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ABSTRACT. — Given a compact closed surfaceΣ , we consider the generalized Toda system of equations onΣ :

−∆ui =
∑2
j=1 ρj aij

(
hj e

uj∫
Σ hj e

uj dVg
− 1

)
for i = 1,2, whereρ1, ρ2 are real parameters andh1, h2 are smooth

positive functions. Exploiting the variational structure of the problem and using a new min-max scheme we prove
existence of solutions for generic values ofρ1 and forρ2 < 4π .
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1. INTRODUCTION

The system

(1) −∆ui =

N∑
j=1

aij e
uj , i = 1, . . . , N,

defined on a domainΩ ⊆ R2, whereA = (aij )ij is theCartan matrixof SU(N + 1),

A =


2 −1 0 . . . . . . 0

−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0
. . . . . . . . . . . . . . . . . .

0 . . . . . . −1 2 −1
0 . . . . . . 0 −1 2

 ,

is known as theToda system, and it arises in the study of non-abelian Chern–Simons theory
(see for example [16] or [31]).

In this paper we consider a generalized version of (1) on a closed surfaceΣ (which
from now on we assume with total volume 1), namely

(2) −∆ui =

N∑
j=1

ρjaij

(
hj e

uj∫
Σ
hj e

uj dVg
− 1

)
, i = 1, . . . , N,

wherehi are smooth and positive functions onΣ . We specialize here to the caseN = 2,
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so the system becomes

(3)


−∆u1 = 2ρ1

(
h1e

u1∫
Σ
h1eu1 dVg

− 1

)
− ρ2

(
h2e

u2∫
Σ
h2eu2 dVg

− 1

)
−∆u2 = 2ρ2

(
h2e

u2∫
Σ
h2eu2 dVg

− 1

)
− ρ1

(
h1e

u1∫
Σ
h1eu1 dVg

− 1

) onΣ.

Problem (3) is variational, and solutions can be found as critical points of a functional
Jρ : H 1(Σ)×H 1(Σ) → R, ρ = (ρ1, ρ2), defined as

Jρ(u1, u2) =

[
1

2

2∑
i,j=1

∫
Σ

aij∇ui ·∇uj dVg

]
+

2∑
i=1

ρi

∫
Σ

ui dVg−

2∑
i=1

ρi log
∫
Σ

hie
ui dVg.

Hereaij are the entries of the inverse matrixA−1.
The structure of the functionalJρ strongly depends on the values ofρ1 andρ2. For

example, the conditionρi ≤ 4π for both i = 1,2 has been proven in [18] to be necessary
and sufficient forJρ to be bounded from below (see Theorem 2.1; we also refer to [27]
and [28]). In particular, forρ1, ρ2 < 4π , Jρ becomes coercive (once we factor out the
constants, sinceJρ is invariant under the transformationui 7→ ui + ci , ci ∈ R) and
solutions of (3) can be found as global minima.

The case in which one of theρi ’s is 4π (or both are) is more subtle since the functional
is still bounded from below but not coercive anymore. In [17] and [21] some conditions for
existence are given in this case, and the proofs involve a delicate analysis of the limiting
behavior of the solutions when theρi ’s converge to 4π from below.

On the other hand, when one of theρi ’s is greater than 4π , Jρ is unbounded from below
and solutions should be found as saddle points. In [23], [25] and [26] some existence results
are given and it is proved that ifhi ≡ 1 and if some additional assumptions are satisfied,
then(0,0) is a local minimizer forJρ , so the functional has a mountain pass structure and
some corresponding critical points. Furthermore in [17] a very refined blow-up behavior
of solutions is given (Theorem 2.4 below is a consequence of that analysis) and existence
is proved ifΣ has positive genus and ifρ1, ρ2 satisfy either (i)ρ1 < 4π , ρ2 ∈ (4π,8π)
(or vice versa), or (ii)ρ1, ρ2 ∈ (4π,8π).

Our goal here is to give a general existence result when one of the coefficientsρi can
be arbitrarily large. We have indeed the following theorem.

THEOREM 1.1. Supposem is a positive integer, and leth1, h2 : Σ → R be smooth
positive functions. Then forρ1 ∈ (4πm,4π(m+ 1)) andρ2 < 4π problem(3) is solvable.

REMARK 1.2. By Proposition 2.5 below, if we also assume that
∫
Σ
ui dVg = 0 for i =

1,2, the solutions of (3) stay bounded inCl(Σ) for any integerl.

To give an idea of the proof of Theorem 1.1 we first recall the analogy of (3) with some
nonlinear scalar equations. First of all we should mention that (2) forN = 1,

(4) −∆u = 2ρ

(
heu∫

Σ
heu dVg

− 1

)
onΣ,
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arises in the study of mean field limit of point vortices of Euler flows, spherical Onsager
vortex theory and condensates in some Chern–Simons–Higgs models (see for example the
papers [3], [4], [7]–[10], [12], [20], [30] and the references therein).

We also mention the similarity of the scalar equation (4) with the geometric equations

(5) −∆gu+Kg = Kg̃e
2u onΣ, Pgu+ 2Qg = 2Qg̃e

4u onM.

HereKg is the Gauss curvature ofΣ , ∆g the Laplace–Beltrami operator,g̃ = e2ug a
conformal metric andKg̃ the Gauss curvature of̃g. The second equation in (5) is the
transformation law of theQ-curvatureon a four-dimensional manifoldM under a similar
conformal change of metric, andPg is thePaneitz operatorassociated to(M, g) (see for
example [15], [24] and the references therein).

We next recall the ideas used in [15] to find conformal metrics of constantQ-curvature.
For the reader’s convenience we transpose the discussion to equation (4), for which
analogous considerations hold. Actually the method in [15] has been used in [13] to study
(4) as well, in order to obtain existence results on surfaces of arbitrary genus.

Equation (4) also has variational structure and is the Euler equation of the functional

Iρ(u) =
1

2

∫
Σ

|∇u|2 dVg − 2ρ
∫
Σ

u dVg − 2ρ log
∫
Σ

heu dVg, u ∈ H 1(Σ),

which, as before, is bounded from below if and only ifρ ≤ 4π by the Moser–Trudinger
inequality (see (6) below). Forρ > 4π , instead of using degree theory as in [9] and
[10], one can indeed employ directly a min-max scheme based on improvements of (6). In
fact, if the integral ofeu is distributed intò different distinct regions, then (naively) the
coefficient of the right-hand integral in (6) reduces by a factor`. For a precise statement
see Proposition 2.2 below. As a consequence, ifρ ∈ (4kπ,4(k+1)π)) andIρ(ul) → −∞

along a sequenceul , theneul has to concentrate near at mostk points inΣ . For such a
result we refer to Lemma 2.4 in [15] or in [13]. Assuming that

∫
Σ
eul dVg = 1, we have

eul ⇀
∑k
i=1 tiδxi for some non-negative coefficientsti such that

∑k
i=1 ti = 1. This family

of formal convex combinations of Dirac deltas is known as the set offormal barycenters
of Σ (see Section 2), and we denote it byΣk. We notice that fork = 1 the setΣ1 is
simply homeomorphic toΣ but for largerk the ti ’s do not have any bound from below
or thexi ’s could collapse onto each other, so the set could be degenerate near some of its
points. In fact,Σk is astratified manifold, that is, a union of sets of different dimensions.
Nevertheless, sinceeul ⇀

∑k
i=1 tiδxi ∈ Σk, with some work it is possible to build a

continuous and non-trivial mapΠk from sublevels{Iρ ≤ −L} (with L large) intoΣk.
By non-triviality we mean that this map is homotopically non-trivial, and indeed for any
L > 0 there exists a mapϕ : Σk → {Iρ ≤ −L} (see (22) for the explicit formula, and
Proposition 4.1 in [13] for the evaluation ofIρ) such thatΠk◦ϕ is homotopic to the identity
onΣk, which is non-contractible. This allows us then to define a min-max scheme using
maps from the topological cone overΣk with values intoH 1(Σ) (see e.g. [13, Section 5])
which coincide withϕ onΣk (the boundary of the cone).

Having sketched this argument for the scalar equation (4), we can now describe
our approach to study system (3). First of all we prove a compactness result under the
assumptions of Theorem 1.1 (see Proposition 2.5). This result exploits the blow-up analysis
in [17] whenρ2 stays positive and away from zero. On the other hand, forρ2 ∈ (−∞, δ]
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with δ positive and small, we use an argument inspired by Brezis and Merle [6], combined
with a compactness result in [22] (see Theorem 2.3).

Next, a main ingredient in our proof is again an improved version of the Moser–
Trudinger inequality for systems, which was given in [18] (see Theorem 2.1). In
Proposition 3.1 we see that, in analogy with the scalar case, ifeu1 is distributed among
disjoint sets, then the Moser–Trudinger inequality improves, and the bigger the spreading,
the better the improvement. The argument relies on both Theorem 2.1 and Proposition 2.2.
The way we use them is the following. Assumingeu1 spreads intò setsS1, . . . , S`, we can
find another̀ -tupleS̃1, . . . , S̃` ⊆ Σ such that each of these sets contains a fixed portion of
the integral ofeu1, andS̃1 also contains a fixed portion of the integral ofeu2 (see Lemma
3.2). Then, by a localization argument through some cutoff functionsg1, . . . , g`, we use
the Moser–Trudinger inequality for systems nearS̃1, and the improved scalar inequality
nearS̃2, . . . , S̃`. In this step we employ some interpolation inequalities and cutoffs in the
Fourier modes ofu1, u2 to deal with lower order terms.

From the improved inequality we derive the following consequence. Ifρ1 ∈

(4πm,4π(m+ 1)), if ρ2 < 4π and ifJρ(u1,l, u2,l) → −∞ along a sequence(u1,l, u2,l),
then eu1,l has to concentrate near at mostm points ofΣ . Therefore, as for the scalar
equation, we can mapeu1,l ontoΣm for l large. Precisely, forL � 1 we can define a
continuous projectionΨ : {Jρ ≤ −L} → Σm which is homotopically non-trivial. Indeed,
recalling thatΣm is non-contractible (see Lemma 2.6), there exists a mapΦ such that
Ψ ◦Φ is homotopic to the identity andJρ(Φ(Σm)) can become arbitrarily large negative,
so thatΨ is well-defined on its image.

Some comments on the construction of the mapΦ are in order. If we want to obtain
low values ofJρ on a couple(u1, u2), sinceeu1 has necessarily to concentrate near at most
m points ofΣ , a natural choice of the test functions(u1, u2) is (ϕλ,σ ,−1

2ϕλ,σ ), whereσ
is any element ofΣm, and whereϕλ,σ is given in (22) in Section 4. In fact, asλ tends to
infinity, eϕλ,σ converges toσ in the weak sense of distributions, whileu2 is chosen so as
to obtain the best possible cancelation in the quadratic part of the functional (see Remark
4.3). We notice that this kind of function (for the casem = 1 only) was used in [18] to
prove unboundedness ofJρ from below if someρi is greater than 4π . Lettingσ vary, we
get a full embedding ofΣm into low sublevels ofJρ through the mapΦ.

At this point we are in a position to run a min-max scheme similar to that described
above, based on the topological cone overΣm. The scheme yields a Palais–Smale
sequence forJρ , but since we cannot ensure convergence directly, following Struwe [29]
we introduce an auxiliary functionalJtρ (tρ = (tρ1, tρ2)) where t belongs to a small
neighborhood of 1. Running the same scheme on the functionalJtρ , via a monotonicity
argument, yields existence of critical points for almost every value oft , and in particular
along a sequencetk → 1. To conclude, it is sufficient to apply the compactness result of
Proposition 2.5.

The plan of the paper is the following. In Section 2 we collect some preliminary
results regarding the Moser–Trudinger inequality, the barycentric setsΣk and the proof
of Proposition 2.5. In Section 3 we give an improved version of the inequality for systems,
and we apply it to characterize the low sublevels ofJρ in terms of the concentration of the
functioneu1 (see Corollary 3.5). Then in Section 4 we introduce the topological argument
to study (3). We first define the global projectionΨ ontoΣm (wherem is the integer of
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Theorem 1.1) and then we also define the mapΦ : Σm → H 1(Σ)×H 1(Σ), proving that
Ψ ◦ Φ is homotopic to the identity onΣm. Finally, we run the min-max scheme based on
the topological cones overΣm.

2. NOTATION AND PRELIMINARIES

In this section we collect some useful preliminary facts. Forx, y ∈ Σ we denote byd(x, y)
the metric distance betweenx andy onΣ , and by dist(S1, S2) the distance between two
setsS1, S2 ⊆ Σ ,

dist(S1, S2) = inf{d(x, y) : x ∈ S1, y ∈ S2}.

Recalling that we are assuming Volg(Σ) :=
∫
Σ

1dVg = 1, given a functionu ∈ L1(Σ),
we denote its average (or integral) as

u =

∫
Σ

u dVg.

Below,C denotes large constants which are allowed to vary in different formulas or even
within lines. When we want to stress the dependence of the constants on some parameter
(or parameters), we add subscripts toC,Cδ, etc. Also constants with subscripts are allowed
to vary.

We now recall some Moser–Trudinger type inequalities and compactness results. The
functional under interest is the following:

Jρ(u1, u2) =

[
1

2

2∑
i,j=1

∫
Σ

aij∇ui ·∇uj dVg

]
+

2∑
i=1

ρi

∫
Σ

ui dVg−

2∑
i=1

ρi log
∫
Σ

hie
ui dVg,

which, for large values ofρ1 andρ2, will in general be unbounded from below. In fact,
there is a precise criterion forJρ to be bounded, proved by Jost and Wang.

THEOREM 2.1 ([18]). For ρ = (ρ1, ρ2) the functionalJρ : H 1(Σ) × H 1(Σ) → R is
bounded from below if and only ifρi ≤ 4π for i = 1,2.

Concerning the scalar Moser–Trudinger inequality

(6) log
∫
Σ

eu−u dVg ≤ C +
1

16π

∫
Σ

|∇u|2 dVg,

we have the following improvement which occurs if the integral ofeu−u is distributed
among different sets of positive mutual distance.

PROPOSITION2.2. LetS1, . . . , S` be subsets ofΣ satisfyingdist(Si, Sj ) ≥ δ0 for i 6= j ,
and letγ0 ∈ (0,1/`). Then for anỹε > 0 there exists a constantC = C(ε̃, δ0, γ0) such
that

log
∫
Σ

eu−u dVg ≤ C +
1

16̀ π − ε̃

∫
Σ

|∇u|2 dVg
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for all u ∈ H 1(Σ) satisfying∫
Si
eu dVg∫

Σ
eu dVg

≥ γ0, i ∈ {1, . . . , `}.

For the proof in the casè= 2 see [11]. We also refer the reader to [15].
We now recall the following compactness results from [22] and [17].

THEOREM 2.3 ([22]). Let (uk)k be a sequence of solutions of the equations

−∆uk = λk

(
Vke

uk∫
Σ
Vkeuk dVg

−Wk

)
,

where(Vk)k and(Wk)k satisfy∫
Σ

Wk dVg = 1, ‖Wk‖C1(Σ) ≤ C, |logVk| ≤ C, ‖∇Vk‖L∞(Σ) ≤ C,

and whereλk → λ0 > 0, λ0 6= 8kπ for k = 1,2, . . . . Then, under the additional
constraint

∫
Σ
uk dVg = 1, (uk)k stays uniformly bounded inL∞(Σ).

THEOREM 2.4 ([17]). Let m1, m2 be non-negative integers, and supposeΛ1,Λ2 are
compact subsets of the intervals(4πm1,4π(m1+1)) and(4πm2,4π(m2+1)) respectively.
If ρ1 ∈ Λ1 andρ2 ∈ Λ2 and if we impose

∫
Σ
ui dVg = 0, i = 1,2, then the solutions of

(3) stay uniformly bounded inL∞(Σ) (actually in everyCl(Σ) with l ∈ N).

This theorem, as stated in [17], requiresm1 andm2 to be positive. However, it is
clear from the blow-up analysis there that one can also allow zero values ofm1 or m2.
Combining Theorems 2.3 and 2.4 we obtain another compactness result which includes all
the possibilities of Theorem 1.1.

PROPOSITION2.5. Supposeh1, h2 are smooth positive functions onΣ , and consider a
sequence(u1,k, u2,k) of solutions of the system

(7)


−∆u1,k = 2ρ1,k

(
h1e

u1,k∫
Σ
h1e

u1,k dVg
− 1

)
− ρ2,k

(
h2e

u2,k∫
Σ
h2e

u2,k dVg
− 1

)
−∆u2,k = 2ρ2,k

(
h2e

u2,k∫
Σ
h2e

u2,k dVg
− 1

)
− ρ1,k

(
h1e

u1,k∫
Σ
h1e

u1,k dVg
− 1

) onΣ.

Suppose(ρ1,k)k lie in a compact subsetK1 of
⋃

∞

i=1(4iπ,4(i + 1)π), and (ρ2,k)k lie in
a compact subsetK2 of (−∞,4π). If

∫
Σ
ui,k dVg = 0 for i = 1,2 andk ∈ N, then the

functions(u1,k, u2,k) of (7) stay uniformly bounded inL∞(Σ)× L∞(Σ).

PROOF. First we claim that for anyp > 1 there existsρ > 0 (depending onp,K1,K2, h1
andh2) such that forρ2,k ≤ ρ the solutions of(eu2,k )k are uniformly bounded inLp(Σ).

The proof of this claim follows an argument in [6]: using the Green representation
formula and the fact thatρ1 > 0 we find (recall that

∫
Σ
u2,k dVg = 0)

u2,k(x) ≤ C +

∫
Σ

G(x, y)

(
2ρ2,k

h2e
u2,k∫

Σ
h2e

u2,k dVg

)
dVg(y),
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whereG(x, y) is the Green function of−∆ onΣ . Using the Jensen inequality we then
find

epu2,k(x) ≤ C

∫
Σ

exp(2pρ2,kG(x, y))
h2e

u2,k∫
Σ
h2e

u2,k dVg
dVg(y).

Recalling thatG(x, y) '
1

2π log
( 1
d(x,y)

)
and using also the Fubini theorem we get∫

Σ

epu2,k dVg ≤ C sup
x∈Σ

∫
Σ

1

d(x, y)pρ2,k/π
dVg(y).

Now it is sufficient to takeρ = π/2p in order to obtain the claim.
To prove the proposition, in the caseρ2,k ≥ ρ we simply use Theorem 2.4, while for

ρ2,k ≤ ρ we employ the above claim. In fact, from uniformLp bounds oneu2,k and from
elliptic regularity theory, we obtain uniformW2,p bounds on the sequence(vk)k, wherevk
is defined as the unique (we can assume that everyvk has zero average) solution of

−∆vk = −ρ2,k

(
h2e

u2,k∫
Σ
h2e

u2,k dVg
− 1

)
.

Taking p sufficiently large, by the Sobolev embedding, we also obtain uniformC1,α

bounds on(vk)k (and hence on(evk )k). Now we writeu1,k = w1,k + vk, so thatw1,k
satisfies

−∆w1,k = 2ρ1,k

(
h1e

vkew1,k∫
Σ
h1evke

w1,k dVg
− 1

)
.

Moreover, since we are assuming
∫
Σ
u1,k dVg = 0 and since

∫
Σ
vk dVg = 0 as well, we

also have
∫
Σ
w1,k dVg = 0. Hence, applying Theorem 2.3 withuk = w1,k, λk = 2ρ1,k,

Vk = h1e
vk andWk ≡ 1, we obtain uniform bounds onw1,k in L∞(Σ). Since(vk)k stays

uniformly bounded inL∞(Σ), we also get uniform bounds onu1,k in L∞(Σ). Then, from
the second equation in (7) we also achieve uniform bounds onu2,k inW2,p(Σ) (and hence
in L∞(Σ), by takingp large enough). This concludes the proof. 2

At this point some notation is in order. Fork ∈ N, we letΣk denote the family of
formal sums

(8) Σk =

{ k∑
i=1

tiδxi : ti ≥ 0,
k∑
i=1

ti = 1, xi ∈ Σ
}
,

whereδx stands for the Dirac delta at the pointx ∈ Σ . We endow this set with the weak
topology of distributions. This is known in the literature as theformal set of barycentersof
Σ (of orderk, see [1], [2], [5]). Although this is not in general a smooth manifold (except
for k = 1), it is a stratified set, a union of cells of different dimensions. The maximal
dimension is 3k − 1, when all the pointsxi are distinct and all theti ’s belong to the open
interval(0,1).

Next we recall the following result from the last references (see also Lemma 3.7 in
[15]), which is necessary in order to carry out the topological argument below.

LEMMA 2.6 (well-known). For any k ≥ 1 one hasH3k−1(Σk; Z2) 6= 0. As a conse-
quence,Σk is non-contractible.
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If ϕ ∈ C1(Σ) andσ ∈ Σk, we denote the action ofσ onϕ as

〈σ, ϕ〉 =

k∑
i=1

tiϕ(xi), σ =

k∑
i=1

tiδxi .

Moreover, iff is a non-negativeL1 function onΣ with
∫
Σ
f dVg = 1, we can define a

distance off fromΣk in the following way:

(9) dist(f,Σk) = inf
σ∈Σk

sup

{∣∣∣∣∫
Σ

f ϕ dVg − 〈σ, ϕ〉

∣∣∣∣ : ‖ϕ‖C1(Σ) = 1

}
.

We also let

Dε,k = {f ∈ L1(Σ) : f ≥ 0, ‖f ‖L1(Σ) = 1,dist(f,Σk) < ε}.

From a straightforward adaptation of the arguments of Proposition 3.1 in [15], we obtain
the following result.

PROPOSITION2.7. Let k be a positive integer, and forε > 0 letDε,k be as above. Then
there existsεk > 0, depending onk andΣ , such that forε ≤ εk there exists a continuous
mapψ : Dε,k → Σk.

Now we introduce some more notation. For any positive integerm, we letKm denote
the topological cone overΣm,

(10) Km = (Σm × [0,1])/∼,

where the equivalence relation collapses the setΣm × {1} to a single point.

3. AN IMPROVED MOSER–TRUDINGER INEQUALITY WITH APPLICATIONS

In this section we present an improvement of the Moser–Trudinger type inequality for the
Toda system given in [18]. To get this improvement, we assume that the integral of the
functionseu1 is distributed among different sets with positive mutual distance. Our proof
relies heavily on the main result in [18], and is combined with some arguments in [11] and
[15]. As an application (see Corollary 3.5), we derive a characterization of the sublevels
{Jρ ≤ −L}, for L > 0 large, in terms of the concentration ofeu1.

3.1. The improved inequality

In this subsection we analyze the Moser–Trudinger inequality, depending on the
distribution of the functioneu1. A consequence of this inequality is an upper bound
(depending onρ1) on the number of concentration points ofeu1.

PROPOSITION3.1. Let δ0 > 0, ` ∈ N, and letS1, . . . , S` be subsets ofΣ satisfying
dist(Si, Sj ) ≥ δ0 for i 6= j . Letγ0 ∈ (0,1/`). Then, for anỹε > 0 there exists a constant
C = C(ε̃, δ0, γ0, `,Σ) such that

` log
∫
Σ

eu1−u1 dVg + log
∫
Σ

eu2−u2 dVg ≤ C +
1

8π − 2ε̃

[ 2∑
i,j=1

∫
Σ

aij∇ui · ∇uj dVg

]



EXISTENCE RESULTS FOR THE TODA SYSTEM 399

provided

(11)

∫
Si
eu1 dVg∫

Σ
eu1 dVg

≥ γ0, i ∈ {1, . . . , `}.

Before proving the proposition, we state a preliminary lemma, which will be proved
later on.

LEMMA 3.2. Under the assumptions of Proposition3.1, there exist̃γ0, δ̃0 > 0, depending
only onγ0, δ0,Σ , and` setsS̃1, . . . , S̃` such thatdist(S̃i, S̃j ) ≥ δ̃0 for i 6= j and such that∫

S̃1
eu1 dVg∫

Σ
eu1 dVg

≥ γ̃0,

∫
S̃1
eu2 dVg∫

Σ
eu2 dVg

≥ γ̃0,

∫
S̃i
eu1 dVg∫

Σ
eu1 dVg

≥ γ̃0, i ∈ {2, . . . , `}.

PROOF OFPROPOSITION3.1. We modify the argument in [11] and [15]. LetS̃1, . . . , S̃`
be given by Lemma 3.2. Assuming without loss of generality thatu1 = u2 = 0, we can
find ` functionsg1, . . . , g` satisfying the properties

(12)


gi(x) ∈ [0,1] for everyx ∈ Σ;

gi(x) = 1 for everyx ∈ S̃i, i = 1, . . . , `;
supp(gi) ∩ supp(gj ) = ∅ for i 6= j ;

‖gi‖C2(Σ) ≤ Cδ̃0
,

whereCδ̃0 is a positive constant depending only onδ̃0. We decompose the functionsu1 and
u2 in the following way:

(13) u1 = û1 + ũ1, u2 = û2 + ũ2, û1, û2 ∈ L∞(Σ).

The explicit decomposition (via some truncation in the Fourier modes) will be chosen later
on. Using Lemma 3.2, for anyb ∈ 2, . . . , ` we can write

` log
∫
Σ

eu1 dVg + log
∫
Σ

eu2 dVg = log

[∫
Σ

eu1 dVg

∫
Σ

eu2 dVg

(∫
Σ

eu1 dVg

)`−1]
≤ log

(∫
S̃1

eu1 dVg

∫
S̃1

eu2 dVg

)
+ log

[(∫
S̃b

eu1 dVg

)`−1]
− ` log γ̃0

≤ log

(∫
Σ

eg1u1 dVg

∫
Σ

eg1u2 dVg

)
+ log

[(∫
Σ

egbu1 dVg

)`−1]
− ` log γ̃0.
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Now, using the fact that̂u1 andû2 belong toL∞(Σ), we also write

` log
∫
Σ

eu1 dVg + log
∫
Σ

eu2 dVg ≤ log

(∫
Σ

eg1ũ1 dVg

∫
Σ

eg1ũ2 dVg

)
+ log

[(∫
Σ

egbũ1 dVg

)`−1]
− ` log γ̃0

+ `(‖û1‖L∞(Σ) + ‖û2‖L∞(Σ)).

Therefore we get

` log
∫
Σ

eu1 dVg + log
∫
Σ

eu2 dVg ≤ log
∫
Σ

eg1ũ1 dVg + log
∫
Σ

eg1ũ2 dVg(14)

+ (`− 1) log
∫
Σ

egbũ1 dVg − ` log γ̃0

+ `(‖û1‖L∞(Σ) + ‖û2‖L∞(Σ)).

At this point we can use Theorem 2.1 with parameters(4π,4π), applied to the couple
(g1ũ1, g1ũ2), and the standard Moser–Trudinger inequality (6) togbũ1 to get the estimates

log
∫
Σ

eg1ũ1 dVg + log
∫
Σ

eg1ũ2 dVg ≤
1

4π

[
1

2

2∑
i,j=1

∫
Σ

aij∇(g1ũi) · ∇(g1ũj ) dVg

]
+ (g1ũ1 + g1ũ2)+ C,

(15)

(`− 1) log
∫
Σ

egbũ1 dVg ≤
`− 1

16π

∫
Σ

|∇(gbũ1)|
2 dVg + (`− 1)gbũ1 + (`− 1)C.

Now we notice that forN = 2 one has

aij =

( 2
3

1
3

1
3

2
3

)
.

Therefore, using elementary inequalities (completion of squares) one can check that for
every pointx ∈ Σ ,

(16)
1

2

∑
i,j

aijg(ξi, ξj ) ≥
1

4
g(ξ1, ξ1) for every couple(ξ1, ξ2) ∈ TxΣ × TxΣ.

This can be checked for example by using orthonormal coordinates atx, so that the
metric g just becomes the identity at this point. Applying this inequality to the couple
(∇(gbũ1),∇(gbũ2)) and integrating one finds

(17)
`− 1

16π

∫
Σ

|∇(gbũ1)|
2 dVg ≤

`− 1

4π

[
1

2

2∑
i,j=1

∫
Σ

aij∇(gbũi) · ∇(gbũj ) dVg

]
.
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Putting together (14)–(17) we obtain

` log
∫
Σ

eu1 dVg + log
∫
Σ

eu2 dVg ≤
1

4π

[
1

2

2∑
i,j=1

∫
Σ

aij∇(g1ũi) · ∇(g1ũj ) dVg

]
(18)

+
`− 1

8π

[ 2∑
i,j=1

∫
Σ

aij∇(gbũi) · ∇(gbũj ) dVg

]
+ (g1ũ1 + g1ũ2)+ (`− 1)gbũ1 + `C

− ` log γ̃0 + `(‖û1‖L∞(Σ) + ‖û2‖L∞(Σ)).

Now we notice that, by interpolation, for anyε > 0 there existsCε,δ̃0 (depending only on

ε andδ̃0) such that

[
1

2

2∑
i,j=1

∫
Σ

aij∇(g1ũi) · ∇(g1ũj ) dVg

]
≤

[
1

2

2∑
i,j=1

∫
Σ

g2
1a
ij
∇ũi · ∇ũj dVg

]

+ ε

[
1

2

2∑
i,j=1

∫
Σ

aij∇ũi · ∇ũj dVg

]
+Cε,δ̃0

∫
Σ

(ũ2
1 + ũ2

2) dVg.

Inserting this inequality into (18) we get

` log
∫
Σ

eu1 dVg + log
∫
Σ

eu2 dVg ≤
1

4π

[
1

2

2∑
i,j=1

∫
Σ

g2
1a
ij
∇ũi · ∇ũj dVg

]

+
`− 1

4π

[
1

2

2∑
i,j=1

∫
Σ

g2
ba
ij
∇ũi · ∇ũj dVg

]

+
`

4π
ε

[
1

2

2∑
i,j=1

∫
Σ

aij∇ũi · ∇ũj dVg

]
+ `Cε,δ̃0

∫
Σ

(ũ2
1 + ũ2

2) dVg

+ (g1ũ1 + g1ũ2)+ (`− 1)gbũ1

+ `C − ` log γ̃0`(‖û1‖L∞(Σ) + ‖û2‖L∞(Σ))

for b = 2, . . . , `.
We now chooseb ∈ {2, . . . , `} such that

1

2

2∑
i,j=1

∫
Σ

g2
ba
ij
∇ui · ∇ũj dVg ≤

1

`− 1

1

2

2∑
i,j=1

∫
⋃`
s=2 supp(gs )

aij∇ui · ∇ũj dVg.
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Since thegi ’s have disjoint supports (see (12)), the last formula yields

` log
∫
Σ

eu1 dVg + log
∫
Σ

eu2 dVg ≤
1

4π
(1 + `ε)

[
1

2

2∑
i,j=1

∫
Σ

aij∇ũi · ∇ũj dVg

]
+ `Cε,δ̃0

∫
Σ

(ũ2
1 + ũ2

2) dVg + (g1ũ1 + g1ũ2)

+ (`− 1)gbũ1`C − ` log γ̃0

+ `(‖û1‖L∞(Σ) + ‖û2‖L∞(Σ)).

Now, by elementary estimates we find

` log
∫
Σ

eu1 dVg + log
∫
Σ

eu2 dVg ≤
1

4π
(1 + `ε)

[
1

2

2∑
i,j=1

∫
Σ

aij∇ũi · ∇ũj dVg

]
+Cε,δ̃0,`

∫
Σ

(ũ2
1 + ũ2

2) dVg

+Cε,δ̃0,`,γ̃0
+ `(‖û1‖L∞(Σ) + ‖û2‖L∞(Σ)).

Now comes the choice of̂u1 andû2 (see (13)). We choosẽCε,δ̃0,` so large that

Cε,δ̃0,`

∫
Σ

(v2
1 + v2

2) dVg <
ε

2

∫
Σ

aij∇vi · ∇vj dVg, ∀v1, v2 ∈ Vε,δ̃0,`
,

whereVε,δ̃0,` denotes the span of the eigenfunctions of the Laplacian onΣ corresponding

to eigenvalues greater thañCε,δ̃0,`.
Then we set

ûi = PV
ε,δ̃0,`

ui, ũi = PV⊥

ε,δ̃0,`
ui,

wherePV
ε,δ̃0,`

(resp.PV⊥

ε,δ̃0,`
) stands for the orthogonal projection ontoVε,δ̃0,` (resp.V ⊥

ε,δ̃0,`
).

Sinceui = 0, theH 1-norm and theL∞-norm onVε,δ̃0,` are equivalent (with a constant

which depends onε, δ̃0 and`), hence by our choice ofu1 andu2,

‖ûi‖
2
L∞(Σ) ≤ Ĉε,δ̃0,`

1

2

2∑
i,j=1

∫
Σ

aij∇ui · ∇uj dVg,

and

Cε,δ̃0,`

∫
Σ

(ũ2
1 + ũ2

2) dVg <
ε

2

2∑
i,j=1

∫
Σ

aij∇v · ∇vj dVg.

Hence the last formulas imply

`log
∫
Σ

eu1dVg+log
∫
Σ

eu2dVg≤
1

4π
(1+3`ε)

[
1

2

2∑
i,j=1

∫
Σ

aij∇ũi ·∇ũj dVg

]
+Ĉε,δ̃0,`,γ̃0

.

This concludes the proof. 2
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PROOF OFLEMMA 3.2. First of all we fix a numberr0 < δ0/80. Then we coverΣ with
a finite union of metric balls(Br0(xl))l . The number of these balls can be bounded by an
integerNr0 which depends only onr0 (andΣ).

Next we cover the closureSi of every setSi by a finite number of these balls, and we
choose a pointyi ∈

⋃
l{xl} such that∫

Br0(yi )

eu1 dVg = max

{∫
Br0(xl)

eu1 dVg : Br0(xl) ∩ Si 6= ∅

}
.

We also choosey ∈
⋃
l{xl} such that∫

Br0(y)

eu2 dVg = max
l

∫
Br0(xl)

eu2 dVg.

Since the total number of balls is bounded byNr0 and since by our assumption the integral
of eu1 overSi is greater than or equal toγ0, it follows that∫

Br0(yi )
eu1 dVg∫

Σ
eu1 dVg

≥
γ0

Nr0
,

∫
Br0(y)

eu2 dVg∫
Σ
eu2 dVg

≥
1

Nr0
.

By the properties of the setsSi , we have

B20r0(yi) ∩ Br0(yj ) = ∅ for i 6= j, card{ys : Br0(ys) ∩ B20r0(y) 6= ∅} ≤ 1.

In other words, if we fixyi , the ballB20r0(yi) intersects none of the ballsBr0(yj ) except
Br0(yi), and giveny, B20r0(y) intersects at most one of the ballsBr0(yi).

Now, by relabeling the points, we can assume that one of the following two possibilities
occurs:

(a) B20r0(y) ∩ Br0(y1) 6= ∅ (and henceB20r0(y) ∩ Br0(yi) = ∅ for i > 1);
(b) B20r0(y) ∩ Br0(yi) = ∅ for everyi = 1, . . . , `.

In case (a) we define
S̃i = B30r0(yi) for i = 1, . . . , `.

while in case (b) we define

S̃i =

{
B10r0(y1) ∪ B10r0(y) for i = 1,
B10r0(yi) for i = 2, . . . , `,

We also set̃γ0 = γ0/Nr0 andδ̃0 = 5r0. We notice that̃γ0 andδ̃0 depend only onγ0, δ0
andΣ , as claimed, and that the setsS̃i satisfy the required conditions. This concludes the
proof of the lemma. 2

3.2. Application to the study ofJρ

In this subsection we apply the improved inequality in order to understand the structure of
the sublevels ofJρ . Our main result here is Corollary 3.5.

In the next lemma we show a criterion which implies the situation described by (11).
The result is proven in [15, Lemma 2.3], but we repeat here the argument for the reader’s
convenience.
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LEMMA 3.3. Letf ∈ L1(Σ) be a non-negative function with‖f ‖L1(Σ) = 1. Also fix an
integer` and suppose that there existε > 0 andr > 0 such that∫

⋃`
i=1Br (pi )

f dVg < 1 − ε for all the`-tuplesp1, . . . , p` ∈ Σ.

Then there existε > 0 and r > 0, depending only onε, r, ` andΣ (and not onf ), and
`+ 1 pointsp1, . . . , p`+1 ∈ Σ (which depend onf ) satisfying∫

Br (p1)

f dVg > ε, . . . ,

∫
Br (p`+1)

f dVg > ε, B2r(pi) ∩ B2r(pj ) = ∅ for i 6= j.

PROOF. Suppose by contradiction that for everyε, r > 0 and for any` + 1 points
p1, . . . , p`+1 ∈ Σ ,

(19)
∫
Br (p1)

f dVg ≥ ε, . . . ,

∫
Br (p`+1)

f dVg ≥ ε

⇒ B2r(pi) ∩ B2r(pj ) 6= ∅ for somei 6= j.

We let r = r/8, wherer is given in the statement. We can findh ∈ N andh points
x1, . . . , xh ∈ Σ such thatΣ is covered by

⋃h
i=1Br(xi). If ε is as above, we also set

ε = ε/2h. We point out that the choice ofr andε depends onr, ε andΣ only, as required.
Let {x̃1, . . . , x̃j } ⊆ {x1, . . . , xh} be the points for which

∫
Br (x̃i )

f dVg ≥ ε. We define
x̃j1 = x̃1, and set

A1 =

⋃
i

{Br(x̃i) : B2r(x̃i) ∩ B2r(x̃j1) 6= ∅} ⊆ B4r(x̃j1).

If there existsx̃j2 such thatB2r(x̃j2) ∩ B2r(x̃j1) = ∅, we define

A2 =

⋃
i

{Br(x̃i) : B2r(x̃i) ∩ B2r(x̃j2) 6= ∅} ⊆ B4r(x̃j2).

Proceeding in this way, we define recursively some pointsx̃j3, . . . , x̃js satisfying

B2r(x̃js ) ∩ B2r(x̃ja ) = ∅ ∀1 ≤ a < s,

and
As =

⋃
i

{Br(x̃i) : B2r(x̃i) ∩ B2r(x̃js ) 6= ∅} ⊆ B4r(x̃js ).

By (19), the process cannot go further thanx̃j` , and hence using the definition ofr we
obtain

(20)
j⋃
i=1

Br(x̃i) ⊆

⋃̀
i=1

B4r(x̃ji ) ⊆

⋃̀
i=1

Br/2(x̃ji ).

Then by our choice ofh, ε, {x̃1, . . . , x̃j } and by (20),∫
Σ\
⋃`
i=1Br (x̃ji )

f dVg ≤

∫
Σ\
⋃j

i=1Br(x̃i )

f dVg ≤ (h− j)ε ≤ ε/2.

Finally, if we choosepi = x̃ji , i = 1, . . . , `, we get a contradiction to the
assumptions. 2
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Next we characterize the functions inH 1(Σ) × H 1(Σ) for which the value ofJρ is
large negative.

LEMMA 3.4. Supposeρ1 ∈ (4πm,4π(m + 1)) and thatρ2 < 4π . Then for anyε >
0 and r > 0 there exists a large positiveL = L(ε, r) such that for every(u1, u2) ∈

H 1(Σ) × H 1(Σ) with Jρ(u) ≤ −L and with
∫
Σ
eui dVg = 1, i = 1,2, there existm

pointsp1,u1, . . . , pm,u1 ∈ Σ such that

(21)
∫
Σ\
⋃m
i=1Br (pi,u1)

eu1 dVg < ε.

PROOF. Suppose by contradiction that the statement is not true. Then we can apply
Lemma 3.3 with` = m + 1 andf = eu1 to obtainδ̂0, γ̂0 and setsŜ1, . . . , Ŝm+1 such
that

dist(Ŝi, Ŝj ) ≥ δ̂0, i 6= j,∫
Ŝi

eu1 dVg > γ̂0

∫
Σ

eu1 dVg, i = 1, . . . , m+ 1.

Now we notice that, by the Jensen inequality,
∫
Σ
ui dVg ≤ 0 for i = 1,2, and that two

cases may occur:

(a) ρ2 ≤ 0;
(b) ρ2 > 0.

In case (a) we haveρ2
∫
Σ
u2 dVg ≥ 0. Using also inequality (16) we find

Jρ(u1, u2) ≥
1

4

∫
Σ

|∇u1|
2 dVg + ρ1

∫
Σ

u1 dVg − C.

Now it is sufficient to use Proposition 2.2 with̀= m + 1, δ0 = δ̂0, γ0 = γ̂0, Sj = Ŝj ,
j = 1, . . . , m+ 1 andε̃ ∈ (0,16π(m+ 1)− 4ρ1) to get

Jρ(u1, u2) ≥
1

4

∫
Σ

|∇u1|
2 dVg −

ρ1

16π(m+ 1)− ε̃

∫
Σ

|∇u1|
2 dVg − C

≥
16π(m+ 1)− 4ρ1 − ε̃

4[16π(m+ 1)− ε̃]

∫
Σ

|∇u1|
2 dVg − C̃,

whereC̃ is independent of(u1, u2).
In case (b) we use Proposition 3.1 withδ0 = δ̂0, γ0 = γ̂0, ` = m + 1, Sj = Ŝj andε̃

such that(4π − ε̃)(m + 1) > ρ1 and 4π − ε̃ > ρ2 (recall thatρ1 < 4π(m + 1) and that
ρ2 < 4π ) to deduce that

Jρ(u1, u2) ≥ (4π − ε̃)[−(m+ 1)u1 − u2] + ρ1u1 + ρ2u2

= (ρ1 − (m+ 1)(4π − ε̃))u1 + (ρ2 − 4π + ε̃)u2 − C ≥ −C,

by the Jensen inequality, where againC̃ is independent of(u1, u2). This concludes the
proof. 2
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As a consequence of Lemma 3.4 we have the following result, regarding the distance
of the functionseu1 (suitably normalized) fromΣm (see (9)).

COROLLARY 3.5. Let ε be a (small) arbitrary positive real number, and letρ1 ∈

(4πm,4π(m + 1)), ρ2 < 4π . Then there existsL > 0 such that, ifJρ(u1, u2) ≤ −L

and
∫
Σ
eui dVg = 1, we havedist(eu1,Σm) < ε.

PROOF. We considerε andr small and positive (to be fixed later), and we letL be the
corresponding constant given by Lemma 3.4. We letp1, . . . , pm denote the corresponding
points. Now we defineσ ∈ Σm by

σ =

m∑
j=1

tj δpj , where ti =

∫
Ar,i

eu1 dVg, Ar,i := Br(pi) \

i−1⋃
s=1

Br(ps),

for everyi = 1, . . . , m− 1, and

Ar,m = Σ \

m−1⋃
s=1

Br(ps).

Notice that all theAr,j ’s are disjoint by construction. Now, givenϕ ∈ C1(Σ) with
‖ϕ‖C1(Σ) = 1, (using also (21)) we haveΣ =

⋃m
j=1Ar,j and∣∣∣∣∫

Σ\
⋃m
j=1Br (pj )

eu1(ϕ − ϕ(pm)) dVg

∣∣∣∣ < 2ε,∣∣∣∣∫
Ar,j

ϕeu1 dVg − tjϕ(pj )

∣∣∣∣ ≤ CΣ r‖ϕ‖C1(Σ) ≤ CΣ r

for j = 1, . . . , m− 1, and∣∣∣∣∫
Br (pm)

eu1(ϕ − ϕ(pm)) dVg

∣∣∣∣ ≤ CΣ r‖ϕ‖C1(Σ) ≤ CΣ r.

By (9) it then follows that

dist(eu1,Σm) ≤ sup

{∣∣∣∣∫
Σ

eu1ϕ dVg − 〈σ, ϕ〉

∣∣∣∣ ∣∣∣∣ ‖ϕ‖C1(Σ) = 1

}
≤ 2ε +mCΣ r.

Now it is sufficient to chooseε and r such that 2ε + mCΣ r < ε. This concludes the
proof. 2

4. THE MIN-MAX ARGUMENT

In this section we perform the topological construction to be used in order to produce
solutions of (3). First of all, Corollary 3.5 allows us to construct a projectionΨ from
suitable sublevels ofJρ ontoΣm. Next, the main idea is to use for the min-max some maps
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from the coneKm overΣm (see (10)) intoH 1(Σ)×H 1(Σ). We require that these maps at
the boundary all coincide with a given functionΦ, which is defined in the next subsection.

The mapΦ is chosen so thatΨ ◦Φ is homotopic to the identity onΣm (see Proposition
4.2), and the functionalJρ on the image is very large negative. Considering then the image
of Km with respect to the above maps (with fixed boundary datum), in Proposition 2.7
we will verify that the maximal value ofJρ on the image will be strictly greater than the
maximum on the boundary. By standard arguments (considering a pseudo-gradient flow
for Jρ), we conclude that the functional has a Palais–Smale sequence at some levelαρ .

At this point, in order to prove boundedness of the Palais–Smale sequences, we employ
crucially a method due to Struwe. We introduce a modified functionalJtρ and we prove a
monotonicity ofαtρ with respect tot . This allows us to prove existence of solutions of (3)
with ρ replaced bytkρ wheretk → 1 ask → ∞. Finally, we apply the compactness result
of Proposition 2.5 to achieve existence fort = 1 as well.

4.1. Construction of the mapsΨ andΦ

PROPOSITION4.1. Supposem is a positive integer,ρ1 ∈ (4πm,4π(m + 1)), andρ2 <

4π . Then there exists a largeL > 0 and a continuous projectionΨ from {Jρ ≤ −L} ∩

{
∫
Σ
eu1 dVg = 1} (with the natural topology ofH 1(Σ) × H 1(Σ)) ontoΣm which is

homotopically non-trivial.

PROOF. We fix εm so small that Proposition 2.7 applies withk = m. Then we apply
Corollary 3.5 withε = εm. We letL be the corresponding large number, so that ifJρ(u) ≤

−L, then dist(eu1,Σm) < εm. Hence for these ranges ofu1 andu2, since the mapu 7→ eu

is continuous fromH 1(Σ) into L1(Σ), the projectionΠm from H 1(Σ) ontoΣm is well
defined and continuous. The non-triviality of this map is a consequence of Proposition
4.2(ii) below. 2

The next step consists in mappingΣm into arbitrarily negative sublevels ofJρ . In order
to do this, we need some preliminary notation. Givenσ ∈ Σm, σ =

∑m
i=1 tiδxi , andλ > 0,

we define the functionϕλ,σ : Σ → R by

(22) ϕλ,σ (y) = log
m∑
i=1

ti

(
λ

1 + λ2d2
i (y)

)2

,

where we have set
di(y) = d(y, xi), xi, y ∈ Σ.

We point out that, since the distance from a fixed point ofΣ is a Lipschitz function,ϕλ,σ (y)
is also Lipschitz iny, and hence it belongs toH 1(Σ).

PROPOSITION4.2. Supposem is a positive integer,ρ1 ∈ (4πm,4π(m + 1)), andρ2 <

4π . For λ > 0 andσ ∈ Σm, defineΦ : Σm → H 1(Σ)×H 1(Σ) as

(Φ(σ))(·) = (Φ(σ)1(·),Φ(σ)2(·)) :=

(
ϕλ,σ (·),−

1

2
ϕλ,σ (·)

)
,

whereϕλ,σ is given in(22). Then forL sufficiently large there existsλ > 0 such that
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(i) Jρ(Φ(σ)) ≤ −L uniformly inσ ∈ Σm;
(ii) Ψ ◦Φ is homotopic to the identity onΣm,

whereΨ is defined in Proposition4.1, and where we assumeL to be so large thatΨ is
well defined on{Jρ ≤ −L}.

PROOF. The main ideas follow the strategy in [15], but for the reader’s convenience we
present here a simplified argument (for theH 2 setting in [15] it was necessary to introduce
a cutoff function on the distancesdi , which made the computations more involved).

The proof of (i) relies on showing the following two pointwise estimates on the gradient
of ϕλ,σ :

(23) |∇ϕλ,σ (y)| ≤ Cλ for everyy ∈ Σ,

whereC is a constant independent ofσ andλ, and

(24) |∇ϕλ,σ (y)| ≤
4

dmin(y)
where dmin(y) = min

i=1,...,m
d(y, xi).

To prove (23) we notice that

(25)
λ2d(y, xi)

1 + λ2d2(y, xi)
≤ Cλ, i = 1, . . . , m,

whereC is a fixed constant (independent ofλ andxi). Moreover, we have

(26) ∇ϕλ,σ (y) = −2λ2

∑
i ti(1 + λ2d2

i (y))
−3

∇y(d
2
i (y))∑

j tj (1 + λ2d2
j (y))

−2
.

Using the fact that|∇y(d2
i (y))| ≤ 2di(y) and inserting (25) into (26) we obtain (23)

immediately. Similarly we find

|∇ϕλ,σ (y)| ≤ 4λ2

∑
i ti(1 + λ2d2

i (y))
−3di(y)∑

j tj (1 + λ2d2
j (y))

−2
≤ 4λ2

∑
i ti(1 + λ2d2

i (y))
−2 di (y)

λ2d2
i (y)∑

j tj (1 + λ2d2
j (y))

−2

≤ 4

∑
i ti(1 + λ2d2

i (y))
−2 1

dmin(y)∑
j tj (1 + λ2d2

j (y))
−2

≤
4

dmin(y)
,

which is (24).
Now, using (23), (24) and the fact that∇Φ(σ)2 = −

1
2∇Φ(σ)1, one easily finds that

1

2

2∑
i,j=1

∫
Σ

aij (∇Φ(σ)i) · (∇Φ(σ)j ) dVg ≤ C + 4
∫
Σ\
⋃
i B1/λ(xi )

1

d2
min(y)

dVg(y).

Reasoning as in [15] one can show that∫
Σ\
⋃
i B1/λ(xi )

1

d2
min(y)

dVg(y) ≤ 8πm(1 + oλ(1)) logλ (oλ(1) → 0 asλ → +∞),
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and that ∫
Σ

ϕλ,σ dVg = −2(1 + oλ(1)) logλ, log
∫
Σ

eϕλ,σ dVg = O(1),

log
∫
Σ

e−
1
2ϕλ,σ dVg = (1 + oλ(1)) logλ.

Using the last four inequalities one then obtains

Jρ(Φ(σ)) ≤ (8mπ − 2ρ1 + oλ(1)) logλ+ C,

whereC is independent ofλ andσ . Since we are assuming thatρ1 > 4mπ , we achieve (i).
To prove (ii) it is sufficient to consider the family of mapsTλ : Σm → Σm defined by

Tλ(σ ) = Ψ (Φλ(σ )), σ ∈ Σm.

We recall that whenλ is sufficiently large this composition is well defined. Therefore, since
eϕλ,σ /

∫
Σ
eϕλ,σ dVg ⇀ σ in the weak sense of distributions, lettingλ → ∞ we obtain a

homotopy betweenΨ ◦Φ and IdΣm . This concludes the proof. 2

REMARK 4.3. We point out that, fixingξ1 ∈ R2, the choice ofξ2 which minimizes the
quadratic form

∑
i,j a

ij ξ1 · ξj is ξ2 = −
1
2ξ1. This motivates the coefficient−1

2 in the
second component ofΦ.

4.2. The min-max scheme: proof of Theorem 1.1

In this section we prove Theorem 1.1 employing a min-max scheme based on the
construction of the above setΣm (see Lemma 4.4). As anticipated in the introduction,
we then define a modified functionalJtρ1,tρ2 for which we can prove existence of solutions
in a dense set of values oft . Following an idea of Struwe, this is done by proving the a.e.
differentiability of the mapt 7→ αtρ , whereαtρ is the min-max value for the functional
Jtρ1,tρ2 given by the scheme.

Let Km be the topological cone overΣm (see (10)). First, letL be so large that
Proposition 4.1 applies withL/4, and then chooseΦ such that Proposition 4.2 applies
for L. FixingL andΦ, we define the class of maps

(27) ΠΦ = {π : Km → H 1(Σ)×H 1(Σ) : π is continuous andπ |Σm(=∂Km) = Φ}.

Then we have the following properties.

LEMMA 4.4. The setΠΦ is non-empty and

αρ = inf
π∈ΠΦ

sup
σ̃∈Km

Jρ1,ρ2(π(σ̃ )) satisfies αρ > −L/2.

PROOF. To prove thatΠΦ 6= ∅, we just notice that the map

π(σ, t) = tΦ(σ ), σ ∈ Σm, t ∈ [0,1] ((σ, t) ∈ Km),
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belongs toΠΦ . Assuming by contradiction thatαρ ≤ −L/2, there would exist a map
π ∈ ΠΦ with sup̃σ∈Km

Jρ1,ρ2(π(σ̃ )) ≤ −
3
8L. Then, since Proposition 4.1 applies with

L/4, writing σ̃ = (σ, t), with σ ∈ Σm, the map

t 7→ Ψ ◦ π(·, t)

would be a homotopy inΣm betweenΨ ◦ Φ and a constant map. But this is impossible
sinceΣm is non-contractible (see Lemma 2.6) and sinceΨ ◦Φ is homotopic to the identity,
by Proposition 4.2. Therefore we deduceαρ > −L/2. 2

PROOF OF THEOREM 1.1. We introduce a variant of the above min-max scheme,
following [29] and [12]. Fort close to 1, we consider the functional

Jtρ1,tρ2(u) =
1

2

∑
i,j

∫
Σ

aij∇ui · ∇uj dVg + tρ1

∫
Σ

u1 dVg + tρ2

∫
Σ

u2 dVg

− tρ1 log
∫
Σ

h1e
u1 dVg − tρ2 log

∫
Σ

h2e
u2 dVg.

Repeating the estimates of the previous sections, one easily checks that the above min-max
scheme applies uniformly fort ∈ [1− t0,1+ t0] with t0 sufficiently small. More precisely,
givenL > 0 as before, fort0 sufficiently small we have

sup
π∈ΠΦ

sup
σ̃∈∂Km

Jtρ1,tρ2(π(σ̃ )) < −2L

and
αtρ := inf

π∈ΠΦ
sup
σ̃∈Km

Jtρ1,tρ2(π(σ̃ )) > −L/2

for every t ∈ [1 − t0,1 + t0] (whereΠΦ is defined in (27)).
Next we notice that fort ′ ≥ t ,

Jtρ1,tρ2(u)

t
−
Jt ′ρ1,t

′ρ2(u)

t ′
=

1

2

(
1

t
−

1

t ′

)∫
Σ

aij∇ui · ∇uj dVg ≥ 0

for everyu ∈ H 1(Σ)×H 1(Σ). Therefore it follows easily that also

αtρ

t
−
αt ′ρ

t ′
≥ 0,

that is, the functiont 7→ αtρ/t is non-increasing, and hence is almost everywhere
differentiable. Using Struwe’s monotonicity argument (see for example [12]), one can see
that at the points whereαtρ/t is differentiableJtρ1,tρ2 admits a bounded Palais–Smale
sequence at levelαtρ , which converges to a critical point ofJtρ1,tρ2. Therefore, since the
points with differentiability fill densely the interval [1− t0,1 + t0], there existstk → 1
such that the following system has a solution(u1,k, u2,k):

−∆ui,k =

N∑
j=1

tkρjaij

(
hj e

uj,k∫
Σ
hj e

uj,k dVg
− 1

)
, i = 1,2.
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Now it is sufficient to apply Proposition 2.5 to obtain a limit(u1, u2) which is a solution
of (3). This concludes the proof. 2
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