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Partial differential equations. — Entire solutions of autonomous equations®h with
nontrivial asymptoticsby ANDREA MALCHIODI.

ABSTRACT. — We prove existence of a new type of solutions for the semilinear equatior+u = u” onRR”,
with 1 < p < (n+2)/(n — 2). These solutions are positive, bounded, decay exponentially to zero away from
three half-lines with a common origin, and at infinity are asymptotically periodic.

KEY woRrDs:  Semilinear elliptic equations; entire solutions; Lyapunov—Schmidt reduction; weighted spaces.

MATHEMATICS SUBJECT CLASSIFICATION (2000): 35B40, 35J10, 35360, 58C15.

1. INTRODUCTION

This note summarizes the results 0f [[15], where new positive entire solutions of the
equation

(Ep) —Au+u=u? inR"

are constructed, assuming thate (1, g—fg) These new solutions decay exponentially
away from three half-lines and are asymptotically periodic in these three directions.

The study of[E},) has several motivations: as basic examples we have nonlinear scalar
field equations like theNonlinear Klein—Gordonor the Nonlinear Schodinger. More
precisely a special class of solutions of the lawehY = —h2AJ + V(x)§ — |72,
calledstanding wavesare complex-valued functions(x, t), (x, t) € R" x R, of the form
Y(x, 1) = e iy (x), wherew is a real constant and : R” — R a real-valued function
which satisfies the equation (addiago V)

(NLS) —Au+Vx)u=u? inR"

(V : R" — R is the potential angp > 1). Under the above restriction gn problem

is variational but noncompact, since the dom#ifi, is unbounded. An important

step to understand how compactness is lost along Palais—Smale sequences is to consider
problem E},). Another motivation for the study dff) is the semiclassical limit of{'Z S),

namely

(NLS,) —2Au+VxX)u=u’ inR",

wheree is a small positive parameter which stands for the Planck const®yt a scaling
of the formx — ex, the equation becomes jufVL3), but with V(x) replaced by
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V (ex), a potential which now has a slow dependence on its argument. Soluti@M£ SE)
localized near some poiny € R” solve in the limit (after rescaling} Au + V (xo)u =

u?, and can be obtained from solutions by easy algebraic manipulations. The
localization phenomenon, also related to the quantum-mechanical requirement of getting
wave functions with finite probability, corresponds to looking for solution§ig) fvhich

decay to zero at infinity, for example solutions of

—AU+U=U? inR",

@) U=>0, UeHR?.

Problem [(1) possessepound stateswhich have exponential decay, are radial (up to
translation), radially decreasing and unique.

Still other reasons for considerir{@f) arise in the study of models from biology: for
example, th&ierer—Meinhardisystem (see [23]), can be approached by studying first the
equation—s?Au + u = u” in a domain2 € R”, with Neumann boundary conditions.
There is a broad literature on this problem, concerning existence and multiplicity results
on spike layersnamely solutions, which concentrate at a finite number of points®f
with the profileu, (x) >~ U(*=2), xo € £2.

For the above issues we refer the readerlto [1], where arather complete list of references
is given.

Recently, a different kind of solutions (whose existence has been conjectured for some
time, seel[2B]) has been shown to exist, both and for the above Neumann
problem. These have a different profile and scale only in one direction (or, more generally,
in k directions, withk € {1, ..., n — 1}), corresponding to solutions of the equation[ih (1)
which are independent of some of the variables (see [2]-:[4], 171,191, [14], [16], [17], [22]).

Except when some symmetry is present, this kind of result asserts that concentration
occurs provided we restrict ourselves to a suitable sequgnee 0: the reason is that
these solutions have a larger and larger Morse index, and therefore resonance occurs.
As a consequence, if one wishes to employ local inversion arguments, it is necessary to
avoid some values of the parameteiso that the linearized equation is invertible. Under
symmetry assumptions one can work in spaces of invariant functions and obtain existence
for all £; however, the resonance phenomenon still occurs, and this generates bifurcation
phenomena (sekl[2]).

This bifurcation is indeed also present for a class of solutio. (For example, one
can start from entire (decaying) solutions of the equation in lower dimension, &y i
and extend them (with obvious notation) to the whifeby settingU (x1, x) = U,_1(x").

In [6] N. Dancer proved bifurcation of noncylindrical solutions fréfwhich are periodic
in x1, considering the Morse index 6f restricted to the strip; := {—L/2 < x1 < L/2},
and showing that this diverges whén— +oo.

A similar strategy was previously used by R. Schoen to prove multiplicity of solutions
for the Yamabe problem (see |24]), and in fact other geometric problems exhibit this
kind of phenomenon, like that of finding surfaces ¥ which have constant mean
curvature. Considering for example axially-symmetric objects, it turns out that from the
cylinder bifurcates a family of surfaces, ti¥elaunay unduloidswhich have constant
mean curvature and are periodic along the axis of the cylinder. A similar behavior is present
when considering conformal Yamabe metrics defind®in{0}, » > 3, which are singular
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at the origin. Besidegc|~"=2/24x2, there are other metrics whose conformal factor is
radial and periodic inx| after a logarithmic change of variables.

Delaunay unduloids are used lsilding blocksto produce complete surfaces ¥
with constant mean curvature which are unions of a compact set and a finite humber of
ends subsets with the topology of the cylinder which are asymptotically close to Delaunay
surfaces. We refer for example to the papers [10]-{12], [18]-[20] for details. Analogous
constructions can be done with Yamabe metrics which are defined on domaiAsvith
a finite number of points removed, and which are singular at these points (se€e e.g. [13],
[21]] and references therein). The aim[of][15] is to show that a similar structure is present
for solutions to[E,): to our knowledge there are no previous examples which arise in
a pure PDE context. Some related results are givenlin[[9], [8] (also for the Allen—Cahn
equation), but there the profile of solutions is homogeneous, or nearly homogeneous, along
the transitions, in strong contrast with our case.

Denoting points oR” by couples(x1, x’) € R x R”~1, we consider first a family of
solutionsuy, to which are periodic in the; variable and which decay to zero at an
exponential rate away fronf = 0, counterparts of the Delaunay surfaces. We focus on the
case of large period, which allows us to construct the solutions|of [6] using perturbative
methods. Infact, se&t = (iL,0, ..., 0). Thenthe functiomo; = ), U(-—2) satisfies
the Neumann boundary conditions 8P, and is an approximate solution for L
large. Using the implicit function theorem, one can add a correaliprto ug ; so that
ur, = uo,r +wy, solves[E,) exactly.

To state our result, we introduce some extra notation7set {(z1,z2,0,...,0) :

(z1, z2) € R?} € R" and also, give® € "1 (C R") N IT, we define the rayy = {16 :

t > 0}. We also letRy denote the rotation in the plané (extended naturally to all of
R™) of angled. The distance function between two points (or between two setRY i
denoted by dist, -). In the statement of Theorgm [L.1 belaw, stands for the solution of
periodic inx1 just described.

THEOREM1.1. Problem(E,) admits a three-dimensional (up to rotations and transla-
tions) family of solutions which decay exponentially away from three rays originating from
a common point, and which have an asymptotic periodic profile along the rays. More
precisely, there exist a positive constahta neighborhood/ of 0in R3, smooth functions
01,02,63:U — S" YN, L1, Lo, L3:U — R, y1, y2, y3 : U — IT and a map frond/

into L>*°(R"), ¢ € U — u,, such that the following properties hold:

() u¢ is a positive solution ofE});
(if) if lg,, lg,, lp, are the rays corresponding to the directiofts - and 63 respectively,
then

1 diSt(x,]gl U192 Ul93)

us(x) <Ce ¢ for everyx € R”,;

(iii) foranys; — +o0, given any compact sé of R”,
lu(- = 1i6a) — ur, (Rg, (- = ya)llc2(xy < Cxetlil fora=1,2,3

We can indeed characterize more precisely these solutions in terms of their asymptotic
behavior at infinity. In our construction the values of the numligrsa = 1, 2, 3, can be
chosen arbitrarily large, but the differendég — L, |, with a # b, stay uniformly bounded.
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Also, we haved, /6, > 7/3 for everya # b, wheref, /6, stands for the angle between
the two versorg, anddy. It is also possible to prove that the following function is positive
and monotone ik (L > 1):

1
6wi=g [ (VuLP+ud)do - ur P+ do,
Dy,

23 ),
2(p+1 Jop,

and that it determines uniquely the asymptotic period and profile of the funations
analogy with abalance conditiorfor CMC surfaces or singular Yamabe metrics we have
the following result.

THEOREM1.2. Letu be a function with propertie€)—(iii) of Theorenfl.], and letd,,
Ly, a = 1,2, 3, be the corresponding quantities. Assume that the afiglé, between
any two different’s is greater thane /3. Then)_,_, , 36,G(L,) = 0.

Theoren{ 1.p follows from properties (i)—(iii) above and some integration by parts,
while the proof of Theorein 1.1 is rather involved, and will be sketched in the next section.

REMARK 1.3. (a) Existence of solutions of semilinear elliptic equations with infinitely
many bumps has been considered in other works, but from other points of view. For
example, in[[5], similar equations in the presence of a slowly oscillating potential have
been considered. While in that paper it is the potential that mainly determines the locations
of thebumps here precisely their mutual interactions allow us to perform the construction
of Theoreni L1.

(b) Concerning the Neumann problem mentioned above, we believe that the functions
constructed in Theorerh 1.1, scaled 4n might lead to the existence of solutions
concentrating at a singular set {R, with a triple point. This would be a new type of
phenomenon, since so far concentration at sets of dimension greater than zero has been
proved for smooth curves or manifolds only.

2. SOME DETAILS ABOUT THE PROOF OFTHEOREM[L]

First we recall some basic properties of the solutibto (I): its asymptotic behavior is

. .U
r..(n—-1)/2 _ . _ _
(2 rll)ngoe r U(r) = an,p; r||—>moo U = (r = |x]).
Moreover, the kernel of the operatbpv := —Av + v — pUP~1v (the linearization of{iL)
atU) is spanned byU/dx1, ..., 90U /dx,. We will work within the space of functions

which are rotationally invariant in the last— 2 variables, so under this condition the
elements of keil.g) will be linear combinations o§U /9x1, dU /dx>.

Our strategy consists in starting with approximate solutions which have the desired
behavior at infinity, and then using a Lyapunov—Schmidt reduction to fully solve the
equation.

We introduce three half-spac&®s = {x € R" : (x,0,) > L/2 — 1}, and alsa},(x) =
¥(d(x, V,)), wherey is a fixed smooth cutoff function defined &with values in [Q 1]
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such thaty (r) = 1 fort < 0, andy (r) = O fort > 1. Let61, 62, 63 be three unit vectors
in IT := {(x1, x2, 0, ...,0)} € R" which satisfy

T T T
3 01/600 > 3 +60; 02/03> 3 +6p; 01/03> 3 + 6o

for someép > 0. Recall that for any: = 1, 2,3, Ry, stands for the rotation ithi7 by
angled,. If wy is as above, we defin@;, 9, = Rp,wz. Next we choose three large
numbersLq, L, L3 (with |L, — Lp| + |L, — L| uniformly bounded by a fixed constant
C), pointsy,, a = 1, 2,3, and(P,,;),,; such that

@) 1val <cap  |Pai—i0;iLg —yal < Cope™ ™l a=1,23i=12,...,

for some constants,, Cg, andz (uniformly bounded irL). We set for simplicity{ P;} =

{0} UU, i{Pai}, X = U (P}, Y = (y1. y2. y3) andU; (-) = (- — Pp) for any index.
We finally define

3
®) uxy(¥) =Y Ur(x)+ Y %a()WL, 6,(x = ya).
1 a=1

By our choice, this function is exponentially close to a rotationu@f along each
directiond,: indeed, it is possible to prove the following quantitative estimate of.

LEMMA 2.1. LetSo(ux,y) = —Auxy + uxy — ul y. If (va)a, (Pr); satisfy@) and
(84), satisfy(3), then for anyy € (0, 1)

(6) IISo(ux.y)llcr By < Cem MO ZemodUiPd[e=nlxl 4 Coe~™H], - x e RY,

whereg, o andn are positive constants depending onlymgrp andép, but not onL, and
whereC is a fixed constant (depending only @np, y andp) also independent df.

The Lyapunov—Schmidt reduction consists in transferring prolfiEgifito determin-
ing the appropriate location of the pointg;};. For doing this we can exploit the linear
properties ofLg, and as a first step solve the equation up to, basically, a sequence of
Lagrange multipliers in the kernel d&f; == —A + 1 — pU}’_l. Precisely, one can prove
the following result.

PROPOSITION2.2. Suppos€y,),, (P); satisfy(@), and letux y be as in(5). Then, for
L sufficier_ltly large, there exists a functiary y and a sequenc&!); of elements oR?,
al = (@!);, j = 1,2, such that

@ = Aluxy +wxy) +uxy +wxy) — (uxy +wxy)?’ = E Oll’jUIP_lajUIQ
1,j
p—10U; .
(b wy,yU; Frnk 0 foreveryl and for everyj =1, 2.
n Zj

While this method is rather standard when dealing witfinde number of solitons,
some technical difficulties arise when dealing with infinitely many ones: our proof uses
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crucially weighted spaces and Toeplitz type operators. The final step of the proof consists in
adjusting the positions of the pointg;); in order to make all the coefficients’); vanish.

First of all, using Lemml witliy, = 0, one can estimate the's corresponding to the
functionu x y),y whereX (Y) denotes the special configuration of points satisfying

@) P.i=vy,+1i6,L, foreverya=1,2 3andevery €N,
and where the symbal stands for the tripl€y1, y2, y3).

LEMMA 2.3. For X andY satisfying@@) and (7)) we have the following estimates:

Py1 _
Gy == . FillPai) ot + 0@ MO,
a=12,3 | Pa.1l
Pq 1 Pi1—Pup2 _
1 _ a, a, a, A+&)L
o = | F1(|Pa.1]) + F1(|Pu1— Pup) —————— |+ O(e )
X(¥).Y |: a |Pa,l| a a |Pa,1 — Pa,2|

if P, =Py1,a=123;
lak(p.y| < CemEOLTMPIN 4 0 Cyoe(Fan-1D Fy(L)
if Py =P, fora=1,23andh > 1,

where F; satisfiesF1(t) = (1 + 0,(1)) Fo(t), and whereC, 7, & are constants depending
onn and p.

Next, we study the variation of the!’s depending on the points?;); and (y4)q. To
understand this, looking at the expansions in Lerimh 2.3, one can imafittebehave
like

ol =3 Ps=Pr ips—rpy)
S#£I |PS - Pll

By the presence of the exponential term, the main contribution to the above expression
will be given by the points closest tB;: three whenP; = 0 and two forP; # 0 (here
condition [3) is also used). In particular, along eaghwhen the configuration of points

P, ; is nearly periodic the linearization looks likeTada operatomwhich, in matrix form

with respect to the indek qualitatively looks like

The latter operator can be viewed as a discretization of the Laplacian in one dimension,
and it is indeed possible to invert it via convolution with a kernel which is piecewise affine
in the indexi. If &, n are given by Lemmds 2.1 apd P.3, using the above invertibility, one
finds the following result.



ENTIRE SOLUTIONS OF AUTONOMOUS EQUATIONS 71

PROPOSITION2.4. Supposéd1, 62, 03 satisfy (), and L1, Lo, L3 satisfy|L, — Lp| +
|L, — L| < C for C fixed andL sufficiently large. If we choose < min{&, n/2} then there
exist (yq), and (Pr); = (Pa.i)a.; such thatf@) holds true for some uniformly bounded
(in L) cgy, Coy, and withe! = Ofor all 7 # 0.

Notice that we have a six-dimensional family of configurations satisfying the properties
of Propositior] 2.4. The final step consists in choosinglths and thes,’s so that alsa®
vanishes, which leaves four parameters free: taking the quotient with respect to rotations
in I1, we obtain a genuine three-dimensional family of solutions.
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