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Group theory. — A note on De Concini and Procesi’s curious identity, by GRAHAM

DENHAM.

ABSTRACT. — We give a short, case-free and combinatorial proof of De Concini and Procesi’s formula from
[1] for the volume of the simplicial cone spanned by the simple roots of any finite root system. The argument
presented here also extends their formula to include the noncrystallographic root systems.
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1. INTRODUCTION

Let Φ ⊆ Rn be a finite root system with base∆, and letW = W(Φ) denote the reflection
group ofΦ. Let σ∆ be the positive cone spanned by the set of simple roots∆:

(1) σ∆ =

{∑
α∈∆

cαα : cα ∈ R>0 for all α ∈ ∆
}
.

Let C∆ be the normal cone toσ∆; this is usually called the fundamental chamber in the
arrangementA of reflecting hyperplanes ofW . If τ is a cone inRn, define the volume of
τ asν(τ) = vol(τ ∩ Dn)/vol Dn, whereDn is the unit ball centered at the origin. Finally,
let {d1, . . . , dn} denote the degrees ofW ; we refer to [2] for background and notation.

Recall that the action ofW on Rn by reflections is free on the complement of the
hyperplanesA. The induced action on chambers is simply transitive. Since the chambers
partition the complement ofA andW acts by isometries, we haveν(gC∆) = 1/ |W | =

1/
∏n

i=1 di for any chambergC∆.
While not so straightforward, it turns out that the volume of the coneσ∆ is also rational,

and has a nice expression:

THEOREM 1 (Theorem 1.3 in [1]).If Φ is crystallographic, the volume of the coneσ∆ is

(2) ν(σ∆) =

n∏
i=1

di − 1

di

.

De Concini and Procesi derive this result from the “curious identity” of their title.
Their proof of the identity is accompanied by a note by Stembridge that gives an elegant,
alternate proof via character theory.

The purpose of this note is to offer yet another argument. Using the combinatorial
theory of real hyperplane arrangements, one can prove (2) directly, in slightly more



60 G. DENHAM

generality (§2). Then, in the crystallographic case, De Concini and Procesi’s identity is
recovered by adding up normal cones around the fundamental alcove of the associated
affine root system̃Φ (in §3).

2. THE VOLUME FORMULA

Let V ⊆ Rn consist of the union of the reflecting hyperplanes, together with those vectors
in the span of any proper subset of any baseg∆. ClearlyRn

− V is a dense, open subset
of Rn. The key result is the following; its proof appears at the end of this section.

THEOREM 2. For any x ∈ Rn
− V , the number ofg ∈ W for which x ∈ gσ∆ is

independent ofx and equal to
∏n

i=1(di − 1).

In another formulation,

COROLLARY 3. For a finite root systemΦ andx ∈ Rn
− V , the number of choices of

base∆ for Φ for whichx is in the positive cone of∆ equals
∏n

i=1(di − 1).

PROOF. If ∆, ∆′ are both bases forΦ, then∆′
= g∆ for someg ∈ W , andσ∆′ =

gσ∆. 2

Since each conegσ∆ has the same volume,

|W | · ν(σ∆) =

∑
g∈W

ν(gσ∆) =

n∏
i=1

(di − 1)

by Theorem 2, and we obtain the volume formula as a corollary:

THEOREM 1+. If Φ is any finite root system, the volume of the coneσ∆ is

ν(σ∆) =

n∏
i=1

di − 1

di

.

(Note that, if the rank ofΦ is less thann, the least degree is 1, and both sides are zero.)

2.1. Hyperplane arrangements

The terminology used below may be found in the book of Orlik and Terao [4]. We recall
that a collection of hyperplanesA in Rn is central if all H ∈ A contain the origin, and
essentialif the collection of normal vectors spanRn.

Recall thatA has an intersection latticeL(A) of subspaces, ranked by codimension.
The Poincaŕe polynomial ofA is defined to be

π(A, t) =

∑
X∈L(A)

µ(̂0, X)(−t)rank(X),

whereµ is the Möbius function. IfA is essential,π(A, t) is a polynomial of degreen. The
following classical theorem is a main ingredient in our proof.
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THEOREM 4 ([3]). If A = A(Φ) is an arrangement of (real) reflecting hyperplanes, then

(3) π(A, t) =

n∏
i=1

(1 + (di − 1)t),

where{di} are the degrees of the reflection group.

If H0 is any hyperplane (not necessarily through the origin), letAH0 denote the set
{H ∩ H0 : H ∈ A}, regarded as a hyperplane arrangement inH0. We sayH0 is in general
position toA if X ∩ H0 is nonempty for all nonzero subspacesX ∈ L(A).

LEMMA 5. If H0 is in general position to a central arrangementA in Rn, then the number
of bounded chambers inAH0 equals the coefficient oftn in π(A, t).

PROOF. It follows from the definition of general position thatL(AH0) = L(A)≤n−1,
where the latter is the truncation of the latticeL(A) to rankn − 1. Thereforeπ(A, t) =

π(AH0, t) + btn for someb. By a theorem of Zaslavsky [6], the number of bounded
chambers of any arrangementB equals(−1)rankBπ(B, −1). Substitutingt = −1 showsb
is the number of bounded chambers inAH0, sinceA itself has none. 2

Let ε > 0 be a fixed choice of positive, real number.

LEMMA 6. For anyx ∈ C∆ ∩ (Rn
− V ) let Hx be the hyperplane normal tox, passing

throughεx. ThenHx is in general position toA.

PROOF. SupposeX ∩ Hx = ∅ for some nonzero intersection of hyperplanesX, sayX =⋂
α∈S Hα, whereS ⊆ Φ. SinceX 6= 0, the rootsS do not spanRn. SinceX andHx are

parallel,x is a linear combination of the rootsS; thenx ∈ V , a contradiction. 2

For eachy ∈ Rn with (x, y) > 0, let yHx denote the unique, positive multiple ofy

which lies inHx . Note that each chamber ofAHx has the formC∩Hx for some chamberC
of A. If C ∩ Hx is bounded, thenC is just a cone overC ∩ Hx with retractiony 7→ yHx .
In particular,(x, y) > 0 for all y ∈ C. For anyx ∈ Rn

− V , let

(4) Bx = {g ∈ W : (x, gx) > 0 and(gx)Hx is in a bounded chamber ofAHx }.

Sincex 6∈ V , the orbitWx has exactly one point in each chamber ofA. It follows that|Bx |

is the number of bounded chambers ofAHx .

LEMMA 7. For anyx ∈ Rn
− V , we have

Bx = {g ∈ W : g−1x ∈ σ∆}.

PROOF. A chamberC ∩ Hx of AHx is bounded if and only ifC does not contain a ray
in Hx . Equivalently, all points inC ∩Hx (or, just as well, inC) have positive inner product
with respect tox.

That is,g ∈ Bx if and only if, for all y ∈ C∆,

(gy, x) > 0 ⇔ (y, g−1x) > 0 ⇔ g−1x ∈ σ∆,

sinceσ∆ is the normal cone toC∆. 2
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2.2. Proof of Theorem 2

Fix a pointx ∈ Rn
− V . By construction,x lies in some (open) chamberC. Without

loss of generality,C = C∆. Let Hx be the hyperplane normal tox, containingεx. Using
Lemmas 5, 6, and equation (3), we see that the number of bounded chambers inAHx equals∏n

i=1(di − 1).
On the other hand, the number of bounded chambers ofAHx equals|Bx |; by Lemma 7,

this equals the number ofg ∈ W for whichx ∈ gσ∆. 2
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(a) The coneσ∆ and chamberC∆
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(b) Chambers ofAHx and the orbit ofx

FIG. 1. TheA2 root system

EXAMPLE 1. Let ∆ = {α, β} be the base of theA2 root system, shown in Figure 1(a).
Recall d1 = 2, d2 = 3; thenν(σ∆) =

1·2
2·3. In Figure 1(b), the chambers ofAHx are

labelled 1 through 4. As expected, two chambers (labelled 2 and 3) are bounded. For a
givenx ∈ C∆, pointsgx in its orbit are marked with a “◦” if (x, gx) ≤ 0. If (x, gx) > 0,
the pointgx is black where the chamber(gx)Hx is bounded and “∗” otherwise.

3. THE IDENTITY

Now suppose thatΦ ⊆ Rn is an irreducible, crystallographic root system of rankn. Let Φ̃
denote the affine root system ofΦ, with base∆̃ = ∆ ∪ {α0}. Let D̃ denote the extended
Dynkin diagram ofΦ. For each simple rootαi ∈ ∆̃, let Φi be the sub-root system ofΦ
with base∆i = ∆̃ − {αi}. ThenΦ = Φ0, and recall that the Dynkin diagram ofΦi is
obtained by deleting the vertex corresponding toαi from D̃.

For eachi, 0 ≤ i ≤ n, let (d
(i)
1 , . . . , d

(i)
n ) denote the degrees ofΦi . De Concini and

Procesi found that, for each irreducible type, an unexpected identity held:

THEOREM 8 (Theorem 1.2 of [1]).For an irreducible, crystallographic root systemΦ of
rankn,

(5)
n∑

i=0

n∏
j=1

d
(i)
j − 1

d
(i)
j

= 1.

By (re)deriving their result from Theorem 1, a geometric interpretation becomes
apparent.
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PROOF. Let A0 denote the fundamental alcove ofΦ. This is a simplex bounded by the
(affine) reflecting hyperplanes{Hαi

: 0 ≤ i ≤ n}. For eachi, let vi be the vertex ofA0
that is opposite the face contained inHαi

. The normal cone toA0 at vi is spanned by the

vectors∆̃ − {αi}, so it is just the coneσ∆i
. Then

ν(σ∆i
) =

n∏
j=1

d
(i)
j − 1

d
(i)
j

,

by the volume formula (2). However, the normal cones to the vertices of any polytope
partition a dense open subset ofRn, so their volumes sum to 1. 2

REMARK 1. We have seen that the volume formula (2) also holds for finite, noncrystal-
lographic root systems. For the irreducible types, (2) gives

Type I2(m) H3 H4

ν(σ∆) (m − 1)/(2m) 3/8 6061/14 400

Although the identity (5) no longer makes sense, one might still be tempted to compute
the left side formally for diagrams that extendH3 or H4 by a vertex in such a way that
all proper subdiagrams are of finite type. (These include the Coxeter groupsH aff

3 andH aff
4

of Patera and Twarock, [5].) Perhaps unsurprisingly, however, an exhaustive search shows
that the identity fails to hold for any such diagram.
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