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ABSTRACT. — Givena compact closed surfage we consider the generalized Toda system of equatioris:on

2 h e .
—Au; = ijl pjaij </ T ave — 1) fori = 1,2, wherepq, pp are real parameters ang, 1, are smooth

positive functions. Explomng the variational structure of the problem and using a new min-max scheme we prove
existence of solutions for generic valuesogfand forp, < 4.
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1. INTRODUCTION

The system
N
1) —Au; =Y aije", i=1....N,

defined on a domaife C R2, whereA = (ai;)i; is theCartan matrixof SU(N + 1),

2 -1 0 0

-1 2 -1 O 0
A o -1 2 -1 0 ,

0 -1 2 -1

0 o -1 2

is known as th@oda systerrand it arises in the study of non-abelian Chern—Simons theory
(see for example [16] of [31]).

In this paper we consider a generalized versior] pf (1) on a closed sutfdueich
from now on we assume with total volume 1), namely

hje'i .
(2) —AM, ijal]<f h euj dV 1)! 1 :13--~7N9

whereh; are smooth and positive functions ah We specialize here to the cade= 2,
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so the system becomes

CAug = 2p1<hl_e‘” _ 1) _ pz(’lz—e“z _ 1)
B hie*1dV, hoe2dV,
@) [s i [s ¢ ons.

hoe'2 hie*
—Auz = 202<—Ze - 1) - Pl(—le - 1>
[ hoet2dVy [x h1et1dVy
Problem [(B) is variational, and solutions can be found as critical points of a functional
J,  HY(Z) x HY(Z) — R, p = (p1, p2), defined as

12 N 2 2
Jp(ur, uz) = [E > La'fVui-VujdVg]+ZpiLuidvg—Zpi Iog/):hie”idvg.
i=1 i=1

ij=1

Herea'/ are the entries of the inverse matrix*.

The structure of the functional, strongly depends on the values @f and p. For
example, the conditiop; < 4 for bothi = 1, 2 has been proven in [18] to be necessary
and sufficient forJ, to be bounded from below (see Theo 2.1; we also refer {o [27]
and [28]). In particular, fol1, p2 < 4w, J, becomes coercive (once we factor out the
constants, sincd,, is invariant under the transformation — u; + ¢;, ¢; € R) and
solutions of[(B) can be found as global minima.

The case in which one of thg's is 4 (or both are) is more subtle since the functional
is still bounded from below but not coercive anymorelln [17] and [21] some conditions for
existence are given in this case, and the proofs involve a delicate analysis of the limiting
behavior of the solutions when thg's converge to # from below.

On the other hand, when one of thés is greater than#, J, is unbounded from below
and solutions should be found as saddle points. In [23], [25]land [26] some existence results
are given and it is proved that#f, = 1 and if some additional assumptions are satisfied,
then(0, 0) is a local minimizer for/,, so the functional has a mountain pass structure and
some corresponding critical points. Furthermore_in [17] a very refined blow-up behavior
of solutions is given (Theorefm 2.4 below is a consequence of that analysis) and existence
is proved if ¥ has positive genus and i, o, satisfy either (i)o1 < 4w, p2 € (4w, 8m)

(or vice versa), or (iijo1, p2 € (4w, 87).

Our goal here is to give a general existence result when one of the coefficiaran

be arbitrarily large. We have indeed the following theorem.

THEOREM1.1. Supposen is a positive integer, and lei1, iy © ¥ — R be smooth
positive functions. Then for € (4rm, 47 (m + 1)) andp2 < 4z problem(@) is solvable.

REMARK 1.2. By Propositiof 2|5 below, if we also assume tfiat; dV, = 0 fori =
1, 2, the solutions of {3) stay boundeddh(X) for any integet.

To give an idea of the proof of Theor¢m{L.1 we first recall the analody of (3) with some
nonlinear scalar equations. First of all we should mention fRat (2yfer 1,

he"
4) —Au=2p[ ————-1) onx,
[ het dVy
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arises in the study of mean field limit of point vortices of Euler flows, spherical Onsager
vortex theory and condensates in some Chern—Simons—Higgs models (see for example the
papers([3],[14],[7]-[10],[[12],[[20],[130] and the references therein).

We also mention the similarity of the scalar equat[dn (4) with the geometric equations

(5) —Agu+ Ky = Kze® onX, Puu+2Q,=20z" onM.

Here K, is the Gauss curvature df, A, the Laplace—Beltrami operatog, = g a
conformal metric andk; the Gauss curvature @. The second equation ifi](5) is the
transformation law of th&-curvatureon a four-dimensional manifols/ under a similar
conformal change of metric, an, is the Paneitz operatoassociated tQM, g) (see for
example([15],[[24] and the references therein).
We next recall the ideas usedlin [15] to find conformal metrics of conglarurvature.
For the reader’s convenience we transpose the discussion to equidtion (4), for which
analogous considerations hold. Actually the method in [15] has been used in [13] to study
(@ as well, in order to obtain existence results on surfaces of arbitrary genus.
Equation[(#) also has variational structure and is the Euler equation of the functional

1
1,(u) = E[E |Vul2dV, —2pf2udvg —Zplog/Zhe”dVg, ue HY(X),

which, as before, is bounded from below if and onlyif< 47 by the Moser—Trudinger
inequality (see[(6) below). Fov > 4, instead of using degree theory as [in [9] and
[10], one can indeed employ directly a min-max scheme based on improvemdrts of (6). In
fact, if the integral ofe* is distributed into¢ different distinct regions, then (naively) the
coefficient of the right-hand integral in](6) reduces by a faétdfor a precise statement
see Proposition 2.2 below. As a consequenge &f(4kr, 4(k +1)xr)) andl, (u;) — —oo

along a sequence, thene! has to concentrate near at maspoints in X'. For such a
result we refer to Lemma 2.4 in [15] or in [13]. Assuming tffgte”l dVy =1, we have

el — Zf‘zl 1;8x; for some non-negative coefficienfssuch thath-‘zl t; = 1. This family

of formal convex combinations of Dirac deltas is known as the sé&brofial barycenters

of X (see Sectiofi]2), and we denote it Bi. We notice that fok = 1 the setX; is
simply homeomorphic t&' but for largerk thes;’s do not have any bound from below

or thex;’s could collapse onto each other, so the set could be degenerate near some of its
points. In fact, Xy is astratified manifoldthat is, a union of sets of different dimensions.
Nevertheless, since — Zf-‘zl 1i8y, € Xy, with some work it is possible to build a
continuous and non-trivial maf; from sublevels{l, < —L} (with L large) into X.

By non-triviality we mean that this map is homotopically non-trivial, and indeed for any
L > Othere exists amap : Xy — {I, < —L} (see[(ZR) for the explicit formula, and
Proposition 4.1 in[13] for the evaluation 6f) such thai’T; o is homotopic to the identity

on X%, which is non-contractible. This allows us then to define a min-max scheme using
maps from the topological cone ovEy; with values intoH(X) (see e.g/[13, Section 5])
which coincide withy on X (the boundary of the cone).

Having sketched this argument for the scalar equafi¢n (4), we can now describe
our approach to study systef (3). First of all we prove a compactness result under the
assumptions of Theorgm 1.1 (see Propositioh 2.5). This result exploits the blow-up analysis
in [17] when p, stays positive and away from zero. On the other handpfos (—o0, §]
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with § positive and small, we use an argument inspired by Brezis and Mérle [6], combined
with a compactness result in [22] (see Theofen 2.3).

Next, a main ingredient in our proof is again an improved version of the Moser—
Trudinger inequality for systems, which was given [n1[18] (see Thedrerh 2.1). In
Propositior] 3.]l we see that, in analogy with the scalar cagé! iis distributed among
disjoint sets, then the Moser—Trudinger inequality improves, and the bigger the spreading,
the better the improvement. The argument relies on both Thgorém 2.1 and Projposjtion 2.2.
The way we use them is the following. Assumieig spreads intd@ setsSy, .. ., S¢, we can
find another-tuple Sy, .. ., S, € X such that each of these sets contains a fixed portion of
the integral ofe“1, andS; also contains a fixed portion of the integralas? (see Lemma
[3.2). Then, by a localization argument through some cutoff functians. ., g,, we use
the Moser—Trudinger inequality for systems néar and the improved scalar inequality
nearS,, ..., S;. In this step we employ some interpolation inequalities and cutoffs in the
Fourier modes ofi1, u» to deal with lower order terms.

From the improved inequality we derive the following consequencepslf €
(4rm, 4w (m + 1)), if po < 4w and if J,(u1,, u2;) — —oo along a sequenc@y,, u2;),
then ¢! has to concentrate near at mastpoints of . Therefore, as for the scalar
equation, we can mag'l! onto X, for [ large. Precisely, fol. > 1 we can define a
continuous projectiow : {J, < —L} — X, which is homotopically non-trivial. Indeed,
recalling thatX,, is non-contractible (see Lemra P.6), there exists a thaguch that
¥ o @ is homotopic to the identity and, (@ (X,,)) can become arbitrarily large negative,
so that is well-defined on its image.

Some comments on the construction of the ndapre in order. If we want to obtain
low values ofJ, on a couplguy, u2), sincee“! has necessarily to concentrate near at most
m points of ¥, a natural choice of the test functios, uz) is (¢x s, —%qam), whereo
is any element o, and wherep, , is given in [22) in Section 4. In fact, astends to
infinity, e#»> converges te in the weak sense of distributions, while is chosen so as
to obtain the best possible cancelation in the quadratic part of the functional (see Remark
[4.3). We notice that this kind of function (for the case= 1 only) was used in [18] to
prove unboundedness @f from below if somep; is greater than#. Lettingo vary, we
get a full embedding o&), into low sublevels of/, through the ma.

At this point we are in a position to run a min-max scheme similar to that described
above, based on the topological cone ovgj,. The scheme yields a Palais—Smale
sequence fov,, but since we cannot ensure convergence directly, following Struwe [29]
we introduce an auxiliary functionak, (ro = (tp1,tp2)) wheret belongs to a small
neighborhood of 1. Running the same scheme on the functihpavia a monotonicity
argument, yields existence of critical points for almost every value afd in particular
along a sequenag — 1. To conclude, it is sufficient to apply the compactness result of
Propositiory 2.p.

The plan of the paper is the following. In Sectiph 2 we collect some preliminary
results regarding the Moser—Trudinger inequality, the barycentricsetnd the proof
of Propositiorf 2.b. In Sectidr] 3 we give an improved version of the inequality for systems,
and we apply it to characterize the low subleveld pin terms of the concentration of the
functione”? (see Corollary 3]5). Then in Sectiph 4 we introduce the topological argument
to study [[8). We first define the global projectignonto X, (wherem is the integer of
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Theorenj 1.1) and then we also define the mapx,, — H(¥) x H(X), proving that
¥ o @ is homotopic to the identity ox,,. Finally, we run the min-max scheme based on
the topological cones ovex,,.

2. NOTATION AND PRELIMINARIES

In this section we collect some useful preliminary facts.£or € X we denote byl (x, y)
the metric distance betweanandy on X', and by distS1, S2) the distance between two
setsSy, S C X,

dist(S1, S2) = inf{d(x,y) : x € §1, y € S2}.

Recalling that we are assuming YOE) := fz 1dV, = 1, given a function: € LX),
we denote its average (or integral) as

ﬁ:/ udVy.
z

Below, C denotes large constants which are allowed to vary in different formulas or even
within lines. When we want to stress the dependence of the constants on some parameter
(or parameters), we add subscript€taCs, etc. Also constants with subscripts are allowed
to vary.

We now recall some Moser—Trudinger type inequalities and compactness results. The
functional under interest is the following:

1 2 - 2 2
Jo(uy, uz) = |:§ Z al~/Vui.VujdVg:|+Z pi/ M,‘dVg—Z Pi Iog/ h;ei dVg,
ij=17% i=1 22 i=1 2

which, for large values op1 and p, will in general be unbounded from below. In fact,
there is a precise criterion fof, to be bounded, proved by Jost and Wang.

THEOREM 2.1 ([18]). For p = (p1, p2) the functionalJ, : HYX(¥) x HY(¥) — Ris
bounded from below if and only i < 4z fori =1, 2.

Concerning the scalar Moser—Trudinger inequality
(6) Iog/ Mrqy, <C+i/ |Vul?dV,
b £ = 16r Jx 7

we have the following improvement which occurs if the integrak®f” is distributed
among different sets of positive mutual distance.

PROPOSITION2.2. LetSy, ..., S, be subsets oF satisfyingdist(S;, S;) > 8¢ for i # j,
and letyp € (0,1/¢). Then for anye > 0 there exists a constaiit = C (&, 8o, y0) such

that
_ 1
lo U=l gy, < C 4+ —— | |Vu|?av,
9/26 g = +16€n—§/;;| ul*dVe
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forall u € HY(X) satisfying

Js ¢ dVy

——— >y, iefl ... ¢}
fze”dVg_yo ief }

For the proof in the casé= 2 seel[11]. We also refer the reader/tol[15].
We now recall the following compactness results froni [22] and [17].

THEOREM 2.3 ([22]). Let (ux)x be a sequence of solutions of the equations

Aug = A Viee™ W,
g =g W),
CTO\ T ke av,

where(Vy), and (Wy), satisfy
/ WedVe=1. [Willeus) <C. llogVel < C. [V Vellzz) < C.
)

and wherery — Xg > 0, Ag # 8km for k = 1,2,.... Then, under the additional
constraintfz ur dVy = 1, (ug)i stays uniformly bounded ih*°(X).

THEOREM 2.4 ([17]). Let m1, m2 be non-negative integers, and suppase, A, are
compact subsets of the intervédsrm1, 47 (m1+1)) and(dmmy, 4 (m2+1)) respectively.
If p1 € A1z andpz € Az and if we imposey. u; dV, = 0,i = 1, 2, then the solutions of
(3) stay uniformly bounded in*°(X) (actually in evenC!(X) with! € N).

This theorem, as stated in_[17], requirag and m2 to be positive. However, it is
clear from the blow-up analysis there that one can also allow zero valueg of m5.
Combining Theorenfs 2.3 apd 2.4 we obtain another compactness result which includes all
the possibilities of Theorem 1.1.

PROPOSITION2.5. Supposéi1, hz are smooth positive functions aii, and consider a
sequenceus x, uz ) of solutions of the system

hleul’k ]’lzeuz'k
_Aul,k = 2p1’k<m — 1) — P2k (W - 1)
(7) onx.
hzeuz’k /’lleul’k
—_A =2 — o 1) — Theniav, *
Uk 02,k <f£ haet2k dV, ) PLE <IE hie"*tk dV, )

Supposé& 1)« lie in a compact subseky of (72, (4im, 4(i + 1)7), and (p2,)« lie in
a compact subsek’s of (—oo, 4n). If f): ujrdV, = 0fori = 1,2andk € N, then the
functions(u x, u2 ) of (7)) stay uniformly bounded ih>(X) x L>®(X).

PROOF Firstwe claim that for any > 1 there exist® > 0 (depending op, K1, K2, h1
andhy) such that forpp x < p the solutions ofe”2+); are uniformly bounded id? (X).

The proof of this claim follows an argument inl [6]: using the Green representation
formula and the fact thad; > 0 we find (recall thalf . uz x dV, = 0)

u
2 2,k

<C G\ 2026k
ug p(x) < +/2 (x y)( 02,k fz hoet2k dV,

>dVg(y),



EXISTENCE RESULTS FOR THE TODA SYSTEM 397

whereG (x, y) is the Green function ofA on X. Using the Jensen inequality we then
find

u
2 2,k

puzk(x) < C/ exp2pp2x G —_—
e =C/ (2pp2.k (x,y))f): haei2k 4V,

dVe(y).

Recalling thatG (x, y) ~ % Iog(d(x—l’y)) and using also the Fubini theorem we get

L el"2k dV, < C sup dVy(y).

xex )y d(x, y)Prek/®
Now it is sufficient to takes = 7r/2p in order to obtain the claim.

To prove the proposition, in the caggx > » we simply use Theorefn 2.4, while for
p2.x < p we employ the above claim. In fact, from uniforb® bounds ore*2+ and from
elliptic regularity theory, we obtain unifori¥2? bounds on the sequencg )i, wherev,
is defined as the unique (we can assume that ayelhas zero average) solution of

hoe"2k 1
—Avy = — _— —1).
= o e )

Taking p sufficiently large, by the Sobolev embedding, we also obtain unif6rhf
bounds on(vx); (and hence orfe’)x). Now we writeus ; = w1 + vk, SO thatwi x

satisfies e kg
1.k
—Awg g = 2,01,k< 161) ewlk - 1>.
[x h1evke*rk dV,

Moreover, since we are assumitig u1x dV, = 0 and sincef. v dV, = 0 as well, we
also havefz wyk dV, = 0. Hence, applying Theore@.B with = w1k, A = 2014,
Vi = h1e% andW; = 1, we obtain uniform bounds any ; in L>(X). Since(vy) stays
uniformly bounded in.*°(X), we also get uniform bounds en , in L*°(X). Then, from
the second equation if](7) we also achieve uniform bounds grnn W2P(x) (and hence
in L°°(X), by takingp large enough). This concludes the proof. O

At this point some notation is in order. Fére N, we let X; denote the family of
formal sums

k k
(8) Ek:{ztigxi:tiZO,Zti:]-» x,-eE],
i=1 i=1

wheres, stands for the Dirac delta at the pointe X. We endow this set with the weak
topology of distributions. This is known in the literature asfitrenal set of barycentenrsf
X (of orderk, seel[1], 2], [5]). Although this is not in general a smooth manifold (except
for k = 1), it is astratified seta union of cells of different dimensions. The maximal
dimension is 3 — 1, when all the points; are distinct and all the’s belong to the open
interval (0, 1).

Next we recall the following result from the last references (see also Lemma 3.7 in
[15]), which is necessary in order to carry out the topological argument below.

LEMMA 2.6 (well-known). For any k > 1 one hasHs;_1(Xy; Z2) # 0. As a conse-
quence,X is nhon-contractible.
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If 9 € C1(X) ando € X, we denote the action of ong as

k k
(0,0) =Y tipxi), o=y fidy.
i=1 i=1

Moreover, if f is a non-negative.! function on X with f): fdV, =1, we can define a
distance off from X in the following way:

9) dist(f, Xx) = inf Sup{‘/ fodV, — (o, go)) Hellersy = 1}.
oeXy P>
We also let

Dep = (f € LNE): f 20,1 fll 1z = L dist(f, Zp) < e}

From a straightforward adaptation of the arguments of Proposition 3.1lin [15], we obtain
the following result.

PROPOSITION2.7. Letk be a positive integer, and fer > O let D, x be as above. Then
there existg; > 0, depending ot and X, such that fore < ¢; there exists a continuous
mapy : Dex — Xk.

Now we introduce some more notation. For any positive integewre letK,, denote
the topological cone ovexr,,,

(10) K = (Zn x [0, 1])/~,

where the equivalence relation collapses thelsgtx {1} to a single point.

3. AN IMPROVED MOSER-TRUDINGER INEQUALITY WITH APPLICATIONS

In this section we present an improvement of the Moser—Trudinger type inequality for the
Toda system given ir_[18]. To get this improvement, we assume that the integral of the
functionse"! is distributed among different sets with positive mutual distance. Our proof
relies heavily on the main result in [18], and is combined with some arguments in [11] and
[15]. As an application (see Corollafy B.5), we derive a characterization of the sublevels
{Jo, < —L}, for L > 0O large, in terms of the concentrationft.

3.1. The improved inequality

In this subsection we analyze the Moser-Trudinger inequality, depending on the
distribution of the functione®t. A consequence of this inequality is an upper bound
(depending om1) on the number of concentration pointsest.

PROPOSITION3.1. Letép > 0, ¢ € N, and letSy, ..., S¢ be subsets o satisfying
dist(S;, S;) > 8o fori # j. Letyg € (0, 1/¢). Then, for any > 0 there exists a constant
C = C(&, 8o, y0, £, X) such that

. . 1 2 y
Zlog/Zeul “1a’Vg+Iog/Ze”2 “2dV, < C + — szzlfxauwi .Vujdvg]
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provided

fSi et dV,

WZVO» ie{l, ... ¢

11

Before proving the proposition, we state a preliminary lemma, which will be proved
later on.

LEMMA 3.2. Under the assumptions of Proposit there exiso, 80 > 0, depending
only onyo, 8o, X', and¢ setsSy, ..., Sy such thadist(S;, S;) > 6 fori # j and such that

. e'rdyv, . e'2dv, . e'rdyv,
MZ%, Mz?o, MZ%, ie{2...,4).
[z e dVy [z er2dVy [ erdV,

PROOF OFPROPOSITION3.1.  We modify the argument iA [11] ard [15]. L&t .. .. S,
be given by Lemmp 3]2. Assuming without loss of generality tha&= 7, = 0, we can

find ¢ functionsgy, . .., g satisfying the properties
gi(x) €0, 1] for everyx € X;
(12) gilx)=1 foreveryx € S;,i =1,...,¢;

Suppg;) N suppg;) =¥ fori # j;
lgillc2(s) < Csye

Wherng0 is a positive constant depending only&nWe decompose the functions and
u2 in the following way:

(13) uy=u1+i1, up=_dp+iup, i1,i2 € L(X).

The explicit decomposition (via some truncation in the Fourier modes) will be chosen later
on. Using Lemm@3]2, forany € 2, ..., ¢ we can write

-1
Zlog/ e”ldVg—i—log/ e"2dV, = Iog|:/ e”ldVg/ e”deg</ e”ldVg> i|
z z z z z
< Iog(_/~ e”ldvg/~ e“ZdVg>
S1 S1
-1
+ Iog[(/~ e“ldVg> } — Llogyo
Sp
< |Og</ el dVg/ es1i2 dVg)
x by
-1
+ Iog[(f egb”ldvg) ] — £Llogyo.
=
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Now, using the fact thai; andi» belong toL*° (%), we also write

Elog/ e“ldVg+Iogf e'2dV, < Iog(/ egl’zldvg/ eglf’zdvg>
P P P P
) -1
+ Iog[(/ egb“ldvg> }—({Iog)?o
X

+L(lla1llLoo(xy + a2l Loo(xy)-

Therefore we get

(14) £Iog/.2 et dvV, +Iog/2 e'2dV, < Iog/; 811 gy, +Iog/Z es12 gy,
+(—1) Iog/ 81 qv, — £log o
b
+ (a1l L=z + llizllLocs))-

At this point we can use Theorem P.1 with parametdrs, 47), applied to the couple
(g1#1, g1ii2), and the standard Moser—Trudinger inequallify (61 to get the estimates

_ 1 2 N
IOg/ egl’“dVg—i—log/ eglude < —|= Z / a'’V(gi;) - V(g1ij) dV,
z 4r i,j:l z

+ (g1it1 + g1u2) + C,
(15)

(-1 Iog/ eSP1 Vv, < —/ IV (gpitn) | d Vg + (£ — Dgpity + (£ — 1)C.
Now we notice that foiv = 2 one has

aw:( )

Therefore, using elementary inequalities (completion of squares) one can check that for
every pointx € X,

Wik wIN
WIN Wik

(16) Za”g(&, &)= g(sl §1) forevery coupleés, §2) € I X x T, X
i,J

This can be checked for example by using orthonormal coordinates s that the
metric g just becomes the identity at this point. Applying this inequality to the couple
(V(gpu1), V(gpliz)) and integrating one finds

£
(17) 16” / IV (gpiin)|2dVe <—[ Z/ a'lV (gyity) - wgbu,)d‘/}
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Putting togethe (14)E(17) we obtain

(18) Elogf e“ldVg+Iog/ e"2dV,
X

401

1 2 L )
= E[ Z /Ea”v(glui)'v(glu,-)dvg}

D> [ / AT (gpits) - V(gbde}
i,j=1

+ (guit1 + g1ii2) + (€ — Vgpiiy + £C
—£logyo + €(llillzoe(xzy + N2l Lo (x)).

Now we notice that, by interpolation, for amy> 0 there existsﬁs’go (depending only on

& andd) such that

[ / a' vV (g1ii;) - V(glu])dVgi|_|: fgla Vi - Vu]dVgi|
i,j=1 i,j=1

13 .
+e[§ .Z/Ealfvai-wjdvg}

i,j=1

+C, 5, /E(ﬁi +i15) dVy.

Inserting this inequality intd (38) we get

2
2 i~ ~
ElOg/ uldV +|ng ude < E[_ijzzl/;;glauvui - Vu; dVgi|

forb=2,...,¢

171 & 0 i
—[5 Z / gba’JVﬂi-VﬁjdVg}
+—e|: Z/ avi; - w,dvg]

+ec€’50/2(ﬁ§+a§)dvg

+ (guit1 + guiiz) + (€ — Dgpiin
+LC — tlogpol(llisllLeecsy + N2l o))

We now choosé € {2, ..., ¢} such that

201Ny, - Vi dV<—— / aVu; - Vii; dVy.
/ga i Y E—lZ ¢, suppgs) e
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Since theg;’s have disjoint supports (sge {12)), the last formula yields

/ Uvi; - Vii; dVg:|

+EC 5 /Z(ﬁ% + %) dV, + (g1t + g1ii2)

Zlog/ e dVv, +Iog/ e"2dV, <—(1+E5)[

i,j=1

+ (¢ — Dgpu1tC — £10gyo
+e(lla1llLoxy + lid2llLecs))-

/ a'vii; - Vii; dv, i|

+C8’go’e/ (@2 + i13) dV,
P

+C,so.0.70 T Ll Lo (2) + 2]l ()

Now, by elementary estimates we find

Zlog/ "1 dV, +I0g/ e"2dV, < (1+£s)[
i,j=1

Now comes the choice d@if; andii; (see[(IB)). We choos[é&gol so large that

& ..
CS)SOQZ‘/E(UJZ_—I-U%)CZVg < E/Ea'fw,‘-wjdvg, Yo, v2 €V, 5

whereV, ; , denotes the span of the eigenfunctions of the Laplaciah' @orresponding

to eigenvalues greater thé}g’go ‘¢
Then we set

up =Py g ui, Ui = Pstoeui’

wherePVS (resp.P,. ) stands for the orthogonal projection onos , (resp. VL )
£,60,¢

Sincewr; = 0, the H1-norm and thel.*°-norm onv,; ,are equivalent (with a constant
which depends on, §g and¢), hence by our choice of; andus,

”ﬁi”%oc(;;) 86062 Z/ ljvul Vu;dVyg,
i,j=1

and

5606/( +u2)dV <— / vy . Vv; dV,.

l ,j=1
Hence the last formulas imply

Zlog/ v, +Iog/ e'2dv. <—(l+3€8)|: / jvul Vu]dVg:| 68013 70"

l]l

This concludes the proof. O
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PrRoOF OFLEMMA [3.3. First of all we fix a numberty < §o/80. Then we coveE with
a finite union of metric ball$B,,(x;));. The number of these balls can be bounded by an
integerN,, which depends only ory (and X).

Next we cover the closurs; of every sets; by a finite number of these balls, and we
choose a point; € | J,{x;} such that

/ et dV, = max{/ e"*dVy @ Bry(x1) NnS; # @}.
Byo () Byo(x1)

We also choose € | J,{x;} such that

/ e2dVy = max/ e"2dVy.
Bro(y) L J B ()

Since the total number of balls is boundedy and since by our assumption the integral
of ¢#1 over S; is greater than or equal t@, it follows that

fBro(}'i) et dVy Y0 fBro(y) e"2dVy 1

ot > - o > .
JsetdVy T Ny [se2dVy T Ny
By the properties of the sefs, we have

Boorg(yi) N Bry(yj) =9 fori # j,  cardys : Byo(ys) N Bao(y) # 90} < 1.

In other words, if we fixy;, the ball Boo., (y;) intersects none of the balB,,(y;) except
B, (i), and giveny, Bog.,(y) intersects at most one of the baBg, (v;).

Now, by relabeling the points, we can assume that one of the following two possibilities
occurs:

(a) BZOro()’) N Bro()’l) # W (and henCEBZOro(y) N Bro()’i) ={fori > 1);
(b) B2oy(y) N By (y;) =P foreveryi =1,...,¢.

In case (a) we define

Si = Baop(yi) fori=1,...,¢
while in case (b) we define

5 — | Bioo(y1) U Biog(y) fori =1,
B10r (i) fori=2,...,¢,

i =

We also sefip = yo/ Ny, anddg = 5rg. We notice thafp andsg depend only onyg, 8o
and X, as claimed, and that the sessatisfy the required conditions. This concludes the
proof of the lemma. O

3.2. Application to the study of,

In this subsection we apply the improved inequality in order to understand the structure of
the sublevels off,. Our main result here is Corollary 3.5.

In the next lemma we show a criterion which implies the situation described by (11).
The result is proven ir.[15, Lemma 2.3], but we repeat here the argument for the reader’s
convenience.
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LEMMA 3.3. Let f € L1(X) be a non-negative function withf ll .15 = 1. Also fix an
integer¢ and suppose that there exist- 0 andr > 0 such that

/ fdVy <1—¢ forallthe-tuplespy, ..., pe e X.
Uzt B-(pi)

Then there exist > 0 andr > 0, depending only on, r, £ and X' (and not onf), and
£+ 1pointspy, ..., peyq € X (which depend orf) satisfying

/ fdVy>=e, ..., / fdVy > &, Bﬁ(ﬁi)ﬂBﬁ(ﬁj)zﬂ fori # j.
Br(p1) Br(pey1)

PROOF Suppose by contradiction that for everyr > 0 and for any¢ + 1 points
pla""p@Jrle 21

(19) / deng,...,f fdv,>%
Br(p1) Br(pe+1)

= Bor(pi) N Bar(p;) # ¥ for somei # j.

We letr¥ = r/8, wherer is given in the statement. We can finde N and’ points
X1, ...,xp € X such thatX is covered byUf’:1 Br(x;). If ¢ is as above, we also set
€ = ¢/2h. We point out that the choice dfandz depends om, ¢ and X' only, as required.

Let{X1,..., X} € {x1,...,x;) be the points for WhicIfBﬂii) fdV, > & We define
Xj, = X1, and set

Al = U{B7()Ei) s Boy(x) N Bz;(fjl) £} C 347()5/'1)-

1

If there existst;, such thatBo-(x;,) N B2r(X;,) = ¥, we define

Az = U{Bﬂi") D B (Xi) N Bor(Xj,) # 0} € Bar(Xjp).

1

Proceeding in this way, we define recursively some paipts . ., X;; satisfying
By (%) N Bor(Xj,) =0 Vl1<a<s,

and
As = J(Br (%) : Bar(%) N Bar(%),) # 0} C Bar(%,).

i
By (19), the process cannot go further thgn and hence using the definition Bfwe
obtain

J 4 ¢
(20) U G < | Bar(E) < | Brj2(E)).

i=1 i=1 i=1
Then by our choice of, g, {X1, ..., %;} and by [20),

[ gaves[ o gavesa-jese
IN\Ui=1 Br &) 2\Uizy Bray

Finally, if we choosep; = %, i = 1,...,¢, we get a contradiction to the
assumptions. O
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Next we characterize the functions i'(X) x H(X) for which the value of/, is
large negative.

LEMMA 3.4. Supposep; € (4rm,4x(m + 1)) and thatp, < 4x. Then for anys >
Oandr > 0 there exists a large positive = L(e, r) such that for everyu1, us) €
HY(X) x HY(Z) with J,(u) < —L and with [, ¢" dV, = 1,i = 1,2, there existn
poiNtsp1 s, - - -» Pm.u; € X such that

(21) e'tdV, <e.

/;\U:n_l B, (Pi,ul)

PROOF Suppose by contradiction that the statement is not true. Then we can apply
Lemm 3 witht = m + 1 and f = "1 to obtaindo, o and setsSy, ..., S,41 such
that

dist(S;, $j) = do. i # J.
ﬁe”ldvg>)70/ edVy, i=1....m+1
; x
Now we notice that, by the Jensen inequalify,u; dV, < 0 fori = 1,2, and that two

cases may occur:

(@) p2 <0;
(b) p2 > 0.

In case (a) we havey [y u2dV, > 0. Using also inequality (16) we find
1 2
J,O(u17 up) > — V| dVg+pl u]_dVg—C.
45 s
Now it is sufficient to use Propositign 2.2 with= m + 1,80 = 8, yo = 70, S; = 5,
j=1,...,m+1ands € (0,16x(m + 1) — 4p1) to get

1 2 p1 / 2

| vuPav,— — | \VuyPav, - ¢
4&'“' © T Term+ 15 Jy Ve
167T(m+1)—4p1—§/ , .

> v dV, — C,

Z et D g Jp el

v

Jp(u1, uz)

whereC is independent ofu1, u2).

In case (b) we use Propositi.l wih = 80, y0 = 70, £ = m + 1, S; = S“j andée
such that(dr — &)(m + 1) > p1 and 4t — & > pp (recall thatp; < 47 (m + 1) and that
p2 < 4m) to deduce that

Jo(uy, up) > (4w — &)[—(m + Duy — u2] + p1us + poui2
= (p1— (m+D4r —&)ur+ (p2 —4n + &uz — C > —C,

by the Jensen inequality, where agdinis independent ofu1, u2). This concludes the
proof. O
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As a consequence of Lemra]3.4 we have the following result, regarding the distance
of the functionse*! (suitably normalized) fronk,, (see[(9)).

COROLLARY 3.5. Let € be a (small) arbitrary positive real number, and lpi <
(4mm, 4w (m + 1)), p2 < 4. Then there existd > 0 such that, ifJ,(u1, u2) < —L
and [y e dV, = 1, we havelist(e"?, X,,) < &.

PrROOFE We consider andr small and positive (to be fixed later), and we Iebe the
corresponding constant given by Lemmg 3.4. Welet . ., p,, denote the corresponding
points. Now we define € X, by

m
o= 1;8,. where =/A
—

J

i—1
e dVy, A= B(p)\ | Br(py).
s=1

ri

foreveryi =1,...,m — 1, and
m—1
Ar,m = 2\ U Br(ps)-
s=1
Notice that all theA, ;’s are disjoint by construction. Now, givep e c(x) with

lellcisy = 1, (using also[(21)) we have = |J;_; A,,; and

"L (@ — @(pm)) dVyg| < 2,

'/;\U/m]_ B, (P/)

/A pe"tdVy —tjp(p;)

rj

=< CZV”(P”Cl(z) <Cgr

forj=1,...,m—1,and

/ e"Y(p — p(pm)) dVy| < Cxrlglicizy < Csr-
By (pm)

By (9) it then follows that

dist(e"t, X)) < sup{‘/ e dV, — (o, w)’ ’ leller sy = 1} <2 +mCgxr.
X

Now it is sufficient to choose andr such that 2 + mCxr < €. This concludes the
proof. |

4, THE MIN-MAX ARGUMENT

In this section we perform the topological construction to be used in order to produce
solutions of [(B). First of all, Corollarfy 35 allows us to construct a projectiofrom
suitable sublevels aof, onto %, Next, the main idea is to use for the min-max some maps
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from the coneX,,, over X, (see[(ID)) intaf1(X) x H1(X). We require that these maps at
the boundary all coincide with a given functidn which is defined in the next subsection.

The map® is chosen so thak o @ is homotopic to the identity ol,, (see Proposition
[4.2), and the functional, on the image is very large negative. Considering then the image
of K,, with respect to the above maps (with fixed boundary datum), in Propogitipn 2.7
we will verify that the maximal value of , on the image will be strictly greater than the
maximum on the boundary. By standard arguments (considering a pseudo-gradient flow
for J,), we conclude that the functional has a Palais—Smale sequence at sorag level

At this point, in order to prove boundedness of the Palais—Smale sequences, we employ
crucially a method due to Struwe. We introduce a modified functidpsand we prove a
monotonicity ofw,, with respect ta. This allows us to prove existence of solutions[df (3)
with p replaced by p wherer;, — 1 ask — oo. Finally, we apply the compactness result
of Propositiory 5 to achieve existence for= 1 as well.

4.1. Construction of the mapg and®

PROPOSITION4.1. Supposen is a positive integerp; € (4nm, 4r(m + 1)), andpy <
4. Then there exists a large > 0 and a continuous projectiow from{J, < —L} N
{[5e"dV, = 1} (with the natural topology off1(X) x H(X)) onto X,, which is
homotopically non-trivial.

PrROOF We fix &, so small that Proposition 3.7 applies with= m. Then we apply
CoroIIary@ withe = ¢,,. We letL be the corresponding large number, so thd}ift) <

—L, then distet, X,,) < &,. Hence for these rangesof andu, since the map — e*

is continuous fromH1(X) into L1(X), the projectionsT,, from H(X) onto X, is well
defined and continuous. The non-triviality of this map is a consequence of Proposition

[@3(ii) below. a

The next step consists in mappiRgy, into arbitrarily negative sublevels dj,. In order
to do this, we need some preliminary notation. Givea X,,,0 = Y 7 ; #;8,, andi > 0,
we define the functiop, , : ¥ — R by

2
22) 9ro(y) = IogZ (1 " Azdz(y)>

where we have set
di(y) =d(y,x;)), xi,yeX.

We point out that, since the distance from a fixed pointa$ a Lipschitz functiong; « (y)
is also Lipschitz iny, and hence it belongs tH1(X).

PROPOSITION4.2. Supposen is a positive integerp; € (4dnm, 4r(m + 1)), andpr <
4. For A > 0ando € X, define® : X,, > HY(X) x HY(X) as

1
(@@)() = (P(0)1(), P(0)2() = ((ﬂx o()— 2% o (- ))

wheregy; . is given in(23). Then forL sufficiently large there exisés> 0 such that
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(i) Jo(@(0)) < —L uniformly ino € X,;
(i) ¥ o @ is homotopic to the identity of,,

whereV is defined in Propositiod.], and where we assunieto be so large that? is
well defined or{J, < —L}.

PrROOF The main ideas follow the strategy in [15], but for the reader’s convenience we
present here a simplified argument (for #é setting in [15] it was necessary to introduce
a cutoff function on the distancés, which made the computations more involved).

The proof of (i) relies on showing the following two pointwise estimates on the gradient
of Pro-

(23) [Vo,.o(y)| < Cr  foreveryy e X,

where(C is a constant independent@fanda, and

(24) Voo (W] < where dmin(y) = ,mln d(y, x;).

dmin(y i=1,..,
To prove [23) we notice that

Md0x) oy il m

25 —_
(25) 1+A2d2(y,xi) -

where( is a fixed constant (independentiondx;). Moreover, we have

22 t:(L+ 22d%()) 3V, (d2(y))

26 \
(26) Pro(y) = > @+ 12d20)) 2

Using the fact thaWy(diz(y))| < 2d;(y) and inserting[(2p) into[ (26) we obtaip (23)
immediately. Similarly we find

e S PRy B A RO
YA+ A2dZ )72 T 3o (L4 22d2(y) 72
> ti(L4+ 222 () P s _ 4
YA+ A2d2(y)72 T dmin(y)”

IVos,o ()

4
4

IA

which is [23).
Now, using [2B),[(24) and the fact the> (), = —1 V& (o)1, one easily finds that

/ d I (V@ (0);) - (V@ (0);)dV, <C+4/ ;dvg(y).

2524 2\U; Bua ) digin ()

Reasoning as in [15] one can show that

1
/ ———dVy(y) < 8rm(l+o0,(1)logr (0x(1) — 0asi — +o0),
2\Us Bui () d3in()
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and that
/ @r0dVy = =2(140,(1) logx, Iog/ e dV, = 0(1),
P X
Iog/ e_%‘”“ dVe = (14 0;,(1) logA.
)

Using the last four inequalities one then obtains
Jo(@(0)) < (Bmm — 2p1 + 0, (1) loga + C,

whereC is independent of ando . Since we are assuming that > 4m, we achieve (i).
To prove (ii) it is sufficient to consider the family of maps : X,, — X, defined by

Ty(o) =¥ (Dy(0)), o€X,.

We recall that when is sufficiently large this composition is well defined. Therefore, since
e?o / [w o dVy, — o in the weak sense of distributions, letting— oo we obtain a
homotopy betweet o ¢ and Ids,,. This concludes the proof. O

REMARK 4.3. We p(‘)‘int out that, fixing; € R2, the choice o, which minimizes the
quadratic form)"; ; a'/&; - & is & = —3&1. This motivates the coefficient 3 in the
second component @b.

4.2. The min-max scheme: proof of Theofenj 1.1

In this section we prove Theorem Jl.1 employing a min-max scheme based on the
construction of the above sef,, (see Lemma 4]4). As anticipated in the introduction,
we then define a modified functiona),, ;,, for which we can prove existence of solutions
in a dense set of values ofFollowing an idea of Struwe, this is done by proving the a.e.
differentiability of the mag — «;,, whereq;, is the min-max value for the functional
Jip1.10, Qiven by the scheme.

Let K,, be the topological cone ovex,, (see [(ID)). First, lef. be so large that
Propositior] 4. applies witlh /4, and then choos@ such that Proposition 4.2 applies
for L. Fixing L and®, we define the class of maps

(7) M = {7 : K, - HY(Z) x H}(Z) : 7 is continuous and |5, (—sx,,) = P}.
Then we have the following properties.
LEMMA 4.4. The setlly is non-empty and

a, = inf  sup J, ,,(7(5)) satisfies o, > —L/2.
NEH@ &EK’" ’

PROOF To prove thatilg # @, we just notice that the map

7(o,t) =td(0), o€ Xy, tel0,1]((o,1) € Ky),
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belongs tol1s. Assuming by contradiction that, < —L/2, there would exist a map
m € Mg With suRscg, Jpy. 0, (T(5)) < —%L. Then, since Propositi@.l applies with
L/4, writingé = (o, t), witho € %, the map

t—> Wom(,1t)

would be a homotopy i%,, between? o @ and a constant map. But this is impossible
sinceZX,, is non-contractible (see Lemrnap.6) and sitced is homotopic to the identity,
by Propositior 4. Therefore we deduge> —L/2. a

PrROOF OF THEOREM [I.J. We introduce a variant of the above min-max scheme,
following [29] and [12]. For close to 1, we consider the functional

1 y
Jip,10, () = > Z/Ea”Vui -Vu;dVy, + t,olfzul dVe + th/Zudeg
i,j

— 11 Iog/zhleuldvg —t,ozlog/the”ZdVg.

Repeating the estimates of the previous sections, one easily checks that the above min-max
scheme applies uniformly fare [1 — 7o, 1+ 0] with g sufficiently small. More precisely,
givenL > 0 as before, forg sufficiently small we have

SUP  SUP Jipy1p,((6)) < —2L
nwellp 6Ky,

and

Ot,p = inf Sup J,pl,,pz(n((?)) > _L/2
wellp GeKnm

forevery t € [1 — 19, 1+ 19] (Wherelly is defined in[(2]7)).
Next we notice that for’ > ¢,

J, Jiroy v 1/1 1 g
o110 () ”’1”/"2(”) === / a’Vu; -VujdVy, =0
t t 2\t t')Js

for everyu € H(X) x HY(X). Therefore it follows easily that also

>0,

that is, the functiorv — «4,/t is non-increasing, and hence is almost everywhere
differentiable. Using Struwe’s monotonicity argument (see for example [12]), one can see
that at the points where;,/t is differentiableJ;,, ;,, admits a bounded Palais—Smale
sequence at level;,, which converges to a critical point df,, ;,,. Therefore, since the
points with differentiability fill densely the interval [ 19, 1 + 10], there existg; — 1

such that the following system has a soluti@n «, 12.¢):

A ﬁ: ( hjet 1) | =1,2
—Auik =) pjdij\ 7, — L) =12
= s hje'i+ dvy
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Now it is sufficient to apply Propositidn 3.5 to obtain a lint;, u2) which is a solution
of (3). This concludes the proof. O
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