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Differential geometry. — A metric on shape space with explicit geodesigsLAURENT
YOUNES, PETERW. MICHOR, JAYANT SHAH and DaviD MUMFORD.

ABSTRACT. — This paper studies a specific metric on plane curves that has the property of being isometric to
classical manifold (sphere, complex projective, Stiefel, Grassmann) modulo change of parametrization, each of
these classical manifolds being associated to specific qualifications of the space of curves (closed-open, modulo
rotation etc.). Using these isometries, we are able to explicitly describe the geodesics, first in the parametric
case, then by modding out the parametrization and considering horizontal vectors. We also compute the sectional
curvature for these spaces, and show, in particular, that the space of closed curves modulo rotation and change
of parameter has positive curvature. Experimental results that explicitly compute minimizing geodesics between
two closed curves are finally provided.
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INTRODUCTION

The definition and study of spaces of plane shapes has recently met a large amount of
interest[[2[ 5[ 7, 10, 18, 15], and has important applications, in object recognition, for the
analysis of shape databases or in medical imaging. The theoretical background involves
the construction of infinite-dimensional manifolds of shapées [7, 15]. The Riemannian
framework, in particular, is appealing, because it provides shape spaces with a rich
structure which is also useful for applications. A general discussion of several classes of
metrics that can be introduced for this purpose can be foundin [11].

The present paper focuses on a particular Riemannian metric that has very specific
properties. This metric, which will be described in the next section, can be seen as a
limit case of one of the classes studied [inl[11], and would receive the Fbgl in
the nomenclature introduced therein. One of its surprising properties is that it can be
characterized as the image of a Grassmann manifold under a suitably chosen Riemannian
submersion. A consequence of this is the possibility to derive explicit geodesics in this
shape space.

A precursor of theH; o, metric has been introduced in [18.]19] and studied in the
context of open plane curves. It has also recently been usédlin [12]. Because the metric
is placed on curves modulo changes of parametrization, the computation of geodesics
naturally provides an elastic matching algorithm.

The paper is organized as follows. We first provide the definitions and notation that
we will use for spaces of curves, th# ., metric and the classical manifolds that will
be shown to be isometric to it. We then study some local properties of the resulting
manifold, discussing in particular its geodesics and sectional curvature. We finally provide
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experimental results for the numerical computation of geodesics and the solution of the
related elastic matching problem.

1. SPACES OF CURVES

Throughout this paper, we will assume our plane curves are curveséoitigexplaneC.
Then real inner products and»22 determinants of real 2-vectors are given{byy) =
Re(xy) and detx, y) = Im(xy).

We first recall the notations for various spaces of plane curves which we will need,
some of which were introduced in the previous paper [11]. For all questions about infinite-
dimensional analysis and differential geometry we refer to [9]. By

Immgp = Imm([0, 2], C)

we denote the space @f*°-immersionsc : [0,27] — C. Here ‘op’ stands foilopen
curve B, op is the quotient of Immy, by the group Diff ([0, 27]) of C* increasing
diffeomorphisms of [027]. Next

Immey(S1, ©),  Immog(st, ©)

are the spaces @f>™-immersionsc : St — C of even respectivelyodd rotation degree.
Here, S is the unit circle inC, which will be identified in this paper t&/(27Z). Then

B; ev and B; o4 are the quotients of Img, respectively Imrpqg by the group Diff (S1) of

C® orientation preserving diffeomorphisms $¥. For exampleB; o4 contains the simple
closed plane curves, since they have ingéxor —1 (depending on how they are oriented).
These are the main focus of this study. To save us from enumerating special cases, we will
often consider open curves as definedsdrbut with a possible discontinuity at 0. We will

also consider the quotients of these spaces by the group of translations, by the group of
translations and rotations, and the group of translations, rotations and scalings.

Using the notation of[ [11], we can introduce the basic metric studied in this paper
on these three spaces of immersions, lmddulo translations as follows. ldentify
T.(Imm/trans) with the set of vector fields : S — C alongc modulo constant vector
fields. Then we consider the limiting case of the scale invariant metric of Sobolev order 1
from [11, 4.8]:

: 1
(1) Go(h, hy = gMmmseallooy py — —/ |Dsh|? ds
£(c) Js1

where, as in[[11]ds = |cg|d6 is arc-length measurd); = D, = lco| =10y is the
derivative with respect to arc-length, ab@) is the length ot. We also recall for later use
the notatiorw = c¢y/|cg| for the unit tangent vector, and, as multiplication:bg rotation
by 90 degrees; = iv for the unit normal. Note that this metric is invariant with respect
to reparametrizations of the curvehence it induces a metric which we also @albn the
quotient spaces; op, B; ev and B; o4 also modulo translations.

The geodesic equation in all these metrics is a simple limiting case of those worked out
in [11]. Suppose (9, t) is a geodesic. Then

-1 1 2 T YERY 1—2 -2
¢y = Dy ~({Dscy, v) Dyer — §|DsCt| v)) — ((Dscr, v))er — §(|Dscz| YDy “(kn).
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Here the bar indicates thaverageof the quantity over the curve i.e. (F) = ¢~ 1 [ Fds.
Unfortunately, this case was not worked out [in/[11], hence we give the details of its
derivation in Appendix |. The local existence and uniqueness of solution to this equation
can be proved easily, essentially because of the regularizing influence of thé);ér.m
This will also follow from the explicit representation of these geodesics to be given below,
but because of its more general applicability, we give a direct proof in Appendix I.

It is convenient to introduce th@omentun: = —Df(c,) associated to a geodesic.
Using the momentum, the geodesic equation is easily rewritten in the more compact form:

[ 1 —_—
ur = —(u, Dscrv — ((DSCtﬂ v) — {{Dscr, U>>)” - §(|Dsct|2 + <|DsCt|2))K(C)”~

By the theory of Riemannian submersions, geodesics on the quotient sRiaaes
nothing more thahorizontalgeodesics in Imm, that is, geodesics which are perpendicular
at one and hence all points to the orbit of the group of reparametrizations. As is shown
in [11], horizontality is equivalent to the conditian = an for some scalar function
a(9, t). Substitutingu = an and taking the:-component of the last equation, we find
that horizontal geodesics are given by:

K (c)

ar = —a((Dsc, v) — ({Dscr, v))) + T(|Dsct|2 + (IDsct[2).

From the inequality

lc: (01, 1) — ¢; (6o, 1)] SfCIDs(Cz)Ids =< \/Z,//CIDS(CI)Ist,

we can easily deduce that the geodesic distance on/Ifmems) is larger than the. >
distance between the curves (optimized over translations).

There are several conserved momenta along each geodesie(9, r) of this metric
(seell1l, 4.8]): The ‘reparametrization’ momentum is

2 (o D2oclcol

—(cp, ct)lcol,

g(c) [% s,ctt 0

which vanishes along all horizontal geodesics. The translation momentum vanishes
because the metric does not feel translation (constant vector fields @lofige angular

momentum Is
-1 . 2 1
— (i.c, D .c;)ds = — Kk{v, c;)ds.
L(c) Js1 ’ L(c) Jst

Since the metric is invariant under scalings, we also have the scaling momentum
-1
E(c) st

So we may equivalently consider either the quotient space/tnamslations or consider

the section of the translation actign € Imm : ¢(0) = 0}. In the same way, we may

either pass modulo scalings or consider the section by fi&ng = 1, since the scaling

momentum vanishes here. Finally, in some cases, we will pass modulo rotations. We could

consider the section where angular momentum vanishes: but this latter is not especially
simple.

(¢, D2 c;)ds = 3 1ogL(1).
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2. THE BASIC MAPPING FOR PARAMETRIZED CURVES

2.1. The basic mapping

We introduce three function spaces:

Vop = Vector space of alC> mappingsf : [0, 27] — R,
Vev = Vector space of alC> mappingsf : St — R such thatf (0 + 27) = £(6),
Vod = Vector space of alC> mappingsf : S* — R such thatf (8 + 27) = — £ ().

All three spaces have the weak inner product with norm

2

I£1I% = A f(x)2dx.

Givene, f from any of these spaces, the basic map is
1 [? . )
D (e, f)r>cO) = E/ (e(x) +if(x))“dx.
0

The mape so defined carries [@x] or S1 to C. It need not be an immersion, however,
because and f might vanish simultaneously. Define

Z(e, f)=1{0 1 e(®) = f(¥) =0}
Then we get three maps:
{(e, f) e Vx x Vy i Z(e, f) =@} — Imm,  forx = op, ev, od.

Looking separately at the three cases, define first the spﬁ(@r&,) to be the set

of (e, f) € V& such thatlle]? + || f[? = 2. S’(V%) is defined as the subset where
Z(e, f) = 9. Then the magic of the map is shown by the following key fact [18]:

2.2. THEOREM. @ defines a map
@ : S(VE) — {c € Immgp : £(c) = 1, ¢(0) = O} = Immgp/(transl, scalings

which is an isometri2-fold covering, using the natural metric 0& and the metric
Gimm,scall,oo on |mm0p_

PROOF The mapping® is surjective: Giverr € Immgp with ¢(0) = 0 and{(c) = 1, we
write ¢/ (1) = r(u)e'*™. Then we may choos&u) = +/2r(u) coSa(u)/2) and f (u) =
V2r @) sin((u)/2). Since 1= £(c) = [Z7 |/ )| du = [ r(u) du we see that

2
lell®>+ I 1% = fo 2r(u)<co§<&2”)) + sinz(%)) du = 2.

The only choice here is the sign of the square root,®.é-¢, — f) = ®(e, f), thus®d
is 2:1.
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To see thatd is an isometry, letb (e, f) = ¢ = x + iy andéc = éx + i§y. Then the
differential D® (e, f) is given by

%
2) D® (e, f): (8e,8f) — 8c(0) =/ (Se +i8f)(e+if)do.
We haveds = 3|e + if|2d6. This implies first that(c) = (lell? + | f1?)/2 = 1 as

required. Then

2(e +if)(Se +isf)

D;(8¢c) = |€+if|2

3

1 27 2
G.(5¢,8¢) = 5/ |Dx<ac>|2ds=/ |8e 4+ i8f12d6 = ||(Se, 5F)1°.
0 0

The dictionary between pairg, f) and immersiong connects many properties of
each with those of the other. Curvaturgvorks out especially nicely. We list here some of
the connections:

G =L@ D, v=Dyo =
d@—C@—Ze 19, v = Ds(c) =

(e +if)?
e2 4 f2°

and if Wy (e, f) = efy — feg is the Wronskian, then

_((e+if)2> L Wale, ).
Vg = =2 "
%

2+ f2 2+ 2"
hence
W ’
= 2M for the curvature ot.
(32 + f2)2

2.3. Geodesics leaving the space of immersions

Since geodesics on a sphere are always given by great circles, this theorem gives us the
first case of explicit geodesics on spaces of curves in the metric of this paper. However,
note that great circles in the open p&Ptare susceptible to crossing the ‘bad’ part S
somewhere. This occurs if and only if there exig@tsuch that(e + if)(#) and (se +
i3f(9)) have identical complex arguments modeioSo we find that our metric on Imm
isincomplete

We can form a commutative diagram:

2-fold

D : SO(Vozp) Immep/(transl, scalings

@ : S(VE) — ([0, 27], C)/(transl, scalings
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where we have denoted the extenddby &. For rather technical reasom is not
surjective: there are pathological non-negai/& functions which have n@ > square

root (seel[8], e.g.) But what this diagram does do is give some space of maps to hold the
extended geodesics. The example:

e(x,s)+if(x,s) =(x +is)/VC, —-mw<x<m-1<s<1, C=24a°/3+ 2as?
c(x,s) = (x3/3—s%x +isx?)/C —is/2 (suitably translated)

is shown in Figur¢]1. This is a geodesic in which all curves are immersions#00, but
¢x(x,0) has a double zero at= 7.

A
\///

FiG. 1. The generic way in which a family of open immersions crosses the hypersurface #vhéré. The
parametrized straight line in the middle of the family has velocity with a double zero at the black dot, hence is
not an immersion. See text.

2.4. The basic mapping in the periodic case
Next, consider the periodic cases. Here we needtlefel manifolds
St(2, V) = {orthonormal pairge, f) € V x V}, V = VgyOr Voq,

andSt°(2, V) the subset defined by the constraifte, f) = @. For later use, it is also
convenient to note that(2, V) = {A € L(C, V) : ATA = Idc} whereL(C, V) is the
space of linear maps fro to V and (AT v, w)c = (v, Aw)y. For (e, f) € SO(VOZP),
when isc = @ (e, f) periodic? If and only if

(A) ¢ =3(e+if)? isperiodic, sothat, f € Vey Or Vog;

21 1 2 21
(B) 0=f ¢ (u)du = —/ (ez—fz)du—i—if ef du.
0 2 Jo 0
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Condition (B) says thalle||? = || f]2 = 1 (since the sum is 2) an@, f) = 0, so that

(e, f) € SP(2, Vey) Or (e, f) € SP(2, Vog). Recall that the index of an immersed curve

c is defined by considering lg@g’). The log must satisfy log’ (9+27)) = log(c’(8))+27n

for somen and this is the index. So this index is even or odd depending on whether the
square root ot’ is periodic or anti-periodic, that is, whether f are both inVgy or in

Vod. S0 if @ is restricted tBt2(2, Vey) or SP(2, Vog) (and is still denotedp), it provides
isometric 2-fold coverings

@ SP(2, Vey) = {c € ImMey(SE, C) : ¢(0) = 0, £(c) = 1},
@ : SO2, Vog) — {c € Immyg(SE, C) : ¢(0) = 0, £(c) = 1}.

Allthree of these map# can be modified so as to divide out by rotations. The mapping
(e, ) — €e'Y(e+if) produces a rotation of the immersed cu®é&, f) through an angle
2¢. The complex projective spa&P(Vozp) is S(Vozp) divided by the action of rotations, and

we denote b)CPO(Vozp) the subset obbtained by dividiriﬁ(vgp) by rotations. The group
generated by translations, rotations and scalings will be called the grosimittudes
abreviated as ‘sim’. Then we get the variant

@ : CPY(VZ) — Immop /(sim).

Similarly, letGr (2, V) be the Grassmannian of unoriented 2-dimensional subspaces of
Vv and letGr°(2, V) be its subset containing all subspa®ésvith Z(W) = @for V = Vey
or V = Vuq. Then we have maps

@ : Gro2, Vey) > Immey/(sim), @ : Gro2, Voq) — Immog/(sim).

For later use, we describe the tangent spaces of these spaces. The tangeh €pace
toGr(2, V) atW € Gr(2, V) is naturally identified with. (W, W) and has the following
norm, induced from that oW':

Iv)1? = tr” o v) = [[v(e) 12 + lv ()2

for v e Tw Gr and{e, f} an orthonormal basis d¥. Similarly, T(,, ) Stcan be naturally
identified with pairqéde, 81} in V such thate, §e) = (f, §f) = (e, 8f) + ([, Se) = O with
norm

I(Se. 8A)I1% = lIell® + 181 11%.
The same definition holds fdi. 1) (S), this time with the constrair(e, Se) + (f, §f) = 0.

3. THE BASIC MAPPING FOR SHAPES

3.1. Dividing out by the group of reparametrizations

Let C** ([0, 27]) be the group of increasing diffeomorphismsof [0, 2] (so that
¢(0) =0, ¢(27) = 27) and letC>*(R) be the group of increasing™ diffeomorphisms
¢ : R — R such thatp(x + 27) = ¢(x) + 27 for all x. Modulo the central subgroup of
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translationsp(x) = x + 27n, the second group is jusiff +(s1). Forv = Vops Vev, Vod
let U (V) be the group of unitary maps dngiven by

0 _ ; (/RS COO’+([O, 27'[]) |f V = Vop,
fe = \/a(f o), Wwhere {(ﬂ € C®T(R) if V= Vey, Vod.

These are the reparametrization groups for our various spaces. The infinitesimal action of
a vector fieldX on [0, 2] or a periodic vector fieldl on St is then

®) [ 3Xo - f+X-fo

For all three sets of isometrigs, we can now divide each side by the reparametrization
groupU (V). For open curves, we get a diagram

@ : SA(VE)/U(Vop) 2fold_ g, op/(transl, scalings

| |

@ : CP(VZ)/U(Vop) ————— Bj op/(sim)

and a similar one for closed curves of even and odd index wHete Vey, Vog andB =
Bi ev, Bi od:

@S2, V) UWV) 214 g/ (transl, scalings

| .

@ :Gro2, vy uw) B/(sim)

Here we have divided by isometries on both the left and right/ly) or U (V) x St
on the left (whereS?! rotates the basié, f}) and by reparametrizations and rotations
on the right. Thus? is again an isometry if we make both quotients into Riemannian
submersions. This means we must identify the tangent spaces to the quotients with the
horizontalsubspaces of the tangent spaces in the larger space, i.e. those perpendicular to
the orbits of the isometric group actions. F&ir this means:

3.2. RRoPOSITION The tangent vectode, 51} to St satisfies
(3e,e) = (3f, /Y =0, (e, f)+(3f.e) =0.
It is horizontal for the rotation action if and only if
bothéde, §f are perpendicular to both, f.
It is horizontal for the reparametrization group if
Wo (e, de) + Wo(f,8f) =0

whereWy (a, b) = abg — bay is the Wronskian with respect to the parameter
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PrROOF Consider the action of rotations, which is one-dimensional, with ogbits>

e'P (e + if); the direction afe, f) is chosen ag— f, ¢). So (Se, §f) being horizontal at

(e, f) for this action means that( f, de) + (e, §f) = 0. This proves the first assertion.
For the action o/ (V), one has to note that horizontal vectors must satisfy

(3Xo-e+ X -eg.8¢)+ (3Xo - f+X - fo.8) =0

for any periodic vector fieldX on R, which yields the horizontality condition after
integration by parts of the terms Ky . |

Horizontality on the shape space side means (see [11]):

3.3. ROPOSITION & € T.lmm(S%, C) is horizontal for the action obiff ($1) if and
only if D2(h) is normal to the curve, i.gw, D2(h)) = 0.

3.4. RROPOSITION For any smooth patle in Imm(S1, R?) there exists a smooth path
¢ in Diff (S1) with (0, -) = Idg depending smoothly ansuch that the patl given by
e(t,0) = c(t, p(t, 0)) is horizontal:(D?(e;), eg) = 0.

This is a variant ofi[11, 4.6].
PrROOF Writing D, instead ofD; we note that

Deog(f o9) = 2220 _ (p ()0
lcg o @l - g
for ¢ € Diff *(SY). So we haveL,, cop(f 0 ) = (Ly.cf) 0 @.
Let us writee = c o ¢ for e(z,0) = c(¢, p(¢, 0)), etc. We look forp as the integral
curve of a time dependent vector figd¢, #) on 1, given byy, = £ o ¢. We want the
following expression to vanish:

(DZ,,(3:(c 0 9)), dp(c 0 @) = (DZ,,(c; o ¢ + (co 0 @) 91), (ch 0 9) Pp)
= (DZ(c;) o ¢ + DZ(co) 0 9. ch 0 )
= ((DA(cy), o) + (D2(5cp). cp)) © ) go.

Using the time dependent vector figdd= —ﬁDJz((DE@z)’ v)) and its flowg achieves
this. O

3.5. Bigger spaces

As we will see below, we can describe geodesics in the ‘classical’ s, St, Gr
quite explicitly. By the above isometries, this gives us the geodesics in the various spaces
Imm, B;. But, as we mentioned above for the spa&;egeodesics in the ‘good’ parts
L, cP, s, Gr@ do not stay there, but they cross the ‘bad’ part whete, f) # ¢. Now
the basic mapping is still defined on the full sphere, projective space, Stiefel manifold or
Grassmannian, giving us some smooth mappings @0 or S* to C, possibly modulo
translations, rotations and/or scalings.

But when we divide byJ (Vop), a major problem arises. The orbitsidf Vop) acting on
C*°([0, 2], C) are not closed, hence the topological quotient of the sg&ed0, 2x], C)
by U (Vop) is not Hausdorff This is shown by the following construction:
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(1) Start with aC* non-decreasing map from [0, 2rr] to itself such thaty (9) = = for
6 in some interval .

(2) Lety,(0) = (1—1/n)y(0)+6/n. The sequencl),} of diffeomorphisms of [027]
converges tay.

(3) Then for any € Immgp, the maps: o ¥, are all in the orbit ot. But they converge to
¢ o ¢ which is constant on the whole intervglhence is not in the orbit.

Thus, if we want some Hausdorff space of curves which (a) have singularities more
complex than those of immersed curves and (b) can hold the extensions of geodesics in
some spacea3; which come from the mag, we must divideC* ([0, 2], C) by some
equivalence relation larger than the group actiontbyy). The simplest seems to be:
first define amonotone relatiorR C [0, 2x] x [0, 2] to be any closed subset such that
p1(R) = p2(R) = [0, 2] (p1 and p2 being the projections on the axes) and for every
pair of points(s1, 1) € R and(s2, t2) € R, eithers; < sp ands; < # or vice versa. Then
/g : [0,2r] — C areFréchet equivalenif there is a monotone relatioR such that
f(s) =g() forall (s,7) € R.

This is a good equivalence relation becauséfif}, {g.} : [0,27] — C are two
sequences and limf, = f,lim, g, = g and f,,, g, are FEchet equivalent for alt, then
/. g are FEchet equivalent. The essential point is that the set of non-empty closed subsets
of a compact metric spacé is compact in the Hausdorff topology (sé€é [1]). ThuéRf,}
are the monotone relations instantiating the equivalengg ahdg,, then a subsequence
{R,, } Hausdorff converges to sonie C [0, 2] x [0, 2] and it is immediate thar is a
monotone relation making andg Fréchet equivalent.

Define

Brig,op = C*([0, 2], C)/(Fréchet equivalence, translations, scalings

Then we have a commutative diagram

@ : S (V2) — Bjop/(transl, scalings

D : S(Vozp) —— > Bhig.op

Thus the whole of a geodesic which enters the ‘bad’ par@f,,) creates a path in
Byig,op- Of course, the same construction works for closed curves also. We will see several
examples in the next section.

4, CONSTRUCTION OF GEODESICS

4.1. Great circles in spheres

The spaceéS(V2) being the sphere of radiug2 on V2, its geodesics are the great circles.
Thus, the geodesic distance betwgeh ©) and(e!, f1) is given by+/2 D with

D = arccos((e?, ¢}) + (f°, f1))/2)
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and the geodesic is given by

_ sin((1 —t)D) O sin(t D) o

e(t)

sinD sinD
_si((1—1nD) o, sineD) .
O =G0 snp '

The corresponding geodesic on Igymodulo translation and scaling is the time-indexed
family of curvest — c(u, t) with

dc/du = 3(e(t) +if (1)? = (e(t)? = f()?)/2+ie() f(©).
The following notation will be used throughout this section:
co(u) =c(u, 0), cl(u) =c(u,l),
3¢%/0u = ro()e’®* @, 3t /ou = ri(u)e’® ™,
so thate/ = ,/2rj cos(a’//2) and f/ = ,/2rj sin(a’/ /2) for j = 0, 1. Thus the distance
bis 2r al — o0
Dop(c?, ¢*) = arccos NEE cos du.

The metric on Imrg, modulo rotations is

2n 10 _
0 1 ; o [0 [
Dop rot(c”, ¢7) = infarccos rory CoS————— du
o
0
al —ad 1_40

2t o . 0T —o . o
= arccos su Jrori| cos cos— + sin sin= | du
= o 2 2 2 2

27 ol — o 2 2n Cal g0 2\ 1/2
= arcco rori COS du| + rori Sin > du .
0 0

2

The distance oiB; op is the infimum of this expression over all changes of coordinate
for c0. Assuming that? andc! are originally parametrized with/2r times arc-length so
thatrg = 1/27, r1 = 1/2x, this is

10¢—C¥O

1 2
(4) Dop diff(c®, c1) = arccos sup— / g cos> do
¢ 27 Jo 2

and modulo rotations

1 for 1. .0 2
Dop i rot(c, 1) = arccos sué(— / b0 cos? ¢~ de)
¢ 27[ 0 2

1 (20 1 _ .0 2\ 1/2
+ —f \/(nginmdQ .
2 0 2

The supremum in both expressions is taken over all increasing bijectiong
C>([0, 2r], [0, 27]).
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To shorten these formulae, we will use the following notation. Define

o d 1O ]
C_(¢) = %/0 \/%cos% de,

2 alo¢_a0
2

&(qﬁ):% 5 e Sin de.

Then we have

Dop diff = igf arccosC_(¢)),

Dop,diff,rot = inf arccos(y/(C—(#))2 + (S—($))2).

4.2. Problems with the existence of geodesics

These expressions give very explicit descriptions of distance and geodesics. We have
already noted, however, that even if ba#?, /%) and (¢!, f1) belong toS°, the same
property is not guaranteed at each point of the geodegics) = f(«, t) = 0 happens

for somer whenever(e®(«), %)) and (el(a), f1(a)) are collinear with opposite
orientations. This is not likely to happen for geodesics joining nearby points. When it
does happen, itis usually a stable phenomenon: for example, if the geodesic Sres3®s
transversally, as illustrated in Figure 1, then this happens for all nearby geodesics too. Note
that this means that the geodesic spray on gisinot surjective. In fact, any geodesic on
Immg, comes from a great circle @ and if it crosseS — S, it leaves Imngp.

When we pass to the quotient by reparametrizations, another question arises: does
the inf over reparametrizations exist? or equivalently is there li@ra&zontal geodesic
joining any two open curves? In fact, there need not be any such geodesic even if you
allow it to crossS— SC. In general, to obtain a geodesic minimizing distance between
two open curves, the curves themselves must be given parametrizations with zero velocity
somewhere, i.e. they may need to be lifted to pointS inSP.

This is best illustrated by the special case in whi¢his the line segment from 0
to 1, namelye! + if! = 1//7, « = 0. The curvec® can be arbitrary. Then the
reparametrizatiogh which minimizes distance is the one which maximizes

27 o©
/ v/ ¢ COS— dB.
0 2

This variational problem is easy to solve: the optimas$ given by

u aO 2 2 O{O 2
d(u) = 271/ max| cos—, 0 / max| cos—, 0 .
0 2 0 2

Note that¢ is not in general a diffeomorphism: it is constant on intervals where
coga®/2) < 0. Its graph is a monotone relation in the sense of Sen 3.5. In fact, it

is easy to see that monotone relations enjoy a certain compactness, so that the inf over
reparametrizations is always achieved by a monotone relation. Assafhisgepresented

by a continuous function for which27 < o%u) < 27, the result is that the places on
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— X

100-fold blow-up middle

FIG.2. This is a geodesic of open curves running from the curve with the kink at the top left to the straight line
on the bottom right. A blow up of the next to last curve is shown to reveal that the kink never goes away — it
merely shrinks. Thus this geodesic is not continuous irﬂﬁeopology onBop. The straight line is parametrized

so that it stops for a whole interval of time when it hits the middle point and thugitisontinuous in Imrgp.

the curvec® where|o%(x)| > 7 get squashed to points on the line segment. The result is
that this limit geodesic is not actually a path in the sp&cef smooth curves. Figuig 2
illustrates this effect.

The general problem of maximizing the functional

1 2 alo¢_a0
U@p) = E/o o COST

de
with respect to increasing functiogshas been addressed in [17]. Existence of solutions
can be shown in the class of monotone relations, or equivalently, funeitimest take the
form ¢ (s) = (O, s)) for some positive measuye on [0, 2] with total mass less than
or equal to Z (¢y being replaced by the Radon—Nikodym derivativewah the definition
of U). The optimalp is a diffeomorphism as soon as ¢as' (1) —a®(v))/2) > 0 whenever
|u —v| is smaller than a constant (which depends:Bandat). More details can be found
in [17].

It is easy to show that maximizing is equivalent to maximizing

1 (% alo ¢ — af
Ut (¢) = —/ 10} max(cos—, 0) do
2 0 v 2

because one can always modifyn intervals on which cagaeto¢ —a®)/2) < 0to ensure
thatgy d6 = 0. In [18], it is proposed to maximize

_ 1 2
U(¢>=2—f J%o
7 Jo

This corresponds to replacing the kftu) +if (u) by o (u)(e(u) +if (u)) whereo (1) = +
for all u, but this is beyond the scope of this paper.

log—a®

COSa do
> .
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4.3. Neretin geodesics 0Br(2, V)

The integrated path-length distance and explicit geodesics can be found in any
Grassmannian usintprdan angle$13] as follows: If Wy, W1 C V are two 2-dimensional
subspaces the singular value decomposition of the orthogonal projectbrvy to Wy

gives orthonormal baseg?, 19} of Wy and {e!, f1} of Wy such thatp(e®) = Ai.el,

p(fO =xrrfte0 L frandfO L el, where 0< Af, A, < 1. Write A, = COS(Yr,), Af =
cog¥r). Thenyr,, Y are the Jordan angles,© ., ¥y < m/2. The global metric is

given by
AW, Wh = Jy2 + v}

and the geodesic by

_sin((@ — 0)y)e? + sin(ry, et

e(t) siny ’
5 W) = .
®) ® £ = sSin((1 — )Yrp) O + sin(zyry) f1
B sinyy

We apply this now in order to compute the distance between the curves in the
two spaces Impy,/(sim) and Immyg/(sim), as well as in the unparametrized quotients

B; ev/(sim) and B; og/(sim). We write as aboveiyc® = r0(0)ei®°® and dycl =
r1(0)e’® ® We put

0 0
éozx/&ocos%, f°=\/2roSina7,
1 1

el = /2 cos%, fr= \/2rlsina7,

thus lifting these curves to 2-planes in the Grassmannian. XRen2atrix of the orthogonal
projection from the spacg?, 9} to {&1, f1} in these bases is

0 1 o . 1
Js12vrO%tcos% cos% db [ 2v/r0rlcosS sin% do
M(co, cl) =

0 1 0 1
0,1 qjn @ o 041gin% sin4
[s12vrOrlsin% cos% do [ 2vrOrlsing sin% do

It will be convenient to use the notations

0 1

+

Cii= / Vrortcos™ =2 do = J(M( cHp) F M, Do),
51

0 1

a0+

Sy ::/ Vrorising 20‘ 6 = 3(M (% ¢Mor + M(, ).
Sl

We have to diagonalize this matrix by rotating the cu¥®y a constant anglg®, i.e.,
the basige®, f°} by the anglgs®/2; and similarly the curve! by a constant anglg*. So
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we have to replace® by «°® — g% anda! by «! — 81 in such a way that

0_ 0 1 pl
(6) 0= [ Viort sin( (o =F) j; Gl )) d6  (for both signs)
S

B+t B £ Bt
2

— C4Sin >

= S+ Ccos

Thus
Bo £ B1 = 2arctariS+/C4).

In the newly aligned bases, the diagonal element#/¢£°, 1) will be the cosines
of the Jordan angles. But even without preliminary diagonalization, the following lemma
gives you a formula for them:

LEMMA. If M = (25)andCy = 2(aFd), Sx = 3(c £b), then the singular values of

M are
Jez+s2x Je2 52,

The proof is straightforward. This gives the formula

(7) Dodrot(c®, ¢h)? = arccod (\/ §2 +C2 + \/ 52 +C?)

+ arccos (\/SE +C2 - \/SJZF +C2).

This is the distance in the space Igytst, C)/(transl, rot., scalings

4.4. Horizontal Neretin distances

If we want the distance in the quotient spaBgyq/(transl, rot., scalingsby the group
Diff (1) we have to take the infimum df](7) over all reparametrizations. To simplify the
formulas that follow, we can assume that the initial curs®s:! are parametrized by arc-
length so that® = 1 = 1/27. Then consider a reparametrizatigre Diff (S) of one of

the two curves, say’ o ¢:

(8)  Dsimaif(c®, ¢h? = igf(arccoé(xe (®o ¢, ch) +arccod(hr(c®o ¢, 1))

where now

A @09, ch) = \[S2(@) + C29) + /s2(9) + C2 (@),
Ao, ch) = [S2(@) + C2(@) - \/S2(9) + C2 ().
- 1 . (ozoo¢):|:ot1
Si(¢) 1= o /Sl\/qb»gsmfd@,

1 06¢)tal
Ci(d) = Z/;IJ%COSWdG.
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To describe the inf, we can use the fact that geodesics on the space of curves are the

horizontal geodesics in the space of immersions. Consider the geodesite(z), f(¢)}
in Gr(2, V) described in[(p), for

0,4 _ g0 1 1_ g1
L=/ NGl A S S el )
b1 2 T 2

0 0 1_ 4t
foz\/gsin—(a Od;)_ﬁ Cofie Len P

where the rotationg® and 8! must be computed frorf o ¢ andc®. Note that

e = Zj% cos(aooi) -8 f¢3/2( go¢)sin—(a0°¢;) _ﬁo,
et = 2\/_cxgsm ;'81,
£ = 5 ¢f¢9 sin (“OO‘? — ’30 f ¢>%(a0 0 ¢) COS—((XOOQ;) - ﬁo,
f= 255“91(305 1;/31

If the Jordan angles ang. andy¢, then the tangent vector to the geodesie- W(z) at
t = 0 is described by

er(0) = 3yloe = V¢ (e cost - ), fz(0)=8t|of—5|f:// (f1 — cosyy - 1.

By the geodesic is perpendicular to all D§ff)-orbits if and only if the sum of
Wronskians vanishes:

0= Wp(e® e/ (0)+Wa (2, £:(0))

= OSI‘rffpe( e;—COSY, ) — eesm (e'—cosy %)
+f05|m (f —cosys- )~ fg‘)s‘rf; (f*~cosys- /%)
= g Vo W0
:—\/:;_{ngg(Silr/:;e cos(a od;)_ﬂocosal;ﬂl—i-silg;f sin(aoodg_’gosinal;ﬂ1>
— ot Q(SIf;e cos(aoo?_ﬂosinalgﬁl—Sif;f sin (@ oqbz) ﬂocoe 12’31>

2 0 Ve . (@p)—p° al-pl  yy c(a°o¢)—ﬂ°.a1—ﬂ1>}
+¢9(a90¢)(sinwesm > CoSs > _sim/ffco" > sin > .
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This is an ordinary differential equation fgrwhich is coupled to the (integral) equations
for calculating the’s as functions ofp. If it is non-singular (i.e., the coefficient function
of ¢y does not vanish for ang) then there is a solutiod, at least locally. But the non-
existence of the inf described for open curves above will also affect closed curves, and
global solutions may actually not exist. However, for closed curves that do not double
back on themselves too much, as we will see, geodesics do seem to usually exist.

Note that the geodesic distance between distinct curves is always positive. Since we
have noticed in Section 1 that path lengths are always larger thah°thdistance, the
lower bound obtained after reparametrization is tHecRet distance.

4.5. An example

Geodesics in the sphere are great circles, which go all the way around the sphere and are
always closed geodesics. In the case of the Grassmannian, using the Jordan angle basis,
the geodesic can be continued indefinitely using formula (5) above. In fact, it will be a
closedgeodesic if the Jordan anglgs, v, are commensurable. It is interesting to look

at an example to see what sort of immersed curves arise, for example, at the antipodes to
the point representing the unit circle. To do this, we tak@) = ¢'? /27 to be the circle

of unit length, giving the orthonormal basi€ = cog6/2)/ /7, f° = sin@,/2)//7. We

wante?®, f1 to lie in a direction horizontal with respect to these and the simplest choice
satisfying the Wronskian condition is

i0/2 (cos(Z@)
JT U 2

el+ift= —i sin(29)).

The result is shown in Figufe 3.

O O=ee=O O ()
J 8§ =eemeoo
SO0 0 ¢ | (00

FIG. 3. A great circle geodesic aByg. The geodesic begins at the circle at the top left, runs from left to right,
then to the second row and finally the third. It leavgg twice: at the top right and bottom left, in both of which
the singularity of Figurg]1 occurs in two places. The index of the curve changestffiota —3 in the middle
row. See text.

5. SECTIONAL CURVATURE

We compute, in this section, the sectional curvatureBgfq/(sim) (i.e., translations,
rotations, scaling). We first compute the sectional curvature on the Grassmannian which
is non-negative (but vanishes on many planes) and conclude from O’Neill’s formuila [14]
that the sectional curvature @& /(sim) is hon-negative. But since the O’Neill correction
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term is difficult to compute in this setting we also do it in a more explicit way, computing
first the curvature on the Stiefel manifold by Gauss’ equation, then carrying it over to
Immy/(trans). Since this is an open subset in &&het space, the O’Neill correction term
can be computed more easily on Imgmmans) and so we finally get a more explicit formula
for the sectional curvature aBy /(trans).

5.1. Sectional curvature ofsr(2, V)

Let W € Gr(2, V) be a fixed 2-plane which we identify again wiltf. Letn : V — V
be the isomorphism which equalsl on W and 1 onW+ satisfyingn = n~L. Then
the Grassmannian is the symmetric spau@’)/(0(W) x O(W=)) with the involutive
automorphisms ;. O(V) — 0O(V) given byo (U) = nUn. For the Lie algebra in the
V = W @ W'-decomposition we have

-1 0\ /[/x —yT —10_xyT

o 1)J\y U 0 1) \y U
Herex € L(W, W), y € L(W, W). The fixed point group i® (V)° = O(W) x O(W1).
The reductive decompositigh= £ + p is given by

(e N (R R A (M DR |

Letz : O(V) — O(V)/(O(W) x O(Wh)) = Gr(2, V) be the quotient projection.
ThenT,n : p — T, Gr is an isomorphism, and th@(V)-invariant Riemannian metric on
Gr(2, V) is given by

1 1 0 —y{\(0 -y
Gr =—z =75 o o
G, (Temr. Y1, T Y2) = 2tr(Y1Y2) = 2tr (Y1 0 ) <y2 0 )

1 (—yy2 0 1 T 1 T
=—_tr 1 = _tr Ztr
> ( 0 oyl > w(y1 y2) + 5 W (y1y2)

= trw (y1 y2) = (y1(e1), y2(e1))wr + (y1(e2), y2(e2)) o

for Y1, Y2 € p, wherees, e2 is an orthonormal base d¥. By the general theory of
symmetric spaces|[6], the curvature is given by

RS (Tom.Y1, T Yo) Tom Y1 = Tom [ Y1, Y2, Y1l

:[(—y{yz+y§y1 0 ) (0 —yfﬂ
0 —y1ys +y2y;1 ) \y1 O

0 27 yoyl — yIyiyl — yIyiy?
-2 T 4 T + T 0 .
Y1Yp Y1 T Y2y Y1 T Y1Y1 V2
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For the sectional curvature we have (where we assume&’th&p are orthonormal):

Gr(2,v
kepagri vy = — B(Y2, [[Y1, Y2], Ya]) = trw (33 yay{ y1 + 3 y1y{ y2 — 295 y1v3 y1)

1
= S tw (231 = 132" (0731 = ¥132))

1
+ 5 w2y —y12)" 02y1 = y133)

1 1
= Sz y1 = YL y2ll oy ) + SIv261 = y193 I 2gpe oy = O

where L2 stands for the space of Hilbert-Schmidt operators. Note that there are many
orthonormal paird’1, Y2 on which sectional curvature vanishes and that its maximum value
2 is attained whery; are isometries angh = Jyj whereJ is rotation through angle /2

in the image plane of;.

5.2. Sectional curvature olmm/(sim)

The curvature formula can be rewritten by ‘lowering the indices’ which will make it much
easier to express in terms of the immersioifrix an orthonormal basis f of W and let

Sex = yr(e), 8fx = yr(f). Forx,y € W+, we use the notation Ay =x @y — y®x €

WL ® Wt. Then

Gr(2, 1
Kepamtr = ((8€1.8f2) = (8e2, 81))° + S l16ex A Sez + 8f1. A 6fall.

To check this, note that! y1 — y! y, is given by a skew-symmetric 2 2 matrix whose
off-diagonal entry is justdes, §f2) — (Se2, 8f1), and this identifies the first terms in the
two formulas fork. On the other han@,zle is given by a matrix of rank 2 on the infinite-
dimensional spac# . In view of Wt @ W+ c L(WL, W) itis the 2-tensoBe; ® Sep+
3f1 ® 8f2. Skew-symmetrizing, we identify the second terms in the two expressiois for
Going over to the immersion the tangent vectate, +i48f; to Gr becomes the tangent
vectorhy = ¢ = [(Sex + i8fi)(e +if)do to Imm/(sim). To express the first term in the
curvature, we have:

PROPOSITION
(8e1, 8f2) — (Se2,8f1) = / det(Dsh1, Dyho) ds.
c
PrROOF We have

(e +if)(Ser +idfi)
e+ f2

Dy (hi) =

’

hence

Im((8ex — i8f1)(Sex +idf2))
e+ f2

det(Dshy, Dyhp) = Im(Dshy, Dyhy) =

s

hence
/ det(Dshy, Dgho)ds =/ (8e18f2 — Seadf1) db. O
c st
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The second term is not quite So compact: because it is a nofii'ap W+, it requires
double integrals ovel’ x C, not just a simple integral over. We use the notation as above
c(0) = r(0)e'“® Then we have:

PROPOSITION
|6ex A Se2 + 8f1 A (3f2||2 = term1+ term2
terml— / / 1+ coda(x) —a(y) ((Dshl(xx Dyha(y))

2
2 — (Dsh2(x), Dshl(y))> ds(x)ds(y),

CxC

term2= // 1—codax) —a() (det(Dshl(x), Dsh(y))

2
2 — det(Dyho(x), Dshl(y))) ds(x)ds(y).

CcxC
PrRoOF Usingr anda, we have\/Fe*""‘/zDshk = ey + id8fy, hence
Vrr(p)e @O 2D () Dsha(y) = se1(x)dea(y) + 8f1(x)8f2() + i ).
Skew-symmetrizing in the two vectoks, i, we get
Vr)r(y) Refe! “=*ON2(D k1 () Dsha(y) — Dsha(x) Dsha(y)))
= de1(x)de2(y) — dea(x)de1(y) + 8f1(x)8f2(y) — 8f2(x)8f1(y).

Squaring and integrating ovét x 1, the right hand side becomge1 Adez+38f1 A8 12|12

On the left, first write R&! @ —2())/2(...}) as the sum of cdgx (x) —a(y))/2)Re(- - -)
and —sin((x(x) — a(y))/2) Im(---). Then when we square and integrate, the cross term
drops out because it is odd wheny are reversed. O

We therefore obtain the expression of the curvature in Jsim):

. 2
9) kg = ( /C det(Dyhy, Dyho) ds>

n [/ 14 coga(x) —a(y)) ((Dshl(x)» Dsha(y))
2 — (Dsh2(x), Dsh1(y))

2
) ds(x)ds(y)

CxC

N // 1—cosa(x) —a(y) (deT(DShl(X)» D;hz(y))
2 —det(Dsho(x), Dshi(y))

2
) ds(x)ds(y).

CxC

A major consequence of the calculation for the curvature on the Grassmannian is:
5.3. THEOREM. The sectional curvature oB;/(sim) is non-negative.
PrRoOOFE We apply O’'Neill’s formulal[14] to the Riemannian submersion

7 :Gr% - Gro/U(v) = B;/ Diff t(s1),

cryuw 0
kn(rvé) ( )(}(7 Y) — k%}l’ ()(hol’7 YhOl’) + %”[Xhor7 YhOl’]Vel'|W||2 > o’
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where X" is a horizontal vector field projecting to a vector fiefdat 7(W); similarly
for Y. The horizontal and vertical projections exist and are pseudodifferential operators

(se€5.p). ©

5.4. Sectional curvature oB8t(2, V)

The Stiefel manifold is not a symmetric space (as the Grassmannian); it is a homogeneous
Riemannian manifold. This can be used to compute its sectional curvature. But the
following procedure is simpler:

For (e, f) € V2 we consider the functions

_ 1.2 _ 1 2 _ 1
Qile, f) = 2||e|| . Qale, )= 2||f|| . Qsle f) = ﬁ(e, )
ThenSt(2, V) is the codimension 3 submanifold & defined by the equationg; =

02=1/2,03=0.

The metric onSt(2, V) is induced by the metric off2. If £, = (Se1, §f1) andé& =
(8e2, 8f») are tangent vectors at a point#?, we have(£r, £&) = (Seq, Sea) + (8f1, 8f2).
For a functiong on V2 its gradient grag (if it exists) is given by(gradp(v), &) =
de(v)(&) = Dy 9. The following are the gradients ¢f;:

1
gradQl = (ev 0)7 gradQZ = (O’ f)v gradQ3 = TZ(f’ 6)7

and these form an orthonormal basis of the normal bundlgé®oof St(2, V). Let &1, &
be two normal unit vectors tangent &2, V) at a point(e, /). Since V2 is flat the
sectional curvature dbt(2, V) is given by the Gauss formulal [4]:

koal) = (S(v £1). S(E2. £2)) — (S(E1. £2). S(E1. £2))

where S denotes the second fundamental formSif2, V) in V2. Moreover, when a
manifold is given as the zeros of functioi% in a flat ambient space whose gradients
are orthonormal, the second fundamental form is given by

S(X.Y) =) Hr(X.Y) - gradFi
k
whereH is the Hessian of second derivatives. Gigenés € T(., r) Stwith & = (8e;, 8£i),
we have:
Hg, (&1, 82) = (de1,8e2), Hp,(é1,82) = (8f1,0/2),
1

Hg,(81,82) = ﬁ(@el, 8f2) + (8e2, 8f1))
so that

S(&1,&2) = — (8e1, Se2) gradQ1 — (8f1, 2) gradQ»

- %2(@’1, 8ep) + (8eq, 8f>)) gradQs.



46 L. YOUNES- P. W. MICHOR - J. SHAH - D. MUMFORD

Finally, the sectional curvature o6t(2, V) for a normal pair of unit vectorst, » in
T; St(2, V) is given by

(10) ko)) = I8exl®I8eall® + 15/1112115f2]12 + 2(8e1, 8f1) (8e2. 12)

— (8e1, 8e2)® — (8f1. 8f2)° — 3((8ex. 8f2) + (8f1. 8ea))?

L118e1 ® Sex — Ser ® Se1 + 81 ® 8f2 — 8f2 ® 81112

— 3((8e1. 8f2) — (Sea, 8f1))°.

Comparing this with the curvature for the Grassmannian, we see that the O’Neill factor
in this case i%(((Sel, 8f2) + (811, 8e2))2. Moreover, we can write for the curvature of the
isometric Imny(transl, scal)

2
Imm/(transl scal 1
1) g 2 ([ detn., oo s )

N 1 /f 1+ coga(x) —a(y) ((Dshl(x), Dsha(y))
2 2 — (Dsh2(x), Dsh1(y))

2
) ds(x)ds(y)
CxC

N 1 // 1—coda(x) —a(y)) (detDshi(x), Dsha(y))
2 2 —det(Dsho(x), Dshi(y))

2
) ds(x)ds(y).

CxC

5.5. Sectional curvature on the unscaled Stiefel manifold

Using the basic mapping, the manifold Immj(trans) can be identified with the unscaled
Stiefel manifold which we view as the following submanifoldi6f (we do not introduce
a systematic notation for it):

(12) M = {(e, f) € V2\{(0,0)} : |lel|> = || fII? and (e, f) = O}
equipped with the metric

I8ell? + 11811
(e, 8|12 ,y =2—— 22
@) lell2 + || £112

Consider the diffeomorphismr : R* x St(2, V) — M defined by
WL, (e, ) = Vee N ) =@ .

For&(Se, 8f) € T, r) Stwe have

Toe.nW-(1,8) = <Le —i—«/ZBe, ﬁf + \Qéf) = (5@, Sf).

21 Ve

Thus,¥ is an isometry ifRT x St(2, V) is equipped with the metric

2

A
1G5 O o, ) = 557 + 1€l + 15711
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so thatM is isometric to the Riemannian product Bf and St(2, V), taking ||A|l, =
IA]/(+/2¢) for the metric oriR*. This implies that the curvature tensor this the sum of
the tensors ofR* (which vanishes) an8t(2, V). Thus, if§; = T, pm.(0, §),i =1,2,
with (&1, &1) orthonormal,

Mo __(Rﬁf{(élv"EZ)%l,%Z) _ _—(RSI_(&,EZ)‘E_l,(E_z)
SPAELE2) &1 |12162112 — (1. £2)2  IIElIPNE2lI2 — (1. £2)2
- k_Sslgaflél,Szz _
€212 11E211% — (€1, £2)2

Note that we have the relations

_ A

(13) de = z—ﬁe +\/Z(S€7
- A

(14) szz—ﬁf+«/25f.

5.6. O’Neill's formula

For Riemannian submersions, O'Neill formula[14] states that the sectional curvature, in
the plane generated by two horizontal vectors, is given by the curvature computed on the
space “above” plus a positive correction term given 3% 8mes the squared norm of the
vertical projection of the Lie bracket of any horizontal extensions of the two vectors. We
now proceed to the computation of this correction for the submersion frony {ewm) to
B;/(sim).

Because of the simplicity of local charts there, it will be easier to start from
Imm/(trans). Let ¢ € Imm with fsl cds = 0. We first compute the vertical projection
of a vectorh € T, Imm/(trans) for the submersion Imifitrans) — B; /(sim). Vectors in
the vertical space attake the form

ﬁ:bv+iotc+,3€,

each generator corresponding (in this order) to the action of diffeomorphisms, rotation and
scaling ¢ is a function andy, g are constants). Denotirlg’ the vertical projection ok,
and using the fact thag.(h, i) = G.(h', h) for any verticalkz, we easily obtain the fact
that
h' =bv+iac+ Be,

with _
L'b+ax =v-Lh, (bk)+a=(Dsh-n), B=(Dsh-v),
where we have used the following notatidih = —D?h, LTh = —D2b + «?b and, as
before, L
UWZZ/Fw.

From this, we deduce thatmust satisfy

(15) L™b — {bk)k =v-Lh — (Dsh - n)x.
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The operatoL " is of order two, unbounded, selfadjoint, and positive gre L2(St, ds) :

[ fds =0}, thus itis invertible or{f € C*(S%, R) : [ f ds = 0} by an index argument
as given in[[1L, 4.5]. The operatdr’ on the left-hand side of (15) is also invertible under
the condition that is not a circle, with an inverse given by

(LD 1y«)

:(LT)_]'K.
1— k(L)1)

(16) CH =@ty +

This is well defined unless = constant. Indeed, lettin = (L)~ 1«, we have—fof—l—
k?f? = «f, which implies(kf) > (k2f2). By the Schwarz inequality we havef) <

((k2£2))1/2, which ensurescf) < 1. Equality requires f D2f) = 0 or f = constant,
which in turn implies thak = constant and thatis a circle. We note for future use that
(LYY = @)y Lk.

We hereafter assume thahas length 1, is parametrized with its arc-length divided by
27, and that it is different from the unit circle (which is a singular poinBin (sim)). We

can therefore write

17y n"=(LH v — ik LT) " (h)c) + i(Dsh - vic + (Dsh - njc
with ¥ (h) = v - Lh — (Dsh - n)k.

The right-hand term in[(37) is the sum of three orthogonal terms, the last two
forming the vertical projection for the submersion Imitnans) — Imm/(sim). Applying
O’Neill's formula twice, to this submersion and to Injsim) — B;/(sim), we see that
the correcting term for the sectional curvature By (sim) relative to the curvature on
Imm/(simy), in the direction of the horizontal vectokg andhy, is

p(h1, ha)e = 3| (LT Yy (ha, ko) — i (e (L)~ ([, halo))e),

h1, ho being horizontal extensions 6f andh,. From the identity

lbv — i (kb)c||? = / |b'v + kbn — (kbyn|?ds = /(bLb + k2b°n — (kb)kb) ds
= / b(LTb)ds
we can write
p(h1, ha)e = ;3’1 / V¥ ([h, hal) (L) ™M ([, k2], ds.

We now proceed to the computation of the Lie bracket:

5.7. RRopPOSITION We have

W ([hi, h3]e) = Ws(Dsha - n, Dshy - n) — (de(Dsh1, Dsh2))k

whereW (h, k) = hDsk —k Dgh is the Wronskian with respect to the arc-length parameter.
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PROOF We takehy, hy € {f € C®(S1,R? : [ fds = 0} which are horizontal
at ¢, consider them as constant vector fields on lfftnansh) and take, as horizontal
extensions, their horizontal projectiops — hf(y), hf(y). Then we compute the Lie
bracket evaluated at:

[h1. h31ly = Denyhi (v) = Denhz (v) = —Denyhi (v) + Denyhy (v)
sinceh,! + hi- = h; is constant for = 1, 2. We have

hI(V) = ((I:;l/—)_lwy(hl)vy - i(Ky(I:;—)_le)yy)
+i(Dsyh1 . ny)yy + (Dsyhl R vy)yy

with 1y (h1) = vy - Lyhy — (Ds, h1 - vy) ky. We have added subscripisto quantities
that depend on the curve, with;, standing for the derivative with respect to thearc-
length (we still use no subscript for= ¢). Note that(Dsyhl . ny)y = £, (Dsh1 - n,) and
(Ds, h1 - vy)y = £, (Dsh1 - v,), which is a first simplification. Also, since we assume that
h1 is horizontal at, we have(Dgh1 - n) = (Dshy - v) = 0 andv - Lh1 = 0, which implies

¥ (h1) = 0.
We therefore have (to simplify, we temporarily use the notafibe= D; f)

(18) Denhi = (LT ™ Depyry (h)v — i (k (LT)1De iy (h1))c)
+i(h] - D¢ pyny)c 4 () - De pyvy)c.

Since D¢ p,vy, = (hy - n)n and D j,n, = —(h), - n)v we immediately obtain the
expression of the last two terms [n{18), which are

(19) —i((hy - v)(hY - n))c + (W) - n)(hy - n))c.
We now focus on the variation af, . We need to compute
Dehy Wy (h1) = Depy(vy - Lyha) — (B - v)(hy - )k
If & is a constant vector field, we have
Dy =Wy It and Ly =y I Iy
This implies
Dy Lyhy = =hiDepa |y = (11 De i | Dy ™) = 20 (- v) + By (B - )"
Therefore
Dea(Lyha - vy) = (hy - 0)(y - 0) = (hf - m) Iy ).
Using

1= ((hy-v)v+ () -mn) = ((hy-v) — k(] -n)v+ ((hy-n) +«k(hy-v))n
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and the fact thak - v = h} - v = 0, we can write
Deny(Lyhy - vy) = —(hy-n)(hy -n),
which yields
Deytry (h1) = —(hy - m)(hy - n) = (- v) (hy - m))kc.
By symmetry
De.ip¥ry (h1) = De ¥y (h2) = Wy (Y - n, iy - n) — (deth], h))r,

whereW (¢1, ¢2) = 919, — @192
Combining this with[(IP), we get

[hi, hale = (L)W (Hy - n, by - n) — (det(hy, hY))k)v

— il (LTY "YWy (k) - n, hy - n) — (detthy, hy))i))e — i (deth], hy))c
so that
Y((ht, hz]e) = Wi(hy - n, Ky - n) — (dethy, hp))x.
(We have used the fact thet(bv + iac) = LTh.) O

We therefore obtain the formula

3
(20)  p(h1, h2)e = 2 /(Ws(Dshl -n, Dyhp - n) — (det(Dghy, Dsh2)>K>

: (ZT)_l(WS(Dshl -, Dshy - n) — (Ae(Dyhy, Dshz))x> ds

with (LT)~1 given by [I8). Finally, assuming thag andh, are orthogonal,

B;/(sim)  _ ,Imm/(sim)
kspariny.hy) = Kspariny. i) T P (11, h2)e

Wherek'sﬂ,%ﬁf% is given in [9).

A similar (and simpler) computation provides the correcting term for the space
B;/(transl scalg. In this case, the rotation part of the vertical space disappears, and the
remaining two components (parametrization and scale) are orthogonal. The result is

3 _
(@) o ho)e =7 / W,(Dyhy - n, Dyha - n)(LT) " W, (Dyhy - n, Doz - n) ds.
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B; /(sim)

5.8. An upper bound fOkspar(hl,hz)

Here we derive an explicit upper bound 'Q(S;I,m)hz) at a fixed curve € B;/(sim) and a
fixed tangent vectato. This will show that geodlésms (such as the one irnithdirection)
have at least a small interval before they meet another geodesic. The size of this interval
can be controlled, as we will see, by an upper bound that involves the supremum norm of
the first two derivatives of;.

We assume that has length 2. Since Imny(sim) is isometric toGr (2, V), its
sectional curvature is not larger than 2 as already remarked. We estimate the terms in

p(h1, h2)e = (Y (h1, ho)(LT) =1y (ha, ho)) where

Y (ha, ho) = Ws(Dshy - n, Dshp - n) — (det(Dsh1, Dgh)))k.

For a fixed hp, ¥ (h1, hp) is function of k1 belonging to H (). We estimate
¥ (h1, h2)|lc.—1 and therp (h1, k). by estimating the norm of the operatdr™)~* which
mapsH ~1(c) to H1(c).

If f € HOc), then| flle.—1 < | fllc.oand|| fllc.—1 < || fllc.0- Therefore,

|Ws(Dsh1 - n, Dshp - n)|l—1 = [|(Dsh1 - n)Dg(Dsh2 - n) — Dg(Dghy - n)(Dsh2 - n)| -1
< (IDsh2 - nll¢,c0 + [1Ds(Dshz - ) |lc,00) | Dsh1 - 7 |lc.0.

Sinceh1 has norm 1| Dshy - nl|c.0 and| Dsh1 - v||c0 are< ~/2x. Hence

(det(Dgh1, Dsh2)) < (|Dshy - nl - |Dshz - vl) + (|Dsha - v| - [Dshz - nl)

1
< Z(”Dshl A0 I1Dsh2 - vlle,o + |1 Dsh1 - vllc,0- |1Dsh2 - nllco) < 2.
This results in

¥ (h1, ) lle,—1 < V27 (| Dsh2 - nllc.c0 + 1 Ds(Dsh2 - m)[le.o0 + 24/ (k2)).

Now

(w(LT)*/«)2 - (W (LT)~Ly)
1— k(L) 1— k(LT k)

(L)) = (Y (L) 1y) +

since(y (L)) < (W(L )19 - (L) ).
5.9. RROPOSITION If ¥ € H™1(c) then
_ 1
WL ty) = —(A+311- K20 V112 g

PROOF LetL,=—D?+1.LetLT f =L,f, =v.Then,f, f, € HX(c) and| follc1 =
l¥]lc.—1. Letg = f—f, sothatL T g = (1—«?) f,. The eigenvalues di " are positive and
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bounded from below by /2 (seel[3]). Thereforeﬂg||§O < 2(g, L"g) where(g, L"g) =
[ gLTgds. We also haveig'|| , < (g, LTg). Hence,

IglZ, <3(g.LTg) <3 / A —kdgfods < 31— k?|cosliglell folle..

Therefore,llgller < 31— k2[lc.o0ll¥lle,r @and | fllea < (L + 31— k2]lc.00) ¥ lle,—1-
Finally,

_ 1 1
WL Y) < = lle—1- 1L Ylea < —A+31- Kzllc,oo)llwlf,,l- o
21 2
Putting all the estimates together we get, for orthonorimak, as always,

B; /(sim)
(22) 0= kspar(hl,hz)

,, 30+311- k2]lc.00) (I Dshz - nllc.00 + (Dshz - 1Y lle.co + 24/ (€2))
41— ((LT)~ L)) '

6. NUMERICAL PROCEDURE AND EXPERIMENTS

The distanceDop, git given inEJr can be computed in a very short time by dynamic
programming, using a slight modification of a procedure from [16]. Here is a sketch of
how it works.

Let F(@°, o1) = max(©0, cog(«® —al)/2)), and assume that the curves are discretized
over intervals § (k), 0’ (k + 1)), k = 0,n* —1,i = 0, 1, so that the angles have constant
values g’ (k) on these intervals. The problem is then equivalent to maximizing

Z Fia
k.l

with F; = F(a®(k), «1(1)). Because the integral Qf, is maximal for linea, we must
in fact maximize

min(@°k+1),¢~1 @1 (+1)))
/ Vo do

max(6°(k),¢=1@1(1)))

> Fiuy (ax@0(k), 61(1))) — min@°(k + 1), 61 + 1))+
k,l

-/ (max(@k), 1(1))) — min@(k + 1), 021 + 1)+

with the notatiord®(k) = ¢ (#°(k)) andd1(l) = ¢~1(61(1)). The method now essentially
implements a coupled linear programming procedure over the valu@s afd6,. See
[18,[16] for more details. This procedure is very fast, and one still obtains an efficient
procedure by combining it with an exhaustive search for an optimal rotation.

For closed curves, we can furthermore optimize the result with respect to the offset
$(0) € St, for the diffeomorphism. Doing so provides the value of

Diait (<. 1) = nf arccos,/ (C_(9)? + (S_(®))2,
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where the notatio®’ is to remember that the minimization is oyere C°*(S1) and not
C-* ([0, 27]).

This combination of the almost instantaneous dynamic programming method and of
an exhaustive search over two parameters provides a feasible elastic matching method for
closed curves. But this does not provide the geodesic distanceBpygsim), since we
worked with great circles instead of the Neretin geodesics. There are two consequences
for this: first, the resulting distance is only a lower bound of the distan®, p(sim), and
second, since the closedness constraint is not included, the curves generally become open
during the evolution (as shown in the experiments).

However, the optimal diffeomorphism which has been obtained by this approach can
be used to reparametrize the curfeand we can compute the geodesic between¢*
and ¢! in Imm/(sim) using Neretin geodesics, which forms, this time, an evolution of
closed curves. Its geodesic length now obviously provides an upper bound for the geodesic
distance orB;/(sim). The numerical results that are presented in Fidyre§ 4 to 8 compare
the great circles and Neretin geodesics obtained using this method. Quite surprisingly, the
differences between the lower and upper bounds in these examples are quite small.
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FIG. 4. Curve evolution with and without the closedness constraint. Lower and upper bounds for the geodesic
distance: 0.443 and 0.444.
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FiG.5. Curve evolution with and without the closedness constraint. Lower and upper bounds for the geodesic
distance: 0.462 and 0.46.4.
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FIG. 6. Curve evolution with and without the closedness constraint. Lower and upper bounds for the geodesic
distance: 0.433 and 0.439.
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FIG.7. Curve evolution with and without the closedness constraint. Lower and upper bounds for the geodesic
distance: 0.498 and 0.532.
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FiG. 8. Curve evolution with and without the closedness constraint. Lower and upper bounds for the geodesic
distance: 0.513 and 0.528.

7. APPENDIX. THE GEODESIC EQUATION ONGMm.scall.co

7.1. The geodesic equation

We use the method of [11] for the spajgee Imm, : ¢(1) = O} which is an open subset
in a Fiechet space, with tangent spaéec C>®°(S1,C) : f(1) = 0}. We shall use the
following conventions and results froin [11]:

9
Dy = Ds,c = ﬁ’ ds =|cg|db, Dc,mz(c) = /(Dsm, ve)ds = _/Kc<m7 ne)ds,
Dc,m(Ds) = —(Dsm, v¢) Dy, Dc,m(ds) = (Dgm, v¢) ds.

Then the derivative of the metric atn directionm is

1
DenGelh ) = 75 [ ketmneyds - [ (D% k) ds
C

1 1
+ Z—/(Dsm, ve)(DZh, k) ds + Z—/(DsﬂDsm, ve)Dsh), k) ds
c c

1
—;ﬂﬁhﬂ&wmm
C

1
=

/Kc(m,nc)ds : /(-th,k) ds
1 2 -1
- e—/(—Dsm, D7Y((Dsh, Dsk)v,)) ds.

According to [11, 2.1] we should rewrite this as

De,m)Ge(h, k) = Ge(K(! (m, h), k) = Gc(m, Hy' (h, k),
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and thus we find the two versio& and H of the G-gradient ofc — G.(k, k):

1
Ko(m, h) = E—/Kc(m, ne)ds - h — D;Y((Dgm, ve) Dsh),

c

1
He(h, k) = —K—D;Z(Kcnc) : / (—D?h, k) ds — D7 ((Dsh, Dsk)v,),
C

which gives us the geodesic equationlbyi[11, 2.4]:

(23)  cu = 3H! (¢ ) — Kl (crocr) = =3 Dy 2(keno) e |G, — 3D;H(IDser|Pve)g
1
e
7.2. THEOREM. For eachk > 3/2 the geodesic equation derived4rl has unique local
solutions in the Sobolev space Bf-immersions. The solutions depe@& on and on

the initial conditionsc(0, -) and¢, (0, -). The domain of existence (ihis uniform ink and
thus this also holds itmm, = {c € Imm(S1, R?) : ¢(1) = 0}.

keler, ne)ds - ¢ — Dgl((DsCh ve) Dycy).

PROOFE The proof is very similar to the one df [i11, 4.3]. We denotexbgny space of
based loopgc(1) = 0). We consider the geodesic equation as the flow equation of a
smooth ) vector field on theH?-open setU/* x H¥(s%, R?) in the Sobolev space
HF(SY, R?) x HF(SY,R?) whereU* = {¢c € HF : |cy| > O} ¢ HF is H?-open. To

see that this works we will use the following facts: By the Sobolev inequality we have a
bounded linear embeddirgt (5%, R?) c € (S, R?) if k > m +1/2. The Sobolev space
HK(S1,R) is a Banach algebra under pointwise multiplicatiow it 1/2. For any fixed
smooth mappingf the mapping: > f o u is smoothH* — H* if k > 0. We write

Dy . := Dy just for the remainder of this proof to stress the dependenceTime mapping
(c,u) = —D2? uis smoothU x Hf — H*=2" and is a bibounded linear isomorphism
HF — H2" for fixed c. This can be seen as follows (compare with| [11, 4.5]): It is
true if ¢ is parametrized by arc-length (look at it in the space of Fourier coefficients). The
index is invariant under continuous deformations of elliptic operators of fixed degree, so
the index of—DS2 is zero in general. Bu%DSZ is self-adjoint positive, so it is injective
with vanishing index, thus surjective. By the open mapping theorem it is then bibounded.
Moreover(c, w) > (—D?)~(w) is smoothU* x H¥=2" — H¥ (by the inverse function
theorem on Banach spaces). The mapging’) — D f = (1/|cg|)dg f is SmoothH¥ x

H" DU x H" — H™ 1 for k > m, and is linear inf. We havev = Dy .c and

n = iDy .c. The mapping: — «(c) is smooth on thed?-open sefc : |cg| > 0} C Hf

into HX~2. Keeping all this in mind we now write the geodesic equa (23) as follows:

o =u=:Xi(c,u),
_ -2(1 2 1 2
Ur = _Ds,c (§||M|t:O||GKcnc + ?Dx,c(le,cm ve) + Ds,c(<Ds,cM’ UL’)DS,CM))

_ (% /(u, D?,c) ds)

=: Xo(c, u).

u
t=0

Here we have used the fact that along any geodesic the fiofiig; and the scaling
momentum-—(1/£.) [(c;, Dﬁcc> ds = 0;1log£(c) are both constant in Now a term by
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term investigation shows that the expression in the brackets is sridothH* — H*—2
sincek — 2 > 1/2. The operator—D;,C2 then takes it smoothly back t*. So the vector
field X = (X1, X2) is smooth orU* x H*. Thus the flow Fi exists onH* and is smooth
in r and in the initial conditions for fixed.

Now we consider smooth initial conditiong = c(0, -) andug = (0, -) = u(0, -)
in C>*(S1, R?). Suppose the trajectory ko, ug) of X through these intial conditions
in H* maximally exists forr € (—a, by), and the trajectory Efl(co, ug) in H¥t1
maximally exists forr € (—ag41, br+1) With bgr1 < bg. By uniqueness we have
Flf“(co, ug) = Flf(co, uo) for t € (—ax+1,brx+1). We now applyog to the equation, =
Xa(c,u) = —D;2(...); note that the commutatodq, —D;?] is a pseudodifferential
operator of order-2 again, and writev = dyu. We obtainw; = dyu; = —D;fag( )+
[9g, —Dsff,]( ...) + const- w. In the termdy(...) we now consider only the tern@u
and rename themZw. Then we get an equatiom, (r,0) = Xp(t, w(t, #)) which is
inhomogeneous bounded linearin € H* with coefficients bounded linear operators
on H* which areC* functions ofc,u € H*. These we already know on the interval
(—ag, by). This equation therefore has a solutiory, -) for all z for which the coefficients
exist, thus for alk € (ax, by). The limit lim; »,,_, w(, -) exists inH* and by continuity it
equalsdgu in H* atr = by,1. Thus theH*+1-flow was not maximal and can be continued.
So(—ag+1, br+1) = (ax, by). We can iterate this and conclude that the flowkoéxists in
Nmsx H™ = C*. m]
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