Rend. Lincei Mat. Appl. 19 (2008), 73[–78](#page-5-0)

Number theory. — *On the maximal order of a torsion point on a curve in* \mathbb{G}_{m}^n , by PIETRO CORVAJA and UMBERTO ZANNIER, communicated by U. Zannier on 8 February 2008.

ABSTRACT. — Let C be an irreducible algebraic curve in \mathbb{G}_{m}^{2} ; we are concerned with the maximal order $m =$ $m(C)$ of a torsion point on C. We suppose that C is defined over a number field k, that it is not a translate of an algebraic subgroup by a torsion point, and we denote by d its degree and by g its genus. It is known that $m \ll_{k,\epsilon} d^{2+\epsilon}$ for any $\epsilon > 0$, which, as shown below, is nearly best possible if only the degree is taken into account. Here, by means of a new method, we prove an upper bound (actually for curves in \mathbb{G}_{m}^{n}) which implies in account. Field, by means of a new method, we prove an upper bound (actually for curves in \mathfrak{F}_{m}) which impries in particular $m \ll_{k,\epsilon} (d\sqrt{d+g})^{1+\epsilon}$. This renders the above result and for small g it improves on it. of the genus seems to be a new feature in this kind of problem.

KEY WORDS: Torsion points on curves; cyclotomic equations; Diophantine equations.

MATHEMATICS SUBJECT CLASSIFICATION (2000): Primary 11G35; Secondary 11C08.

INTRODUCTION

A well-known old problem by Lang is to prove that *if a plane curve* $f(x, y) = 0$ *contains infinitely many points with roots of unity coordinates, then* f *has a 'special' factor, i.e. of the shape* $ax^m + by^m$ *or* $ax^m y^n + b$. Simple elegant solutions were given by Ihara, Serre, Tate and others [L]. We can rephrase the result by saying that *if a curve in the torus* $\mathbb{G}_{\mathrm{m}}^2$ ^{[1](#page-0-0)} contains infinitely many torsion points, then it contains a translate of some algebraic $subgroup of \mathbb{G}_{m}^{2}$ of positive dimension.

This result was generalized in several directions. Here we are concerned with a quantitative version, seeking *a bound for the maximal order of a torsion point on a curve in* \mathbb{G}_{m}^n .

We remark that a different, though related, known problem is to estimate the *number of torsion points on the curve*. Concerning this last issue, we refer for instance to [BS]; in that paper it is proved in particular that *if* f *has no factor of the above-mentioned special shape, then the number of torsion points on the curve* $f(x, y) = 0$ *does not exceed* $22V(f)$ where $V(f)$ is the area of the Newton polygon of f. In particular, the bound is $\ll (\text{deg } f)^2$.

Remarkably, these last bounds do not depend on the field of definition of f ; on the contrary, such a dependence must clearly appear in a bound for the maximal order. We also note that the bounds for the number of torsion points imply a bound for the maximal order, as follows: Let $f(P) = 0$ for a torsion point P of exact order m, where f is defined over k and has no special factors. Then $f(P^{\sigma}) = 0$ for each conjugate P^{σ} of P over k. There are $> \phi(m)/[k : \mathbb{Q}]$ such conjugates and all of them are torsion, whence by the above

(1)
$$
\phi(m) \ll [k : \mathbb{Q}] (\deg f)^2.
$$

See also Remark (v) for a quick deduction of a result only slightly weaker, given by (5).

¹ As usual, \mathbb{G}_m denotes the affine line deprived of the origin.

In Remark (iii) below we note that this estimate is sometimes essentially best possible and that in particular the exponent 2 attributed to deg f cannot be generally lowered. In this short note we prove, however, that for a given ground field k , (1) can actually be improved when the curve defined by f has small genus g. The appearance of the genus represents a new feature with respect to known estimates.

In the following, by the *degree* of a curve embedded in \mathbb{G}_{m}^{n} we mean as usual the maximum number of intersections with a hyperplane not containing the curve, and by its *genus* we mean the genus of a nonsingular projective model of it (we do not assume that the curve is nonsingular). By a *torsion point* in \mathbb{G}_{m}^{n} we mean a point whose coordinates are roots of unity, whereas by a *torsion coset* in \mathbb{G}_{m}^{n} we mean a translate of an algebraic subgroup by a torsion point. We have:

THEOREM 1. Let C be an absolutely irreducible curve in \mathbb{G}_{m}^{n} , of genus g and degree d, *defined over a number field* k*, and let* r *be the minimal dimension of a torsion coset containing* C. Suppose that $r \geq 2$ *and let* $P \in C(\overline{Q})$ *be a torsion point of order m. Then*

$$
\phi(m)^3 m^{-2/r} \le 108(r!)^{2/r} [k: \mathbb{Q}]^3 d^2(g-1+rd).
$$

Specializing to the interesting case $n = r = 2$ we obtain:

COROLLARY. *Let* C/k *be an absolutely irreducible curve of genus* g *and degree* d *in* \mathbb{G}_{m}^2 , not a torsion coset. Suppose that $P \in \mathcal{C}(\overline{\mathbb{Q}})$ is a torsion point of order m. Then

$$
\phi(m)^3 m^{-1} \le 216[k : \mathbb{Q}]^3 d^2(g-1+2d).
$$

REMARKS. (i) Recall that $\phi(m) \gg m/\log \log m$, so the inequality in Theorem 1 yields

$$
m(\log \log m)^{-\frac{3r}{3r-2}} \ll r[k:\mathbb{Q}]^{\frac{3r}{3r-2}}d^{\frac{2r}{3r-2}}(d+g)^{\frac{r}{3r-2}}
$$

with a computable absolute implied constant, and for the Corollary

$$
m(\log \log m)^{-3/2} \ll [k : \mathbb{Q}]^{3/2} d\sqrt{d+g}.
$$

In this last case of a curve in \mathbb{G}_{m}^2 , the upper bound $g \leq (d-1)(d-2)/2$ gives in particular $m \ll_{k,\epsilon} d^{2+\epsilon}$ for every $\epsilon > 0$, which is near to (1). But when for instance k is fixed and g is much smaller than the above upper bound we actually improve on (1). (E.g., the bound $g \ll d^{\delta}$ for fixed $\delta < 2$ replaces the exponent 2 for $d = \deg f$ in (1) by $1 + \frac{1}{2} \max(1, \delta) + \epsilon$.

(ii) For $g = 0$ (actually $g \ll d$ suffices) and for instance $k = \mathbb{Q}$ we obtain in the Corollary a bound $m \ll_{\epsilon} d^{3/2+\epsilon}$ for the maximal order m. This yields the following statement: *let* $R(t)$, $S(t) \in \mathbb{Q}(t)$ *be multiplicatively independent rational functions of degree* $\leq d$ *and suppose that for an algebraic number* t_0 *both* $R(t_0)$, $S(t_0)$ *are roots of unity of common order m. Then* $m \ll_{\epsilon} d^{3/2+\epsilon}$ $m \ll_{\epsilon} d^{3/2+\epsilon}$ $m \ll_{\epsilon} d^{3/2+\epsilon}$. ² Can this estimate be improved? The choice $R(t) = t$, $S(t) = 1 + t + \cdots + t^{1-2}$ says that infinitely often we have $m \ge 2(d+2)$. So, for rational curves we may locate the 'correct' exponent for d in the interval $[1, 3/2]$. How to gain a sharper information? We do not know.

² This case of rational functions is relevant in [AR].

(iii) As anticipated, we prove that (1) is sometimes essentially best possible, so we cannot expect improvements if we do not take into account invariants other than the degree. Let p be a prime number, ζ be a primitive p-th root of 1 and set $R := [\sqrt{p}] + 1$. For each integer n with $0 \le n \le p - 1$, we can divide n by R, obtaining $n = qR + r$, $q = q_n$, $r = r_n$, with $0 \le r < R$. Form the polynomial $f(x, y) = \sum_{n=0}^{p-1} x^q y^r$, which has degree $d \le ((p-1)/R) + R-1 < 2\sqrt{p}$ and satisfies $f(\zeta^R, \zeta) = 0$. We prove that f is absolutely irreducible, so in particular it has no special factors, i.e. it defines an irreducible curve $\mathcal C$ which is not a coset of an algebraic subgroup. Letting $p - 1 = QR + s$ with $0 \leq s \leq R$, we observe that $s + 1$ is coprime to R, for their gcd divides the prime p. We have

$$
f(x, y) = A(y)(1 + x + \dots + x^{Q-1}) + B(y)x^{Q},
$$

where $A(y) = 1 + y + \dots + y^{R-1}$, $B(y) = 1 + \dots + y^s$. Since $s + 1$ is coprime to R , $A(y)$ and $B(y)$ are coprime polynomials. Also, $A(y)$ has no multiple roots. Then, by applying Eisenstein's criterion to the coefficient ring $\overline{Q}[y]$ and the prime $y - \rho$ where ρ is a root of $A(y)$, the claim follows.

The maximal order of a torsion point on the curve C is now $\ge p \ge (\deg f)^2/4$, proving in particular (for $k = \mathbb{Q}$) that the exponent 2 of deg f in (1) cannot be generally lowered.

(iv) For fixed k , our bound involves both genus and degree, whereas (1) involves only the degree. On the other hand, the order of a torsion point cannot be estimated in terms of the genus only. In fact, for a prime $p > 2$ consider the plane curve $C = C_p$ of genus zero defined by $y = 1 + x + \cdots + x^{p-2}$. Plainly, C is irreducible, not a torsion coset and contains the point $(e^{2\pi i/p}, -e^{-2\pi i/p})$ of order 2p.

A somewhat striking feature of our method is that its main new point is a kind of zero estimate over function fields (see Thm. CZ below) rather than some arithmetical tool. This has been carried out in the recent paper [CZ1] and is a function-field sharp analogue of a previous arithmetical result proved in [CZ2].

PROOF OF THEOREM 1. We let \tilde{C} be a complete nonsingular curve birational to C, so in particular we have a birational surjective regular map $\pi : \tilde{C} \to \overline{C}$, where \overline{C} is the closure of C in \mathbb{P}_n . We shall need the following result, proved in [CZ1] (see Cor. 2.3(i) therein). We let S be a finite subset of $\tilde{C}(\overline{\mathbb{Q}})$ and \mathcal{O}_S^* be the group of rational functions in $\overline{\mathbb{Q}}(\mathcal{C})$ with all zeros and poles in S. For a rational function $u \in \overline{\mathbb{Q}}(\tilde{C})^* = \overline{\mathbb{Q}}(C)^*$ we denote by $h(u)$ its degree (i.e. the number of poles of u in \tilde{C}), stipulating that it is 0 if u is constant.

THEOREM CZ ([CZ1, Cor. 2.3(i)]). *Let* $u, v \in \mathcal{O}_S^*$ *be multiplicatively independent and not both constant. Then, setting* $\chi := 2g - 2 + \text{\#S}$, we have

$$
\sum_{P \in \tilde{C} \setminus S} \min\{\text{ord}_P(1-u), \text{ord}_P(1-v)\} \le 3\sqrt[3]{2} \cdot (h(u)h(v)\chi)^{1/3}.
$$

We proceed to the proof of Theorem 1, recalling the notation $d := \deg C$. Renumbering coordinates, we may assume that x_1, \ldots, x_r are multiplicatively independent as functions on C, so they generate in $\bar{k}(C)^*$ a multiplicative subgroup isomorphic to \mathbb{Z}^r . As is customary, we may then define a norm on \mathbb{Z}^r by setting $\|(a_1, \ldots, a_r)\| := h(x_1^{a_1} \cdots x_r^{a_r}).$

This can be extended first to \mathbb{Q}^r by $h(x^l) := |l|h(x)|$ and then to a nonnegative function on \mathbb{R}^r by continuity. (See e.g. [BG, p. 136]; here we do not need the known fact that the extension is a norm.)

We let R be the region in \mathbb{R}^r defined by $\|\mathbf{a}\| \leq 1$; it is clearly a closed convex region, symmetrical around the origin and has a volume, denoted $vol(R)$. Observe that a given coordinate function x_i assumes a given value at most d times on C, hence $h(x_i) \leq d$; in turn this implies $||(a_1, \ldots, a_r)|| \leq (\sum |a_i|)d$. In particular, R contains the region defined by $\sum |a_i| \leq d^{-1}$ and hence

$$
\text{vol}(R) \ge \frac{2^r}{r!} d^{-r}.
$$

Let now $P = (\zeta_1, \ldots, \zeta_n)$ be a torsion point on C, of exact order m, and let Λ be the lattice in \mathbb{Z}^r consisting of integer vectors (l_1, \ldots, l_r) with $\zeta_1^{l_1} \cdots \zeta_r^{l_r} = 1$. Since the map $(l_1, \ldots, l_r) \mapsto \zeta_1^{l_1} \cdots \zeta_r^{l_r}$ is a homomorphism taking values in a group of order m, we deduce that $vol(\Lambda)$ is a divisor of m.

Now, let $\lambda_1, \ldots, \lambda_r$ be the successive minima with respect to R and Λ ; they are defined by the fact that λ_i is the minimal real number such that $\lambda_i R$ contains i linearly independent points of Λ . By Minkowski's Second Theorem they satisfy $\lambda_1 \cdots \lambda_r \text{vol}(R) \leq 2^r \text{vol}(\Lambda) \leq$ 2^rm so in particular, taking also (2) into account,

(3)
$$
\lambda_1 \lambda_2 \le (2^r m / \text{vol}(R))^{2/r} \le (r! m)^{2/r} d^2.
$$

Let $\mathbf{a} = (a_1, \ldots, a_r)$ be a nonzero integer point in $\Lambda \cap \lambda_1 R$ and let $\mathbf{b} = (b_1, \ldots, b_r)$ be an integer point in $A \cap \lambda_2 R$, linearly independent of **a**. We set $u := x_1^{a_1} \cdots x_r^{a_r}$, $v :=$ $x_1^{b_1} \cdots x_r^{b_r}$, so u, v are rational functions on C. Then we have

(4)
$$
h(u) \leq \lambda_1, \quad h(v) \leq \lambda_2.
$$

Also, u, v are multiplicatively independent, because x_1, \ldots, x_r are multiplicatively independent on $\mathcal C$ and $\mathbf a$, $\mathbf b$ are linearly independent; this also implies that none can be constant, because $u(P) = v(P) = 1$, as follows from the very definition of Λ .

(For $r = n = 2$ we could now apply Bézout's theorem to an equation $f(x_1, x_2) = 0$ for the curve, together with $u(x_1, x_2) = 1$ to obtain a bound for the number of conjugates of P . See Remark (v) for this 'intersection' method, which is also at the basis of the paper [BS].)

Since $u(P) = v(P) = 1$ and since C is defined over k we also have $u(P^{\sigma}) =$ $v(P^{\sigma}) = 1$ for all conjugates P^{σ} of P over k. There are at least $\phi(m)/[k : \mathbb{Q}]$ distinct such conjugates.

Naturally, u, v induce functions $\tilde{u} = u \circ \pi$, $\tilde{v} = v \circ \pi$ on \tilde{C} . We apply Theorem CZ to them, by defining $S \subset \tilde{C}$ as the union of the sets of zeros and poles of \tilde{u} , \tilde{v} . Every point $P^{\sigma} \in C$ lifts to at least one point $Q_{\sigma} \in \tilde{C}$, that is, $\pi(Q_{\sigma}) = P^{\sigma}$; of course distinct P^{σ} yield distinct Q_{σ} so the number of Q_{σ} is at least $\phi(m)/[k : \mathbb{Q}]$. Also, we have $\tilde{u}(Q_{\sigma}) =$ $u(P^{\sigma}) = 1$ and similarly $\tilde{v}(Q_{\sigma}) = 1$. Hence Theorem CZ applied to \tilde{u} , \tilde{v} yields

$$
\phi(m) \leq [k : \mathbb{Q}] 3 \sqrt[3]{2} (h(u)h(v)\chi)^{1/3},
$$

MAXIMAL ORDER OF A TORSION POINT **77**

whence, by (3) and (4) ,

$$
\phi(m) \leq [k:\mathbb{Q}]3\sqrt[3]{2}((r!m)^{2/r}d^2\chi)^{1/3}.
$$

Recall that each coordinate has degree $\leq d$, so has at most d zeros and at most d poles. Hence $\#S \le 2rd$, whence $\chi = 2g - 2 + \#S \le 2g - 2 + 2rd$ and

$$
\phi(m) \leq [k : \mathbb{Q}] 3\sqrt[3]{2}((r!m)^{2/r}d^2(2g-2+2rd))^{1/3}.
$$

Cubing both sides we obtain the sought result, concluding the proof.

A METHODOLOGICAL POINT. Note that in the course of this proof we have worked in \mathbb{G}_{m}^{r} rather than \mathbb{G}_{m}^{n} , considering only the first r coordinates; at first sight one could expect difficulties if $r < n$, since the order of a torsion point might decrease under projection to a proper subset of coordinates. In fact, this obstacle would actually appear if we tried to derive the proof by projection, after separate treatment of the case $r = n$. Instead, in the above approach we recover the possible loss through Theorem CZ, which takes into account all the points in a nonsingular model, not merely the geometric points in an embedding.

FURTHER REMARKS

(v) With a notation similar to this proof, working in \mathbb{G}_{m}^{2} , let now R be the region in \mathbb{R}^2 defined by $|x| + |y| \le 1$ and let ξ_1 be the first minimum relative to it and the same lattice Λ , with corresponding integer vector (a, b) . Observe that the torsion point P and its conjugates over k lie in the intersection of C with the curve defined by $X^a Y^b = 1$. Hence by the Bézout theorem the number of conjugates is $\leq d\xi_1 \leq d\sqrt{2m}$. This leads to

(5)
$$
\phi(m)^2 m^{-1} \ll [k : \mathbb{Q}]^2 d^2,
$$

which in turn yields, for fixed k , a bound for m only slightly weaker than (1).

(vi) In the proof we have used the lower bound (2) for vol(R), derived from $h(x_i) \leq$ d . In special cases R may have a larger volume, improving the estimates. Also, one can replace the factor $g - 1 + rd$ by $g - 1 + (\#S/2)$, where S is the total number of zeros/poles of the x_i . Again, in special cases #S may be smaller than $2rd$, leading to a sharpening.

ACKNOWLEDGMENTS. It is a pleasure to thank Zeev Rudnick for helpful comments.

REFERENCES

- [AR] N. AILON Z. RUDNICK, *Torsion points on curves and common divisors of* $a^k 1$ *and* $b^k - 1$. Acta Arith. 113 (2004), 31–38.
- [BS] F. BEUKERS C. SMYTH, *Cyclotomic points on curves*. In: Number Theory for the Millennium, 1 (Urbana, IL, 2000), A K Peters, 2002, 67–85.
- [BG] E. BOMBIERI - W. GUBLER, *Heights in Diophantine Geometry*. Cambridge Univ. Press, 2006.
- [CZ1] P. CORVAJA U. ZANNIER, *Some cases of Vojta's conjecture on integral points over function fields*. J. Algebraic Geom. 17 (2008), 275–294.
- [CZ2] P. CORVAJA U. ZANNIER, *A lower bound for the height of a rational function at* s*-unit points*. Monatsh. Math. 144 (2005), 203–224.
- [L] S. LANG, *Fundamentals of Diophantine Geometry*. Springer, 1983.

Received 27 March 2007, and in revised form 8 May 2007.

> P. Corvaja Dipartimento di Matematica Universita di Udine ` Via Delle Scienze 33100 UDINE, Italy corvaja@dimi.uniud.it

U. Zannier Scuola Normale Superiore Piazza dei Cavalieri 7 56126 PISA, Italy u.zannier@sns.it