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Algebraic geometry.— Characteristic varieties and constructible sheaves,
by ALEXANDRU DIMCA .

ABSTRACT. — We explore the relation between the positive-dimensional irreducible components of the
characteristic varieties of rank one local systems on a smooth surface and the associated (rational or irrational)
pencils. Our study, which may viewed as a continuation of D. Arapura’s paper [1], yields new geometric insight
into the translated components relating them to the multiplicities of curves in the associated pencil, in a close
analogy to the compact situation treated by A. Beauville [3]. The new point of view is the key role played by the
constructible sheaves naturally arising from local systems.
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1. INTRODUCTION

Let M be a smooth complex quasi-projective variety. The first characteristic varieties
Vm(M) describe the jumping loci for the dimension of the first twisted cohomology groups
H 1(M,L), whereL is a rank one local system onM. These characteristic varieties, and
their relative position inside the algebraic groupT(M) = Hom(H1(M),C∗) parametrizing
the rank one local system onM, play a key role in understanding the fundamental group
π1(M) (see [15], [16]).

Since we are interested here only in the first cohomology groups, we can replaceM

by a smooth quasi-projective surface, by taking a generic linear section and applying a
general version of the Zariski theorem (see for instance [11, p. 25]). Therefore, to help the
reader’s intuition, we will assume in this paper that dimM = 2, though the results and
proofs hold in any dimension. This is a very interesting setting, as the opening lines of
Catanese’s Introduction in [6] tell us:

“The study of fibrations of a smooth algebraic surfaceS over a smooth algebraic
curveB lies at the heart of the classification theory and of the geometry of algebraic
surfaces.”

Themain aimof this paper is to study the translated components of the characteristic
varietyV1(M). According to Arapura’s results [1], such a componentW = W(f, ρ) is
described by a pair(f, ρ) where

(a) f is a surjective morphismM → S, from the surfaceM to a smooth curveS, having
a connected generic fiberF ;

(b) ρ ∈ T(M) is a torsion character such thatW is the translate byρ of the subtorus
f ∗(T(S)), i.e.W = ρ · f ∗(T(S)).
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Using the (Logarithmic) Isotropic Subspace Theorem (see Catanese [5] in the compact
case and Bauer [2] and Catanese [6, Thm. 2.11] in the quasi-projective case), one can
determine in many cases the various possible morphismsf from certain maximal isotropic
subspaces inH 1(M), relative to the cup-product

H 1(M)×H 1(M) → H 2(M).

A similar approach is provided by the study of the resonance varieties (see [15]).

In this paper we assume that the morphismf has already been determined and
concentrate on the finite order characterρ above. Our results can be described briefly as
follows. The charactersρ arising in (b) above for a given mapf are parametrized by the
Pontryagin dualT̂ (f ) = Hom(T (f ),C∗) of a finite groupT (f ) defined in terms of the
topology of the mappingf . This group depends only on the multiple fibers in the pencil
associated tof (see Theorem 5.3). Whenχ(S) < 0, any character in̂T (f ) actually gives
rise to a component (see Proposition 4.3), while forχ(S) = 0 (i.e. whenS is an elliptic
curve, a case treated by Beauville [3] whenM is proper, or whenS = C∗) one should
discard the trivial character in̂T (f ) (see Corollary 5.8). Moreover, for a generic local
systemL ∈ W = W(f, ρ), the dimension ofH 1(M,L) is expressed in terms of the Euler
characteristicχ(S) and the cardinality of the support ofρ (see Corollary 4.7).

The caseS = C∗ is the most mysterious, and Suciu’s example of such a component
for the deletedB3-arrangement given in [24], [25] played a key role in our understanding
of this question. We consider this component in detail in Examples 3.8 and 5.12, and for
the generalization given by theAm-arrangements, discussed in [8] and [9], see Examples
5.13 and 5.14 below.

Our results are exemplified all along this paper on two types of situations:

CASE A: M is a curve arrangement complement inP2.

CASE B: M is a curve arrangement complement on a normal weighted homogeneous
surface singularity, a case which includes the Seifert link complements discussed in
Eisenbud and Neumann’s book [17].

In fact, the reader interested only in Case A may refer to [13] for additional information.
In Section 2 we collect some basic facts on regular mappingsf : M → S and the

associated pencils. Lemma 2.2 intends to clarify the key notion ofadmissible mapused by
Arapura in [1].

In Section 3 we give the main definitions related to characteristic varieties. Theorem
3.6 collects some (more or less known) facts on irreducible components of characteristic
varieties, which are derived by a careful reading of Arapura’s paper [1]. The key
topological property (ii) in Theorem 3.6 was not explicitly stated before (in the proper
case, a related property is used in [3]). In Corollary 4.6 we give a purely topological proof
of this property.

In Section 4 we emphasize the key role played in this setting by the constructible
sheaves obtained as direct images of local systems onM under the mappingf : M → S

(see for instance Propositions 4.3 and 4.5 and Lemmas 4.2 and 4.4). In particular, for a
local systemL ∈ W = W(f, ρ), the dimension ofH 1(M,L) is expressed in terms of the
Euler characteristicχ(S) and the cardinality of thesingular supportΣ(F) of the sheaf
F = R0f∗Lρ (see Corollary 4.7).
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In the final section we associate to a mapf : M → S as above a finite abelian group
T (f ) such that the torsion characterρ is determined by a characterρ̃ of T (f ) (see formula
(5.7)). We compute this groupT (f ) in terms of the multiplicities of the special fibers of
f (see Theorem 5.3). The groupT (f ) is intimately related to theorbifold fundamental
group πorb

1 (f ) of the mapf (and even more so to the correspondingorbifold first
homology groupH orb

1 (f ) of f ), see Corollary 5.4.
In Theorem 5.7 we show that the characterρ̃ ∈ T̂ (f ) is trivial if and only if the

associated constructible sheafF = R0f∗(Lρ) is a local system onS.

2. GENERALITIES ON PENCILS ON A SURFACEM

Let M̃ be a smooth compactification of a complex smooth quasi-projective surfaceM. Let
f : M → S be a regular mapping, whereS is a smooth curve. Then there is a minimal
non-empty finite setA ⊂ M̃ such thatf has an extensioñf to U = M̃ \ A with values
in the smooth projective model̂S of S. By blowing up the points inA, we pass fromM̃ to
a new compactification̂M of M such thatf or f̃ is the restriction of a regular morphism
f̂ : M̂ → Ŝ.

We call any of the morphismsf , f̃ or f̂ above apencil of curves. Such a pencil is
rational if the curveS (or, equivalently,̂S) is rational, and it isirrational otherwise. For
anys ∈ Ŝ, we denote byCs the corresponding fiber iñM (obtained by taking the closure
of f̃−1(s)) or in M̂. The corresponding pencil will be denoted sometimes byC = (Cs)s∈Ŝ .

We recall the following sufficient condition to have a rational pencil.

PROPOSITION2.1. If the complex smooth surfaceM satisfies the condition
W1H

1(M,Q) = 0, whereW is the weight filtration of the canonical mixed Hodge
structure, and iff : M → S has a generic connected fiber, thenS is a rational curve.
Moreover, the conditionW1H

1(M,Q) = 0 holds if the surfaceM admits a smooth
compactificationM̃ such thatH 1(M̃,Q) = 0.

To prove this result, we need the following.

LEMMA 2.2. LetX andS be smooth irreducible algebraic varieties withdimS = 1 and
let f : X → S be a non-constant morphism. Then for any compactificationf̂ : X̂ → Ŝ of
f with X̂, Ŝ smooth, the following are equivalent.

(i) The generic fiberF of f is connected.
(ii) The generic fiber̂F of f̂ is connected.

(iii) All the fibers off̂ are connected.

If these equivalent conditions hold, thenf] : π1(X) → π1(S) and f̂] : π1(X̂) → π1(Ŝ)

are surjective.

PROOF. Note thatD = X̂ \ X is a proper subvariety (not necessarily a normal crossing
divisor) with finitely many irreducible componentsDm. For each such componentDm,
either f̂ (Dm) is a point, orf̂ : Dm → Ŝ is surjective. In this latter case, it follows that
dim(F̂ ∩Dm) < dimDm ≤ dim F̂ . SinceF̂ is smooth of pure dimension, it follows that̂F
is connected if and only ifF = F̂ \

⋃
m(Dm ∩ F̂ ) is connected. To show that (ii) implies
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(iii) it is enough to use the Stein factorization theorem (see for instance [19, p. 280]) and
the fact that a morphism between two smooth projective curves which is of degree one (i.e.
generically injective) is in fact an isomorphism.

To prove the last claim forf , note that there is a Zariski open and dense subsetS′
⊂ S

such thatf induces a locally trivial topological fibrationf : X′
= f−1(S′) → S′ with

fiber typeF . SinceF is connected, we get an epimorphismf] : π1(X
′) → π1(S

′). The
inclusion ofS′ into S induces an epimorphism at the level of fundamental groups. Let
j : X′

→ X be the inclusion. Then we have seen thatf ◦ j induces an epimorphism
at the level of fundamental groups. Therefore the same is true forf . The proof forf̂ is
completely similar. 2

PROOF OF PROPOSITION 2.1. From the surjectivity off] it follows that f ∗ :
H 1(S,Q) → H 1(M,Q) is injective. Sincef ∗ preserves the weight filtrationW , it follows
thatW1H

1(S,Q) = 0, i.e.S is a rational curve.
If the surfaceM admits a smooth compactificationj : M → M̃ such thatH 1(M̃,Q)

= 0, thenW1H
1(M,Q) = j∗H 1(M̃,Q) = 0 as explained for instance in [11,

p. 243]. 2

EXAMPLE 2.3. The following classes of complex smooth surfacesM satisfy
W1H

1(M,Q) = 0 and will be used as test cases.

CASE A: complements of plane curve arrangements, i.e.M = P2
\ C whereC is a plane

curve, usually with several irreducible components. One can then takeM̃ = P2. A more
general situation is obtained by replacingP2 by any smooth simply connected surfaceM̃,
e.g. a smooth complete intersection in some projective space.

CASE B: complements of curve arrangements on a weighted homogeneous isolated
complete intersection(X,0)with dimX = 2, whose linkΣ(X,0) is aQ-homology sphere.
Such a singularity can by represented by an affine complete intersection surfaceX defined
by some weighted homogeneous equations with respect to some positive integer weights
w = (w1, . . . , wn),

f1(x) = · · · = fn−2(x) = 0

in Cn. Moreover the complex surfaceX is smooth away from the origin. Letg ∈

C[x1, . . . , xn] be another weighted homogeneous polynomial with respect to the weights
w and setC = g−1(0),M = X \ C. Since the link of(X,0) is aQ-homology sphere, one
hasH 1(X \ 0,Q) = H 2(X \ 0,Q) = 0. Note that each irreducible componentCj of C is
a rational curve, sinceC∗

j = Cj \ 0 is exactly aC∗-orbit of theC∗-action onCn associated
to the given weights. Moreover, this shows thatC∗

j is smooth. LetC1, . . . , Cr be the set of
these components. The Gysin exact sequence

0 = H 1(X \ 0) → H 1(M) →

r⊕
j=1

H 0(C∗

j )(−1) → H 2(X \ 0) = 0

with rational coefficients shows thatH 1(M,Q) is pure of type(1,1), in particular one has
W1H

1(M,Q) = 0. Moreover it givesb1(M) = r.

The following explicit description of rational pencils is recalled for the reader’s
convenience.
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PROPOSITION2.4. Let U be a smooth surface. Iff : U → P1 is a morphism, then
L = f ∗O(1) is a line bundle onU , generated by the two global sectionssi = f ∗(yi), with
y1, y2 a system of homogeneous coordinates onP1.

Conversely, ifL is a line bundle onU , generated by two global sectionssi for i = 1,2,
then there is a morphismf : U → P1 such thatL = f ∗O(1) andsi = f ∗(yi), withy1, y2
a system of homogeneous coordinates onP1.

PROOF. It is well known (see for instance [19, p. 150]) that a morphismf : U → P1 is
given by a line bundleL ∈ Pic(U) and two sectionss1, s2 ∈ Γ (U,L) which do not both
vanish at any point inU . In factL = f ∗(O(1)) andsi = f ∗(yi), with y1, y2 a system
of homogeneous coordinates onP1. With this notation, one hasf (x) = [a : b] where
[a : b] ∈ P1 is such thatas2(x)− bs1(x) = 0. 2

REMARK 2.5. SinceU is smooth, we have Pic(U) = C`(U) and similarly Pic(M̃) =

C`(M̃) (see for instance [19, p. 145]). On the other hand, the inclusionj : U → M̃ induces
an isomorphismj∗ : C`(M̃) → C`(U), as codimA = 2 (see [19, p. 133]). It follows that
j∗ : Pic(M̃) → Pic(U) is also an isomorphism, i.e. any line bundleL ∈ Pic(U) is the
restriction toU of a line bundleL̃ on M̃. If M̃ = P2, then L̃ has the formO(D) and
the global sections ofL are nothing else than the restrictions of global sections of the line
bundleL̃ = O(D), which are the degreeD homogeneous polynomials. In general, the two
sectionssi have natural extensions tõM, and we may consider the divisorsCi : si = 0 on
M̃ and the associated rational pencilCf : α1s1 + α2s2 of curves onM̃.

In the following we regard the differenceC = M̃ \ M as a (reduced) curve and let
C =

⋃r
j=1Cj be the decomposition ofC into irreducible components.

PROPOSITION2.6. LetB ⊂ Ŝ be a finite set and denote byS the complement̂S \ B. For
any surjective morphismf : M → S and any compactificatioñM of M as above, any
irreducible componentCj ofC is in one of the following cases.

(1) Cj is contained in a curveCb in the pencilC, corresponding to a pointb ∈ B;
(2) Cj is strictly contained in a curveCs in the pencilC, corresponding to a points ∈ S;
(3) Cj is a horizontal component, i.e.Cj intersects the generic fiberCt of the pencilC

outside the base locus.

Moreover, if|B| > 1, thenCj is in the first case above if and only if the homology classγj
of a small loop aroundCj satisfiesH1(f )(γj ) 6= 0 in H1(S,Z).

PROOF. Let Cj be an irreducible component ofC. Then eitherf̃ (Cj ) is a point, which
leads to the first two cases, or̃f (Cj ) is dense in̂S, which leads to the last case. The strict
inclusion in the second case comes from the surjectivity off .

The last claim is obvious if we use the Mayer–Vietoris exact sequence of the covering
Ŝ = S ∪ D, whereD is the union of small closed discs on̂S centered at the points inB.
For instance, in the first case, ifδb is a small loop atb, then one hasH1(f )(γj ) = mj · δb,
with mj > 0 the multiplicity of the curveCj in the divisorf ′−1(b) (if the orientations of
the loopsγj andδb are properly chosen). See also equation (3.1) below.2
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DEFINITION 2.7. In the setting of Proposition2.6, we say that the curve arrangement
C is minimal with respect to the surjective mappingf : M → S if any componentCj
of C is of type(1), i.e.Cj is contained in a curveCb in the pencilC, corresponding to a
pointb ∈ B. We say that the curve arrangementC is specialwith respect to the surjective
mappingf : M → S if some componentCj ofC is of type(2), i.e.Cj is strictly contained
in a curveCs in the pencilC, corresponding to a points ∈ S.

REMARK 2.8. If |B| > 1, then the base locusA of the pencilC on the surfaceM̃ is just
the intersection of any two distinct fibersCb ∩ Cb′ for b, b′ distinct points inB. Note also
that case(2) above cannot occur if all the fibersCs for s ∈ S are irreducible. The fibersCs
may be non-reduced, i.e. we consider them usually as divisors. Saying thatCj is contained
in Cs means thatCs = mjCj + · · · with mj > 0.

3. LOCAL SYSTEMS AND CHARACTERISTIC VARIETIES

3.1. Local systems onS

We return to the notationS = Ŝ \ B, with B = {b1, . . . , bk} a finite set of cardinality
|B| = k ≥ 0. Letg = g(Ŝ) be the genus of the curvêS and denote byδ1, . . . , δ2g the usual
Z-basis of the first integral homology groupH1(Ŝ).

If δ2g+i denotes an elementary loop based at some base pointbi ∈ B and turning once
around the pointbi , then with the usual choices, the first integral homology group ofS is
given by

(3.1) H1(S) = Z〈δ1, . . . , δ2g+k〉/〈δ2g+1 + · · · + δ2g+k〉.

Therefore, fork > 0, the rank one local systems onS are parametrized by the(2g+k−1)-
dimensional algebraic torusT(S) = Hom(H1(S),C∗) given by

(3.2) T(S) = {λ = (λ1, . . . , λ2g+k) ∈ (C∗)2g+k | λ2g+1 · · · λ2g+k = 1}.

Hereλj ∈ C∗ is the monodromy along the loopδj . Whenk = 0, one has

(3.3) T(S) = Hom(H1(S),C∗) = {λ = (λ1, . . . , λ2g) ∈ (C∗)2g} = (C∗)2g.

Note that in both cases dimT(S) = b1(S). Forλ ∈ T(S), we denote byLλ the correspond-
ing rank one local system onS.

The twisted cohomology groupsHm(S,Lλ) are easy to compute. There are two cases.

CASE 1: Lλ = CS . Then we get the usual cohomology groups ofS, namely fork > 0
we have dimH 0(S,Lλ) = 1, dimH 1(S,Lλ) = 2g+k−1 andHm(S,Lλ) = 0 form ≥ 2.
And for k = 0 we have dimH 0(S,Lλ) = dimH 2(S,Lλ) = 1, dimH 1(S,Lλ) = 2g and
Hm(S,Lλ) = 0 form ≥ 3.

CASE 2:Lλ nontrivial. This case corresponds to the case when at least one monodromy
λj is not 1. In such a situation one has 2g + k ≥ 2. Then

(3.4) dimH 1(S,Lλ) = 2g + k − 2 = −χ(S)



CHARACTERISTIC VARIETIES AND CONSTRUCTIBLE SHEAVES 371

andHm(S,Lλ) = 0 for m 6= 1. One has obviously dimH 0(S,Lλ) = 0 in this case.
The vanishing ofH 2(S,Lλ) follows by duality if k = 0, and sinceS is homotopically a
bouquet of circles whenk > 0.

3.2. Local systems onM

The rank one local systems onM are parametrized by the algebraic group

(3.5) T(M) = Hom(H1(M),C∗)

which is an extension of the algebraic torus(C∗)b1(M) by the finite group TorsH1(M).
This group can be described explicitly as soon as we knowH1(M).

CASE A: complements of plane curve arrangements, i.e.M = P2
\ C whereC is a

plane curve, with irreducible componentsCj for j = 1, . . . , r, degCj = dj . Let γj be
an elementary loop around the irreducible componentCj , for j = 1, . . . , r. Then it is
known (see for instance [11, p. 102]) that

(3.6) H1(M) = Z〈γ1, . . . , γr 〉/〈d1γ1 + · · · + drγr 〉

wheredj is the degree of the componentCj . It follows that the rank one local systems on
M are parametrized by the algebraic group

(3.7) T(M) = Hom(H1(M),C∗) = {ρ = (ρ1, . . . , ρr) ∈ (C∗)r | ρ
d1
1 · · · ρdrr = 1}.

The connected componentT0(M) of the unit element 1∈ T(M) is the(r−1)-dimensional
torus given by

(3.8) T0(M) = {ρ = (ρ1, . . . , ρr) ∈ (C∗)r | ρ
e1
1 · · · ρerr = 1}

with D = GCD(d1, . . . , dr) andej = dj/D for j = 1, . . . , r.

REMARK 3.3. If d1 = 1, then{γ2, . . . , γr} is a basis forH1(M) and the torusT(M) can
be identified to(C∗)r−1 under the projectionρ 7→ (ρ2, . . . , ρr).

CASE B: complements of curve arrangements on a weighted homogeneous isolated
complete intersection(X,0)with dimX = 2, whose linkΣ(X,0) is aZ-homology sphere.
Using the notation from Example 2.3, we see thatH1(M) = Z〈γ1, . . . , γr 〉, whereγj is an
elementary loop around the irreducible componentCj , for j = 1, . . . , r. It follows that

(3.9) T(M) = Hom(H1(M),C∗) = (C∗)r .

The computation of the twisted cohomology groupsHm(M,Lρ) is one of the major
problems. A simple situation is described in the following.

EXAMPLE 3.4. IfLρ = CM and we are in one of the two cases above, this computation
can be done as follows.

CASE A: The result depends on the local singularities of the plane curveC. In fact,
dimH 0(M,C) = 1, dimH 1(M,C) = r − 1 andHm(M,C) = 0 form ≥ 3. To determine
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the remaining Betti numberb2(M) = dimH 2(M,C) amounts to determining the Euler
characteristicχ(M) = 3−χ(C), and this can be done, e.g., by using the formula forχ(C)

given in [11, p. 162].

CASE B: Here dimH 0(M,C) = 1, dimH 1(M,C) = r and also dimH 2(M,C) = r−1,
as well asHm(M,C) = 0 form ≥ 3. To see this, note thatM is an affine open subset in
X (which yieldsHm(M,C) = 0 for m ≥ 3), and there is aC∗-action onM with finite
isotropy groups (which yieldsχ(M) = 0).

To study these cohomology groupsHm(M,Lρ) in general, one idea is to study the
characteristic varieties

(3.10) Vm(M) = {ρ ∈ T(M) | dimH 1(M,Lρ) ≥ m}.

3.5. Arapura’s results

We recall here some of the main results from [1], applied to the rank one local systems
onM, with some additions from [20], [15] and some new consequences.

THEOREM 3.6. LetW be an irreducible component ofV1(M) and assume thatdW :=
dimW ≥ 1. Then there is a surjective morphismfW : M → SW onto a smooth curveSW ,
with a connected generic fiberF(fW ), and a torsion characterρW ∈ T(M) such that

W = ρW ⊗ f ∗

W (T(SW )).

More precisely, the following hold.

(i) SW = ŜW \BW , withBW a finite set satisfyingdW = 2g(ŜW )+kW−1 = −χ(SW )+1
if kW := |BW | > 0. If BW = ∅, thendW = 2g(ŜW ) = −χ(SW )+ 2.

(ii) For any local systemL ∈ W , the restrictionL|F(fW ) ofL to the generic fiber offW
is trivial, i.e.L|F(fW ) = CF(fW ).

(iii) If NW is the order of the characterρW , then there is a commutative diagram

M ′
p //

f ′
W

��

M

fW

��
S′

W

q // SW

wherep is an unramifiedNW -cyclic Galois covering,q is a possibly ramifiedNW -
cyclic Galois covering,f ′

W is µNW -equivariant in the obvious sense, has a generic
fiberF(f ′

W ) isomorphic to the generic fiberF(fW ) of fW , andp∗ρW is trivial. Here
µNW denotes the cyclic group of theNW -th roots of unity.

(iv) If 1 ∈ W andL ∈ W , thendimH 1(M,L) ≥ −χ(SW ) and equality holds with finitely
many exceptions.

(v) If 1 ∈ W , thendW ≥ 2 for kW > 0 anddW ≥ 4 for kW = 0.
(vi) If 1 /∈ W and eitherdW = 2 andSW is not an elliptic curve, ordW > 2, then the

subtorusW ′
= f ∗

W (T(SW )) is another irreducible component ofV1(M).
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PROOF. The first assertion is just Thm. 1.6 in [1, Section V].
To prove claim (i) note thatdW = dimW = dimT(SW ) = b1(SW ).
For (vi), consider now the situation 1/∈ W . Note thatχ(SW ) ≥ 0 if and only if

eitherg(ŜW ) = 0 andkW ≤ 2, or g(ŜW ) = 1 andkW = 0. The first possibility (which
contains the trivial casesSW = P1, SW = C and the interesting caseC∗) is excluded,
since then dimW = dimT(SW ) ≤ 1. The second case corresponds toSW being an elliptic
curveE, and can be excluded as above if we assumedW > 2. The corresponding translated
components in this case (assumingM proper) are described in [3]. A uniform treatment
of the translated components in the only two interesting casesC∗ andE is given below in
Corollary 5.8.

With the exception of these special cases, it follows thatχ(SW ) < 0 andW ′
=

f ∗

W (T(SW )) is another irreducible component ofV1(M) by Prop. 1.7 in [1].
Now we prove claim (ii). SinceW = ρW ⊗ f ∗

W (T(SW )), it is enough to prove the
claim forL1 = LρW . SinceρW is a torsion character, it follows thatL1 is a unitary local
system. LetM be a good compactification ofM obtained by adding the normal crossing
divisorD toM. Let (L1,∇1) be the integrable flat connection onM corresponding to the
local systemL1 and let(L1,∇1) be the Deligne extension of the connection(L1,∇1) to
M with residues having the real parts in [0,1). Then there is a Hodge to de Rham spectral
sequence

E
p,q

1 = H q(M,Ω
p

M
(logD)⊗ L1) ⇒ Hp+q(M,L1).

Since by hypothesisH 1(M,L1) 6= 0, it follows that eitherE1,0
2 6= 0, orE0,1

2 6= 0. In
the first case, we are exactly in the situation of [1, Prop. 1.3 in Section V] and our claim
(ii) is proved in the final part of the proof. Just note that on the last line of that proof,
one should replace “which forcesψ |F to be trivial” by “which forcesψ |(F ∩ X) to be
trivial”. (This is due to the fact thatF in [1] denotes the compactification of our affine fiber
F = F(fW ), andX in [1] corresponds to ourM.) If we are in the latter case, then one
can show thatL−1

1 leads to the first case, exactly as in the second part of the proof of [1,
Prop. 1.4 in Section V]. Since claim (ii) forL1 is equivalent to claim (ii) forL−1

1 , we are
done. Property (ii) corresponds to Prop. 1.2 in Beauville’s paper [3]. As noted there, it is
the same thing to ask triviality for the restriction to one generic fiber offW or to all generic
fibers offW . See Corollary 4.6 below for a direct topological proof of (ii).

Claim (iii) is just the “untwisting” part of the proof of Thm. 1.6 in [1]. The existence
of the diagram is explained there via the Stein factorization forfW ◦ p. However, the fact
that the morphismq has degreeNW depends on the previous claim (ii), and this key point
is not mentioned in [1].

The proof of (iv) is more technical. Using the projection formula

(3.11) p∗(CM ′)⊗ L ' p∗(p
∗(L))

for L ∈ W (see for instance [12, p. 42]) and then the Leray spectral sequence forp (see
for instance [12, p. 33]), one gets an isomorphism ofµNW -representations

(3.12) H 1(M ′, p∗L) = H 1(M, p∗(CM ′)⊗ L).

Following the argument in the proof of Thm. 1.6 in [1], we get

dimH 1(M,L) ≥ −χ(SW ).
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The only point which deserves some attention is the fact thatSW and ŜW do not admit
finite triangulations as required in [1], since they are not compact. However, we can replace
them by finite simplicial complexes without changing the homotopy type, e.g.SW can be
replaced by the compact Riemann surface with boundary obtained fromP1 by deleting
small open discs centered at the points inBW .

The fact that there are only finitely many local systemsL ∈ W such that

dimH 1(M,L) > −χ(SW )

follows by an argument similar to the end of the proof of [1, Prop. 1.7, Section V]. For a
different approach and a generalization to translated components, see Corollaries 4.7 and
5.9 below.

Finally, claim (v) follows directly from (iv). 2

REMARK 3.7. Conversely, iff : M → S is a morphism with a generic connected fiber
and withχ(S) < 0, thenWf = f ∗(T(S)) is an irreducible component inV1(M) such
that 1∈ Wf and dimWf ≥ 2 (see [1, Section V, Prop. 1.7]). Some basic situations of this
general construction of irreducible componentsWf are the following.

CASE A.

(i) The local components(see for instance [24, Subsection (2.3)] in the case of line
arrangements). The case of curve arrangements inP2 runs as follows. Letp ∈ P2 be a
point such that there is a degreedp and an integerkp > 2 such that

(1) the setAp = {j | p ∈ Cj and degCj = dp} has cardinalitykp;
(2) dim〈fj | j ∈ Ap〉 = 2, with fj = 0 being an equation forCj .

If {P,Q} is a basis of this 2-dimensional vector space, then the associated pencil induces
a map

fp : M → Sp

whereSp is obtained fromP1 by deleting thekp points corresponding to the curvesCj , for
j ∈ Ap. In this way, the pointp produces an irreducible component inV1(M), namely

Wp = f ∗
p (T(Sp))

of dimensionkp − 1, and which is called local because it depends only on the chosen
point p. Note that in the case of line arrangements,p can be chosen to be any point of
multiplicity at least 3.

(ii) The components associated to neighborly partitions(see [21]) correspond exactly to
pencils associated to the line arrangement, as remarked in [18, proof of Theorem 2.4].

CASE B. Let (X,0) ⊂ (Cn,0) be as in Example 2.3. Letg1 andg2 be two weighted
homogeneous polynomials of degreed with respect to the weightsw such that

X ∩ {g1 = 0} ∩ {g2 = 0} = 0.

Defineg : X \ 0 → P1 by x 7→ (g1(x) : g2(x)). Note thatg is constant on the corres-
pondingC∗-orbits. Assume that the generic fiber ofg is connected, i.e. it coincides with an
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orbit. LetB ⊂ P1 be a finite subset such thatk = |B| > 2 andCb = g−1(b) is connected
for anyb ∈ B. Then if we setS = P1

\ B, C =
⋃
b∈B Cb andM = (X \ 0) \ C, we have

H1(M) = Zk, T(M) = (C∗)k, T(S) = (C∗)k−1 and the subtorusW = g∗(T(S)) is a
(k − 1)-dimensional irreducible component ofV1(M).

All these points in Case A are illustrated by the following beautiful example.

EXAMPLE 3.8. This is a key example discovered by A. Suciu (see Example 4.1 in [24]
and Example 10.6 in [25]). Consider the line arrangement inP2 given by the equation

xyz(x − y)(x − z)(y − z)(x − y − z)(x − y + z) = 0.

We number the lines of the associated affine arrangement inC2 (obtained by setting
z = 1) as follows:L1 : x = 0, L2 : x − 1 = 0, L3 : y = 0, L4 : y − 1 = 0,
L5 : x − y − 1 = 0,L6 : x − y = 0 andL7 : x − y + 1 = 0 (see the pictures in Example
4.1 in [24] and Example 10.6 in [25]). We also consider the line at infinityL8 : z = 0. As
stated in Example 4.1 in [24], there are:

(i) Seven local components: six of dimension 2, corresponding to the triple points, and one
of dimension 3, for the quadruple point.

(ii) Five components of dimension 2, passing through the unit element and coming from
the following neighborly partitions (of braid subarrangements):(15|26|38), (28|36|45),
(14|23|68), (16|27|48) and(18|37|46). For instance, the pencil corresponding to the first
partition is given byP = L1L5 = x(x − y − z) andQ = L2L6 = (x − z)(x − y). Note
thatL3L8 = yz = Q− P is a decomposable fiber in this pencil.

(iii) A 1-dimensional componentW in V1(M) with

ρW = (1,−1,−1,1,1,−1,1,−1) ∈ T(M) ⊂ (C∗)8

andfW : M → C∗ given by

fW (x : y : z) =
x(y − z)(x − y − z)2

(x − z)y(x − y + z)2

or, in affine coordinates,

fW (x, y) =
x(y − 1)(x − y − 1)2

(x − 1)y(x − y + 1)2
.

ThenW ⊂ V1(M) andW ∩ V2(M) consists of two characters,ρW above and

ρ′

W = (−1,1,1,−1,1,−1,1,−1).

Note that this componentW is a translated coordinate component. This is related to the
fact that the associated pencil is special. For more on this arrangement see Example 5.12.



376 A . DIMCA

4. TRANSLATED COMPONENTS AND CONSTRUCTIBLE SHEAVES

We need the following version of theprojection formula, which is used very often, e.g. [1],
[20], but for which I was not able to find a reference.

LEMMA 4.1. For any local systemL1 onM and any local systemL2 onS, one has

(Rf∗L1)⊗ L2 = Rf∗(L1 ⊗ f−1L2).

PROOF. To prove this lemma, we start with the usual projection formula, i.e., in the above
notation,

(4.1) (Rf!L1)⊗ L2 = Rf!(L1 ⊗ f−1L2)

(see Thm. 2.3.29, p. 42 in [12]). LetZ be a connected smooth complex algebraic variety
of dimensionm. Then the dualizing sheafωZ is justCZ[2m] andDZL = L∨[2m] for any
local systemL on Z (see Example 3.3.8, p. 69 in [12]). Note also that for two bounded
constructible complexesA∗ andB∗ in Dbc (Z,C) we have the isomorphisms

DZA∗
⊗ B∗

= RHom(A∗, ωZ)⊗ B∗
= RHom(A∗, ωZ ⊗ B∗)(4.2)

= RHom(A∗,B∗)[2m].

It follows that

DZ(A∗
⊗ B∗) = RHom(A∗

⊗ B∗, ωZ) = RHom(A∗, RHom(B∗, ωZ))(4.3)

= DZA∗
⊗DZB∗[−2m].

For the second isomorphism here we refer to Prop. 10.23, p. 175 in [4]. Apply now the
duality functorDS to the projection formula (4.1). On the left hand side we get

DS((Rf!L1)⊗ L2) = DS(Rf!L1)⊗DS(L2)[−2] = Rf∗(DML1)⊗DS(L2)[−2]

= Rf∗(L∨

1 )⊗ L∨

2 [4].

Except the isomorphisms explained above we have used here the isomorphismDSRf! =

Rf∗DM (see Cor. 4.1.17, p. 90 in [12]). Similarly, on the right hand side we get
DSRf!(L1 ⊗ f−1L2) = Rf∗DM(L1 ⊗ f−1L2) = Rf∗(L∨

1 ⊗ (f−1L2)
∨)[4]. Since

(f−1L2)
∨

= f−1(L∨

2 ) and since any local system is the dual of its own dual, the proof is
complete. 2

Note thatF = R0f∗(L1) is in general no longer a local system onS, but aconstructible
sheaf. By definition, there exists a minimal finite setΣ = Σ(F) ⊂ S, called thesingular
support of F , such thatF |(S \Σ) is a local system (see [12, p. 87]). The main properties
of this sheaf are given in the following result.

LEMMA 4.2. LetL1 be a rank one local system onM,F the generic fiber off : M → S,
and setF = R0f∗(L1). Then either

(i) the restrictionL1|F is trivial, F |(S \Σ) is a rank one local system andFs = 0 if and
only if s ∈ Σ , or

(ii) the restrictionL1|F is non-trivial andF = 0.
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PROOF. Consider first case (i). IfS′
⊂ S is a Zariski open subset such that the restriction

f ′ : M ′
→ S′ with M ′

= f−1(S′) is a topologically locally trivial fibration, thenF |S′ is
a rank one local system. Indeed, fors ∈ S′ we have

Fs = lim
s∈D

F(D) = lim
s∈D

H 0(f−1(D),L1) = C.

Here the limit is taken over all the sufficiently small open discsD in S centered ats, and
the last equality comes from the fact that the inclusionFs = f−1(s) → f−1(D) is a
homotopy equivalence andL1|Fs = CFs (recall thatFs is connected, and hencef−1(D)

is connected as well). In particularΣ ⊂ S \ S′, and henceΣ = ∅ if f : M → S is a
locally trivial fibration. The above argument also shows thatFs = 0 if and only if s ∈ Σ .

In case (ii), assume thatFs 6= 0 for somes ∈ S. Then there is a small open discD in S
centered ats such thatH 0(f−1(D),L1) 6= 0. This implies that the restrictionL1|f

−1(D)

is trivial, and henceL1|F is trivial as well, a contradiction. 2

We have the following key result.

PROPOSITION4.3. Let f : M → S be a surjective morphism with a generic connected
fiberF from the surfaceM onto the curveS. Then for any local systemL1 onM and any
local systemL2 onS, one has the following exact sequence:

0 → H 1(S, R0f∗(L1)⊗ L2) → H 1(M,L1 ⊗ f−1L2) → H 0(S, R1f∗(L1)⊗ L2).

The last morphism is surjective in any of the following situations:

(i) S is affine;
(ii) L1|F is non-trivial;

(iii) L1|F is trivial andL2 is generic, i.e. it is different from a finite set of local systems
depending onf andL1.

PROOF. We use the Leray spectral sequence

E
p,q

2 = Hp(S, Rqf∗(L1 ⊗ f−1L2))

converging toHp+q(M,L1 ⊗ f−1L2). By Lemma 4.1 we have

Rqf∗(L1 ⊗ f−1L2) = Rqf∗(L1)⊗ L2.

In particular, the above spectral sequence yields the exact sequence

0 → H 1(S, R0f∗(L1)⊗ L2) → H 1(M,L1 ⊗ f−1L2) → K
0,1
2 → 0

whereK0,1
2 is the kernel of the differentialE0,1

2 → E
2,0
2 .

WhenS is affine, this spectral sequence degenerates atE2 sinceEp,q2 = 0 for p /∈

{0,1} by the Artin theorem (see Thm. 4.1.26, p. 95 in [12]), and this proves claim (i).
In case (ii) one hasE2,0

2 = H 2(S, R0f∗(L1)⊗ L2) = 0 sinceF = R0f∗(L1) = 0.
For case (iii), we use the exact sequence of cohomology with compact supports

0 = H 1(Σ,F ⊗ L2) → H 2
c (U,F ⊗ L2) → H 2(S,F ⊗ L2) → H 2(Σ,F ⊗ L2) = 0
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whereU = S \ Σ (note thatS can be assumed to be compact, since otherwise we are in
the affine case (i)); see for instance [12, p. 46]. NowF |U = L0 is a rank one local system,
and we can use duality to get

H 2
c (U,L0 ⊗ L2) = H 0(U,L∨

0 ⊗ L∨

2 )
∨.

These cohomology groups are clearly trivial forL2|U 6= L−1
0 . Since the restrictionL2|U

determines the local systemL2, this means that there is at most one local systemL2 for
whichE2,0

2 6= 0. 2

To continue we need the following.

LEMMA 4.4. The constructible sheafG = R1f∗(CM) has no section with finite support.

PROOF. This proof is given in D. Arapura [1, Proposition 1.7], but we repeat it here for the
reader’s convenience, and to clarify some points in Arapura’s proof. LetD be a small disc
in S centered at a bifurcation pointb ∈ S, letD∗

= D \{b} and choose a pointq ∈ D∗. Set
MD = f−1(D),M∗

D = f−1(D∗) andMq = f−1(q). The claim is equivalent to showing
that the morphism

i∗q : H 1(MD,C) → H 1(Mq ,C)

induced by the inclusioniq : Mq → MD is injective. Indeed, one has natural identifications
Gb = H 1(MD,C) andGq = H 1(Mq ,C) andi∗q corresponds to the restriction morphism
Gb → Gq . The open inclusionjb : M∗

D → MD clearly induces a surjective morphism
H1(M

∗

D) → H1(MD), and hence an injective morphismj∗

b : H 1(MD,C) → H 1(M∗

D,C).
Now, if the discD was chosen small enough, the restriction off overD∗ is a locally

trivial fibration with fiber typeMq and hence we get the following exact sequence (which
is dual to an exact sequence similar to (5.2) below):

(4.4) 0→ H 1(D∗,C)
f ∗

−→ H 1(M∗

D,C)
ι∗q

−→ H 1(Mq ,C)

whereιq : Mq → M∗

D is the inclusion. It follows thati∗q : H 1(MD,C) → H 1(Mq ,C)

is injective if and only ifI = im(j∗

b ) ∩ im{H 1(D∗,C)
f ∗

−→ H 1(M∗

D,C)} = 0. Since
f : M → S is surjective, it follows thatH = f−1(b) is a hypersurface inM. Let p be
a smooth point on the associated reduced hypersurface. It follows that there is an analytic
curve germφ : (C,0) → (M, p) such thatf (φ(t)) has some orderd ≥ 1, whered is the
multiplicity of H atp. Note that in D. Arapura’s proof [1], the multiplicityd is supposed
to be 1, which is not always the case.

Let σ ∈ I . Sinceσ ∈ im{H 1(D∗,C)
f ∗

−→ H 1(M∗

D,C)}, it follows that there is aβ ∈

Hom(H1(D
∗),C) = H 1(D∗,C) such thatσ = β ◦ f∗. The germφ induces a morphism

φ∗ : H1(D
∗) → H1(M

∗

D) such thatf∗ ◦ φ∗ is multiplication byd on the groupH1(D
∗)

= Z. It follows thatσ ◦ φ∗ = d · β.
On the other hand, sinceσ ∈ im(j∗

b ), there isσ ′
∈ Hom(H1(MD),C) such thatσ =

σ ′
◦jb∗. It follows thatσ ◦φ∗ = σ ′

◦jb∗ ◦φ∗ is trivial, sincejb ◦φ has an obvious extension
φ from the punctured discD∗ to the discD. In conclusion,σ = 0, and soI = 0, proving
our claim. 2
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The above lemma can be generalized as follows.

PROPOSITION4.5. Let f : M → S be a surjective morphism withdimS = 1 and a
connected generic fiberF . If L is a rank one local system onM, then the constructible
sheafG = R1f∗(L) has no section with finite support. Equivalently,

H 0(S,G ⊗ L2) = 0

for all but finitely many local systemsL2 ∈ T(S).

PROOF. First we check that the last two claims are equivalent. Locally, the two sheavesG
andG ⊗L2 coincide, so they admit at the same time non-zero sections with finite support.
If this is the case, then clearly

H 0(S,G ⊗ L2) 6= 0

for any local systemL2. Suppose now that there are no such sections with finite support.
LetΣ ′ := Σ(G) = Σ(G ⊗ L2) and note that in this case the restriction

H 0(S,G ⊗ L2) → H 0(S \Σ ′,G ⊗ L2)

is injective. SinceS \ Σ ′ is homotopically a bouquet of circles (or a compact curve ifS

is compact andΣ ′
= ∅), the last group is non-zero exactly when the monodromy ofL2

along any of the loops forming a basis for the integral homology ofS is the inverse of one
of the eigenvalues of the monodromy of the local systemG|(S \ Σ ′) along this loop, i.e.
for a finite number of local systemsL2.

With the notation from the proof of Lemma 4.4, we have to prove that the restriction
morphism

i∗q : H 1(MD,L) → H 1(Mq ,L|Mq)

is injective.
The open inclusionjb : M∗

D → MD clearly induces an epimorphismπ1(M
∗

D) →

π1(MD), and hence an injective morphismj∗

b : H 1(MD,L) → H 1(M∗

D,L). This follows
for instance by using the description of the first twisted cohomology groupsH 1(M,L) in
terms of cross-homomorphisms (see [22]).

CASE 1: the restrictionL|F is the trivial local systemCF . To study the local system
L′

= L|M∗

D, note that it corresponds to a character

ρ : π1(M
∗

D) → C∗.

The exact sequence

1 → π1(Mq) → π1(M
∗

D) → π1(D
∗) → 1

and the triviality ofL|Mq (note thatMq is a generic fiber off ) imply thatL′
= f ∗(La),

whereLa is the rank one local system onD∗ with monodromya ∈ C∗. For this class of
local systems we have a long exact cohomology sequence

(4.5) → H 0(Mq ,C)
h0

−a−1
·Id

−−−−−→ H 0(Mq ,C) → H 1(M∗

D,L
′)

ι∗q
−→ H 1(Mq ,C)
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(see [12, p. 212]). Herehm are the monodromy operators of the fibrationMq → M∗

D →

D∗ and clearlyh0
= Id since the fiberMq is connected.

If a = 1, then locally at the bifurcation pointb ∈ S we have exactly the same situation
as in Lemma 4.4, hence the result is already proven.

If a 6= 1, then the morphismH 0(Mq ,C)
h0

−a−1
·Id

−−−−−→ H 0(Mq ,C) is an isomorphism,

which yields an injectionH 1(M∗

D,L
′)

ι∗q
−→ H 1(Mq ,C). This gives the result in this case,

since the composition of two injections is an injection.

CASE 2: the restrictionL|F is a non-trivial local system. In this caseR0f∗L = 0 and
the Leray spectral sequence of the fibrationMq → M∗

D → D∗ yields an isomorphism

H 1(M∗

D,L) → H 0(D∗, R1f∗L).

SinceH 0(D∗, R1f∗L) is just the invariant part ofH 1(Mq ,L|Mq) under the monodromy
of the local systemR1f∗L onD∗, this gives rise to a natural injection

H 1(M∗

D,L)
ι∗q

−→ H 1(Mq ,L|Mq).

which completes the proof in this case as well. 2

The following corollary of the exact sequence in Proposition 4.3 and of Proposition 4.5
gives also a new, topological proof for the claim in Theorem 3.6(ii).

COROLLARY 4.6. Let f : M → S be a surjective morphism with a generic connected
fiberF from the surfaceM onto the curveS with b1(S) > 0. Then for any local systemL1
onM such thatL1|F is non-trivial, and for any generic local systemL2 ∈ T(S), one has
H 1(M,L1 ⊗ f ∗(L2)) = 0.

As a consequence of Proposition 4.3, we get the following extension of Theorem
3.6(iv). (This special case corresponds to the caseLρ = CM , whenR0f∗(Lρ) = CS
and henceΣ = ∅. For an illustration of the general case, see Example 5.14 below.)

COROLLARY 4.7. If Lρ is a rank one local system onM such thatLρ |F is trivial, then

dimH 1(M,Lρ ⊗ f−1L) ≥ −χ(S)+ |Σ(R0f∗(Lρ))|

with equality for all but finitely many local systemsL ∈ T(S). In particular, if Wf,ρ =

ρ ⊗ f ∗(T(S)) is a positive-dimensional irreducible component ofV1(M), thenWf,ρ is an
irreducible component ofVq(M) for any1 ≤ q ≤ q(f, ρ) := −χ(S) + |Σ(R0f∗(Lρ))|.
Conversely, any positive-dimensional irreducible component ofVq(M) for q ≥ 1 is of this
type.

PROOF. To estimate dimH 1(S,F ⊗ L2) we compute

χ(S,F ⊗ L2) = dimH 0(S,F ⊗ L2)− dimH 1(S,F ⊗ L2) = χ(S \Σ)

using Thm. 4.1.22, p. 93 in [12]. This yields

(4.6) dimH 1(S,F ⊗ L2) = dimH 0(S,F ⊗ L2)− χ(S)+ |Σ | ≥ −χ(S).
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In the caseL1 = Lρ such thatL1|F is trivial, Proposition 4.3 yields

H 1(M,L1 ⊗ f−1L2) = H 1(S, R0f∗(L1)⊗ L2)

for all but finitely many local systemsL2 ∈ T(S). Similarly, the description ofΣ given
above shows that the groupH 0(S,F ⊗ L2) is zero unlessΣ = ∅ andL2 = F−1.

The only thing to explain is the last claim in the caseq > 1. Assume thatWq is a
positive-dimensional irreducible component ofVq(M) for q > 1. SinceVq(M) ⊂ V1(M),
there is an irreducible componentW of V1(M) such thatWq ⊂ W . Then the first claim in
Corollary 4.7 implies thatW ⊂ Vq(M), i.e.Wq = W . 2

5. TRANSLATED COMPONENTS AND MULTIPLE FIBERS

LetW be a translated irreducible component ofV1(M), i.e. 1 /∈ W . Then, as in Theorem
3.6, there is a torsion characterρ ∈ T(M) and a surjective morphismf : M → S with
connected generic fiberF such that

(5.1) W = ρf ∗(T(S)).

We say in this situation that the componentW is associatedto the mappingf . In this
section we give detailed information on the torsion characterρ ∈ T(M) in terms of the
geometry of the associated mappingf : M → S.

5.1. The general setting

LetF be the generic fiber of the mappingf : M → S, i.e.F is the fiber of the topologically
locally trivial fibrationf ′ : M ′

→ S′ associated tof as in the previous section. Then we
have an exact sequence

(5.2) H1(F )
i′∗

−→ H1(M
′)

f ′
∗

−→ H1(S
′) → 0

as well as a sequence

(5.3) H1(F )
i∗

−→ H1(M)
f∗

−→ H1(S) → 0

which is not necessarily exact in the middle, i.e. the group

(5.4) T (f ) = kerf∗/im i∗

is in general non-trivial. Herei : F → M andi′ : F → M ′ denote the inclusions, and
homology is taken withZ-coefficients if not stated otherwise.

This group was studied in a compact (proper) setting by Serrano (see [23]), but no
relation to local systems was considered there. On the other hand, this compact situation
was also studied by A. Beauville in [3], with essentially the same aims as ours.

The sequence (5.3) induces an obvious exact sequence

(5.5) 0→ T (f ) → H1(M)/im i∗
f∗

−→ H1(S) → 0.



382 A . DIMCA

SinceH1(S) is a freeZ-module, applying the fuctor Hom(−,C∗) to the exact sequence
(5.5), we get a new exact sequence

(5.6) 1→ T(S) → T(M)F → Hom(T (f ),C∗) → 1.

HereT(M)F is the subgroup inT(M) formed by all charactersχ : H1(M) → C∗ such
thatχ ◦ i∗ = 0. This means exactly that the associated local systemLχ by restriction toF
yields the trivial local systemCF .

The torsion characterρ ∈ T(M) which occurs in (5.1) is in this subgroupT(M)F (see
Theorem3.6(ii)). Moreover, this characterρ is not unique, but its class

(5.7) ρ̃ ∈ T(M)F /T(S) ' Hom(T (f ),C∗) = T̂ (f )

is uniquely determined. From now on, we will regardρ̃ ∈ T̂ (f ). Hence, to understand the
possible choices for̃ρ, we have to study the groupT (f ) or, equivalently, its Pontryagin
dual T̂ (f ).

5.2. The computation of the groupT (f )

Let f : M → S be a surjective morphism with a generic connected fiberF as above. Let
C(f ) ⊂ S be a finite, minimal subset such that if we putS′

= S \ C(f ), M ′
= f−1(S′),

then the induced mappingf : M ′
→ S′ is a locally trivial fibration. Forc ∈ C(f ) we

denote bymc the multiplicity of the divisorFc = f−1(c). We have the following result,
where the first claim is already in [3, the remarks after Proposition 1.19], and in Serrano
[23]. However, this second author wrongly claims that the isomorphism in (i) holds for case
(ii) as well. The mistake in [23] is in the proof of Thm. 1.3, Claim 1, where the relation
between theγp ’s is incorrect. In the proof below, these 1-cyclesγp ’s are denoted byδc and
the correct relation is∆ = 0.

THEOREM 5.3. (i) If the curveS is proper, then

T (f ) = (
⊕

c∈C(f )

Z/mcZ)/(1̂, . . . , 1̂).

(ii) If the curveS is not proper, then

T (f ) =
⊕

c∈C(f )

Z/mcZ.

PROOF. The main ingredient to prove this theorem is Lemma 3 in [7], which yields the
exact sequence

(5.8) π1(F ) → π1(M) → πorb
1 (f ) → 1.

Here theorbifold fundamental groupπorb
1 (f ) of the mappingf is the quotient ofπ1(S

′)

by the normal subgroup generated by the elementsδ
mc
c for c ∈ C(f ), with δc a simple loop

going once around the pointc. Note that this result is stated in [7] under the assumption
that the curveS is proper, but the proof given there works forS non-proper as well.
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The exact sequence (5.8) yields, by passing to abelianizations, the exact sequence

(5.9) H1(F ) → H1(M) → H orb
1 (f ) → 0.

We will denote byf orb
∗ the epimorphismH1(M) → H orb

1 (f ) in the exact sequence above.
Coming back to the notation from Subsection 3.1, we get the following presentation

for theorbifold first homology groupH orb
1 (f ) of the mappingf :

(5.10) H orb
1 (f ) = Z〈δ1, . . . , δ2g+k; δc for c ∈ C(f )〉/〈∆,mcδc for c ∈ C(f )〉

where∆ = δ2g+1 + · · · + δ2g+k +
∑
c δc. There is a natural surjective morphism

(5.11) θ : H orb
1 (f ) → H1(S)

given byδi 7→ δi for i = 1, . . . ,2g + k andδc 7→ 0 for c ∈ C(f ). Here we use the
presentation forH1(S) given in the formula (3.1). Comparing the exact sequence (5.9) to
the sequence (5.3), we get an isomorphism

(5.12) ker(θ) ' T (f ).

WhenS is proper we havek = 0 and the group ker(θ) is spanned by the loopsδc for
c ∈ C(f ), with the relationsmc · δc = 0 and∆ =

∑
c δc = 0. This yields claim (i), since

clearly∆ corresponds to the element(1̂, . . . , 1̂).
WhenS is not proper we havek > 0 and the group ker(θ) is spanned by∆ and the

loopsδc for c ∈ C(f ), with the relationsmc · δc = 0 and∆ = 0. Claim (ii) follows from
this description. 2

COROLLARY 5.4. There is a non-canonical isomorphism

H orb
1 (f ) ' H1(S)× T (f ).

In particular,
Torb(f ) ' T(S)× T̂ (f )

where T̂ (f ) = Hom(T (f ),C∗) is the Pontryagin dual of the finite groupT (f ) and
Torb(f ) = Hom(H orb

1 (f ),C∗) is the corresponding orbifold character group off .

EXAMPLE 5.5 (Computation of the groupT (f ) in Case B, the Seifert links). Let(X,0)
be a complex quasi-homogeneous normal surface singularity. Then the surfaceX∗

= X \

{0} is smooth and it has aC∗-action with finite isotropy groupsC∗
x . These isotropy groups

can be assumed to be trivial, except for those corresponding to finitely many orbitsp1, . . . ,
ps in C(X) = X∗/C∗. We setkp = |C∗

p| for p ∈ P = {p1, . . . , ps}.
The quotientC(X) is a smooth projective curve. For any finite subsetB in C(X) we

get a surjective mappingf : M → S induced by the quotient mapf0 : X∗
→ C(X),

whereS = C(X) \ B andM = f−1(S).
In addition, the curveC(X) is rational iff the linkL(X) of the singularity(X,0) is aQ-

homology sphere (use Cor. (3.7) on p. 53 and Thm. (4.21) on p. 66 in [11]). In particular, if
the linkL(X) of the singularity(X,0) is aZ-homology sphere, thenH1(M) = Zq where
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q = |B|, and a basis is provided by small loopsγb around the fiberFb = f−1(b) for
b ∈ B, as explained in Subsection 3.2.

One hasf∗(γb) = kbδb, with kb the order of the isotropy groups of pointsx such
thatf (x) = b, andδb a small loop aboutb ∈ P1. The set of critical values of the map
f0 : X∗

→ C(X) is exactlyP , and each fiberFp = f−1
0 (p) is smooth (isomorphic toC∗),

but of multiplicity kp > 1. Writing down the mapf0∗ : H1(X
∗) → H1(C(X)) and using

its surjectivity, we find that the integerskp are pairwise coprime.
Let (X,0) be the germ of an isolated complex surface singularity such that the

corresponding linkLX is an integral homology sphere. Let(Y,0) be a curve singularity on
(X,0). Then using the conic structure of analytic sets, we see that the local complement
X \ Y , with X and Y Milnor representatives of the singularities(X,0) and (Y,0),
respectively, has the same homotopy type as the link complementM = LX \ LY , where
LY denotes the link ofY .

Moreover, if (X,0) and (Y,0) are quasi-homogeneous singularities at the origin of
some affine spaceCN , with respect to the same weights, then the local complement can be
globalized, i.e., replaced by the smooth quasi-projective varietyX \ Y , whereX andY are
this time affine varieties representing the germs(X,0) and(Y,0) respectively.

Using the well-known analytic description of the Seifert linkL = (Σ(k1, . . . , kn), S1∪

· · · ∪ Sq) with kj ≥ 1 andn ≥ q ≥ 2 given in [17, p. 62] and the above notation, we see
that the link complementM(L) = Σ(k1, . . . , kn) \ (S1 ∪ · · · ∪ Sq) has the homotopy type
of the surfaceM obtained from the surface singularityX by deleting the orbits (regular for
kj = 1 and singular forkj > 1) corresponding to theq knotsSj , j = 1, . . . , q. In other
words, we have a finite setB ⊂ P1 with |B| = q and a mappingf : M → S = P1

\ B.
Let N = k1 · · · kq , Nj = N/kj for 1 ≤ j ≤ q, N ′

= kq+1 · · · kn, N ′

j = N ′/kj for
q + 1 ≤ j ≤ n. We can assume that forj > q one haskj = 1 iff j > q + s, with s a
positive integer. The above theorem implies in this case

T (f ) = Z/N ′Z =
⊕

q+1≤j≤n

Z/kjZ.

For another way of computing the groupT (f ) in some cases, we refer to [13,
Section 6].

DEFINITION 5.6. For a characterρ̃ : T (f ) → C∗, we define thesupport supp(ρ̃) of ρ̃ to
be the singular setΣ(F) of the constructible sheafF = R0f∗(Lρ) for some representative
ρ of ρ̃.

In other words, a critical valuec ∈ C(f ) is in supp(ρ̃) if for a small discDc centered
at c, the restriction of the local systemLρ to the associated tubeT (Fc) = f−1(Dc) about
the fiberFc is non-trivial. Since two such representativesρ differ by a local system in
f ∗(T(S)), it follows from Lemma 4.1 that this support is correctly defined.

THEOREM 5.7. Let f : M → S be a surjective morphism, with connected generic
fiber F , and let ρ̃ : T (f ) → C∗ be a character. Thensupp(ρ̃) is empty if and only if
the characterρ̃ is trivial.

PROOF. If the character̃ρ is trivial, we can represent it byρ = 1 and clearly in this case
supp(ρ̃) = Σ(CS) = ∅.
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Conversely, assume that supp(ρ̃) = ∅. It follows that for any special valuec ∈ C(f )

and any small tubeT (Fc) about the fiberFc, the restrictionLρ |T (Fc) is trivial. We know
in addition thatLρ |F is trivial for any generic fiberF of f .

Let as beforef ′ : M ′
→ S′ denote the maximal locally trivial fibration associated

to f , and recall thatS′
= S \ C(f ). Let ρ′ : H1(M

′) → C∗ be the composition of
the characterρ : H1(M) → C∗ with the morphismH1(M

′) → H1(M) induced by
the inclusionM ′

→ M. Using the exact sequence (5.2), it follows that there is a unique
characterα′ : H1(S

′) → C∗ such thatρ′
= f ′∗(α′).

Let c ∈ C(f ) be any bifurcation value forf and letδc be the cycle inH1(S
′) given

by a small loop aroundc. Then, using the fact thatf ′ is a locally trivial fibration with a
connected fiberF , it follows that the cycleδc ∈ H1(S

′) has a lifting to a cyclẽδc ∈ H1(M
′)

such thatf ′
∗(δ̃c) = δc and with the support of̃δc contained in the tubeT (Fc). It follows

that
ρ′(δ̃c) = 1 = α′(δc).

As a result there is a unique characterα : H1(S) → C∗ such thatα′ is the composition of
α with the morphismH1(S

′) → H1(S) induced by the inclusionS′
→ S.

Now we replace the representativeρ for ρ̃ by the characterρ1 = ρ · f ∗(α−1). It
follows that the restriction ofρ1 to H1(M

′) is the trivial character. Using the Mayer–
Vietoris sequence to expressH1(M) in terms of the coveringM = M ′

∪
⋃
c∈C(f ) T (Fc)

we deduce that the characterρ1 itself is trivial. This clearly implies that the characterρ̃ is
trivial. 2

The following result, based on Corollaries 4.7, 5.4 and Theorem 5.7, clarifies the case
of translated components; see also [10] in the proper case.

COROLLARY 5.8. Let f : M → S be a surjective morphism, with connected generic
fiberF .

(i) If χ(S) < 0, then the irreducible components inV1(M) associated tof form
a subgroup inT(M), isomorphic to the orbifold character groupTorb(f ). More
precisely, they are given bŷf orb

∗ (Torb(f )), where the injective morphism̂f orb
∗ :

Torb(f ) → T(M) is the dual of the epimorphismf orb
∗ .

(ii) If χ(S) = 0, then the irreducible components inV1(M) associated tof are given by
f̂ orb

∗ (Torb(f )∗), whereTorb(f )∗ is obtained from the orbifold character groupTorb(f )

by deleting the identity connected component.

The same proof as above yields the following result, to be compared with Theorem
3.6(iv).

COROLLARY 5.9. Let f : M → S be a surjective morphism, with connected generic
fiberF , such thatχ(S) ≤ 0. Then, for any character̃ρ : T (f ) → C∗,

dimH 1(M,Lρ ⊗ f ∗L) ≥ −χ(S)+ |supp(ρ̃)|

for any local systemL ∈ T(S), and the above inequality is an equality for all except finitely
many local systemsL.
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For the proofs of the following related two results we refer to [14].

PROPOSITION5.10. For f : M → S a surjective morphism, with connected generic
fiber F , and for a non-trivial element̃ρ in the Pontryagin dual̂T (f ), one has a natural
adjunction isomorphism

F = Rj∗j
−1F

whereF = R0f∗(Lρ) and j : S \ Σ(F) → S is the inclusion. In particular, the local
systemj−1F onS \Σ(F) is non-trivial.

COROLLARY 5.11. With the above notation, ifS is a compact curve, then|Σ(F)| 6= 1.

EXAMPLE 5.12 (The deletedB3-arrangement). We return to Example 3.8 and apply the
above discussion to this test case. The corresponding mappingf : M → C∗ hasB =

{0,∞} andC(f ) = {1}. Indeed, with obvious notation, we get the following divisors:
D0 = L1 + L4 + 2L5, D∞ = L2 + L3 + 2L7 andD1 = L6 + 2L whereL : x + y − 1
= 0 is exactly the line from theB3-arrangement that was deleted in order to get Suciu’s
arrangement. Moreover, the associated fibrationf ′ : M ′

→ S′ in this case is just the
fibration of theB3-arrangement discussed in [18, Example 4.6].

The lineL is the only multiple component andm1 = 2. Then Theorem 5.3 implies that

T (f ) = Z/2Z.

Let γi = γ (Li). We know thatρ(γi) = ±1 and to get the exact values we proceed as
follows. First note that we can chooseρ(γ1) = 1, since the associated torus is

f ∗(T(C∗)) = {(t, t−1, t−1, t, t2,1, t−2,1) | t ∈ C∗
}.

(In fact the choiceρ(γ1) = −1 produces the characterρ′

W introduced in Example 3.8.)

Next letα =
∑7
i=1 αiγi ∈ H1(M). Thenα ∈ kerf∗ if and only if

(5.13) α1 + α4 + 2α5 = α2 + α3 + 2α7.

In our case, the canonical projectionθ : kerf∗ → Z/2Z is given byα 7→ α2 + α3 − α6
(for details see [13, Theorem 6.3]). It follows thatγ6 ∈ kerf∗ andθ(γ6) = 1 ∈ Z/2Z.
Henceρ(γ6) = −1.

Nextγ1 + γ2 ∈ kerf∗ andθ(γ1 + γ2) = 1 ∈ Z/2Z. It follows thatρ(γ1)ρ(γ2) = −1,
i.e. ρ(γ2) = −1. The reader can continue in this way and get the value ofρ = ρW given
above in Example 3.8.

EXAMPLE 5.13 (A more general example: theAm-arrangement). LetAm be the line
arrangement inP2 defined by the equation

x1x2(x
m
1 − xm2 )(x

m
1 − xm3 )(x

m
2 − xm3 ) = 0.

This arrangement is obtained by deleting the linex3 = 0 from the complex reflection
arrangement associated to the full monomial groupG(3,1, m) and was studied in [8] and
in [9]. The celebrated deletedB3-arrangement studied above is obtained by takingm = 2.
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Consider the associated pencil

(P,Q) = (xm1 (x
m
2 − xm3 ), x

m
2 (x

m
1 − xm3 )).

Then the setB consists of two points, namely(0 : 1) and(1 : 0), and the setC(f ) is the
singleton(1 : 1) (see for instance [18, Example 4.6]). It follows thatm(1:1) = m and hence
via Theorem 5.3 we get

T (f ) = Z/mZ.

Using Corollary 5.8, we expect(m − 1) 1-dimensional components inV1(M), and this is
precisely what has been proved in [8], or in Thm. 5.7 of [9]. There arer = 2+ 3m lines in
the arrangement, and to describe these components we use the coordinates

(z1, z2, z12:1, . . . , z12:m, z13:1, . . . , z13:m, z23:1, . . . , z23:m)

on the torus(C∗)r containingT(M). Herezj is associated to the linexj = 0 for j =

1,2, andzij :k is associated to the linexi − wkxj , wherei, j = 1,3, k = 1, . . . , m, and
w = exp(2π

√
−1/m). All the above 1-dimensional components have the same associated

1-dimensional subtorus

T = f ∗(T(C∗)) = {(um, u−m,1, . . . ,1, u−1, . . . , u−1, u, . . . , u) | u ∈ C∗
}

wheref : M → C∗ is the morphism associated to the pencil(P,Q), and each element
1, u−1 andu is repeatedm times. Letγc be an elementary loop about one lineL in the
fiber Cc, with multiplicity 1, e.g.L : x1 − x2 = 0. Similarly, letγb be an elementary
loop about one lineL′ in the fiberCb, with multiplicity 1, whereb = ∞ = (0 : 1), e.g.
L′ : x2 − x3 = 0. And letγ0 be an elementary loop about one lineL0 in the fiberC0, with
multiplicity 1, where 0= (1 : 0), e.g.L0 : x1 − x3 = 0. One can show easily that

(i) the classes [γc] and [γb + γ0] in the groupT (f ) are independent of the choices made;
(ii) [ γc] = −[γb + γ0] is a generator ofT (f ).

It follows that a torsion characterρ ∈ T(M) such thatLρ |F = CF and inducing a
non-trivial character̃ρ : T (f ) → C∗ is given by

ρ = (1,1, wk, . . . , wk, w−k, . . . , w−k,1, . . . ,1)

for k = 1, . . . , m − 1. Here ρ̃([γc]) = wk andρ is normalized by setting the lastm
components equal to 1.

EXAMPLE 5.14 (A non-linear arrangement). Consider again the pencilC : (P,Q) =

(xm1 (x
m
2 − xm3 ), x

m
2 (x

m
1 − xm3 )) associated above to theAm-arrangement, form ≥ 2. We

introduce the following new notation:C = {(0 : 1), (1 : 0), (1 : 1)}. Let B ⊂ P1 be a
finite set such that|B| = k ≥ 2 andB ∩ C = ∅. Consider the curve arrangement inP2

obtained by taking the union of the 3m lines given by

(xm1 − xm2 )(x
m
1 − xm3 )(x

m
2 − xm3 ) = 0

with the k fibersCb for b ∈ B. LetM be the corresponding complement andf : M →

S := P1
\ B be the map induced by the pencilC. Then one has the following.
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(i) T (f ) = Z/mZ ⊕ Z/mZ ⊕ Z/mZ. Let ej for j = 1,2,3 denote the canonical basis of
T (f ) as aZ/mZ-module.

(ii) For a characterρ̃ : T (f ) → C∗, let Wρ = Lρ ⊗ f ∗(T(S)) be the associated
component. Then dimWρ = k − 1 and for a local systemL ∈ Wρ one has

dimH 1(M,L) ≥ k − 2 + ε(ρ)

where equality holds for all but finitely manyL ∈ Wρ and

ε(ρ) = |{j | ρ̃(ej ) 6= 1}| ∈ {0,1,2,3}.

Indeed, the set{j | ρ̃(ej ) 6= 1} can be identified with supp(ρ̃) and the claim follows
from Corollaries 5.8 and 5.9. This shows that the various translatesWρ of the subtorus
W ′

= TW = f ∗(T(S)) all have the same dimension, but they are irreducible components
of various characteristic varietiesVq(M), with q = q(f, ρ) = k−2+ ε(ρ) as in Corollary
4.7, a fact apparently not noticed before.
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