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ABSTRACT. — The spectrum of a one-parameter family of signed transfer operators associated to the Farey
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1. PRELIMINARIES AND STATEMENT OF THE MAIN RESULTS

Let F : [0, 1] — [0, 1] be theFarey mapdefined by

ifO <x <1/2,

ifl/2<x<1.

Its name can be related to the following observation. If we expaadO0, 1] in a continued
fraction, i.e.

1
X = i =[ay, a2, as, ...]
ai + 1
ag+ ———
2 ag+---
then
(1.2) x =[a1,az2,a3,...1—~> F(x)=[a1—1,a2,as,...]

with [0, az, a3, ...] = [a2, a3, . ..]. In other words, letF, be the ascending sequence of
irreducible fractions between 0 and 1 constructed inductively in the following way: set first
F1= (‘1’ %) thenF, is obtained fromF,,_; by inserting among each pair of neighbours
%ﬁ andg—fi in F,_1 their Farey surr% = %. Thus

A=@id A=@3bED A-QREELIELD

and so on. The elements @i, are calledFarey fractions It is easy to verify that the
set of pre-image$ J;_, F~* {0} coincides withF, for all » > 1. This implies that
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U,fioF—" {0} = Q N0, 1]. These two observations are related by the fact that a
rational number; belongs toF, \ F,-1 if and only if its continued fraction expansion
=[a1, ..., a] with g > 1is such tha[jlea,- =n.
In this paper we shall study a family gigned generalized transfer operat
associated to the map, whose action on a functiofi : [0, 1] — C is given by a weighted
sum over the values of on the setF~1(x), namely

+ 1\ Y 1
(1.3) f(x)'—>(73qf)(x)=<x—+1> |:f(x+1)if(x+1)i|

wheregq is a real or complex parameter. The operalﬂjr is referred to as th@erron—
Frobenius operator for the mapF: its fixed function is the density of an absolutely
continuousF-invariant measure. In this case one easily checks that the funcfion 1
has this property. However, sincexldoes not belong td.1([0, 1], dx) the statistical
properties of the map’ have to be described in the framework of infinite ergodic theory
[Aa]. We refer to [Bal] for a general review of transfer operator techniques in dynamical
systems theory. Here, one motivation to study signed transfer operators arises from their
appearing in dynamical zeta functions such as Selberg and Ruelle’s (se€ [DEIK, Corollary
3.13], and alsd [BI]).

Using the Farey fractions, the itera@;“" f of the above operators can be expressed as
suitable sums over th&tern—Brocot tregthe binary tree with root node 1 and whos¢h
level L, is given byL, = (F, \ Fn—1) U S(F, \ Fn—-1), WhereS isthe mapS : x — 1/x
and the elements &f(F, \ F,—1) are in reverse order. An important feature of this tree
is that each positive rational number appears as a vertex exactly once. The left part of
the Stern—Brocot tree (starting from the no%l)eis called theFarey tree with vertex set

QN (O,1).

[ENTEN

N

A /\
/\ /\ /\A

FIG. 1. First four levels of the Stern—Brocot tree.

An easy generalisation of Proposition 5.9[n [DEIK] yields, foral Ry andq € C,

(1 4) ('Pinf)(x) _ Z f(noc(lfcﬁéb)) + f(nla(f(ﬁéb))
: q

2
T, (ax + b)~4
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whereng(x, a/b) = ux +v andn1(x,a/b) = (a — u)x +b — v, forsome 0< u < a and
0 < v < b. In particularng(x, a/b) + n1(x, a/b) = ax + b.
In Sectior]  we prove

THEOREM1.1. For eachg € (0, co) there is a Hilbert spacé?, of analytic functions
on which the operator$* are bounded, self-adjoint and iso-spectral. Their common
spectrum i§0} U (0, 1], with (0, 1] purely absolutely continuous.

REMARK 1.2. From thermodynamic formalism it follows thﬁg forg € (—o0, 1),

when acting on a suitable Banach space, has a leading eigemv@lue- 1 which is a
differentiable and decreasing functiongfvith lim,_.1_ A(¢) = 1 (andi(g) = 1 for all

g > 1, seel[PS]). From the above theorem we see that the corresponding eigenfunction
does not belong td, (for ¢ = 1 itis just the invariant density/k). Moreover,

.1
logi(g) = lim =log((P;)"1)(0).
n—-oon
Note that by[(I.]) we can write

—2
(PH'DO =2 Y b
geF\9)

and the above sum is equal to thartition functionZ,_1(2q) at (inverse) temperaturey2
of the number-theoretical spin chain introduced by Andreas Knauf in [Kn].

REMARK 1.3. Also the operator® -~ have eigenfunctions which do not belong to the
spacef, . Indeed, one easily checks that the functjfta) = (1—x)/x is an eigenfunction
of P, for ¢ = 1/2 and eigenvalue 1. But, again, this function does not belortgfe.

There are interesting functional symmetries related to the eigenvalue equaﬂ@jﬁ,for
which can be rephrased in terms of Hankel transforms. The construction of Sefction 2
allows for a complete account of the corresponding self-reciprocal function$(i,l),
discussed in Sectigrj 3. Finally, in Sect[dn 4 we characterise all polynomial eigenvectors of
Pj wheng = —k/2,k > 0.

2. THE SPECTRUM OFP;t FOR REAL POSITIVEgq
In this section we give the proof of Theorém]1.1, hence we restrict ourselves to the case

q € (0, 00). The proof follows from the results of the following subsections.

2.1. Aninvariant Hilbert space

In this subsection we introduce a family of Hilbert spaggs whereg € (0, oo), and give
a representation of the operatd?$ onH,.
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DEFINITION 2.1. For g € (0, c0) we denote by, the Hilbert space of all complex-
valued functiong® which can be represented as a generalised Borel transform

1 o0
@) @ =Bl = fo ety mydD), ¢ € L2(my),

with inner product

2.2) (f1. f2) = fo o1(g2 my(d) it f; = Bylei]

and measurép = 2g — 1)
(2.3) my(dt) = tPe”" dt.

Function spaces related to that introduced above have been used inlIs], [Gl] and [Pre].
In [Is] an explicit connection between the approach presented here and Mayer’s work on
the transfer operator for the Gauss map/[Ma] is established by means of a suitable operator-
valued power series.

REMARK 2.2. Forg e C with Req > 0, the spacé{, can be regarded as a complex
Hilbert space. If we set

(2.4) xp(x) =xf (p=29-1),

an alternative representation f¢re H, can be obtained by a simple change of variable
whenx is real and positive:

(2.5) Gy - F)0x) = /0 ¢ (xp - 9)(5) ds.

Note that a functiory’ € H, is analytic in the disk

(2.6) Di={xeC:Relx>1/2={xeC:|x—1 <1}
In particular,
2.7) Ot - 9)(0) = 2:(:) ;’—,z = (- ) = ; "

in the sense of formal power series. So the power serigg, ofp is obtained by Borel
transforming that ofy, - f, in the usual sense. This justifies the name of the integral

transform[(2.]L).

REMARK 2.3. The invariant density/k for the Farey map, that is, the fixed function of
Pf, is the generalised Borel transform (for= 1) of the functione(t) = 1/¢, which,
however, does not belong td 7).
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Let us now study the Hilbert space’-amq). First of all we notice that the measure
mg(dt) is finite: indeed,

o
(2.8) /0 my(dt) = I'(2q).
Second, for the linearly independent family of functigfy$r) := ¢ /n! (n > 0) we have
I'(n+m+ 2
(2.9) (oo fo) = T 20)
n:m:

This implies that the (generalised) Laguerre polynomidlg) (n > 0, Rep > —1) given
by

(2.10) en(®) =LE) =Y (” + p) ="

— |
m—0 n m m:

form a complete orthogonal basis iﬁ(lm,,), with

(2.11) (en, em) = nnn——i;zman,rn-

Moreover, using [GR, p. 850] and (2]11) we get, #or< n,

r
(2.12) v em) = (-1 LOF2D gy (”) leall?
m!(n —m)! m
r
S A JRPE

I'(m+ 2g)(n — m)!
- (—1)'"(” +”)ueng.
n—m

In particular( f,, e,) = (—1)"||e,||%. Also note thai f,, e,,) = 0 form > n. Comparing
to (2.10) we obtain the following result:

LEMMA 2.4. For eachn € Ng the numbers

{ =" (n + p) if m <n,
An.m = n—m

0 if m > n,
are the Fourier coefficients of, with respect to the basig,,), i.e.

_ (fm em)

Ap.m = .
llem 112

Moreover,

n n
fo= E An,m€m, ey = E Anm fm-
m=0 m=0
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REMARK 2.5. In particular, the(n + 1) x (n + 1) lower triangular matrix4, :=
(ai.j)o<i, j<n SatisfiesA2 = I, 1. Therefore, the operatdt, : L?(m,) — L?(m,) acting

as
o o n (fr,e_y) n
Hn:cheSHch f,:Zdrfr
s=0 s=0

o2 T &

with
.
dy =Y apse, or d™ = 4,c"
s=0
where we have set™ = (cg,c1,...,c,)! and similarly ford™, is the orthogonal
projection onto the linear subspace spannedlby, r2/2!, ... 1" /n!).

Let us now consider the action of the transfafnon the functionge,) and(f,,). We
have

=mn+1,0-x)"

! n+p\(=x)"
@19 Blalt =3 rees m>( m)

n— m!
where(a), :=I'(a + p)/I'(a) =a(a+1)---(a + p — 1) is the shifted factorial, and
(2.14) Byl ful(0) = (n + D,

The next result describes the actior/f on the Hilbert spacef, .

PROPOSITION2.6. For ¢ € (0, 00) the spaceH, is invariant for 7?;'[, and Pqi :

H, — H, are positive operators, isomorphic to self-adjoint compact perturbations of
the multiplication operatoM : L2(m,) — L2(m,) given by

(Me)(t) = ep(1).

More specifically,
Py Byle] = By[P*¢]

whereP* = M £ N andN : Lz(mq) — Lz(mq) is the symmetric integral operator given

by
~ 1, (257
(N<P)(f)=/0 W‘P(S)mq(ds)

whereJ, denotes the Bessel function of orger

PROOF The representation c?Pqi on H, follows from a direct computation (segl[Is],
[GI]). The positivity amounts to

(2.15) (M £ N)p,9) >0 Voel?(my,), loll =1,

and can be checked by expandipgn the basis of (normalised) Laguerre polynomials.
Indeed, a calculation using [GR, pp. 849-850] yields

(Mey,, ep) _ 272n72q 2n +p
llenl? n



SPECTRAL ANALYSIS OF TRANSFER OPERATORS 7

and

(Ney, en) — =2

n+p o 0
llenll? < n )ZFl(_”’”“‘I:Zq:l/Z):Z =2 p 79 Q)
n

wherePn(“’b)(x) denotes the Jacobi polynomidl ([AAR, p. 99]). Since

.0 R p(n+p\(n
P2 (0) = (—2) ;(—1)( L )(k)
n4+p\ _~(n+p\(n
=2 )6)

((MENene) 1 St p\(n
7 = e L AE D )( k )(k)

An easy generalisation of this calculation shows that

and

we get

((M £N)en,ex) =0 Vk,n

and thus [(2.15). FinallyNe can be written agfg* k(s. £)¢(s) my(ds) with symmetric
kernel

Jy (24/5)
(216) k(S, [) = W

From the estimates, (t) ~ 277t”/I"(p+1) ast — 0T andJ, (1) = O(t~Y?) ast — oo
([EL Vol. 117), we see that the kernéi(s, ) is bounded and continuous. O

We can now describe the action &* on (e¢,) and (f,). Applying the integral
representation (seel[E, Vol. 11, p. 190])

pon [ T2,
nle L,,(t)—/O —(st)l’/z s" mgy(ds)

we get

(2.17) M7 INf, =e,, M INe,= f,.

2.2. Functional symmetries

Let us introduce an isometry which turns out to be useful for the characterisation of
eigenfunctions of the operatoﬁgt. Let 7, be the involution defined by

— L (2
2.18) 0= 0 (3)

and consider its action on the Hilbert spag¢g. We have the following
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PROPOSITION2.7. Foranyg € Lz(mq),

(2.19) T Bylel = BylJ¢]

whereJ := NM~tis a bounded operator ih?(m,) with || /|| < 2. If moreoverP} f =
Af for somer # 0then f satisfies the functional equation

(2.20) Jof =%f.

PrROOF The representation of, in H, is easily checked by first noting that for any
f € H, the function, f can be written as an ordinary Laplace transform, i.e.

(2.21) FG) = Bylel(x) = (T, )(x) = /0 e (xp - ) (1) di

and then using Tricomi’s theorem ([Snhe, p. 165]). Let us prove the boufid [prAdapting
formula (33) of [RS, Vol. IV] to our situation we get, for afl Lz(mq) andA € [0, 1],

1 00
(2.22) INM -2l < /0 IN(M — 1) Yp|2dr < Zn/ INe™M g2 dz.

—00

On the other hand, we claim that

o0 o0 o
(2.23) f INe™Mo|?dt < 271/ e’ (/ |4, (2/50) P |g(s)|2sPe ™ ds> dt.
0 0

—0o0

To prove [2.2B) we write

oo J[’ (2\/‘;) eite"‘

p,—S
GNP o(s)sPe ds

(ve Mgy = [
0
so that interchanging the order of integration yields
. o
INe' ™| = f G(t, D)% di
0
where we have set
00 s
G, f):/ Jp(2/s50)e' ™ 5P 2p(s)e ™ ds
0

1
= —f Jp(2v/—tIn w)e'™(—1In u)/’/2<p(—|n w)du.
0

The estimatg (2.23) now follows by applying the Fourier—Plancherel theorem:

00 1
f IG(t, )% dt = zn/ 12V =t Inu)p(— Inu)>(— Inu)? du
00 0

o0
= 271/ 1, (2/50) P |g(s)|25P e ds.
0
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Hence, putting together (222) afd (2.23), we have
oo oo
IN(M —0)tl|? < 4n? f e ( / | V/sD) Pl (s)PsPe™ ds) dt.
0 0
The right hand side is bounded above by

o0
4n2||<p||2/0 e! sug|Jp(2J§)|2dt = 47°C|lp|°.

St>
Using sup-q |/,(24/)|? = 1 we getC = 1. Therefore
IN(M — 27?2 < 4x? Vi e]0,1].

Choosingh = 0 we get||J|| < 27 as claimed.

To finish the proof, we note thatf € L2(mq) the functionsM ¢ andN ¢ are bounded
at infinity. Therefore, iff € H, satisfiesP;tf = Af with A # O, then f extends
analytically from the diskD1 to the half-plane{Rex > 0}. In addition the expression
(P;'Ef)(x) reproduces itself timeg1 if transformed by substituting/ for x and dividing

throughx?. Hence[(2.2D) holds. O

REMARK 2.8. Note thaf (2.78) is only a necessary conditionff@o be an eigenfunction
(with » s 0). For instance the functioyf(x) = x~¢ (which does not belong t{,),
although plainly satisfyin8) for adl € (0, 00), is an eigenfunction oP," only for
g =1 (withx = 1).

REMARK 2.9. By applying Propositio@.?, the eigenvalue equatiBjig’ = if, with
A # 0, can be rewritten as the three-term functional equations

(2.24) M) — fa+D = iizqf(u 1>,
X X

which forx = 1 are studied in[Le] and [LeZa].

2.3. The spectrum oP in L2(m,)

It now remains to study the spectrum of the operatBfs in L2(mq). Let us start by
studying the operators

(2.25) ot =MPt=1+MN.
We first show that they are bounded iﬁ(knq).
LEMMA 2.10. We have|QF| < 1+ 27.

PrROOF The adjoint of the operataf = NM ! dealt with in the previous subsection
exists and equalg* = M~IN. A priori it is not defined on the whole spaafé(mq).
Recall, however, that* is continuous if and only iff is, and||J*|| = ||J||. The assertion
now follows from Propositiof 2]7. O



10 C. BONANNO - S. GRAFFI - S. ISOLA

Recall now the orthogonal basis ofdn,) given by e,(t) (see [(2.1D)) and the
independent family of functiong;, (r) = ¢"/n!. We introduce the families of functions

(2.26) G0 = en() £ fu (1), Ry (0) i=e " (en(t) £ [ (1))
and consider the linear manifolds spanned by them.

PROPOSITION2.11. The linear manifold€* c L2(m,) defined by

m
(2.27) gt :={chhf:cnec,05n5m,mzo}
n=0

have the following properties:

(i) they are fixed under the operatats/, i.e.£J¢ = ¢ forall ¢ € £%;
(i) their intersection is the trivial subspace, i& N &~ = {0};
(iii) they are dense, i.€+ = Span{hE} _, = L2(m,).

n>0 "
ProOF We first use[(2.1]3) anfl (Z.]14) to get

14+ x"

+ — -
(2.28) Bl = - Do e

hence7, B, [hF](x) = qu[hf](x). Now (i) follows upon application of Propositi.?.
(ii) follows at once from the fact that is an involution.

Finally, from the proof of Propositi.6 a 17) one readily seestjate,) > 0
for all » > 0. This yields the density &= in L?(m,). ]

Let us now consider the functiom%f). From the definition it follows that;’ (¢) is a
polynomial of degreeRfor n = 2k andn = 2k + 1 (k > 0), whereag, (t) has degree
2k +1forn =2k +1andn =2k + 2 (k > 0). Moreover,(é;,—ﬂ en) = (L£ (=D |lenl?
so that

(€3 410 €2k41) = (L34 5. €2k42) =0,
(2.29) (€3 e26) = 2],

(o y1s €2%+1) = 2llexq1]l%.
PROPOSITION2.12. LetH* :=Span{¢r} .. Then

() L2(mg) =H" ® H™;
(i) QF|py+ =2I andQ*|y= = 0.

ProOOF (i) By ), H* and H~ do not have common non-zero vectors, tis N
H~ = {0}. Moreover, letyp € Lz(m,,) besuchthap L HT @ H™. Since(ﬁ,jf, en) =
(L (=D")len]|* we getp = 0.

(i) We recall [2.17):

M_lenZem M_lNeann-
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From this we get
Qe =2t and Q*¢F =0.

Foro = " ,c.tf we have by linearity0*¢ = 2¢ so that]|Q*e¢ll = 2|¢l,
independently ofn. This impliesQ*¢ = 2¢ for all ¢ € H*. HenceQ*H* c H*
andQ*|y+ = 21. In the same way one proves that| ;= = 0. |

REMARK 2.13. From the above it follows that the operat@ are bounded in £(m,)
with || Q%] = 2.

The operatorsP* are self-adjoint and positive onZLmq), hence their spectrum is
real and positive. Moreovef,P~|| < || Q| IM| = 2. Hences (P*) C [0, 2]. From the
previous results we have information on the point spechrym)i).

COROLLARY 2.14. In L%(m,) we haveKer P = HT ando,(P¥) = {0} with infinite
multiplicity.

PrROOF. WEe first observe that since K&f = {0}, Propositiorj 2.112 yields
Ker P = Ker(M Q%) = KerQ* = HT.

Now suppose thaP*¢ = i for some 0< A < 2 andg # 0. Then, sinceP* are
self-adjoint, we can assume thate H* and hence?*¢ = M Q*¢p = 2M¢. Therefore
(2M — 1)¢ = 0, which impliesp = 0. a

To discuss the rest of the spectrum, we first characterise in more detail the nature of the
perturbation operatay.

PROPOSITION2.15. For Req > 0the operatorN : L2(mq) — Lz(mq) is nuclear (and
hence of trace class). Its spectrum is given by

(2.30) o (N) = {0} U {(=D)*a®@TP )0

wherea = (v/5 — 1)/2 is the golden ratio. Each eigenvalug € o (N) is simple and the
corresponding (normalised) eigenfunctign is given by

[ s, B
(2.31) Yi(t) = Tkt20) L?(v/51) exp(—at).

COROLLARY 2.16. ForReq > 0,
tr(N) = Lo and IN| = «?R® < 1.
V5

PrRoOOF oF PRoPOsITION[Z.T§. Expanding the kernel df (see [(2.16)) in the basis
(en)n>0, We get (se€ [Sze, p. 102])

ALY SN

(snyp/2 = I'(n+2q)
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This yields
No = Z(fp, €n)&n

n>0

whereg, (t) = Ne,(t) = e~ 't" /n!. Since

JT (2 +29)

I'(n+2q)
! nl3nta

lenll = . el =

we have

> leall lignll < oo,
n

and thereforeV is nuclear. To compute the spectrumMéfwe use the following Hankel
transform (se€ [E, Vol. 11]):

00 _ Nk p+1/2 2
P12 —baZy P, 2 _b—a)y —y¥abyp( 4
/0 X e Ly (ax9)Jp(xy)/xydx = P T ipp kil e Ly a0

which can be recast in terms of the operatoas

—(oh— (b —a)k _ at
Mf @ane @) = St ey (),

This becomes an eigenvalue equation ?mrh,q) provided = «~t and 2 = /5. The
normalisation constant results from (2.11) upon noting that

1
1LY (VB0 exp(—an)| = 5 ILY @]

This gives the eigenfunctiong,, and the proof is complete. O

We now put together the previous results. We have seen that fgr all(0, o) the
operatorsP* = M=+ N when acting on E(mq) are self-adjoint and positive wif/ || = 1
and|N|| = a%.

The operato is spectrally absolutely continuou$ ([Ka, p. 520]). Its spectrum, being
the essential range of the multiplying function, coincides with1]0 This means that
in the orthogonal decompositior?{.mq) = Hac(M) ® Hs(M) of the Hilbert space into
the subspace of absolute continuitycdM) = HaC(M)LZ(mq) and that of singularity
Hs(M) = HS(M)LZ(mq), we have H(M) = 0 (and thudTa(M) = I).

On the other handp, is of trace class. Therefore, applying the Kato—Rosenblum
theorem (see [Ka, p. 542] ar [RS, Vol. lll, p. 26]), we obtain

PROPOSITION2.17. The operatorM is unitarily equivalent to the spectrally absolutely
continuous part oP*. Hence orL?(m,) we havera(P*) = (0, 1].

REMARK 2.18. The equivalence is realised by means of the one-parameter family of
unitary operators ' '
W) =e™Pe™™ 0o <1 <o00.
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The (strong) limitsW. of W(r) ast — =oo are called thevave operatorand S =
Wi W_ is thescattering operatgrwhich is unitary from E(mq) to itself and commutes
with M. The Kato—Rosenblum theorem says that in this case the wave opérat@sist
and are complete, meaning that they are partial isometries with initial dorﬁa'mjLand
range He(P) = Hac(P)Lz(mq). Therefore we hav® i Wy = I, W W} = [Ta(P) and
PWy = WiM (seelRS, Vol. I, pp. 17-19]).

Putting together Proposition 2.6, Corollafy 3.14 and Proposifion] 2.17, we get
Theoreni LIl

3. DIGRESSION SELFRECIPROCAL FUNCTIONS INL2(R+)

Given a continuous functiop on R, andg € C with Req > 0 (or Rep > —1), the
function J¢ = NM~¢ considered in Section 2.2 can be viewed as a version of the
Hankel transfornof ¢, i.e.

00 r/2
(3.1) Jo () :=/ Jp(zﬁ)(;> b (s) ds.
0
We can also define the conjugate transfokras
(3.2) J = XqJX;l
or else
_ 00 f p/2
(3.3) Jp(1) :/O J,,(ZJE)(E) @ (s) ds.

From the asymptotic estimates df(r) we see that the conditions af sufficient
for the absolute convergence of the integ(3.1) @ = 0@ ast — 0" and
(1) = 0(t7b) ast — oo witha < 2Req andb > Req + 1/4. For the integra3) we
have the same conditions with> 5/4 — g anda < 1.

Accordingly, the identity7, f = £f for f = B,[¢] can be rephrased asszlf-
reciprocity property for the functiong andy := x, - ¢, that is,

(3.4) Tuf=%f = Jo=+¢pandJy = £y

LEMMA 3.1. If ¢ € L%(R;) theny € L2(m,) NL2(R) providedRep > 0. Conversely,
if o € L2(m,) andJg = +¢ theny e L2(R).

PrROOFE The first implication is immediate. The second follows from the asymptotic
estimates o, (¢). O

Therefore, we shall study self-reciprocal functions (IR ). Moreover, by a change
of variables the condition§ (3.4) can be recast in the form that the function

2 2
(3.5) o) = 261+1/2tp+l/2(p<’_> _ 2ql/2tp+l/2w<t_>
2 2
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satisfiesKk ¢ = +¢ whereK is the symmetric version of the Hankel transform given by
(0.¢]
(3.6) Ko(t) = / Jp(st)/st (s) ds.
0

For Rep > —1 the simplest solution ak ¢ = ¢ is ¢ (1) = ~/2¢~ Y2, which corresponds
to (1) = t~7 andy (1) = t4~ 1. This solution has already been considered above and does
not belong to B(R_.). We refer to[[Tit, Chap. 9] for an analysis of the equatiop = ¢
in L2(R).
Fora > 0, letS, : L?(Ry) — L%(Ry) be given by(S,¢)(t) := al¢(at). Then
JSa = S1/4J. In particular, since/e™ = e~' we see thaufe " and a~9e7' is a
Hankel transform pair for att > 0. Now, the operatoy is adjoint toJ in the sense that
(W, Jo) = (J¥, ) with (¢1, ¢2) := fg’o $1(t)$(t) dt. Hence, the identity

o o0
3.7) [ a 9e (1) dt = / ale " Yo(t)dt, a >0,
0 0

must hold wheneveyr1, v, is a pair with respect to the Hankel transfosmlIf moreover
Yo is another Hankel transform af, thenf0°° e~ (Yrp —Yro)dt = O foralla > 0 so

thaty» = y» almost everywhere. Therefore the ident3.7) is a necessary and sufficient
condition foryrq, 2 to be a pair with respect to the Hankel transfafir_et moreover

(3.8) YE(s) = /Ool//(t)ts_ldt
0

be theMellin transformof . If there are two constants< b such thaty (z) = O(r~%) as
t — 0t andy (1) = O(t~") ast — oo then the integraS) converges fom the strip
a < Res < b andy *(s) is a holomorphic function in this strip.

REMARK 3.2. IquJrf = Af then one easily checks that

PR G AC R PR N A

fO@ 2 ()
Thus, if» # 1 we havef (0) # 0 and
f(x) ~ fOx~2,  x— oo.

Therefore, if Reg > 0 then the Mellin transforny™ is analytic in the strip O< Res <
2 Reg, and in this region we have

(Tg X)) = fx) = f5(s) = f"(2q —9).
Now, taking the Mellin transform of both sides [n (B.7) we obtain
FA—=s)Y1(s)=T(s+pv;1—p—s).

Note that ifyy = x, - ¢, theny*(s) = ¢*(s + p). Moreover, Mellin transformind (3|5)
gives

¢*(s) = 2927380 (s /2 + p/2 4+ 1/4) = 2512734y (5 /2 — p/2+ 1/4).
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Therefore, if we define the weighted transfor@ts v * andé* as
@*(s) Y (s) ¢ (s)
rs)’ IL's+p)’ I(s/2+ p/2+1/4)°

and take into account thatlp — (s/2+ p/2+1/4) = (1 —s5)/2+ p/2+ 1/4, we have
the following result:

F*(s) == U*(s) = ¢*(s) 1= 2r/2t1

PROPOSITION3.3. The functionsp, ¥, ¢ € L2(R,), related to each other b@), are
jointly self-reciprocal, i.eJ¢ = +¢, JY = £y and K¢ = +¢, if and only if

G =2 A+ p—s), YE)=FP*AL—p—s), ¢*6)==2p*1L—5s).

The sequences;- introduced in (2.26) were our first example of self-reciprocal
functions in L2(R,), in the sense thath” = +hF for alln > 0. Even more interesting
self-reciprocal functions are provided by the conjugate sequepges, € L2(R.),

n > 0, defined for Rep > —1 by

3.9 : 2040 ipp -
(3.9) on(t) = F(”"‘—P‘Fl)e n(2), Y@ = (Xp - o) (@),

and satisfying the conditio,,, ¥,,) = 8,... They are related to the sequenagsby (see
[El Vol. I, p. 192])

" 2r+1p! ~(n+p m(Hh+ R,
#n =1 F(n+p+1)r;)<n—m)(_2)< 2 >

Thus

20tlyl L it p nt—h
Jop = (=D | —=" —oym( Zm —fm )
on =D F<n+p+1>mzzo<n—m)( )< 2 )

which, compared tq (2.10), yields

(3.10) Jon = (=D "¢,, T, = (=1)"y,.
Note that
_ 1-x)"
(3.11) Bq[Wn](x) =(n+ 1)[7—(1 T x)n+2q
so that7, By[¢n] = (—1)"B,[¢.], as expected (cf] (2.28)).
Moreover,
(3.12) @n(s) = P+ D 2F1(—n,s;p+1;2),

n!

which satisfies the functional equation of Proposition| 3.3 because of Pfaff’s identity
(JAAR] Theorem 2.2.5]) which implies

2F1(—n,b;¢;2) = (—1)" 2F1(—n, ¢ — b; c; 2).
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Finally, the orthonormal familye, } of L2(R..) given by

2n! 2
3.13 W(1) = [ /212 P2
(3.13) Gn (1) CET SN t (t9)
satisfies
(3-14) K¢11 = (_1)n¢n’ n > 0.

Thus, the familiesg,, ¥, ¢, furnish a complete characterization of self-reciprocal
functions inL2(R,.) for the Hankel transforms, J, K.

REMARK 3.4. The functiong, are also solutions of the differential equation

2
—1/4
(3.15) g-(”t—2/+t2—4n—2p—2>¢n:o

as one can check using, e.d.] [E, Vol. Il, p. 188]. More specifically, the second order
differential operatoiH given bﬂ

1/ d*  p?>-1/4 ,
3.16 H=-\-——+—5—+1
(3.16) 2( a2t T2 7 )
has for reap > 1 a unique self-adjoint extension o§%CR ;) which has an integer-spaced
spectrum so that

(3.17) H¢p=@n+p+ D¢y, n=0.

For—1 < p < 1thereis more than one self-adjoint extension, one of which, however, still

satisfies[(3.1]7). Comparing (3]14) apd (3.17) one may regard the unitary mappiom
L2(R,) onto itself as a hyperdifferential operator of the formg € p + 1)

(3.18) K = ¢4 exp(—%H)

and acting on a suitable class of analytic functions (se€ [Bar]land [Wo] for a discussion on
this and related correspondences).

4. POLYNOMIAL EIGENFUNCTIONS 0|=73{;'E FORq = —k/2

Although the eigenfunctiorf @) (x) corresponding to the leading eigenvalug) does not
belong to the spact(, (see Remark 1]2), we shall see that explicit expressions(fpr
and f 9 (x) can be obtained when= —k/2 with k a non-negative integer. Note that these
values correspond exactly to the simple pole$’624) and thus, by[(Z2]8), to the-values

1in guantum mechanics this corresponds to the &tihger operator for a two-dimensional isotropic
harmonic potential (seE [RS, Vol. II, p. 161]).
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where the measure, has an infinite mass. On the other hand /e —k/2 the operators
P take the form

4 . K X 1
= [ e o(2)]

so that they leave invariant the vector sp@ézo Cx" of polynomials of degree k. In
particular, we expect =%/ (x) to be a polynomial of degreewith real coefficients.
To warm up, a direct calculation yields

O =1, AMO0) =2,
FEVD () = x + 1, A(=1/2) =3,
FV@) =x2+ ‘/1_72_ Loy 1, M=) = 5+T\/1—7
¥ =x3+ 202+ 20 + 1, M=3/2) =1,
) =x*+ —\/l_lj_ lx3+3x2+ @-xﬁ-l, M=2) = M+T\/l_13

To say more we first need the following result.

LEMMA 4.1. The(k + 1) x (k + 1) real positive matrixM; defined as

i
<, l) if i < j,
j—i

M (i, j) =2 fi=j, ©0=ij=<h

(’,) if i > J,
J
has the following properties:

(i) the symmetrwi, (i, j) = My (k — i,k — j) holdsforall0 < i, j <k;
(ii) the sums; of the entries in row equals2’ 4 2¢—/;
(iii) the sumr; of the entries in columri equals(’]‘.ﬁ);
(iv) if My@ = A® with CK1 5 @ := (bg, b1, ..., br)T andr # 0thend is either a

palindrome or a skew-palindrome, i&. = +b;,_; for0 <i < k;

(V) o(My) c Rforall k e NU{0};

(vi) 1 € o(My) forall k € N.

PrRook (i)—(iii) follow by direct computation. To prove (iv) we write the eigenvalue
equation componentwise:

k
M =Y MG, )b (0=<i<kh),
j=0

which yields, using the symmetry (i),

k k k
Mog—i =Y Mk—i j)bj=> Mk—ik—jbp_j=> MG, j)bj
=0 j=0 j=0

J J J
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so thatMy® = A if and only if M@’ = A®’ with @' := (by, bi_1, ..., bo)T. If X is
(geometrically) simple thetp = +&’ because|®| = ||®’| where|| | is the euclidean
norm in Ck+1, In other words@® = +&’ is a necessary and sufficient condition fbr
and®’ to be linearly dependent. Assume now that®d = 1@ with A of geometric (and
thus algebraic) multiplicity greater than 1.df and®’ are linearly dependent then we are
done. Suppose they are not. Then the veclars= @ + @’ should also be two linearly
independent eigenvectors. But this is impossible bec#jse: +¥. . This concludes the
proof of (iv).

As for (v), we observe thatf; is symmetric and for each > 2 it is not difficult to
realise that one can construct recursively a positive symmgtricl) x (k + 1) matrix Ny
such that the produd; Ny is symmetric as well. For instance fbr= 4 one gets

2 4 6 41 1 13 1 7 1
1 2 3 31 13 1 3 2 13
Ma=|1 2 2 2 1|, N=|1 3 3 7 1
1 33 21 7T 2 7 1 7
1 4 6 4 2 18 13 1 7 1

Then apply Theorem 1 ia[DH]. Finally, the vectdr= (1,0, ..., 0, —1)7 always satisfies
M ® = &, which yields (vi). m|

REMARK 4.2. If one defines a pseudo-scalar produebos (bo, b1, ..., b)) and¥ =
(co,c1,...,cp)T as(@, W) = Zi'{:obizk—i then the symmetry stated in (i) amounts to
(M ®, V) = (D, MleI/). Moreover, (iv) implies that itM;® = A® with A # 0 then
(@, @) = £|||%

THEOREM4.3. Letq = —k/2, k > 1. The polynomial
4.1 = bix'
(4.1) f@ ; (l) i

satisfieSP;tf = Af with A # 0if and only if the vectod = (bo, b1, ..., b;)"T satisfies
M;® = A® and is either a palindrome ('rP;f = 1Af) or a skew-palindrome (iP," f
= Af).

COROLLARY 4.4. The eigenvector corresponding to the simple positive maximal
eigenvalue.(—k/2) of My, is always palindromic and we have the bounds

s—=1+h<i<S-1+1/g
where

2k/2+l 4 2k/2—1, k even,

. ok —min S —
S = miaxS, =241 s:= milnS, =) 2k+12 4 k12 odd.

and

—5+ 2+ /52 + A4S —5) S—2+4 /82 -4 —5)
> 8= .
2

2(s — 1)
PrROOF Put together the above and [MM, p. 155, eq. (9)]. O
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PROOF OFTHEOREM[4.3. Set
(4.2) fx)= apx® + akflxk_l + -4+ aix + aop.
The conditionJ, f = =£f implies that the sequence of coefficients is either a

palindrome or a skew-palindrome, i®. = +a;_; (0 < i < k). Inserting the function
f (x) written above into[(2.24) with = —k/2 andk > 1 we get

k i .
(4.3) A Zaixi = Zai Z <;) (xd £ xk7)y
= i=0 =l

which in both cases yields
(4 4) — : l : l (() <] < k)
. Aa; = E a; + E a 1 .
! =0 k - l ! Y l !

Defining new coefficients; so that

@5) ai = (’?)b,» ©0=i<hk

1

and using the identities

k—1\ [k k\ (i N [k k\ (k—i
. =1. and | . =1. .
<k—l)<l> (l)(l) (l)(l> (l)(l—l)
we see that the above recursion becomes

i . k )
(4.6) Ab; =Z<;>b,+2<’;_;)m 0<i<h),
0 =i

=l

and the proof is complete. O

ExamMPLE 4.5. Fork = 4 we find

ll+«/ll3lll—\/ll3 1 1}
2 s = 2 s T A T

SP(Ma) = {
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and the corresponding eigenvectors are

1 1 1
J/113-1 V11341
16 0 16

D1 = 1/2 , D= 0|, @3= 1/2
Vi13-1 0 JVII3+1
16 1 16
1 1
3 0
0 -1
Pp=|-2|, &5= 0
0 1
3 0

Therefore the spectrum af, yields three eigenfunctions fd?fz:

v/113-1 V/113-1
hi(x) = x4+ Tx3 +3x%+ Tx +1,

v/113+ 1 /11341
h3(x) = x4+ T+x3 +3x%+ T+x +1,

ha(x) = —3x*+ 12 -3
and two eigenfunctions faP_,:
ho(x) =x*— 1,  hs(x) = 4x(1—x?).

REMARK 4.6. Eigenvectors oM, corresponding to the eigenvalue 1 are related to the
period functions for the modular group (see [CM]). In particularifer N the eigenvectors
(1,0,...,0,—1)7 correspond to the fixed function$ — 1 of P:k/Z which yield the even

part of the period functions corresponding to holomorphic Eisenstein forms of weight

The odd parts are computed below in Proposifion 4.7. Other linearly independent (skew-
palindromic and palindromic) eigenvectors with eigenvalue 1 are expectédfot0, as

they are related to (the even and odd parts of) holomorphic cusp forms [A].

For the sake of completeness we end with the following result, a version of which is
contained in[[CM].

ProOPOSITION4.7. Let B,, denote them-th Bernoulli number. Fork € N U {0} the
function f; (x) € @F*, Cx" given by

n=—

LSk Byy1Bry1n "
fk(x).:T(l+xk)+(—l)kk! > s

n+Dlk+1—m!"

—1<n<k+1

satisfieg?fk/sz = f; for k even andf; = O for k odd.
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Two examples are

Y Y O
.fO(X)—1—2|:x+;—3], fz(x)—360|:5x (x +x)i|.

Note that fork > 1, the odd parts of the period functions mentioned in Reinaik 4.6 can be
expressed aé‘l—(fk(x) — LR 1+ x)) [zaT).

PROOF OFPROPOSITION4.7.  Consider the functioti, (x) defined for Rg > 1 by

Yy (x) = qu)(l—f- —2q)+ Z (nx—}—m)_z".

n,m>1

It is shown in [Za2] that the functioi, (x) has an analytic extension into the complex
g-plane with a simple pole at = 1, and the analytic continuation satisﬁ@ .24) with the
+ signandh = 1forallg € C\ {1}. Note that if Rgy > 1 theny, (c0) = 5¢(29).

The proof then amounts to showing that fpr= —k/2 the analytic extensmn of the
function v, is preciselyf. This is achieved using standard Mellin transform techniques:
start from the identity

Z (nx +m)—2q — %f“ Z ot (nxtm) 291
q

n,m>1 n,m>1

dt.
F<2q>f D=5
Recalling that

we get

Z (nx—i—m)*Zq = T2q) Z / Ck(x)thqu Lar

n,m>1
with c_p = 1/x, c_1 = —3(1+ 1/x), and fork > 0,

Bn+1 Bk+l—n n

cr = Z X
—1§n§k+1(n + Dk +1—n)!

Now I"(2¢) has simple poles ai2= —k withk = 0, 1, 2, ..., with residueg—1)* /k!. On

the other hand, the above integral has simple poleg at 2k withk = -2, -1,0,1, ...,

the residues being.. Therefore the analytic continuation@n,mﬂ(nx + m)~% has only
two simple poles aj = 1 andg = 1/2 and the claimed expression ffrfollows by taking

the limit 29 — —k with k € N U {0}. The last assertion is a consequence of the identity
¢(—k) = —Byy1/(k + 1) for k odd. O
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