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Number theory. — On the maximal order of a torsion point on a curveGfj,, by PETRO
CoRvVAJA and UMBERTO ZANNIER, communicated by U. Zannier on 8 February 2008.

ABSTRACT. — Let C be an irreducible algebraic curve @,; we are concerned with the maximal order=

m(C) of a torsion point orC. We suppose that is defined over a number field that it is not a translate of

an algebraic subgroup by a torsion point, and we denoté ity degree and by its genus. It is known that

m Lk e d2te for anye > 0, which, as shown below, is nearly best possible if only the degree is taken into
account. Here, by means of a new method, we prove an upper bound (actually for cgsamich implies in
particularm < ¢ (d\/mﬂ“. This renders the above result and for sngatlimproves on it. The appearance

of the genus seems to be a new feature in this kind of problem.
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INTRODUCTION

A well-known old problem by Lang is to prove thi&ia plane curvef (x, y) = 0 contains
infinitely many points with roots of unity coordinates, thérmas a ‘special’ factor, i.e.

of the shapeawx™ + by™ or ax™y" + b. Simple elegant solutions were given by lhara,
Serre, Tate and others [L]. We can rephrase the result by sayinid éhatrve in the torus
GZmE]contains infinitely many torsion points, then it contains a translate of some algebraic
subgroup ofGﬁ1 of positive dimensian

This result was generalized in several directions. Here we are concerned with a quanti-
tative version, seeking bound for the maximal order of a torsion point on a curvéig.

We remark that a different, though related, known problem is to estimateithber of
torsion points on the curv€oncerning this last issue, we refer for instance to [BS]; in that
paper itis proved in particular théitf has no factor of the above-mentioned special shape,
then the number of torsion points on the cupue:, y) = 0 does not excee2lV ( f) where
V(f) is the area of the Newton polygon ¢f In particular, the bound i (degf)2.

Remarkably, these last bounds do not depend on the field of definitigih of the
contrary, such a dependence must clearly appear in a bound for the maximal order. We also
note that the bounds for the number of torsion points imply a bound for the maximal order,
as follows: Letf (P) = 0 for a torsion pointP of exact order, where f is defined over
k and has no special factors. ThgP?) = 0 for each conjugat®’ of P overk. There
are> ¢ (m)/[k : Q] such conjugates and all of them are torsion, whence by the above

(6] ¢(m) < [k : Q](degf)>.
See also Remark (v) for a quick deduction of a result only slightly weaker, given by (5).

1 As usualGm denotes the affine line deprived of the origin.
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In Remark (iii) below we note that this estimate is sometimes essentially best possible
and that in particular the exponent 2 attributed to degnnot be generally lowered. In this
short note we prove, however, that for a given ground fteld) can actually be improved
when the curve defined by has small genug. The appearance of the genus represents a
new feature with respect to known estimates.

In the following, by thedegreeof a curve embedded i}, we mean as usual the
maximum number of intersections with a hyperplane not containing the curve, and by its
genuswe mean the genus of a nonsingular projective model of it (we do not assume that
the curve is nonsingular). By tarsion pointin Gy, we mean a point whose coordinates
are roots of unity, whereas bytarsion cosein G}, we mean a translate of an algebraic
subgroup by a torsion point. We have:

THEOREM 1. LetC be an absolutely irreducible curve &7, of genusg and degreef,
defined over a number field, and letr be the minimal dimension of a torsion coset
containingC. Suppose that > 2 and letP € C(Q) be a torsion point of orde#:. Then

¢ (m)3m =" < 108r1H?/ [k : Q13d*(g — 1+ rd).
Specializing to the interesting case= r = 2 we obtain:

COROLLARY. LetC/k be an absolutely irreducible curve of gengisand degreed in
G2, not a torsion coset. Suppose thate C(Q) is a torsion point of order:. Then

¢ (m)3m~t < 216k : Q)%d?(g — 1+ 2d).
REMARKS. (i) Recall thatp (m) > m/loglogm, so the inequality in Theorem 1 yields

3r

m(oglogm)™ 32 < rlk : Q|5 2d%2(d + g) %2

with a computable absolute implied constant, and for the Corollary

m(loglogm)=%2 « [k : Q*?d\/d + g.

In this last case of a curve i@rzn, the upper boung < (d — 1)(d — 2)/2 gives in particular

m <. d*t for everye > 0, which is near to (1). But when for instankés fixed andg

is much smaller than the above upper bound we actually improve on (1). (E.g., the bound
g < d° forfixeds < 2 replaces the exponent 2 ior= degf in (1) by 1—1—% max(l, §)+€.)

(i) For g = 0 (actuallyg « d suffices) and for instance = Q we obtain in the
Corollary a boundn <« d%?*€ for the maximal ordern. This yields the following
statementlet R(z), S(tr) € Q(r) be multiplicatively independent rational functions of
degree< d and suppose that for an algebraic numbgmoth R(zp), S(zp) are roots of
unity of common ordem. Thenm <. d%%*€, E] Can this estimate be improved? The
choiceR(t) = t, S(t) = 1+1+- - - +1'~? says that infinitely often we have > 2(d + 2).
So, for rational curves we may locate the ‘correct’ exponentifor the interval [1 3/2].
How to gain a sharper information? We do not know.

2 This case of rational functions is relevant in [AR].
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(iii) As anticipated, we prove that (1) is sometimes essentially best possible, so we
cannot expect improvements if we do not take into account invariants other than the degree.
Let p be a prime numbet, be a primitivep-th root of 1 and seRr := [,/p] + 1. For each
integern with 0 < n < p — 1, we can dividex by R, obtainingn = gR +r, g = qu,

r =r,, With 0 < r < R. Form the polynomialf (x, y) = Z;’Z;é x?y", which has degree
d=<((p—D/R)+R—-1<2,/pand satisfieg (¢ %, ¢) = 0. We prove thaf is absolutely
irreducible, so in particular it has no special factors, i.e. it defines an irreducible €urve
which is not a coset of an algebraic subgroup. Leting 1 = QR + s with0 < s < R,

we observe that + 1 is coprime tor, for their gcd divides the primg. We have

f, ) =A0QA+x+---+x27hH + B(»x2,

whereA(y) = 14+y+---+yR1 B(y) = 14 ...+ y°. Sinces + 1 is coprime tor, A(y)
and B(y) are coprime polynomials. Als®(y) has no multiple roots. Then, by applying
Eisenstein’s criterion to the coefficient rifg] y] and the primey — p wherep is a root of
A(y), the claim follows.

The maximal order of a torsion point on the cu6/is now> p > (degf)2/4, proving
in particular (fork = Q) that the exponent 2 of defyin (1) cannot be generally lowered.

(iv) For fixedk, our bound involves both genus and degree, whereas (1) involves only
the degree. On the other hand, the order of a torsion point cannot be estimated in terms
of the genus only. In fact, for a primg > 2 consider the plane cur = C, of genus
zero defined by = 1+ x + - -- + x?~2. Plainly,C is irreducible, not a torsion coset and
contains the pointe?™!/?, —e=271/7) of order 2.

A somewhat striking feature of our method is that its main new point is a kind of zero
estimate over function fields (see Thm. CZ below) rather than some arithmetical tool. This
has been carried out in the recent paper [CZ1] and is a function-field sharp analogue of a
previous arithmetical result proved in [CZ2].

PROOF OFTHEOREM 1. We letC be a complete nonsingular curve birational’tcso in
particular we have a birational surjective regular mapC — C, whereC is the closure

of C in P,. We shall need the following result, proved in [CZ1] (see Cor. 2.3(i) therein).
We letS be a finite subset af (Q) andOy be the group of rational functions @(C) with

all zeros and poles ifi. For a rational functiom € Q()* = Q(C)* we denote byi(u) its
degree (i.e. the number of polesioin C), stipulating that it is 0 if: is constant.

THEOREM CZ ([CZ1, Cor. 2.3(i)]). Letu,v € OF be multiplicatively independent and
not both constant. Then, setting:= 2g — 2 + #S, we have

> minfordp (1 — u), ordp (1 — v)} < 3V2- (h(wh(v))*>.
PeC\S

We proceed to the proof of Theorem 1, recalling the notatioa degC. Renumbering
coordinates, we may assume that. . ., x, are multiplicatively independent as functions
on C, so they generate i®(C)* a multiplicative subgroup isomorphic t@". As is
customary, we may then define a normZnby setting|| (a1, ..., a)| = h(x‘l‘l ceexf.
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This can be extended first @ by A(x!) := |I|h(x) and then to a nonnegative function
onRR" by continuity. (See e.g. [BG, p. 136]; here we do not need the known fact that the
extension is a horm.)

We let R be the region iR" defined byjlal| < 1; it is clearly a closed convex region,
symmetrical around the origin and has a volume, denote@ryolObserve that a given
coordinate functiorx; assumes a given value at mastimes onC, henceh(x;) < d; in
turn this implies|| (a1, - .., a/)|| < O la;|)d. In particular,R contains the region defined
by 3" |a;| < d~! and hence

2 vol(R) > %d*’.

LetnowP = (&1, ..., ¢,) be atorsion point od, of exact order:, and letA be the
lattice inZ" consisting of integer vector@y, ..., [,) with ;{1 e ;,l’ = 1. Since the map
(I1,..., ;) — ;{1 e g“,{’ is a homomorphism taking values in a group of orderwe
deduce that vagld) is a divisor ofm.

Now, letAs, ..., A, be the successive minima with respecktand A; they are defined
by the fact thad; is the minimal real number such thgtR containg linearly independent
points of A. By Minkowski’'s Second Theorem they satisfy- - - 1, vol(R) < 2"vol(A) <
2"'m so in particular, taking also (2) into account,

&) Aho < (2'm/VOI(R)Z"™ < (r'm)?/"d?.

Leta = (a1, ..., a,) be anonzero integer pointin N A1R and letb = (b1, ..., b,)
be an integer point im N A2R, linearly independent cd. We setu := x;* -+ x/", v =
xlfl .. xr, sou, v are rational functions of. Then we have

4 h(u) <A1, h(@) < A2

Also, u, v are multiplicatively independent, because, ..., x, are multiplicatively
independent o€ anda, b are linearly independent; this also implies that none can be
constant, becausg P) = v(P) = 1, as follows from the very definition of.

(Forr = n = 2 we could now apply Bzout's theorem to an equatigf{x1, x2) = 0
for the curve, together with(x1, x2) = 1 to obtain a bound for the number of conjugates
of P. See Remark (v) for this ‘intersection’ method, which is also at the basis of the paper
[BS].)

Sinceu(P) = v(P) = 1 and sinceC is defined overk we also have:(P?) =
v(P?) = 1 for all conjugatesP® of P overk. There are at leagt(m)/[k : Q] distinct
such conjugates.

Naturally, «, v induce functionsi = u o 7, = v o = onC. We apply Theorem CZ
to them, by definings c C as the union of the sets of zeros and poles,df. Every point
P? € C lifts to at least one poinQ, € C, that is,7(Q,) = P°; of course distinctP®
yield distinct O, so the number 08, is at leastp (m)/[k : Q]. Also, we havei(Q,) =
u(P?) =1 and similarlyv(Q,) = 1. Hence Theorem CZ applied #0 v yields

¢(m) < [k : QI3v2(h(w)h(v) )3,
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whence, by (3) and (4),
¢ (m) < [k : QI13v2((rim)?" d?x) /3.

Recall that each coordinate has degreé, so has at most zeros and at most poles.
Hence # < 2rd, whencey = 2g — 2+ #S < 2g — 2+ 2rd and

¢ (m) < [k : QI3V2((r'm)?"d?(2g — 2 + 2rd))*/3.
Cubing both sides we obtain the sought result, concluding the proof.

A METHODOLOGICAL POINT. Note that in the course of this proof we have worked in
G, rather tharGy,, considering only the first coordinates; at first sight one could expect
difficulties if r < n, since the order of a torsion point might decrease under projection
to a proper subset of coordinates. In fact, this obstacle would actually appear if we tried
to derive the proof by projection, after separate treatment of the ,casen. Instead,

in the above approach we recover the possible loss through Theorem CZ, which takes
into account all the points in a nonsingular model, not merely the geometric points in an
embedding.

FURTHER REMARKS

(v) With a notation similar to this proof, working i@zm, let now R be the region in
R? defined by|x| + |y| < 1 and let&; be the first minimum relative to it and the same
lattice A, with corresponding integer vectar, b). Observe that the torsion poiftand its
conjugates ovet lie in the intersection of with the curve defined bx“Y? = 1. Hence
by the Bezout theorem the number of conjugates:igdé; < d+/2m. This leads to

(5) P (m)?m~t < [k : Q]%d?,

which in turn yields, for fixedk, a bound foun only slightly weaker than (1).
(vi) In the proof we have used the lower bound (2) for(w), derived fromh(x;) <
d. In special case® may have a larger volume, improving the estimates. Also, one can
replace the factog — 1+ rd by g — 1+ (#5/2), whereS is the total number of zeros/poles
of thex;. Again, in special casesS#may be smaller thans2, leading to a sharpening.
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