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Group theory. — A note on De Concini and Procesi’s curious identiby GRAHAM
DENHAM.

ABSTRACT. — We give a short, case-free and combinatorial proof of De Concini and Procesi’s formula from
[1] for the volume of the simplicial cone spanned by the simple roots of any finite root system. The argument
presented here also extends their formula to include the noncrystallographic root systems.
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1. INTRODUCTION

Let® C R” be a finite root system with basg, and letW = W (®) denote the reflection
group of®. Leto, be the positive cone spanned by the set of simple raots

Q) aAz{ana:caER>of0ra||aeA}.

aeA

Let C, be the normal cone te,; this is usually called the fundamental chamber in the
arrangemeny of reflecting hyperplanes d¥. If t is a cone inR”, define the volume of

T asv(t) = vol(r N D")/vol D", whereD" is the unit ball centered at the origin. Finally,
let{d, ..., d,} denote the degrees 8f; we refer to[[2] for background and notation.

Recall that the action of¥ on R” by reflections is free on the complement of the
hyperplanes4. The induced action on chambers is simply transitive. Since the chambers
partition the complement ofl and W acts by isometries, we havdgC,) = 1/ |W| =
1/[1i_, d; for any chambegC .

While not so straightforward, it turns out that the volume of the egnés also rational,
and has a nice expression:

THEOREM 1 (Theorem 1.3 in[1]).If @ is crystallographic, the volume of the cong is

) v(04) = dd—_l

i=1

De Concini and Procesi derive this result from the “curious identity” of their title.
Their proof of the identity is accompanied by a note by Stembridge that gives an elegant,
alternate proof via character theory.

The purpose of this note is to offer yet another argument. Using the combinatorial
theory of real hyperplane arrangements, one can piove (2) directly, in slightly more
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generality (ER). Then, in the crystallographic case, De Concini and Procesi’s identity is
recovered by adding up normal cones around the fundamental alcove of the associated
affine root systend® (in §3).

2. THE VOLUME FORMULA

Let V C R" consist of the union of the reflecting hyperplanes, together with those vectors
in the span of any proper subset of any bage ClearlyR"” — V is a dense, open subset
of R". The key result is the following; its proof appears at the end of this section.

THEOREM2. For anyx € R" — V, the number ofg € W for whichx € go, is
independent of and equal tq [/_; (d; — 1).

In another formulation,

COROLLARY 3. For a finite root systen® andx € R" — V, the number of choices of
baseA for @ for whichx is in the positive cone of equals[[7_;(d; — 1).

PrROOF If A, A" are both bases fob, thenA’ = gA for someg € W, andoy =
goA. O

Since each congo 4 has the same volume,

n

[Wl-v(oa) =) v(goa) =] -1

gew i=1
by Theorenj R, and we obtain the volume formula as a corollary:
THEOREM 1. If @ is any finite root system, the volume of the copds

di—1
U(UA)Z d—
1

i=1

(Note that, if the rank o is less tham, the least degree is 1, and both sides are zero.)

2.1. Hyperplane arrangements

The terminology used below may be found in the book of Orlik and Terao [4]. We recall
that a collection of hyperplaned in R” is centralif all H € A contain the origin, and
essentialf the collection of normal vectors spakt'.

Recall that4 has an intersection lattice(A) of subspaces, ranked by codimension.
The Poincaé polynomial ofA is defined to be

r(A D= Y @ X)(—nm,
XeL(A)

wherepu is the Mobius function. IfA is essentialy (A, ) is a polynomial of degree. The
following classical theorem is a main ingredient in our proof.
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THEOREMA4 ([3]). If A = A(®) is an arrangement of (real) reflecting hyperplanes, then

n

€©) r(A 0 =]]a+ @ -1,

i=1
where{d;} are the degrees of the reflection group.

If Ho is any hyperplane (not necessarily through the origin),48¢ denote the set
{H N Hy: H € A}, regarded as a hyperplane arrangeme#{gnWe sayHp is in general
position toA if X N Hg is nonempty for all nonzero subspacés L(A).

LEMMA 5. If Hpisin general position to a central arrangeme#in R”, then the number
of bounded chambers 40 equals the coefficient of in (A, 1).

PROOF. It follows from the definition of general position that( A7) = L(A)<,_1,
where the latter is the truncation of the lattit€A) to rankn — 1. Thereforer(A, ¢) =
w(AHo 1) 4+ bt" for someb. By a theorem of Zaslavsky[6], the number of bounded
chambers of any arrangemehequals(—1)@kBz (B, —1). Substituting = —1 showsb

is the number of bounded chambers4f, sinceA itself has none. O

Lete > 0 be a fixed choice of positive, real number.

LEMMA 6. Foranyx € Ca N (R" — V) let H, be the hyperplane normal to, passing
throughex. ThenH, is in general position toA.

PROOF SupposeX N H, = ¢ for some nonzero intersection of hyperplangssay X =
Nyes Hay WhereS € @. SinceX # 0, the rootsS do not sparR”. SinceX and H, are
parallel,x is a linear combination of the roofs thenx € V, a contradiction. O

For eachy € R" with (x, y) > 0, let y"x denote the unique, positive multiple of
which lies inH,. Note that each chamber gfx has the fornC N H,. for some chambef
of A. If C N H, is bounded, thel is just a cone ove€ N H, with retractiony > yfx.
In particular,(x, y) > Oforally € C. Foranyx € R" — V, let

(4) B, ={geW:(x,gx)>0and(gx) isin abounded chamber pf}.

Sincex ¢ V, the orbitW x has exactly one point in each chamberfit follows that| B, |
is the number of bounded chambers4f:.

LEMMA 7. Foranyx € R"” — V, we have
B, ={geW: gilx €0}

PROOF A chamberC N H, of A" is bounded if and only iC does not contain a ray
in H,. Equivalently, all points irC N H, (or, just as well, inC) have positive inner product
with respect to.

Thatis,g € B, ifand only if, for ally € C4,

€y, x)>0 & (y,g7 ) >0 & g lx con,

sinceo, is the normal cone t@' 4. O
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2.2. Proof of Theorerp]2

Fix a pointx € R" — V. By constructionx lies in some (open) chambét. Without
loss of generalityC = Ca. Let H, be the hyperplane normal 1g containingex. Using
Lemmas B, B, and equatidr (3), we see that the number of bounded chamié&rssquals

[Ti—a(di = D).
On the other hand, the number of bounded chambersfequals B, |; by Lemm{?,
this equals the number gfe W for whichx € goa. |

(a) The coner 4, and chambe€ 4 (b) Chambers ofA"x and the orbit ofc

FIG. 1. TheA> root system

ExAMPLE 1. LetA = {«, B} be the base of thd, root system, shown in Figure 1(a).
Recalldy = 2,d> = 3; thenv(oa) = %—% In Figure 1(b), the chambers of’x are
labelled 1 through 4. As expected, two chambers (labelled 2 and 3) are bounded. For a
givenx € C4, pointsgx in its orbit are marked with as” if (x, gx) < 0. If (x, gx) > O,

the pointgx is black where the chambégx)x is bounded and#” otherwise.

3. THE IDENTITY

Now suppose thab C R" is an irreducible, crystallographic root system of ranket @
denote the affine root system &f, with baseA = A U {ao}. Let D denote the extended
Dynkin diagram of®. For each simple roat; € A, let @; be the sub-root system df
with baseA; = A-— {o;}. Then® = &g, and recall that the Dynkin diagram df; is
obtained by deleting the vertex correspondingitdrom D.

Foreachi, 0 < i < n, let (d{’), e d,(,’)) denote the degrees df;. De Concini and
Procesi found that, for each irreducible type, an unexpected identity held:

THEOREM 8 (Theorem 1.2 of [1]).For an irreducible, crystallographic root systedn of
rankn,

®) ZHL:L

By (re)deriving their result from Theoreir] 1, a geometric interpretation becomes
apparent.
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PROOF Let Ag denote the fundamental alcove &f This is a simplex bounded by the
(affine) reflecting hyperplangd?,, : 0 < i < n}. For each, let v; be the vertex ofAg
that is opposite the face containedHf,. The normal cone telg at v; is spanned by the
vectorsA — {a;}, soitis just the coney,,. Then

@)
nod’ —1
_ J
U(UAf) — 1_[ d(l) s
j=1 Y
by the volume formula[{2). However, the normal cones to the vertices of any polytope
partition a dense open subsetRSf, so their volumes sumto1l. O

REMARK 1. We have seen that the volume formiilh (2) also holds for finite, noncrystal-
lographic root systems. For the irreducible typek, (2) gives

Type I(m) H3 Hy
v(oa) | m—1)/(2m) 3/8 606114400

Although the identity[(5) no longer makes sense, one might still be tempted to compute
the left side formally for diagrams that exterty or Hs by a vertex in such a way that

all proper subdiagrams are of finite type. (These include the Coxeter gitfipand #2"

of Patera and Twarock,[5].) Perhaps unsurprisingly, however, an exhaustive search shows
that the identity fails to hold for any such diagram.
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