One hasf.(y») = kpép, With k;, the order of the isotropy groups of pointssuch
that f(x) = b, ands, a small loop aboub € PL. The set of critical values of the map
fo: X* = C(X) is exactlyP, and each fibeF, = fo_l(p) is smooth (isomorphic t€*),
but of multiplicity k, > 1. Writing down the mapfo, : H1(X*) — H1(C(X)) and using
its surjectivity, we find that the integeks are pairwise coprime.

Let (X,0) be the germ of an isolated complex surface singularity such that the
corresponding linlL x is an integral homology sphere. L@t, 0) be a curve singularity on
(X, 0). Then using the conic structure of analytic sets, we see that the local complement
X \ Y, with X and Y Milnor representatives of the singularitig€’, 0) and (Y, 0),
respectively, has the same homotopy type as the link complemieat Lx \ Ly, where
Ly denotes the link of'.

Moreover, if (X, 0) and (Y, 0) are quasi-homogeneous singularities at the origin of
some affine spac&”, with respect to the same weights, then the local complement can be
globalized, i.e., replaced by the smooth quasi-projective vaiiety, whereX andY are
this time affine varieties representing the gelixis0) and(Y, 0) respectively.

Using the well-known analytic description of the Seifert libk= (X' (k1, . .., k,), S1U
---USy) withk; > 1 andn > ¢ > 2 given in [17, p. 62] and the above notation, we see
that the link complemen (L) = X' (ky, ..., k) \ (S1U--- U S,) has the homotopy type
of the surfaceV obtained from the surface singulari¥yby deleting the orbits (regular for
k; = 1 and singular fok; > 1) corresponding to the knotsS;, j = 1,...,¢. In other
words, we have a finite sé& c P! with |B| = ¢ and a mapping : M — § =P\ B.

LetN =ki- kg, Nj = N/kjforl < j < q, N = kg41---kn, N; = N'/k; for
g +1 < j < n.We can assume that fgr > ¢ one has; = 1iff j > g + s, withs a
positive integer. The above theorem implies in this case

T(f)=Z/NZ= & Z/kZ.
g+1<j<n
For another way of computing the groufp(f) in some cases, we refer to_[13,
Section 6].

DEFINITION 5.6. For a characterp : T(f) — C*, we define theupport supfp) of g to
be the singular seE' (F) of the constructible shedf = Rof*(ﬁp) for some representative

p of p.

In other words, a critical value € C(f) is in supgp) if for a small discD, centered
atc, the restriction of the local systes, to the associated tul¥e(F,) = f~XD,) about
the fiber F, is non-trivial. Since two such representativesliffer by a local system in
F*(T(S)), it follows from Lemmd 4.]L that this support is correctly defined.

THEOREMb5.7. Let f : M — S be a surjective morphism, with connected generic
fiber F, and letp : T(f) — C* be a character. Thesupfp) is empty if and only if
the characterp is trivial.

PrROOF If the charactep is trivial, we can represent it by = 1 and clearly in this case
suppp) = X(Cs) = 0.
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Conversely, assume that sypp = @. It follows that for any special value € C(f)
and any small tub& (F,) about the fibeF,, the restriction’,|T (F;) is trivial. We know
in addition thatl, | F is trivial for any generic fibe# of f.

Let as beforef’ : M’ — S’ denote the maximal locally trivial fibration associated
to f, and recall thats’ = S\ C(f). Letp’ : Hi(M') — C* be the composition of
the charactep : Hi1(M) — C* with the morphismHi(M’) — H1(M) induced by
the inclusionM’ — M. Using the exact sequende (5.2), it follows that there is a unique
character’ : H1(S") — C* such that’ = f*(a’).

Letc € C(f) be any bifurcation value fof and lets. be the cycle inH1(S’) given
by a small loop around. Then, using the fact that’ is a locally trivial fibration with a
connected fibeF, it follows that the cycld, € H1(S’) has alifting to a cycléc € Hi(M')
such thatf/(5.) = 8. and with the support of. contained in the tub@& (F,). It follows
that

P/ =1=a(5).

As a result there is a unique charaater H1(S) — C* such that’ is the composition of
a with the morphismH1(S’) — H1(S) induced by the inclusiof’ — S.

Now we replace the representatipefor 5 by the charactep; = p - f*(@™1). It
follows that the restriction ofp1 to H1(M’) is the trivial character. Using the Mayer—
Vietoris sequence to expresg (M) in terms of the covering = M’ U UceC(f) T(F.)
we deduce that the characjeritself is trivial. This clearly implies that the characigis
trivial. O

The following result, based on Corollaries}4.7,]5.4 and Thegrem 5.7, clarifies the case
of translated components; see alsd [10] in the proper case.

COROLLARY 5.8. Let f : M — S be a surjective morphism, with connected generic
fiber F.

@) If x(S) < O, then the irreducible components wh (M) associated tof form
a subgroup inT(M), isomorphic to the orbifold character grouf®®(f). More
precisely, they are given by°™(T°™®(f)), where the injective morphisnfi®™® :
TO®(f) — T(M) is the dual of the epimorphisp©™.

(i) If x(S) = 0, then the irreducible components¥iy (M) associated tof are given by
forbrorb £y#) whereT°™( £)* is obtained from the orbifold character grod™( 1)
by deleting the identity connected component.

The same proof as above yields the following result, to be compared with Theorem

BH().

COROLLARY 5.9. Let f : M — S be a surjective morphism, with connected generic
fiber F, such thaty (S) < 0. Then, for any charactes : T(f) — C*,

dimHY(M, L, ® f*L) > —x(S) + |SUpfp)|

for any local systent € T(S), and the above inequality is an equality for all except finitely
many local systems.
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For the proofs of the following related two results we refel td [14].

PROPOSITIONS.10. For f : M — S a surjective morphism, with connected generic
fiber F, and for a non-trivial elemeng in the Pontryagin duall' (1), one has a natural
adjunction isomorphism

F=Rjsj'F

where F = Rof*(cp) andj : S\ X(F) — S is the inclusion. In particular, the local
systemj ~1F on S \ X (F) is non-trivial.

COROLLARY 5.11. With the above notation,  is a compact curve, thel (F)| # 1.

ExAMPLE 5.12 (The delete®s-arrangement). We return to Example]3.8 and apply the
above discussion to this test case. The corresponding magping/ — C* hasB =
{0, 0} and C(f) = {1}. Indeed, with obvious notation, we get the following divisors:
Do=L1+ L4+ 2Ls, Doo = Lo+ L3+ 2L7andD1 = Lg + 2L whereL : x +y—1
= 0 is exactly the line from thé8z-arrangement that was deleted in order to get Suciu’s
arrangement. Moreover, the associated fibragion M’ — S’ in this case is just the
fibration of theBs-arrangement discussed [n [18, Example 4.6].

The lineL is the only multiple component amai, = 2. Then Theorern 5 3 implies that

T(f) =7/27.

Lety; = y(L;). We know thato(y;) = +1 and to get the exact values we proceed as
follows. First note that we can choogéy;) = 1, since the associated torus is

FHIECH) ={(, 5,2, 1,072,1) | e C.

(In fact the choicep(y1) = —1 produces the charactgf;, introduced in Exampl@.&)
Next leta = 21-7:1 a;y; € Hi(M). Thena € ker f, if and only if

(5.13) o1 + ag + 205 = ap + a3 + 207.

In our case, the canonical projectién ker f, — Z/27 is given bya +— a2 + a3 — ag
(for details see [13, Theorem 6.3]). It follows that € ker f, and6(ys) = 1 € Z/2Z.
Hencep(ys) = —1.

Nexty;s + y2 € ker f, andd(y1 + y2) = 1 € Z/27Z. 1t follows thatp (y1) p(y2) = —1,
i.e. p(y2) = —1. The reader can continue in this way and get the valye ef py given
above in Examplg 3]8.

ExAMPLE 5.13 (A more general example: thg,-arrangement). Letd,, be the line
arrangement ii? defined by the equation

x1xo(x7 — x5 (x7" — x3) (x5 — x3') = 0.

This arrangement is obtained by deleting the line= 0 from the complex reflection
arrangement associated to the full monomial gré\(@, 1, m) and was studied ir_[8] and
in [Q]. The celebrated deletek-arrangement studied above is obtained by taking 2.
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Consider the associated pencil
(P, Q) = (1] (x5 — x3), 23" (+]' — x3).

Then the seB consists of two points, namel : 1) and(1 : 0), and the se€(f) is the
singleton(1 : 1) (see for instancé [18, Example 4.6]). It follows thak.1y = m and hence
via Theorenj 53 we get

T(f) =7Z/mZ.

Using Corollary 5.8, we expecin — 1) 1-dimensional components (M), and this is
precisely what has been proved|in [8], or in Thm. 5.7_0f [9]. There-ate2 + 3m lines in
the arrangement, and to describe these components we use the coordinates

(21,22, 202:1, - - - » 212> Z13:Ls - - - 5 213> 223115 - - - » 2231m)

on the torus(C*)" containingT(M). Herez; is associated to the lingg = 0 for j =

1, 2, andz;; is associated to the ling — wkx]', wherei, j = 1,3,k =1,...,m, and

w = exp(2r +/—1/m). All the above 1-dimensional components have the same associated
1-dimensional subtorus

T = f*(T(C*) = {@™, ™™ 1,... ., Lu™ . u ™ u, ... u)|ueC

where f : M — C* is the morphism associated to the periél Q), and each element
1, u~1 andu is repeatedn times. Lety. be an elementary loop about one lihen the
fiber C., with multiplicity 1, e.g.L : x1 — xo = 0. Similarly, lety, be an elementary
loop about one lind.” in the fiberC;,, with multiplicity 1, whereb = oo = (0 : 1), e.g.
L' : xo — x3 = 0. And letyg be an elementary loop about one libgin the fiberCy, with
multiplicity 1, where 0= (1 : 0), e.g.Lo : x1 — x3 = 0. One can show easily that

(i) the classesy.] and [y, + o] in the groupT () are independent of the choices made;
(i) [ve] = —[y» + vol is a generator of (f).

It follows that a torsion charactgr € T(M) such thatl,|F = Cr and inducing a
non-trivial charactep : T(f) — C* is given by

,0:(1,1,u)k,...,wk,wfk,...,ufk,l,...,l)

fork = 1,...,m — 1. Here 5([y.]) = w* andp is normalized by setting the last
components equal to 1.

ExAMPLE 5.14 (A non-linear arrangement). Consider again the pehcil (P, Q) =
(] (x5 — x3"), x5 (x]" — x3')) associated above to thé,,-arrangement, fom > 2. We
introduce the following new notatior€ = {(0 : 1), (1 : 0), (1 : 1)}. Let B c Pl be a
finite set such thatB| = k > 2 andB N C = §. Consider the curve arrangementHA
obtained by taking the union of the:3ines given by

(] — x5 (] —xg)(xy —x5) =0

with the k fibersC, for b € B. Let M be the corresponding complement afpd M —
S :=P1\ B be the map induced by the pen€il Then one has the following.



388 A. DIMCA

() T(f)=Z/mZSZ/mZSZ/mZ. Lete; for j = 1, 2, 3 denote the canonical basis of
T(f) as aZ/mZ-module.

(i) For a characterp : T(f) — C* letW, = £, ® f*(T(S)) be the associated
component. Then difW, = k — 1 and for a local systemi € W, one has

dimHY(M, L) > k — 2+ €(p)
where equality holds for all but finitely many € W, and

€(p) =1{j | plej) #1}1 €{0,1,2,3}.

Indeed, the sefj | p(e;) # 1} can be identified with sugp) and the claim follows
from Corollaried 5.8 anfl §.9. This shows that the various transléjesf the subtorus

W =Tw = f*(T(S)) all have the same dimension, but they are irreducible components
of various characteristic varieti®s (M), withg = ¢ (f, p) = k—24€(p) as in Corollary

[4.1, a fact apparently not noticed before.
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