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Number theory. — On the maximal order of a torsion point on a curve inGn
m, by PIETRO

CORVAJA and UMBERTO ZANNIER, communicated by U. Zannier on 8 February 2008.

ABSTRACT. — Let C be an irreducible algebraic curve inG2
m; we are concerned with the maximal orderm =

m(C) of a torsion point onC. We suppose thatC is defined over a number fieldk, that it is not a translate of
an algebraic subgroup by a torsion point, and we denote byd its degree and byg its genus. It is known that
m �k,ε d2+ε for any ε > 0, which, as shown below, is nearly best possible if only the degree is taken into
account. Here, by means of a new method, we prove an upper bound (actually for curves inGn

m) which implies in
particularm �k,ε (d

√
d + g)1+ε . This renders the above result and for smallg it improves on it. The appearance

of the genus seems to be a new feature in this kind of problem.
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INTRODUCTION

A well-known old problem by Lang is to prove thatif a plane curvef (x, y) = 0 contains
infinitely many points with roots of unity coordinates, thenf has a ‘special’ factor, i.e.
of the shapeaxm

+ bym or axmyn
+ b. Simple elegant solutions were given by Ihara,

Serre, Tate and others [L]. We can rephrase the result by saying thatif a curve in the torus
G2

m
1 contains infinitely many torsion points, then it contains a translate of some algebraic

subgroup ofG2
m of positive dimension.

This result was generalized in several directions. Here we are concerned with a quanti-
tative version, seekinga bound for the maximal order of a torsion point on a curve inGn

m.
We remark that a different, though related, known problem is to estimate thenumber of

torsion points on the curve. Concerning this last issue, we refer for instance to [BS]; in that
paper it is proved in particular thatif f has no factor of the above-mentioned special shape,
then the number of torsion points on the curvef (x, y) = 0 does not exceed22V (f ) where
V (f ) is the area of the Newton polygon off . In particular, the bound is� (degf )2.

Remarkably, these last bounds do not depend on the field of definition off ; on the
contrary, such a dependence must clearly appear in a bound for the maximal order. We also
note that the bounds for the number of torsion points imply a bound for the maximal order,
as follows: Letf (P ) = 0 for a torsion pointP of exact orderm, wheref is defined over
k and has no special factors. Thenf (P σ ) = 0 for each conjugateP σ of P overk. There
are≥ φ(m)/[k : Q] such conjugates and all of them are torsion, whence by the above

(1) φ(m) � [k : Q](degf )2.

See also Remark (v) for a quick deduction of a result only slightly weaker, given by (5).

1 As usual,Gm denotes the affine line deprived of the origin.
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In Remark (iii) below we note that this estimate is sometimes essentially best possible
and that in particular the exponent 2 attributed to degf cannot be generally lowered. In this
short note we prove, however, that for a given ground fieldk, (1) can actually be improved
when the curve defined byf has small genusg. The appearance of the genus represents a
new feature with respect to known estimates.

In the following, by thedegreeof a curve embedded inGn
m we mean as usual the

maximum number of intersections with a hyperplane not containing the curve, and by its
genuswe mean the genus of a nonsingular projective model of it (we do not assume that
the curve is nonsingular). By atorsion pointin Gn

m we mean a point whose coordinates
are roots of unity, whereas by atorsion cosetin Gn

m we mean a translate of an algebraic
subgroup by a torsion point. We have:

THEOREM 1. Let C be an absolutely irreducible curve inGn
m, of genusg and degreed,

defined over a number fieldk, and let r be the minimal dimension of a torsion coset
containingC. Suppose thatr ≥ 2 and letP ∈ C(Q) be a torsion point of orderm. Then

φ(m)3m−2/r
≤ 108(r!)2/r [k : Q]3d2(g − 1 + rd).

Specializing to the interesting casen = r = 2 we obtain:

COROLLARY. Let C/k be an absolutely irreducible curve of genusg and degreed in
G2

m, not a torsion coset. Suppose thatP ∈ C(Q) is a torsion point of orderm. Then

φ(m)3m−1
≤ 216[k : Q]3d2(g − 1 + 2d).

REMARKS. (i) Recall thatφ(m) � m/ log logm, so the inequality in Theorem 1 yields

m(log logm)−
3r

3r−2 � r[k : Q]
3r

3r−2 d
2r

3r−2 (d + g)
r

3r−2

with a computable absolute implied constant, and for the Corollary

m(log logm)−3/2
� [k : Q]3/2d

√
d + g.

In this last case of a curve inG2
m, the upper boundg ≤ (d −1)(d −2)/2 gives in particular

m �k,ε d2+ε for everyε > 0, which is near to (1). But when for instancek is fixed andg
is much smaller than the above upper bound we actually improve on (1). (E.g., the bound
g � dδ for fixedδ < 2 replaces the exponent 2 ford = degf in (1) by 1+ 1

2 max(1, δ)+ε.)
(ii) For g = 0 (actuallyg � d suffices) and for instancek = Q we obtain in the

Corollary a boundm �ε d3/2+ε for the maximal orderm. This yields the following
statement:let R(t), S(t) ∈ Q(t) be multiplicatively independent rational functions of
degree≤ d and suppose that for an algebraic numbert0 both R(t0), S(t0) are roots of
unity of common orderm. Thenm �ε d3/2+ε . 2 Can this estimate be improved? The
choiceR(t) = t , S(t) = 1+ t +· · ·+ t l−2 says that infinitely often we havem ≥ 2(d +2).
So, for rational curves we may locate the ‘correct’ exponent ford in the interval [1, 3/2].
How to gain a sharper information? We do not know.

2 This case of rational functions is relevant in [AR].



MAXIMAL ORDER OF A TORSION POINT 75

(iii) As anticipated, we prove that (1) is sometimes essentially best possible, so we
cannot expect improvements if we do not take into account invariants other than the degree.
Let p be a prime number,ζ be a primitivep-th root of 1 and setR := [

√
p] + 1. For each

integern with 0 ≤ n ≤ p − 1, we can dividen by R, obtainingn = qR + r, q = qn,
r = rn, with 0 ≤ r < R. Form the polynomialf (x, y) =

∑p−1
n=0 xqyr , which has degree

d ≤ ((p−1)/R)+R−1 < 2
√

p and satisfiesf (ζR, ζ ) = 0. We prove thatf is absolutely
irreducible, so in particular it has no special factors, i.e. it defines an irreducible curveC
which is not a coset of an algebraic subgroup. Lettingp − 1 = QR + s with 0 ≤ s < R,
we observe thats + 1 is coprime toR, for their gcd divides the primep. We have

f (x, y) = A(y)(1 + x + · · · + xQ−1) + B(y)xQ,

whereA(y) = 1+y +· · ·+yR−1, B(y) = 1+· · ·+ys . Sinces +1 is coprime toR, A(y)

andB(y) are coprime polynomials. Also,A(y) has no multiple roots. Then, by applying
Eisenstein’s criterion to the coefficient ringQ[y] and the primey − ρ whereρ is a root of
A(y), the claim follows.

The maximal order of a torsion point on the curveC is now≥ p ≥ (degf )2/4, proving
in particular (fork = Q) that the exponent 2 of degf in (1) cannot be generally lowered.

(iv) For fixedk, our bound involves both genus and degree, whereas (1) involves only
the degree. On the other hand, the order of a torsion point cannot be estimated in terms
of the genus only. In fact, for a primep > 2 consider the plane curveC = Cp of genus
zero defined byy = 1 + x + · · · + xp−2. Plainly,C is irreducible, not a torsion coset and
contains the point(e2πi/p, −e−2πi/p) of order 2p.

A somewhat striking feature of our method is that its main new point is a kind of zero
estimate over function fields (see Thm. CZ below) rather than some arithmetical tool. This
has been carried out in the recent paper [CZ1] and is a function-field sharp analogue of a
previous arithmetical result proved in [CZ2].

PROOF OFTHEOREM 1. We letC̃ be a complete nonsingular curve birational toC, so in
particular we have a birational surjective regular mapπ : C̃ → C, whereC is the closure
of C in Pn. We shall need the following result, proved in [CZ1] (see Cor. 2.3(i) therein).
We letS be a finite subset of̃C(Q) andO∗

S be the group of rational functions inQ(C) with
all zeros and poles inS. For a rational functionu ∈ Q(C̃)∗ = Q(C)∗ we denote byh(u) its
degree (i.e. the number of poles ofu in C̃), stipulating that it is 0 ifu is constant.

THEOREM CZ ([CZ1, Cor. 2.3(i)]). Let u, v ∈ O∗

S be multiplicatively independent and
not both constant. Then, settingχ := 2g − 2 + #S, we have∑

P∈C̃\S

min{ordP (1 − u), ordP (1 − v)} ≤ 3
3
√

2 · (h(u)h(v)χ)1/3.

We proceed to the proof of Theorem 1, recalling the notationd := degC. Renumbering
coordinates, we may assume thatx1, . . . , xr are multiplicatively independent as functions
on C, so they generate in̄k(C)∗ a multiplicative subgroup isomorphic toZr . As is
customary, we may then define a norm onZr by setting‖(a1, . . . , ar)‖ := h(x

a1
1 · · · x

ar
r ).
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This can be extended first toQr by h(xl) := |l|h(x) and then to a nonnegative function
on Rr by continuity. (See e.g. [BG, p. 136]; here we do not need the known fact that the
extension is a norm.)

We letR be the region inRr defined by‖a‖ ≤ 1; it is clearly a closed convex region,
symmetrical around the origin and has a volume, denoted vol(R). Observe that a given
coordinate functionxi assumes a given value at mostd times onC, henceh(xi) ≤ d; in
turn this implies‖(a1, . . . , ar)‖ ≤ (

∑
|ai |)d. In particular,R contains the region defined

by
∑

|ai | ≤ d−1 and hence

(2) vol(R) ≥
2r

r!
d−r .

Let nowP = (ζ1, . . . , ζn) be a torsion point onC, of exact orderm, and letΛ be the
lattice inZr consisting of integer vectors(l1, . . . , lr) with ζ

l1
1 · · · ζ

lr
r = 1. Since the map

(l1, . . . , lr) 7→ ζ
l1
1 · · · ζ

lr
r is a homomorphism taking values in a group of orderm, we

deduce that vol(Λ) is a divisor ofm.
Now, letλ1, . . . , λr be the successive minima with respect toR andΛ; they are defined

by the fact thatλi is the minimal real number such thatλiR containsi linearly independent
points ofΛ. By Minkowski’s Second Theorem they satisfyλ1 · · · λrvol(R) ≤ 2rvol(Λ) ≤

2rm so in particular, taking also (2) into account,

(3) λ1λ2 ≤ (2rm/vol(R))2/r
≤ (r!m)2/rd2.

Let a = (a1, . . . , ar) be a nonzero integer point inΛ ∩ λ1R and letb = (b1, . . . , br)

be an integer point inΛ ∩ λ2R, linearly independent ofa. We setu := x
a1
1 · · · x

ar
r , v :=

x
b1
1 · · · x

br
r , sou, v are rational functions onC. Then we have

(4) h(u) ≤ λ1, h(v) ≤ λ2.

Also, u, v are multiplicatively independent, becausex1, . . . , xr are multiplicatively
independent onC and a, b are linearly independent; this also implies that none can be
constant, becauseu(P ) = v(P ) = 1, as follows from the very definition ofΛ.

(For r = n = 2 we could now apply B́ezout’s theorem to an equationf (x1, x2) = 0
for the curve, together withu(x1, x2) = 1 to obtain a bound for the number of conjugates
of P . See Remark (v) for this ‘intersection’ method, which is also at the basis of the paper
[BS].)

Sinceu(P ) = v(P ) = 1 and sinceC is defined overk we also haveu(P σ ) =

v(P σ ) = 1 for all conjugatesP σ of P over k. There are at leastφ(m)/[k : Q] distinct
such conjugates.

Naturally,u, v induce functions̃u = u ◦ π , ṽ = v ◦ π on C̃. We apply Theorem CZ
to them, by definingS ⊂ C̃ as the union of the sets of zeros and poles ofũ, ṽ. Every point
P σ

∈ C lifts to at least one pointQσ ∈ C̃, that is,π(Qσ ) = P σ ; of course distinctP σ

yield distinctQσ so the number ofQσ is at leastφ(m)/[k : Q]. Also, we haveũ(Qσ ) =

u(P σ ) = 1 and similarlyṽ(Qσ ) = 1. Hence Theorem CZ applied toũ, ṽ yields

φ(m) ≤ [k : Q]3
3
√

2(h(u)h(v)χ)1/3,
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whence, by (3) and (4),

φ(m) ≤ [k : Q]3
3
√

2((r!m)2/rd2χ)1/3.

Recall that each coordinate has degree≤ d, so has at mostd zeros and at mostd poles.
Hence #S ≤ 2rd, whenceχ = 2g − 2 + #S ≤ 2g − 2 + 2rd and

φ(m) ≤ [k : Q]3
3
√

2((r!m)2/rd2(2g − 2 + 2rd))1/3.

Cubing both sides we obtain the sought result, concluding the proof.

A METHODOLOGICAL POINT. Note that in the course of this proof we have worked in
Gr

m rather thanGn
m, considering only the firstr coordinates; at first sight one could expect

difficulties if r < n, since the order of a torsion point might decrease under projection
to a proper subset of coordinates. In fact, this obstacle would actually appear if we tried
to derive the proof by projection, after separate treatment of the caser = n. Instead,
in the above approach we recover the possible loss through Theorem CZ, which takes
into account all the points in a nonsingular model, not merely the geometric points in an
embedding.

FURTHER REMARKS

(v) With a notation similar to this proof, working inG2
m, let nowR be the region in

R2 defined by|x| + |y| ≤ 1 and letξ1 be the first minimum relative to it and the same
latticeΛ, with corresponding integer vector(a, b). Observe that the torsion pointP and its
conjugates overk lie in the intersection ofC with the curve defined byXaY b

= 1. Hence
by the B́ezout theorem the number of conjugates is≤ dξ1 ≤ d

√
2m. This leads to

(5) φ(m)2m−1
� [k : Q]2d2,

which in turn yields, for fixedk, a bound form only slightly weaker than (1).
(vi) In the proof we have used the lower bound (2) for vol(R), derived fromh(xi) ≤

d. In special casesR may have a larger volume, improving the estimates. Also, one can
replace the factorg −1+ rd by g −1+ (#S/2), whereS is the total number of zeros/poles
of thexi . Again, in special cases #S may be smaller than 2rd, leading to a sharpening.
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