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1. PRELIMINARIES AND STATEMENT OF THE MAIN RESULTS

Let F : [0,1] → [0,1] be theFarey mapdefined by

(1.1) F(x) =


x

1 − x
if 0 ≤ x ≤ 1/2,

1 − x

x
if 1/2 ≤ x ≤ 1.

Its name can be related to the following observation. If we expandx ∈ [0,1] in a continued
fraction, i.e.

x =
1

a1 +
1

a2 +
1

a3 + · · ·

≡ [a1, a2, a3, . . . ]

then

(1.2) x = [a1, a2, a3, . . . ] 7→ F(x) = [a1 − 1, a2, a3, . . . ]

with [0, a2, a3, . . . ] ≡ [a2, a3, . . . ]. In other words, letFn be the ascending sequence of
irreducible fractions between 0 and 1 constructed inductively in the following way: set first
F1 =

(0
1,

1
1

)
; thenFn is obtained fromFn−1 by inserting among each pair of neighbours

a′

b′ and a
′′

b′′ in Fn−1 their Farey suma
b

:= a′
+a′′

b′+b′′ . Thus

F2 =
(0

1,
1
2,

1
1

)
, F3 =

(0
1,

1
3,

1
2,

2
3,

1
1

)
, F4 =

(0
1,

1
4,

1
3,

2
5,

1
2,

3
5,

2
3,

3
4,

1
1

)
and so on. The elements ofFn are calledFarey fractions. It is easy to verify that the
set of pre-images

⋃n
k=0F

−k {0} coincides withFn for all n ≥ 1. This implies that
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∞

k=0F
−k {0} = Q ∩ [0,1]. These two observations are related by the fact that a

rational numbera
b

belongs toFn \ Fn−1 if and only if its continued fraction expansion
a
b

= [a1, . . . , ak] with ak > 1 is such that
∑k
i=1 ai = n.

In this paper we shall study a family ofsigned generalized transfer operatorsP±
q

associated to the mapF , whose action on a functionf : [0,1] → C is given by a weighted
sum over the values off on the setF−1(x), namely

(1.3) f (x) 7→ (P±
q f )(x) =

(
1

x + 1

)2q[
f

(
x

x + 1

)
± f

(
1

x + 1

)]
whereq is a real or complex parameter. The operatorP+

1 is referred to as thePerron–
Frobeniusoperator for the mapF : its fixed function is the density of an absolutely
continuousF -invariant measure. In this case one easily checks that the function 1/x

has this property. However, since 1/x does not belong toL1([0,1], dx) the statistical
properties of the mapF have to be described in the framework of infinite ergodic theory
[Aa]. We refer to [Bal] for a general review of transfer operator techniques in dynamical
systems theory. Here, one motivation to study signed transfer operators arises from their
appearing in dynamical zeta functions such as Selberg and Ruelle’s (see [DEIK, Corollary
3.13], and also [BI]).

Using the Farey fractions, the iteratesP±
q
n
f of the above operators can be expressed as

suitable sums over theStern–Brocot tree, the binary tree with root node 1 and whosen-th
levelLn is given byLn = (Fn \ Fn−1) ∪ S(Fn \ Fn−1), whereS is the mapS : x 7→ 1/x
and the elements ofS(Fn \ Fn−1) are in reverse order. An important feature of this tree
is that each positive rational number appears as a vertex exactly once. The left part of
the Stern–Brocot tree (starting from the node1

2) is called theFarey tree, with vertex set
Q ∩ (0,1).
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FIG. 1. First four levels of the Stern–Brocot tree.

An easy generalisation of Proposition 5.9 in [DEIK] yields, for allx ∈ R+ andq ∈ C,

(1.4) (P±
q
n
f )(x) =

∑
a
b
∈Ln

f
(n0(x,a/b)

ax+b

)
± f

(n1(x,a/b)
ax+b

)
(ax + b)2q
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wheren0(x, a/b) = µx+ ν andn1(x, a/b) = (a−µ)x+ b− ν, for some 0≤ µ ≤ a and
0 ≤ ν ≤ b. In particularn0(x, a/b)+ n1(x, a/b) = ax + b.

In Section 2 we prove

THEOREM 1.1. For eachq ∈ (0,∞) there is a Hilbert spaceHq of analytic functions
on which the operatorsP±

q are bounded, self-adjoint and iso-spectral. Their common
spectrum is{0} ∪ (0,1], with (0,1] purely absolutely continuous.

REMARK 1.2. From thermodynamic formalism it follows thatP+
q for q ∈ (−∞,1),

when acting on a suitable Banach space, has a leading eigenvalueλ(q) ≥ 1 which is a
differentiable and decreasing function ofq with limq→1−

λ(q) = 1 (andλ(q) = 1 for all
q ≥ 1, see [PS]). From the above theorem we see that the corresponding eigenfunction
does not belong toHq (for q = 1 it is just the invariant density 1/x). Moreover,

logλ(q) = lim
n→∞

1

n
log((P+

q )
n1)(0) .

Note that by (1.4) we can write

((P+
q )

n1)(0) = 2
∑

a
b
∈Fn\{ 0

1 }

b−2q

and the above sum is equal to thepartition functionZn−1(2q) at (inverse) temperature 2q
of the number-theoretical spin chain introduced by Andreas Knauf in [Kn].

REMARK 1.3. Also the operatorsP−
q have eigenfunctions which do not belong to the

spaceHq . Indeed, one easily checks that the functionf (x) = (1−x)/x is an eigenfunction
of P−

q for q = 1/2 and eigenvalue 1. But, again, this function does not belong toH1/2.

There are interesting functional symmetries related to the eigenvalue equation forP±
q ,

which can be rephrased in terms of Hankel transforms. The construction of Section 2
allows for a complete account of the corresponding self-reciprocal functions in L2(R+),
discussed in Section 3. Finally, in Section 4 we characterise all polynomial eigenvectors of
P±
q whenq = −k/2, k ≥ 0.

2. THE SPECTRUM OFP±
q FOR REAL POSITIVEq

In this section we give the proof of Theorem 1.1, hence we restrict ourselves to the case
q ∈ (0,∞). The proof follows from the results of the following subsections.

2.1. An invariant Hilbert space

In this subsection we introduce a family of Hilbert spacesHq , whereq ∈ (0,∞), and give
a representation of the operatorsP±

q onHq .
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DEFINITION 2.1. For q ∈ (0,∞) we denote byHq the Hilbert space of all complex-
valued functionsf which can be represented as a generalised Borel transform

(2.1) f (x) = Bq [ϕ](x) :=
1

x2q

∫
∞

0
e−t/xetϕ(t)mq(dt), ϕ ∈ L2(mq),

with inner product

(2.2) (f1, f2) =

∫
∞

0
ϕ1(t)ϕ2(t)mq(dt) if fi = Bq [ϕi ]

and measure(p = 2q − 1)

(2.3) mq(dt) = tpe−t dt.

Function spaces related to that introduced above have been used in [Is], [GI] and [Pre].
In [Is] an explicit connection between the approach presented here and Mayer’s work on
the transfer operator for the Gauss map [Ma] is established by means of a suitable operator-
valued power series.

REMARK 2.2. Forq ∈ C with Req > 0, the spaceHq can be regarded as a complex
Hilbert space. If we set

(2.4) χp(x) := xp (p = 2q − 1),

an alternative representation forf ∈ Hq can be obtained by a simple change of variable
whenx is real and positive:

(2.5) (χp · f )(x) =

∫
∞

0
e−s(χp · ϕ)(sx) ds.

Note that a functionf ∈ Hq is analytic in the disk

(2.6) D1 = {x ∈ C : Re 1/x > 1/2} = {x ∈ C : |x − 1| < 1}.

In particular,

(2.7) (χp · ϕ)(t) =

∞∑
n=0

an

n!
tn ⇒ (χp · f )(x) =

∞∑
n=0

anx
n

in the sense of formal power series. So the power series ofχp · ϕ is obtained by Borel
transforming that ofχp · f , in the usual sense. This justifies the name of the integral
transform (2.1).

REMARK 2.3. The invariant density 1/x for the Farey map, that is, the fixed function of
P+

1 , is the generalised Borel transform (forq = 1) of the functionϕ(t) = 1/t , which,
however, does not belong to L2(m1).
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Let us now study the Hilbert space L2(mq). First of all we notice that the measure
mq(dt) is finite: indeed,

(2.8)
∫

∞

0
mq(dt) = Γ (2q).

Second, for the linearly independent family of functionsfn(t) := tn/n! (n ≥ 0) we have

(2.9) (fn, fm) =
Γ (n+m+ 2q)

n!m!
.

This implies that the (generalised) Laguerre polynomialsL
p
n (t) (n ≥ 0, Rep > −1) given

by

(2.10) en(t) := L
p
n (t) =

n∑
m=0

(
n+ p

n−m

)
(−t)m

m!

form a complete orthogonal basis in L2(mq), with

(2.11) (en, em) =
Γ (n+ 2q)

n!
δn,m.

Moreover, using [GR, p. 850] and (2.11) we get, form ≤ n,

(fn, em) = (−1)m
Γ (n+ 2q)

m!(n−m)!
= (−1)m

(
n

m

)
‖en‖

2(2.12)

= (−1)m
Γ (n+ 2q)

Γ (m+ 2q)(n−m)!
‖em‖

2

= (−1)m
(
n+ p

n−m

)
‖em‖

2.

In particular(fn, en) = (−1)n‖en‖2. Also note that(fn, em) = 0 form > n. Comparing
to (2.10) we obtain the following result:

LEMMA 2.4. For eachn ∈ N0 the numbers

an,m :=

 (−1)m
(
n+ p

n−m

)
if m ≤ n,

0 if m > n,

are the Fourier coefficients offn with respect to the basis(em), i.e.

an,m =
(fn, em)

‖em‖2
.

Moreover,

fn =

n∑
m=0

an,mem, en =

n∑
m=0

an,mfm.
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REMARK 2.5. In particular, the(n + 1) × (n + 1) lower triangular matrixAn :=
(ai,j )0≤i,j≤n satisfiesA2

n = In+1. Therefore, the operatorΠn : L2(mq) → L2(mq) acting
as

Πn :
∞∑
s=0

cses 7→

∞∑
s=0

cs

n∑
r=0

(fr , es)

‖es‖2
fr =

n∑
r=0

drfr

with

dr :=
r∑
s=0

ar,scs or d(n) = Anc(n)

where we have setc(n) = (c0, c1, . . . , cn)
T and similarly for d(n), is the orthogonal

projection onto the linear subspace spanned by(1, t, t2/2!, . . . , tn/n!).

Let us now consider the action of the transformBq on the functions(en) and(fm). We
have

(2.13) Bq [en](x) =

n∑
m=0

Γ (2q +m)

(
n+ p

n−m

)
(−x)m

m!
= (n+ 1)p(1 − x)n

where(a)p := Γ (a + p)/Γ (a) = a(a + 1) · · · (a + p − 1) is the shifted factorial, and

(2.14) Bq [fn](x) = (n+ 1)px
n.

The next result describes the action ofP±
q on the Hilbert spaceHq .

PROPOSITION2.6. For q ∈ (0,∞) the spaceHq is invariant for P±
q , and P±

q :
Hq → Hq are positive operators, isomorphic to self-adjoint compact perturbations of
the multiplication operatorM : L2(mq) → L2(mq) given by

(Mϕ)(t) = e−tϕ(t).

More specifically,
P±
q Bq [ϕ] = Bq [P±ϕ]

whereP±
= M ±N andN : L2(mq) → L2(mq) is the symmetric integral operator given

by

(Nϕ)(t) =

∫
∞

0

Jp
(
2
√
st

)
(st)p/2

ϕ(s)mq(ds)

whereJp denotes the Bessel function of orderp.

PROOF. The representation ofP±
q on Hq follows from a direct computation (see [Is],

[GI]). The positivity amounts to

(2.15) ((M ±N)ϕ, ϕ) ≥ 0 ∀ϕ ∈ L2(mq), ‖ϕ‖ = 1,

and can be checked by expandingϕ in the basis of (normalised) Laguerre polynomials.
Indeed, a calculation using [GR, pp. 849–850] yields

(Men, en)

‖en‖2
= 2−2n−2q

(
2n+ p

n

)
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and

(Nen, en)

‖en‖2
= 2−n−2q

(
n+ p

n

)
2F1(−n, n+ 2q; 2q; 1/2) = 2−n−2qP

(p,0)
n (0)

whereP (a,b)n (x) denotes the Jacobi polynomial ([AAR, p. 99]). Since

P
(p,0)
n (0) = (−2)−n

n∑
k=0

(−1)k
(
n+ p

k

)(
n

k

)
and (

2n+ p

n

)
=

n∑
k=0

(
n+ p

k

)(
n

k

)
we get

((M ±N)en, en)

‖en‖2
=

1

22n+2q

n∑
k=0

(1 ± (−1)n−k)

(
n+ p

k

)(
n

k

)
.

An easy generalisation of this calculation shows that

((M ±N)en, ek) ≥ 0 ∀k, n

and thus (2.15). Finally,Nϕ can be written as
∫

∞

0 k(s, t)ϕ(s)mq(ds) with symmetric
kernel

(2.16) k(s, t) =
Jp

(
2
√
st

)
(st)p/2

.

From the estimatesJp(t) ∼ 2−ptp/Γ (p+1) ast → 0+ andJp(t) = O(t−1/2) ast → ∞

([E, Vol. II]), we see that the kernelk(s, t) is bounded and continuous. 2

We can now describe the action ofP± on (en) and (fn). Applying the integral
representation (see [E, Vol. II, p. 190])

n!e−tLpn (t) =

∫
∞

0

Jp(2
√
st)

(st)p/2
snmq(ds)

we get

(2.17) M−1Nfn = en, M−1Nen = fn.

2.2. Functional symmetries

Let us introduce an isometry which turns out to be useful for the characterisation of
eigenfunctions of the operatorsP±

q . LetJq be the involution defined by

(2.18) (Jqf )(x) :=
1

x2q
f

(
1

x

)
and consider its action on the Hilbert spaceHq . We have the following
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PROPOSITION2.7. For anyϕ ∈ L2(mq),

(2.19) JqBq [ϕ] = Bq [Jϕ]

whereJ := NM−1 is a bounded operator inL2(mq) with ‖J‖ ≤ 2π . If moreoverP±
q f =

λf for someλ 6= 0 thenf satisfies the functional equation

(2.20) Jqf = ±f.

PROOF. The representation ofJq in Hq is easily checked by first noting that for any
f ∈ Hq the functionJqf can be written as an ordinary Laplace transform, i.e.

(2.21) f (x) = Bq [ϕ](x) ⇒ (Jqf )(x) =

∫
∞

0
e−tx(χp · ϕ)(t) dt,

and then using Tricomi’s theorem ([Sne, p. 165]). Let us prove the bound on‖J‖. Adapting
formula (33) of [RS, Vol. IV] to our situation we get, for allϕ ∈ L2(mq) andλ ∈ [0,1],

(2.22) ‖N(M − λ)−1ϕ‖
2

≤

∫ 1

0
‖N(M − λ)−1ϕ‖

2 dλ ≤ 2π
∫

∞

−∞

‖NeiτMϕ‖
2 dτ.

On the other hand, we claim that

(2.23)
∫

∞

−∞

‖NeiτMϕ‖
2 dτ ≤ 2π

∫
∞

0
e−t

(∫
∞

0
|Jp(2

√
st)|2|ϕ(s)|2spe−s ds

)
dt.

To prove (2.23) we write

(NeiτMϕ)(t) =

∫
∞

0

Jp(2
√
st)

(st)p/2
eiτe

−s

ϕ(s)spe−s ds

so that interchanging the order of integration yields

‖NeiτMϕ‖
2

=

∫
∞

0
|G(t, τ )|2e−t dt

where we have set

G(t, τ ) =

∫
∞

0
Jp(2

√
st)eiτe

−s

sp/2ϕ(s)e−s ds

= −

∫ 1

0
Jp(2

√
−t ln u)eiτu(− ln u)p/2ϕ(− ln u) du.

The estimate (2.23) now follows by applying the Fourier–Plancherel theorem:∫
∞

−∞

|G(t, τ )|2 dτ = 2π
∫ 1

0
|Jp(2

√
−t ln u)ϕ(− ln u)|2(− ln u)p du

= 2π
∫

∞

0
|Jp(2

√
st)|2|ϕ(s)|2spe−s ds.
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Hence, putting together (2.22) and (2.23), we have

‖N(M − λ)−1ϕ‖
2

≤ 4π2
∫

∞

0
e−t

(∫
∞

0
|Jp(2

√
st)|2|ϕ(s)|2spe−s ds

)
dt.

The right hand side is bounded above by

4π2
‖ϕ‖

2
∫

∞

0
e−t sup

st≥0
|Jp(2

√
st)|2 dt =: 4π2C‖ϕ‖

2.

Using supx≥0 |Jp(2
√
x)|2 = 1 we getC = 1. Therefore

‖N(M − λ)−1
‖

2
≤ 4π2

∀λ ∈ [0,1].

Choosingλ = 0 we get‖J‖ ≤ 2π as claimed.
To finish the proof, we note that ifϕ ∈ L2(mq) the functionsMϕ andNϕ are bounded

at infinity. Therefore, iff ∈ Hq satisfiesP±
q f = λf with λ 6= 0, thenf extends

analytically from the diskD1 to the half-plane{Rex > 0}. In addition the expression
(P±
q f )(x) reproduces itself times±1 if transformed by substituting 1/x for x and dividing

throughx2q . Hence (2.20) holds. 2

REMARK 2.8. Note that (2.18) is only a necessary condition forf to be an eigenfunction
(with λ 6= 0). For instance the functionf (x) = x−q (which does not belong toHq ),
although plainly satisfying (2.18) for allq ∈ (0,∞), is an eigenfunction ofP+

q only for
q = 1 (with λ = 1).

REMARK 2.9. By applying Proposition 2.7, the eigenvalue equationsP±
q f = λf , with

λ 6= 0, can be rewritten as the three-term functional equations

(2.24) λf (x)− f (x + 1) = ±
1

x2q
f

(
1 +

1

x

)
,

which forλ = 1 are studied in [Le] and [LeZa].

2.3. The spectrum ofP± in L2(mq)

It now remains to study the spectrum of the operatorsP± in L2(mq). Let us start by
studying the operators

(2.25) Q±
= M−1P±

= I ±M−1N.

We first show that they are bounded in L2(mq).

LEMMA 2.10. We have‖Q±
‖ ≤ 1 + 2π .

PROOF. The adjoint of the operatorJ = NM−1 dealt with in the previous subsection
exists and equalsJ ∗

= M−1N . A priori it is not defined on the whole spaceL2(mq).
Recall, however, thatJ ∗ is continuous if and only ifJ is, and‖J ∗

‖ = ‖J‖. The assertion
now follows from Proposition 2.7. 2
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Recall now the orthogonal basis of L2(mq) given by en(t) (see (2.10)) and the
independent family of functionsfn(t) = tn/n!. We introduce the families of functions

(2.26) `±n (t) := en(t)± fn(t), h±
n (t) := e−t (en(t)± fn(t))

and consider the linear manifolds spanned by them.

PROPOSITION2.11. The linear manifoldsE±
⊂ L2(mq) defined by

(2.27) E± :=
{ m∑
n=0

cnh
±
n : cn ∈ C, 0 ≤ n ≤ m, m ≥ 0

}
have the following properties:

(i) they are fixed under the operators±J , i.e.±Jϕ = ϕ for all ϕ ∈ E±;
(ii) their intersection is the trivial subspace, i.e.E+

∩ E−
= {0};

(iii) they are dense, i.e.E± ≡ Span
{
h±
n

}
n≥0 = L2(mq).

PROOF. We first use (2.13) and (2.14) to get

(2.28) Bq [h±
n ](x) = (n+ 1)p

1 ± xn

(1 + x)n+2q
,

henceJqBq [h±
n ](x) = ±Bq [h±

n ](x). Now (i) follows upon application of Proposition 2.7.
(ii) follows at once from the fact thatJ is an involution.
Finally, from the proof of Proposition 2.6 and (2.17) one readily sees that(h±

n , en) > 0
for all n ≥ 0. This yields the density ofE± in L2(mq). 2

Let us now consider the functions(`±n ). From the definition it follows that̀+n (t) is a
polynomial of degree 2k for n = 2k andn = 2k + 1 (k ≥ 0), whereas̀ −

n (t) has degree
2k + 1 for n = 2k + 1 andn = 2k + 2 (k ≥ 0). Moreover,(`±n , en) = (1 ± (−1)n)‖en‖2

so that

(2.29)

(`+2k+1, e2k+1) = (`−2k+2, e2k+2) = 0,

(`+2k, e2k) = 2‖e2k‖
2,

(`−2k+1, e2k+1) = 2‖e2k+1‖
2.

PROPOSITION2.12. LetH± := Span
{
`±n

}
n≥0. Then

(i) L2(mq) = H+
⊕H−;

(ii) Q±
|H± = 2I andQ±

|H∓ = 0.

PROOF. (i) By (2.29),H+ andH− do not have common non-zero vectors, thusH+
∩

H−
= {0}. Moreover, letϕ ∈ L2(mq) be such thatϕ ⊥ H+

⊕ H−. Since(`±n , en) =

(1 ± (−1)n)‖en‖2 we getϕ = 0.
(ii) We recall (2.17):

M−1Nfn = en, M−1Nen = fn.
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From this we get
Q±`±n = 2`±n and Q±`∓n = 0.

For ϕ =
∑m
n=0 cn`

±
n we have by linearityQ±ϕ = 2ϕ so that‖Q±ϕ‖ = 2‖ϕ‖,

independently ofm. This impliesQ±ϕ = 2ϕ for all ϕ ∈ H±. HenceQ±H±
⊆ H±

andQ±
|H± = 2I . In the same way one proves thatQ±

|H∓ = 0. 2

REMARK 2.13. From the above it follows that the operatorsQ± are bounded in L2(mq)
with ‖Q±

‖ = 2.

The operatorsP± are self-adjoint and positive on L2(mq), hence their spectrum is
real and positive. Moreover,‖P±

‖ ≤ ‖Q‖ ‖M‖ = 2. Henceσ(P±) ⊆ [0,2]. From the
previous results we have information on the point spectrumσp(P

±).

COROLLARY 2.14. In L2(mq) we haveKerP±
= H∓ andσp(P±) = {0} with infinite

multiplicity.

PROOF. We first observe that since KerM = {0}, Proposition 2.12 yields

KerP±
= Ker(MQ±) = KerQ±

= H∓.

Now suppose thatP±ϕ = λϕ for some 0< λ ≤ 2 andϕ 6≡ 0. Then, sinceP± are
self-adjoint, we can assume thatϕ ∈ H± and henceP±ϕ = MQ±ϕ = 2Mϕ. Therefore
(2M − λ)ϕ = 0, which impliesϕ ≡ 0. 2

To discuss the rest of the spectrum, we first characterise in more detail the nature of the
perturbation operatorN .

PROPOSITION2.15. For Req > 0 the operatorN : L2(mq) → L2(mq) is nuclear (and
hence of trace class). Its spectrum is given by

(2.30) σ(N) = {0} ∪ {(−1)kα2(q+k)
}k≥0

whereα = (
√

5 − 1)/2 is the golden ratio. Each eigenvalueλk ∈ σ(N) is simple and the
corresponding (normalised) eigenfunctionψk is given by

(2.31) ψk(t) =

√
5qk!

Γ (k + 2q)
L
p
k (

√
5 t)exp(−αt).

COROLLARY 2.16. For Req > 0,

tr(N) =
1

√
5
αp and ‖N‖ = α2 Req < 1.

PROOF OF PROPOSITION 2.15. Expanding the kernel ofN (see (2.16)) in the basis
(en)n≥0, we get (see [Sze, p. 102])

Jp
(
2
√
st

)
(st)p/2

=

∞∑
n=0

en(s)
e−t tn

Γ (n+ 2q)
.
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This yields
Nϕ =

∑
n≥0

(ϕ, en)gn

wheregn(t) = Nen(t) = e−t tn/n!. Since

‖en‖ =

√
Γ (n+ 2q)

n!
, ‖gn‖ =

√
Γ (2n+ 2q)

n!3n+q
,

we have ∑
n

‖en‖ ‖gn‖ < ∞,

and thereforeN is nuclear. To compute the spectrum ofN we use the following Hankel
transform (see [E, Vol. II]):∫

∞

0
xp+1/2e−bx

2
L
p
k (ax

2)Jp(xy)
√
xy dx =

(b − a)kyp+1/2

2p+1bp+k+1
e−y

2/4bL
p
k

(
ay2

4b(a − b)

)
,

which can be recast in terms of the operatorN as

N [Lpk (2at)e
−(2b−1)t ] =

(b − a)k

22qb2q+k
e−t/2bL

p
k

(
at

2b(a − b)

)
.

This becomes an eigenvalue equation in L2(mq) provided 2b = α−1 and 2a =
√

5. The
normalisation constant results from (2.11) upon noting that

‖L
p
k (

√
5 t)exp(−αt)‖ =

1

5q/2
‖L

p
k (t)‖.

This gives the eigenfunctionsψk, and the proof is complete. 2

We now put together the previous results. We have seen that for allq ∈ (0,∞) the
operatorsP±

= M±N when acting on L2(mq) are self-adjoint and positive with‖M‖ = 1
and‖N‖ = α2q .

The operatorM is spectrally absolutely continuous ([Ka, p. 520]). Its spectrum, being
the essential range of the multiplying function, coincides with [0,1]. This means that
in the orthogonal decomposition L2(mq) = Hac(M) ⊕ Hs(M) of the Hilbert space into
the subspace of absolute continuity Hac(M) = Πac(M)L2(mq) and that of singularity
Hs(M) = Πs(M)L2(mq), we have Hs(M) = 0 (and thusΠac(M) = I ).

On the other hand,Nq is of trace class. Therefore, applying the Kato–Rosenblum
theorem (see [Ka, p. 542] or [RS, Vol. III, p. 26]), we obtain

PROPOSITION2.17. The operatorM is unitarily equivalent to the spectrally absolutely
continuous part ofP±. Hence onL2(mq) we haveσac(P

±) = (0,1].

REMARK 2.18. The equivalence is realised by means of the one-parameter family of
unitary operators

W(τ) = eiτP e−iτM , −∞ < τ < ∞.
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The (strong) limitsW± of W(τ) as τ → ±∞ are called thewave operatorsandS =

W ∗
+W− is thescattering operator, which is unitary from L2(mq) to itself and commutes

with M. The Kato–Rosenblum theorem says that in this case the wave operatorsW± exist
and are complete, meaning that they are partial isometries with initial domain L2(mq) and
range Hac(P ) = Πac(P )L2(mq). Therefore we haveW ∗

±W± = I ,W±W
∗
± = Πac(P ) and

PW± = W±M (see [RS, Vol. III, pp. 17–19]).

Putting together Proposition 2.6, Corollary 2.14 and Proposition 2.17, we get
Theorem 1.1.

3. DIGRESSION: SELF-RECIPROCAL FUNCTIONS INL2(R+)

Given a continuous functionφ on R+ andq ∈ C with Req > 0 (or Rep > −1), the
function Jφ = NM−1φ considered in Section 2.2 can be viewed as a version of the
Hankel transformof φ, i.e.

(3.1) Jφ(t) :=
∫

∞

0
Jp(2

√
st)

(
s

t

)p/2
φ(s) ds.

We can also define the conjugate transformJ̃ as

(3.2) J̃ := χqJχ
−1
p

or else

(3.3) J̃ φ(t) =

∫
∞

0
Jp(2

√
st)

(
t

s

)p/2
φ(s) ds.

From the asymptotic estimates onJp(t) we see that the conditions onφ sufficient
for the absolute convergence of the integral (3.1) areφ(t) = O(t−a) as t → 0+ and
φ(t) = O(t−b) ast → ∞ with a < 2 Req andb > Req + 1/4. For the integral (3.3) we
have the same conditions withb > 5/4 − q anda < 1.

Accordingly, the identityJqf = ±f for f = Bq [ϕ] can be rephrased as aself-
reciprocityproperty for the functionsϕ andψ := χp · ϕ, that is,

(3.4) Jqf = ±f ⇒ Jϕ = ±ϕ andJ̃ψ = ±ψ.

LEMMA 3.1. If ϕ ∈ L2(R+) thenϕ ∈ L2(mq)∩ L2(R+) providedRep ≥ 0. Conversely,
if ϕ ∈ L2(mq) andJϕ = ±ϕ thenϕ ∈ L2(R+).

PROOF. The first implication is immediate. The second follows from the asymptotic
estimates onJp(t). 2

Therefore, we shall study self-reciprocal functions in L2(R+). Moreover, by a change
of variables the conditions (3.4) can be recast in the form that the function

(3.5) φ(t) = 2−q+1/2tp+1/2ϕ

(
t2

2

)
= 2q−1/2t−p+1/2ψ

(
t2

2

)
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satisfiesKφ = ±φ whereK is the symmetric version of the Hankel transform given by

(3.6) Kφ(t) :=
∫

∞

0
Jp(st)

√
st φ(s) ds.

For Rep > −1 the simplest solution ofKφ = φ is φ(t) =
√

2 t−1/2, which corresponds
to ϕ(t) = t−q andψ(t) = tq−1. This solution has already been considered above and does
not belong to L2(R+). We refer to [Tit, Chap. 9] for an analysis of the equationKφ = φ

in L2(R+).
For a > 0, let Sa : L2(R+) → L2(R+) be given by(Saϕ)(t) := aqϕ(at). Then

JSa = S1/aJ . In particular, sinceJe−t = e−t we see thataqe−at and a−qe−t/a is a
Hankel transform pair for alla > 0. Now, the operator̃J is adjoint toJ in the sense that
〈ψ, Jϕ〉 = 〈J̃ψ, ϕ〉 with 〈φ1, φ2〉 :=

∫
∞

0 φ1(t)φ2(t) dt . Hence, the identity

(3.7)
∫

∞

0
a−qe−t/aψ1(t) dt =

∫
∞

0
aqe−atψ2(t) dt, a > 0,

must hold wheneverψ1, ψ2 is a pair with respect to the Hankel transform̃J . If moreover
ψ̃2 is another Hankel transform ofψ1 then

∫
∞

0 e−at (ψ2 − ψ̃2) dt = 0 for all a > 0 so
thatψ2 = ψ̃2 almost everywhere. Therefore the identity (3.7) is a necessary and sufficient
condition forψ1, ψ2 to be a pair with respect to the Hankel transformJ̃ . Let moreover

(3.8) ψ∗(s) :=
∫

∞

0
ψ(t)t s−1 dt

be theMellin transformof ψ . If there are two constantsa < b such thatψ(t) = O(t−a) as
t → 0+ andψ(t) = O(t−b) ast → ∞ then the integral (3.3) converges fors in the strip
a < Res < b andψ∗(s) is a holomorphic function in this strip.

REMARK 3.2. IfP+
q f = λf then one easily checks that

λ = 1 +
f (1)

f (0)
,

λ

2
(λ− 1) =

f (2)

f (0)
.

Thus, ifλ 6= 1 we havef (0) 6= 0 and

f (x) ∼ f (0)x−2q , x → ∞.

Therefore, if Req > 0 then the Mellin transformf ∗ is analytic in the strip 0< Res <
2 Req, and in this region we have

(Jqf )(x) = f (x) ⇒ f ∗(s) = f ∗(2q − s).

Now, taking the Mellin transform of both sides in (3.7) we obtain

Γ (1 − s)ψ∗

1 (s) = Γ (s + p)ψ∗

2 (1 − p − s).

Note that ifψ = χp · ϕ, thenψ∗(s) = ϕ∗(s + p). Moreover, Mellin transforming (3.5)
gives

φ∗(s) = 2s/2−3/4ϕ∗(s/2 + p/2 + 1/4) = 2s/2−3/4ψ∗(s/2 − p/2 + 1/4).
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Therefore, if we define the weighted transformsϕ̄∗, ψ̃∗ andφ̂∗ as

ϕ̄∗(s) :=
ϕ∗(s)

Γ (s)
, ψ̃∗(s) :=

ψ∗(s)

Γ (s + p)
, φ̂∗(s) := 2p/2+1 φ∗(s)

Γ (s/2 + p/2 + 1/4)
,

and take into account that 1+p− (s/2 + p/2 + 1/4) = (1 − s)/2+p/2+ 1/4, we have
the following result:

PROPOSITION3.3. The functionsϕ,ψ, φ ∈ L2(R+), related to each other by(3.5), are
jointly self-reciprocal, i.e.Jϕ = ±ϕ, J̃ψ = ±ψ andKφ = ±φ, if and only if

ϕ̄∗(s) = ±ϕ̄∗(1 + p − s), ψ̃∗(s) = ±ψ̃∗(1 − p − s), φ̂∗(s) = ±φ̂∗(1 − s).

The sequencesh±
n introduced in (2.26) were our first example of self-reciprocal

functions in L2(R+), in the sense thatJh±
n = ±h±

n for all n ≥ 0. Even more interesting
self-reciprocal functions are provided by the conjugate sequencesϕn, ψn ∈ L2(R+),
n ≥ 0, defined for Rep > −1 by

(3.9) ϕn(t) :=

√
2p+1n!

Γ (n+ p + 1)
e−tL

p
n (2t), ψn(t) := (χp · ϕn)(t),

and satisfying the condition〈ϕn, ψm〉 = δn,m. They are related to the sequencesh±
n by (see

[E, Vol. II, p. 192])

ϕn = (−1)n

√
2p+1n!

Γ (n+ p + 1)

n∑
m=0

(
n+ p

n−m

)
(−2)m

(
h+
m + h−

m

2

)
.

Thus

Jϕn = (−1)n

√
2p+1n!

Γ (n+ p + 1)

n∑
m=0

(
n+ p

n−m

)
(−2)m

(
h+
m − h−

m

2

)
,

which, compared to (2.10), yields

(3.10) Jϕn = (−1)nϕn, J̃ψn = (−1)nψn.

Note that

(3.11) Bq [ϕn](x) = (n+ 1)p
(1 − x)n

(1 + x)n+2q

so thatJqBq [ϕn] = (−1)nBq [ϕn], as expected (cf. (2.28)).
Moreover,

(3.12) ϕ̄∗
n(s) =

(p + 1)n
n!

2F1(−n, s;p + 1; 2),

which satisfies the functional equation of Proposition 3.3 because of Pfaff’s identity
([AAR, Theorem 2.2.5]) which implies

2F1(−n, b; c; 2) = (−1)n 2F1(−n, c − b; c; 2).
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Finally, the orthonormal family{φn} of L2(R+) given by

(3.13) φn(t) :=

√
2n!

Γ (n+ p + 1)
e−t

2/2tp+1/2L
p
n (t

2)

satisfies

(3.14) Kφn = (−1)nφn, n ≥ 0.

Thus, the familiesϕn, ψn, φn furnish a complete characterization of self-reciprocal
functions inL2(R+) for the Hankel transformsJ, J̃ ,K.

REMARK 3.4. The functionsφn are also solutions of the differential equation

(3.15) φ′′
n −

(
p2

− 1/4

t2
+ t2 − 4n− 2p − 2

)
φn = 0

as one can check using, e.g., [E, Vol. II, p. 188]. More specifically, the second order
differential operatorH given by1

(3.16) H :=
1

2

(
−
d2

dt2
+
p2

− 1/4

t2
+ t2

)
has for realp ≥ 1 a unique self-adjoint extension on C∞

0 (R+) which has an integer-spaced
spectrum so that

(3.17) Hφn = (2n+ p + 1)φn, n ≥ 0.

For−1< p < 1 there is more than one self-adjoint extension, one of which, however, still
satisfies (3.17). Comparing (3.14) and (3.17) one may regard the unitary mappingK from
L2(R+) onto itself as a hyperdifferential operator of the form (2q = p + 1)

(3.18) K = eiπq exp

(
−
iπ

2
H

)
and acting on a suitable class of analytic functions (see [Bar] and [Wo] for a discussion on
this and related correspondences).

4. POLYNOMIAL EIGENFUNCTIONS OFP±
q FORq = −k/2

Although the eigenfunctionf (q)(x) corresponding to the leading eigenvalueλ(q) does not
belong to the spaceHq (see Remark 1.2), we shall see that explicit expressions forλ(q)

andf (q)(x) can be obtained whenq = −k/2 with k a non-negative integer. Note that these
values correspond exactly to the simple poles ofΓ (2q) and thus, by (2.8), to theq-values

1 In quantum mechanics this corresponds to the Schrödinger operator for a two-dimensional isotropic
harmonic potential (see [RS, Vol. II, p. 161]).
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where the measuremq has an infinite mass. On the other hand, forq = −k/2 the operators
P±
q take the form

P±

−k/2f (x) = (x + 1)k
[
f

(
x

x + 1

)
± f

(
1

x + 1

)]
so that they leave invariant the vector space

⊕k
n=0 Cxn of polynomials of degree≤ k. In

particular, we expectf (−k/2)(x) to be a polynomial of degreek with real coefficients.
To warm up, a direct calculation yields

f (0)(x) = 1, λ(0) = 2,

f (−1/2)(x) = x + 1, λ(−1/2) = 3,

f (−1)(x) = x2
+

√
17− 1

2
x + 1, λ(−1) =

5 +
√

17

2
,

f (−3/2)(x) = x3
+ 2x2

+ 2x + 1, λ(−3/2) = 7,

f (−2)(x) = x4
+

√
113− 1

4
x3

+ 3x2
+

√
113− 1

4
x + 1, λ(−2) =

11+
√

113

2
.

To say more we first need the following result.

LEMMA 4.1. The(k + 1)× (k + 1) real positive matrixMk defined as

Mk(i, j) :=



(
k − i

j − i

)
if i < j,

2 if i = j,(
i

j

)
if i > j,

(0 ≤ i, j ≤ k)

has the following properties:

(i) the symmetryMk(i, j) = Mk(k − i, k − j) holds for all0 ≤ i, j ≤ k;
(ii) the sumSi of the entries in rowi equals2i + 2k−i ;

(iii) the sumRj of the entries in columnj equals
(
k+2
j+1

)
;

(iv) if MkΦ = λΦ with Ck+1
3 Φ := (b0, b1, . . . , bk)

T andλ 6= 0 thenΦ is either a
palindrome or a skew-palindrome, i.e.bi = ±bk−i for 0 ≤ i ≤ k;

(v) σ(Mk) ⊂ R for all k ∈ N ∪ {0};
(vi) 1 ∈ σ(Mk) for all k ∈ N.

PROOF. (i)–(iii) follow by direct computation. To prove (iv) we write the eigenvalue
equation componentwise:

λbi =

k∑
j=0

M(i, j)bj (0 ≤ i ≤ k),

which yields, using the symmetry (i),

λbk−i =

k∑
j=0

M(k − i, j)bj =

k∑
j=0

M(k − i, k − j)bk−j =

k∑
j=0

M(i, j)bk−j
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so thatMkΦ = λΦ if and only if MkΦ
′
= λΦ ′ with Φ ′ := (bk, bk−1, . . . , b0)

T . If λ is
(geometrically) simple thenΦ = ±Φ ′ because‖Φ‖ = ‖Φ ′

‖ where‖ ‖ is the euclidean
norm in Ck+1. In other words,Φ = ±Φ ′ is a necessary and sufficient condition forΦ
andΦ ′ to be linearly dependent. Assume now thatMkΦ = λΦ with λ of geometric (and
thus algebraic) multiplicity greater than 1. IfΦ andΦ ′ are linearly dependent then we are
done. Suppose they are not. Then the vectorsΨ± := Φ ± Φ ′ should also be two linearly
independent eigenvectors. But this is impossible becauseΨ ′

± = ±Ψ±. This concludes the
proof of (iv).

As for (v), we observe thatM1 is symmetric and for eachk ≥ 2 it is not difficult to
realise that one can construct recursively a positive symmetric(k+ 1)× (k+ 1)matrixNk
such that the productMkNk is symmetric as well. For instance fork = 4 one gets

M4 =


2 4 6 4 1
1 2 3 3 1
1 2 2 2 1
1 3 3 2 1
1 4 6 4 2

 , N4 =


1 13 1 7 18
13 1 3 2 13
1 3 3 7 1
7 2 7 1 7
18 13 1 7 1

 .

Then apply Theorem 1 in [DH]. Finally, the vectorΦ = (1,0, . . . ,0,−1)T always satisfies
MkΦ = Φ, which yields (vi). 2

REMARK 4.2. If one defines a pseudo-scalar product ofΦ = (b0, b1, . . . , bk)
T andΨ =

(c0, c1, . . . , ck)
T as〈Φ,Ψ 〉 :=

∑k
i=0 bick−i then the symmetry stated in (i) amounts to

〈MkΦ,Ψ 〉 = 〈Φ,MT
k Ψ 〉. Moreover, (iv) implies that ifMkΦ = λΦ with λ 6= 0 then

〈Φ,Φ〉 = ±‖Φ‖
2.

THEOREM 4.3. Letq = −k/2, k ≥ 1. The polynomial

(4.1) f (x) =

k∑
i=0

(
k

i

)
bix

i

satisfiesP±
q f = λf with λ 6= 0 if and only if the vectorΦ = (b0, b1, . . . , bk)

T satisfies
MkΦ = λΦ and is either a palindrome (ifP+

q f = λf ) or a skew-palindrome (ifP−
q f

= λf ).

COROLLARY 4.4. The eigenvector corresponding to the simple positive maximal
eigenvalueλ(−k/2) ofMk is always palindromic and we have the bounds

s − 1 + h ≤ λ ≤ S − 1 + 1/g

where

S := max
i
Si = 2k + 1, s := min

i
Si =

{
2k/2+1

+ 2k/2−1, k even,

2k+1/2
+ 2k−1/2, k odd,

and

h =
−s + 2 +

√
s2 + 4(S − s)

2
, g =

S − 2 +

√
S2 − 4(S − s)

2(s − 1)
.

PROOF. Put together the above and [MM, p. 155, eq. (9)]. 2
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PROOF OFTHEOREM 4.3. Set

(4.2) f (x) = akx
k
+ ak−1x

k−1
+ · · · + a1x + a0.

The conditionJqf = ±f implies that the sequence of coefficientsai is either a
palindrome or a skew-palindrome, i.e.ai = ±ak−i (0 ≤ i ≤ k). Inserting the function
f (x) written above into (2.24) withq = −k/2 andk ≥ 1 we get

λ

k∑
i=0

aix
i
=

k∑
i=0

ai

i∑
j=0

(
i

j

)
(xj ± xk−j )(4.3)

=

k∑
j=0

[ k∑
l=j

(
l

j

)
al

]
(xj ± xk−j )

=

k∑
i=0

[ k∑
l=i

(
l

i

)
al ±

k∑
l=k−i

(
l

k − i

)
al

]
xi,

which in both cases yields

(4.4) λai =

i∑
l=0

(
k − l

k − i

)
al +

k∑
l=i

(
l

i

)
al (0 ≤ i ≤ k).

Defining new coefficientsbi so that

(4.5) ai =

(
k

i

)
bi (0 ≤ i ≤ k)

and using the identities(
k − l

k − i

)(
k

l

)
=

(
k

i

)(
i

l

)
and

(
l

i

)(
k

l

)
=

(
k

i

)(
k − i

l − i

)
we see that the above recursion becomes

(4.6) λbi =

i∑
l=0

(
i

l

)
bl +

k∑
l=i

(
k − i

l − i

)
bl (0 ≤ i ≤ k),

and the proof is complete. 2

EXAMPLE 4.5. Fork = 4 we find

sp(M4) =

{
11+

√
113

2
,1,

11−
√

113

2
,−1,−1

}
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and the corresponding eigenvectors are

Φ1 =



1
√

113−1
16

1/2
√

113−1
16

1


, Φ2 =


1

0
0
0

−1

 , Φ3 =



1
√

113+1
16

1/2
√

113+1
16

1



Φ4 =


3
0

−2
0
3

 , Φ5 =


0

−1
0
1
0


Therefore the spectrum ofM4 yields three eigenfunctions forP+

−2:

h1(x) = x4
+

√
113− 1

4
x3

+ 3x2
+

√
113− 1

4
x + 1,

h3(x) = x4
+

√
113+ 1

4
x3

+ 3x2
+

√
113+ 1

4
x + 1,

h4(x) = −3x4
+ 12x2

− 3

and two eigenfunctions forP−

−2:

h2(x) = x4
− 1, h5(x) = 4x(1 − x2).

REMARK 4.6. Eigenvectors ofMk corresponding to the eigenvalue 1 are related to the
period functions for the modular group (see [CM]). In particular, fork ∈ N the eigenvectors
(1,0, . . . ,0,−1)T correspond to the fixed functionsxk − 1 ofP−

−k/2 which yield the even
part of the period functions corresponding to holomorphic Eisenstein forms of weightk+2.
The odd parts are computed below in Proposition 4.7. Other linearly independent (skew-
palindromic and palindromic) eigenvectors with eigenvalue 1 are expected fork ≥ 10, as
they are related to (the even and odd parts of) holomorphic cusp forms [A].

For the sake of completeness we end with the following result, a version of which is
contained in [CM].

PROPOSITION4.7. Let Bm denote them-th Bernoulli number. Fork ∈ N ∪ {0} the
functionfk(x) ∈

⊕k+1
n=−1 Cxn given by

fk(x) :=
ζ(−k)

2
(1 + xk)+ (−1)kk!

∑
−1≤n≤k+1

Bn+1Bk+1−n

(n+ 1)!(k + 1 − n)!
xn

satisfiesP+

−k/2fk = fk for k even andfk ≡ 0 for k odd.
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Two examples are

f0(x) =
1

12

[
x +

1

x
− 3

]
, f2(x) =

1

360

[
5x −

(
x3

+
1

x

)]
.

Note that fork ≥ 1, the odd parts of the period functions mentioned in Remark 4.6 can be

expressed as(−1)k

k! (fk(x)−
ζ(−k)

2 (1 + xk)) [Za1].

PROOF OFPROPOSITION4.7. Consider the functionψq(x) defined for Req > 1 by

ψq(x) =
ζ(2q)

2
(1 + x−2q)+

∑
n,m≥1

(nx +m)−2q .

It is shown in [Za2] that the functionψq(x) has an analytic extension into the complex
q-plane with a simple pole atq = 1, and the analytic continuation satisfies (2.24) with the
+ sign andλ = 1 for all q ∈ C \ {1}. Note that if Req > 1 thenψq(∞) =

1
2ζ(2q).

The proof then amounts to showing that forq = −k/2 the analytic extension of the
functionψq is preciselyfk. This is achieved using standard Mellin transform techniques:
start from the identity∑

n,m≥1

(nx +m)−2q
=

1

Γ (2q)

∫
∞

0

∑
n,m≥1

e−t (nx+m)t2q−1 dt

=
1

Γ (2q)

∫
∞

0

t2q−1

(et − 1)(etx − 1)
dt.

Recalling that

1

et − 1
=

∞∑
r=−1

Br+1

(r + 1)!
t r =

1

t
−

1

2
+

∞∑
l=1

B2l

(2l)!
t2l−1

we get ∑
n,m≥1

(nx +m)−2q
=

1

Γ (2q)

∞∑
k=−2

∫
∞

0
ck(x)t

k+2q−1 dt

with c−2 = 1/x, c−1 = −
1
2(1 + 1/x), and fork ≥ 0,

ck =

∑
−1≤n≤k+1

Bn+1Bk+1−n

(n+ 1)!(k + 1 − n)!
xn.

NowΓ (2q) has simple poles at 2q = −k with k = 0,1,2, . . . , with residues(−1)k/k!. On
the other hand, the above integral has simple poles at 2q = −k with k = −2,−1,0,1, . . . ,
the residues beingck. Therefore the analytic continuation of

∑
n,m≥1(nx +m)−2q has only

two simple poles atq = 1 andq = 1/2 and the claimed expression forfk follows by taking
the limit 2q → −k with k ∈ N ∪ {0}. The last assertion is a consequence of the identity
ζ(−k) = −Bk+1/(k + 1) for k odd. 2
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